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High-intensity alkylator-based chemotherapy is required to eradicate tumors expressing high levels
of O6-methylguanine DNA methyltransferase (MGMT). This treatment, however, can lead to life-
threatening myelosuppression. We investigated a gene therapy strategy to protect human
granulocyte colony-stimulating factor-mobilized peripheral blood CD34+ cells (MPB) from a high-
intensity alkylator-based regimen. We transduced MPB with an oncoretroviral vector that
coexpresses MGMTP140K and the enhanced green fluorescent protein (EGFP) (n = 5 donors). At 4
weeks posttransplantation into nonobese diabetic/severe combined immunodeficient (NOD/SCID)
mice, cohorts were not treated or were treated with low- or high-intensity alkylating chemotherapy.
In the high-intensity-treated cohort, it was necessary to infuse NOD/SCID bone marrow (BM) to
alleviate hematopoietic toxicity. At 8 weeks posttreatment, human CD45+ cells in the BM of mice
treated with either regimen were EGFP+ and contained MGMT-specific DNA repair activity. In
cohorts receiving low-intensity therapy, both primitive and mature hematopoietic cells were present
in the BM. Although B-lymphoid and myeloid cells were resistant to in vivo drug treatment in
cohorts that received high-intensity therapy, no human CD34+ cells or B-cell precursors were
detected. These data suggest that improved strategies to optimize repair of DNA damage in
primitive human hematopoietic cells are needed when using high-intensity anti-cancer therapy.
Key Words: gene therapy, hematopoietic stem cell, NOD/SCID mice, SCID-repopulating cell,
O6-methylguanine DNA methyltransferase, O6-benzylguanine, BCNU,

G-CSF-mobilized peripheral blood
INTRODUCTION

Maintenance of genome stability in hematopoietic stem
and progenitor cells (HSC) is essential for normal blood
cell development. Survival of HSC and their progeny can
be severely compromised during exposure to DNA-
damaging drugs used in anti-cancer therapy due to low
levels of endogenous DNA repair activity [1–3]. In terms
of anti-cancer therapy, generation of HSC that efficiently
repair DNA damage due to chemotherapy may protect
patients from life-threatening cytopenias commonly
observed following dose-intensified therapy. In a recent
phase II clinical trial, patients with nitrosourea-resistant
gliomas were simultaneously treated with O6-benzylgua-
nine (6BG) to deplete the DNA repair protein O6-
methylguanine DNA methyltransferase (MGMT) and
the DNA damaging agent 1, 3-bis (2-chloroethyl)-1-
nitrosurea (BCNU) [4]. Although lack of tumor progres-
sion was transiently observed in some patients, effective
dose-escalation therapy could not be achieved due to
severe hematopoietic toxicity. These studies provide
clinical proof that strategies protecting HSC during
dose-intensified therapy are indeed clearly needed in
relapsed patients requiring high-dose alkylator therapy.

Numerous transplant studies have convincingly pro-
ven that murine stem cells could be selected in vivo with
6BG/BCNU, 6BG/temozolomide, or 6BG/CCNU [5–21].
In addition, studies performed by Neff et al. [11,22] used
dose-escalation regimens in a canine transplant model
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and demonstrated selection of MGMTP140K-expressing
cells over time with no signs of hematotoxicity or overt
multiorgan toxicity reported. We previously used the
severe combined immunodeficient (SCID)-repopulating
cell (SRC) assay to investigate the extent to which human
SRCs and their progeny were selected in vivo from
submyeloablative doses of 6BG and BCNU [7]. Human
HSC derived from umbilical cord blood (UCB) or gran-
ulocyte colony-stimulating factor (G-CSF)-mobilized
peripheral blood (MPB) that expressed MGMTP140K could
be selected in vivo by nonmyeloablative doses of 6BG and
BCNU. Gerson and colleagues also reported similar
results using MGMTP140K-transduced UCB in the non-
obese diabetic (NOD)/SCID xenograft model [9].

Treatment of nitrosourea-resistant cancers will likely
require high doses of chemotherapy in the myeloablative
range necessitating a stem-cell transplant. In addition,
efficient and prolonged depletion of wild-type MGMT
(wtMGMT) by agents such as 6BG will be necessary so
that tumor DNA damage as a consequence of treatment
with alkylating agents can be optimally accomplished
[4,23,24]. We and others previously demonstrated simul-
taneous protection of murine stem cells with mutant
MGMT protein and significant lack of disease progression
of nitrosourea-resistant tumors in NOD/SCID mice trea-
ted with 6BG/BCNU [13,25]. An aggressive myeloablative
6BG/BCNU regimen was used in our study. Kreklau et al.
[26,27] demonstrated that wtMGMT begins to regenerate
within hours after delivery of 6BG; therefore, one dose
may not allow time for sufficient DNA crosslinks to be
generated prior to de novo synthesis of wtMGMT. They
also found that administration of two boluses of 6BG 8 h
apart led to a prolonged depletion of wtMGMT in a
human glioma (SF767) that expresses high levels of
wtMGMT [26,27]. Our group tested a myeloablative
dosing schema that consisted of two boluses of 6BG
delivered 8 h apart combined with one dose of BCNU
delivered 1 h after the first bolus of 6BG. NOD/SCID mice
were engrafted with a human glioma that expresses high
levels of wtMGMT (SF767). Following transplant with
murine bone marrow (BM) expressing MGMTP140K, the
mice received two cycles of the 6BG double-bolus
regimen over a 2-week period. A significant reduction
in the growth of the engrafted glioma was observed [13].

The extent to which human HSC can be protected in
vivo by MGMTP140K during delivery of high doses of
alkylator therapy that kills cancer cells has not been
investigated. In this report, we compare the outcome of
administering a low-dose 6BG/BCNU regimen versus a
high-dose regimen to NOD/SCID mice transplanted with
MGMTP140K-transduced MPB. The in vivo model used here
provides the most stringent test of human HSC protec-
tion and self-renewal capacity tested to date in vivo. We
found that low numbers of human MPB cells were
protected following delivery of the myeloablative regi-
men and that these cells were limited to mature
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lymphoid and myeloid cells. This model system can
now be used to optimize protection of human HSC
during high-intensity alkylator therapy.

RESULTS AND DISCUSSION

Administration of high-dose alkylator-based therapy that
is myeloablative at initial diagnosis or immediately
following cancer relapse may be the most effective means
of eradicating drug-resistant tumors that express high
levels of wtMGMT. In the current study we used the
NOD/SCID xenograft model to evaluate the impact of
high-dose alkylator therapy on human hematopoiesis.
We used MPB CD34+ cells since this is the HSC source
utilized in human gene therapy trials focused on pre-
venting myelosuppression in cancer patients undergoing
high-dose therapy [28,29].

Transduction Efficiency of Human CD34+ Cells Prior
to Transplantation
We stimulated human CD34+ cells isolated from MPB for
48 h with a cytokine cocktail consisting of G-CSF, stem
cell factor (SCF), and thrombopoietin (TPO) and trans-
duced them with a gibbon ape leukemia virus (GALV)-
pseudotyped oncoretroviral vector that coexpresses
MGMTP140K and enhanced green fluorescent protein
(EGFP) (SF1-P140K). We performed five independent
transplant experiments (MPB 1–5) using CD34+ MPB cells
isolated from five normal donors. EGFP expression was
used to determine the transduction efficiency of the MPB
prior to transplantation. The transduction efficiency was
35.8 F 11% (mean F standard deviation) for CD34+ cells
and 45.2 F 8% for committed progenitor cells (for details
see supplemental information online).

Development of a Murine BM support Model to
Evaluate the Impact of High-Dose 6BG/BCNU
Chemotherapy on Human Hematopoiesis
Our primary objective was to evaluate to what extent
human MPB CD34+ cells transduced with the SF1-P140K
vector were protected from a low-intensity regimen
consisting of 6BG and BCNU that is in the submyeloa-
blative range (Fig. 1A., see low dose) versus a high-
intensity regimen that is myeloablative (Fig. 1A, see high
dose). The low-dose regimen served as an excellent
control with which to compare the impact of the high-
dose regimen on human hematopoiesis since we had
shown previously that this regimen led to selection of
human clonogenic cells in the NOD/SCID xenograft
model [7]. In pilot studies we initially transplanted
NOD/SCID mice with SF1-P140K-transduced human
CD34+ cells and delivered two cycles of either low-dose
or high-dose therapy commencing at 4 weeks posttrans-
plant. Transplanted mice receiving the high-dose therapy
died of severe pancytopenia within 7–10 days posttreat-
ment, although transplanted mice treated with low-dose
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FIG. 1. In vivo resistance of SF1-P140K-transduced MPB cells to low- or high-dose 6BG/BCNU. (A) Human MPB CD34+ cells were transduced with the GALV-

pseudotyped SF1-P140K oncoretroviral vector and transplanted into NOD/SCID mice. At 4 weeks posttransplant, chemotherapy was administered. In the low-

dose regimen, two cycles of 20 mg/kg 6BG followed 1 h later by 5 mg/kg BCNU were administered 2 weeks apart. For MPB 1–4, the high-dose regimen

consisted of one cycle of low-dose chemotherapy followed by infusion of SF1-P140K-transduced BM obtained from NOD/SCID previously treated with 6BG/

BCNU. At week 6 posttransplant, the first high-dose cycle of 30 mg/kg 6BG followed 1 h later by 10 mg/kg BCNU and 7 h later by 15 mg/kg 6BG was

administered. This cycle was repeated again at 8 weeks posttransplant. For MPB 5, mice received 9�106 fresh BM cells 2 days after the first high-dose cycle and at

2 and 7 days after the second high-dose cycle. (B) The percentage of human CD45+EGFP+ cells in the BM was determined by flow cytometry at 16 weeks

posttransplantation. Representative examples of nontreated (NT), low-dose treated (Lo), and high-dose treated (Hi-MPB 3–5) are shown. The BM support used

in Hi-MPB 3 and Hi-MPB 4 was SF1-P140K NOD/SCID BM (i.e., EGFP+) and in Hi-MPB 5 was fresh NOD/SCID BM. The percentage in the upper right quadrant

denotes the percentage of the human CD45+EGFP+ cells.
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chemotherapy survived (data not shown). These data
suggested that although human hematopoietic cells
could repopulate the BM, they did not contribute to the
survival of the animal under such genotoxic conditions
as delivery of high-dose chemotherapy. Therefore, to
prevent life-threatening myelosuppression, we infused in
vivo selected SF1-P140K-NOD/SCID BM into transplanted
mice undergoing high-dose chemotherapy (Fig. 1, high
dose). We found that by maintaining functional murine
hematopoiesis, 85–100% of the transplanted mice receiv-
ing high-dose therapy survived. This strategy was used in
four experiments (MPB 1–4). In another series of pilot
experiments, we determined whether alkylator-induced
myelotoxicity could be prevented by infusing fresh NOD/
SCID BM after delivery of each high-dose cycle. We found
that by injecting fairly high doses of NOD/SCID BM cells
(~9 � 106) 2 days after the first high-dose cycle and on
days 2 and 7 after the second high-dose cycle, 95–100% of
1018
the mice survived (data not shown). This approach was
used in MPB 5 and gave results similar to those observed
in MPB 1–4.

Assessment of Transduced Hematopoietic Cells
Following Delivery of Low- or High-Dose
Chemotherapy
At 8 weeks postchemotherapy, we analyzed the NOD/
SCID BM for the presence of human cells. In contrast to
nontreated mice, the vast majority of the human CD45+

cells expressed EGFP in mice treated with low- or high-
dose chemotherapy (Fig. 1B). Representative examples
from three of the five independent experiments are
shown. As expected in mice receiving high-dose ther-
apy, human and mouse cells that expressed EGFP were
present (Fig. 1B, Hi-MPB 3 and Hi-MPB 4). Flow-
cytometric analyses indicated that the EGFP+ cells that
did not express human CD45 expressed the murine
MOLECULAR THERAPY Vol. 13, No. 5, May 2006
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CD45 antigen (data not shown). Since nontransduced
NOD/SCID BM was used to maintain murine hemato-
poiesis in MPB5, no murine EGFP+ cells were present
(Fig. 1B, Hi-MPB 5).

To evaluate the effects of low- versus high-dose
therapy on human hematopoiesis, we determined the
percentage of human cell engraftment (Fig. 2A,
%huCD45+) and the percentage of transduced human
cells (Fig. 2B, %huCD45+EGFP+) using samples of BM
from transplanted mice. The majority of the mice
survived the low- and high-dose regimens (Fig. 2). In
MPB 2 and MPB 4, two mice in cohorts receiving the
high-dose regimen died 5–6 days after the second cycle of
chemotherapy. Analysis of BM cellularity indicated that
the marrow was hypocellular. In MPB 3, one mouse in the
nontreated group died at 6 weeks posttransplant and in
MPB 5 one mouse in the cohort receiving the low-dose
regimen died after the second cycle of chemotherapy.
Consistent with previous transplant studies using MPB,
human cell chimerism varied among the five MPB
FIG. 2. Effect of low- or high-dose 6BG/BCNU on human cell engraftment and tr

mice was analyzed for (A) the percentage of human cell engraftment (%huCD45

Five independent experiments were performed (MPB 1–5). Data are presented a

significance. NT, nontreated; Lo, low-dose chemotherapy; Hi, high-dose chemo

versus the number of mice initially transplanted (denominator).
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donors, with the drug-treated cohorts exhibiting lower
levels of human cell chimerism (Fig. 2A) [7,30]. Under
both low- and high-dose regimens, the majority of the
remaining human cells expressed EGFP (Fig. 2B). The
statistical analyses of these data are presented in Table 1.
The percentage of huCD45+ cells in the BM was margin-
ally decreased in the high-dose cohort compared to the
low-dose cohort ( P = 0.095), while the percentage of
huCD45+ cells was significantly decreased in both the
low- and the high-dose cohorts compared to the NT
group (both P b 0.0001). The percentage of huC-
D45+EGFP+ cells was significantly increased in all com-
parisons (Hi vs Low, Low vs NT, and Hi vs NT) (Table 1).
The increasing numerical order for the percentage of
human cells that were EGFP+ was NT b Low b Hi. These
data indicate that although human engraftment levels
decreased, the remaining cells contained the SF1-P140K
vector and were resistant to in vivo drug treatment. In
addition, we found no human cells in the spleens of drug-
treated mice when engraftment was V5%, which was the
ansduction efficiency. At 16 weeks posttransplantation, the BM of NOD/SCID
+) and (B) the percentage of human cells that are EGFP+ (%huCD45+EGFP+).

s the means (diamonds) F the standard error (lines). See Table 1 for statistical

therapy; n, the number of mice that survived and were analyzed (numerator)
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TABLE 1: Pair-wise treatment comparisons

Variable Comparison Estimatea P value

% huCD45 Hi vs Lowb –0.052 0.095

Low vs NTb –0.187 b0.0001

Hi vs NTb –0.239 b0.0001

% huCD45+EGFP+ Hi vs Lowb 0.143 b0.0001
Low vs NTb 0.668 b0.0001

Hi vs NTb 0.811 b0.0001

# EGFP+ cells per femur Hi vs Lowb –0.191 0.012

Low vs NTb 0.130 0.120
Hi vs NTb –0.061 0.459

% huCD19 Hi vs Lowc 0.23 0.109

Low vs NTc –1.0631 0.145
Hi vs NTc –0.8331 0.175

% huCD33 Hi vs Lowc –0.009 0.767

Low vs NTc 0.747 0.024

Hi vs NTc 0.738 0.016
% huCD34 Low vs NTc –0.551 0.130

Hi vs Lowd NA b0.0001

Hi vs NTd NA b0.0001

NT, nontreated; Low, low-dose therapy; Hi, high-dose therapy; NA, not applicable.
a The sign of the estimate indicates the direction of the comparison between the data sets

(i.e., x vs y; positive, x N y, and negative, x b y).
b A mixed-linear model was fit with a variance–covariance structure that incorporated

correlation of multiple observations from the same donor.
c Comparisons were analyzed as Poisson distributions of counts using the natural logarithm

of total cells analyzed as the offset, which adjusts for differences between total cells

analyzed in each sample. Generalized Linear Models were used to account for correlation

between repeated samples from the same donor.
d Nonparametric Wilcoxon sum rank test was utilized since all 20 values of CD34% were

equal to 0 for high-dose treatment.
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case for all transplanted mice that received the high-dose
regimen (data not shown).

To determine if chemotherapy treatment resulted in an
expansion of human transduced cells, we next determined
the number of human EGFP+ cells per femur in the NT,
Low, and Hi cohorts (Fig. 3). The increasing numerical
order for the number of human EGFP+ cells per femur was
Hi b NT b Low. However, due to variability in the number
of human EGFP+ cells in the BM of NT cohorts, there were
no significant differences between the high- and the low
dose-treated mice compared to nontreated mice (both P N

0.05). The number of human EGFP+ cells was significantly
decreased in the samples from the high-dose-treated
compared to the low-dose-treated group (Table 1, P =
0.012), indicating that the SF1-P140K-transduced human
cells were not protected to the same extent when exposed
to high-dose alkylator therapy.

Analysis of Multilineage Engraftment of Human Cells
Following Delivery of Low- or High-Dose
Chemotherapy
We determined the impact of the low- or high-dose
therapy on the maintenance of primitive human CD34+

cells and differentiation of lymphomyeloid cell lineages
by flow cytometry. An enrichment of EGFP+CD34+CD38�

and EGFP+CD34+CD38+ cells was evident in mice recei-
1020
ving low-dose chemotherapy but not high-dose chemo-
therapy (Fig. 4). In sharp contrast, even though we
collected and analyzed via flow cytometry large numbers
of events from the BM of transplanted mice that received
high-dose therapy, EGFP+CD34+CD38� and EGFP+

CD34+CD38+ cells were not detected (ND) (Fig. 4). The
BM of the transplanted mice (NT, low, and high) was also
analyzed for clonogenic activity by the colony-forming
unit (CFU) assay (Table 2). We analyzed large numbers of
progenitor plates since the transduction level of the
human cells in the nontreated mice and the engraftment
level of the human cells in the drug-treated mice were low.
The number of EGFP+ CFU detected in the nontreated and
treated animals was consistent with our previously pub-
lished study [7]. The presence of hematopoietic cells that
still possessed clonogenic activity in transplanted mice
receiving the high-dose regimen was extremely limited.
We classified a colony as clonogenic if it contained 50 cells
or greater since this is the accepted cutoff in the CFU assay.
In the BM of these mice, we did occasionally observe
nonclonogenic cell clusters in the methylcellulose that
contained ~10–30 cells per cluster (data not shown). The
two progenitor colonies that were detected in the BM of
transplanted mice receiving the high-dose regimen were
of myeloid origin (i.e., CFU-GM). These data suggest that
although MGMTP140K expression levels were sufficient to
protect committed progenitors under low-dose therapy,
expression levels were not adequate to maintain a pool of
detectable committed progenitors following high-dose
therapy.

We next determined the frequency of EGFP+CD34+

CD19+ (B-lymphoid precursors) and EGFP+CD34�CD19+

(mature B-lymphoid cells) (Fig. 5A). Under low-dose
therapy, both B-lymphoid progenitors and mature B-
lymphoid cells were present and the majority of the
cells expressed EGFP. In contrast, in the transplanted
mice that received high-dose therapy, mature B-lym-
phoid cells but not B-lymphoid progenitors were
present, again indicating that the more primitive
hematopoietic cells were not protected adequately dur-
ing high-dose chemotherapy. Similar to our findings
showing that lymphopoiesis of transduced human cells
was diminished following chemotherapy in the high-
dose range, the appearance of transduced lymphocytes
in a dog transplanted with allogeneic MGMTP140K-
transduced BM appeared to be compromised if dosing
was increased above a certain threshold level [11].

Human myeloid cells (huCD45+CD33+) were protected
in the BM of transplanted mice receiving either low- or
high-dose therapy (Fig. 5B) and the vast majority of these
cells expressed EGFP. The virtual lack of CFU-GM
progenitors in transplanted mice that received the high-
dose regimen (Table 2) suggests that the remaining
CD33+ cells must be somewhat immature since they
could survive for 8 weeks postchemotherapy but were still
fairly differentiated overall since they had progressed
MOLECULAR THERAPY Vol. 13, No. 5, May 2006
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FIG. 3. Effects of low- or high-dose 6BG/BCNU on the total number of human EGFP+ cells. At 16 weeks posttransplantation, the BM of NOD/SCID mice was

analyzed for the number of human EGFP+ cells per femur (# huCD45+EGFP+ � 106). Different scales were used for (A) MPB 1 and 2 versus (B) MPB 3–5 due to

differences in the number of human cells present. Data are presented as the means (diamonds) F the standard error (lines). See Table 1 for statistical significance.

NT, nontreated; Lo, low-dose chemotherapy; Hi, high-dose chemotherapy.
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beyond the point of being clonogenic. Since engraftment
was low (V5% human cells) in the transplanted mice that
received the high-dose regimen, this may also in part
account for the lack of detectable clonogenic cells.

We also looked at the relative contribution of each
hematopoietic cell phenotype (CD34, CD19, and CD33)
to the human graft in the BM (Table 1 and see supple-
mental information online). The increasing numerical
order for the percentage of CD34+ cells was Hi b Low b NT.
There was no significant difference between NT and low-
dose cohorts for the percentage of human CD34+ cells
(Table 1, P N 0.05). As tested by Wilcoxon sum rank test,
the percentage of human CD34+ cells was decreased in the
high-dose cohort compared to both the low-dose and the
NT cohorts (both P values b0.0001). We observed no
significant differences in the percentage of human CD19+

cells between the three experimental groups (Table 1, P
values N0.05). The percentage of human CD33+ cells was
significantly increased in both the high-dose and the low-
dose treatment groups compared to the NT group
( P = 0.016 and 0.024, respectively). The increasing
MOLECULAR THERAPY Vol. 13, No. 5, May 2006
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numerical order for the percentage of human CD33+ cells
was NT b Hi b Low, although high dose and low dose were
almost equal and no statistical difference was noted ( P N

0.05). These data suggest that human myeloid cells that
express MGMTP140K were protected more consistently
than the other hematopoietic subsets during chemo-
therapy administration.

Expression of MGMTP140k in the BM of Transplanted
Mice Following Delivery of Low- or High-Dose
Chemotherapy
Using a fluorometric oligonucleotide assay, we next
confirmed that MGMT activity was present in the BM
of the transplanted mice following delivery of low- and
high-dose therapy (Table 3) [31]. High levels of MGMT
activity were present in the marrow of mice transplanted
with transduced human MPB following treatment with
the low- or high-dose regimens compared to NT and
control BM. We observed no substantial differences in the
level of MGMT activity in the BM between the low-dose
and the high-dose treatments, indicating that high-dose
1021
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FIG. 4. Presence of human CD34+EGFP+ cells following delivery of low- or high-dose 6BG/BCNU. The percentage of human CD34+CD38� and CD34+CD38

cells that were EGFP+ following chemotherapy was assessed by flow cytometry. The percentage of EGFP+ cells in these populations was determined by setting

gates for human CD34+CD38� and CD34+CD38+ cells. Representative examples of nontreated (NT), low-dose-treated (Lo), and high-dose-treated (Hi) cells are

shown. ND, not detected. The percentage in the upper right quadrant denotes the percentage of the human EGFP+ cells in the CD34 subset.
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alkylator treatment did not result in selection or main-
tenance of hematopoietic cells expressing higher levels of
MGMTP140K than those mice treated with low-dose
therapy. When using mice that had similar numbers of
huCD45+EGFP+ cells in the BM (Table 3), we did not see a
difference in MGMT DNA-repair activity in mice treated
with low- versus high-dose therapy. However, data
presented here suggest that protection under high-dose
TABLE 2: Analysis of clonogenic activity in the bone marrow postchemotherapy

Treatment No. of micea %huCD45+b
% huCD45

EGFP+c

Total No.

human cells
(�106) plated

Total No.
CFUd

Total No.
EGFP+ CFUe

Total No.

EGFP+

CFU/femur
% CFU
EGFP+

NTf 4 40 F 13.1 0.35 F 0.2 2.7 (39)g 3599 12 1.5 0.33
Lowh 5 1.3 F 0.26 71 F 10 0.2 (51) 928 496 49.6 53

Highi 6 2.1 F 0.4 99 F 0.8 0.6 (63) 2 2 0.2 100
a Number of mice in which the BM (i.e., femurs) was analyzed by CFU assay. Data were compiled in each treatment group and were derived from MPB 2. MPB 1 was not analyzed for CFU

content. Two to four mice per treatment group were analyzed in MPB 3–5 and similar results obtained.
b Human cell engraftment in the BM (mean F SE).
c Percentage of human cells that were EGFP+ in the BM (mean F SE).
d Total number of human CFU detected (BFU-E and CFU-GM combined).
e Total number of EGFP+ human CFU detected in all femurs.
f Not treated.
g To maximize the number of human cells analyzed, the number of human cells plated per milliliter of complete methylcellulose depended on the level of human cell engraftment in each

mouse. Mice with N30% human cell engraftment in the BM were plated at 1 � 105 total BM cells, mouse and human, per plate; mice with 10–30% human engraftment were plated at 2 �
105 total BM cells per plate and mice with b10% engraftment were plated at 4 � 105 total BM cells per plate. (n) is the number of plates analyzed.
h Low-dose 6BG/BCNU.
i High-dose 6BG/BCNU.
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therapy is suboptimal compared to the low-dose treat-
ment in regard to the level of MGMTP140K-transduced
human cells following chemotherapy.

We are currently addressing whether low numbers of
primitive human cells that express high levels of
MGMTP140K existed after the high-dose therapy and were
either out-competed by the infusion of mouse BM and/or
depleted due to differentiation during the recovery
y
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FIG. 5. Effects of low- or high-dose 6BG/BCNU on multilineage engraftment. (A) For B-lymphoid cells, the percentage of EGFP+ cells was determined after gating

on human CD34+CD19�, CD34+CD19+, and CD34�CD19+ cells. (B) For myeloid cells, the percentage of EGFP+ cells was determined by setting gates for human

CD45+CD33+ cells. Representative examples of nontreated (NT), low-dose treated (Lo), and high-dose treated (Hi) are shown. ND, not detected. The

percentage in the upper right quadrant denotes the percentage of the human EGFP+ cells in the denoted subset.
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period. The reason for the lack of primitive MPB cells
detected in mice receiving the high-dose regimen is most
likely the low number of SRC transduced by the
oncoretroviral vector. The challenge for future investiga-
tions lies in delivering MGMTP140K DNA sequences into
sufficient numbers of human HSC derived from MPB that
can maintain long-term expression. Cytokine-mediated
entry into cell cycle and subsequent breakdown of the
nuclear envelope are a prerequisite for integration of
MOLECULAR THERAPY Vol. 13, No. 5, May 2006
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oncoretroviral vectors into the host genome. This
requirement for provirus integration in conjunction with
our previous and current findings may preclude the use
of oncoretroviral vectors for gene transfer into MPB. We
demonstrated previously that transduction into MPB SRC
using oncoretroviral vectors was problematic and that
substantial differences in the btransducibilityQ of SRC
derived from MPB and UCB existed [30]. In this previous
study, we showed that although MPB and UCB engrafted
1023

http://dx.doi.org/10.1016/j.ymthe.2005.11.017


TABLE 3: Analysis of MGMT activity in the BM postchemotherapy

MPB 5 mouse ID Treatment % huCD45+
No. huCD45

per femur (�106) % huCD45+ EGFP+
No. EGFP cells

per femur (�106)

MGMT activity
(fmol O6-MeG

removed/mg)

Controla — — — — — 3072
Mo 2b NTc 46.0 3.8 2.2 0.10 14,600

Mo 4 Lowd 5.0 0.1 40.4 0.04 21,800

Mo 6 Low 3.0 0.13 42.5 0.10 28,600

Mo 8 Highe 0.4 0.14 82.5 0.12 26,100
Mo 9 High 0.7 0.17 88.6 0.15 30,500
a Control NOD/SCID BM from a nontransplanted mouse.
b Mouse number corresponding to mice in MPB 5.
c Not treated.
d Low-dose 6BG/BCNU.
e High-dose 6BG/BCNU.
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at similar levels in the NOD/SCID mice, transduction
efficiency of SRC derived from MPB with oncoretroviral
vectors was significantly lower compared to that obtained
with SRC derived from UCB. We hypothesize that this
difference is due to an overall lack of cytokine responsive-
ness in MPB SRC compared to UCB SRC and that once
MPB SRCs enter the cell cycle, many of them differ-
entiate. In addition, Srour and colleagues demonstrated
previously that while UCB SRC in G0 or G1 of the cell
cycle engrafted similarly in NOD/SCID mice, MPB SRC in
G1 did not engraft as efficiently as MPB SRC in G0 [32,33].
To increase the number of SRCs transduced with the
oncoretroviral vector that expresses MGMTP140K, we
recently transduced CD34+ cells isolated from UCB. The
striking difference in the transducibility of UCB and MPB
is further highlighted by these experiments. MGMTP140K-
transduced UCB SRC and progeny were protected in the
transplanted mice following delivery of the high-dose
regimen, suggesting that if the oncoretroviral vector can
be delivered to adequate numbers of SRC, detection of
protected human cells from high-dose therapy is possible
(Cai and Pollok, manuscript in preparation). It is impor-
tant to note, however, that clinical gene therapy trials are
using oncoretrovirus vectors and autologous MPB as the
target stem cell source. To what extent oncoretroviral
vectors can adequately transduce and protect adequate
numbers of primitive cells derived from MPB in humans
is being addressed in a phase I clinical trial [34]. The in
vivo high-dose model described in our study can now be
used to test other transduction strategies and vector
systems designed to enhance the transduction efficiency
of primitive MPB HSC. Alternative vector systems such as
lentivirus and foamy virus may help overcome the
problem of low transduction efficiency into SRC derived
from MPB, and studies are currently in progress.

The NOD/SCID xenograft/SRC assay provides a reliable
method with which to test the impact of relevant anti-
cancer therapies on human tumorigenesis and hemato-
poiesis in multiple independent experiments. In our
study we compared the impact of low-dose versus high-
1024
dose therapy in experiments using isolated CD34+ cells
from five normal MPB donors, and we noted variability in
terms of engraftment and composition of the graft
following treatment. This study underscores the fact that
studying sources of stem cells relevant to the future
proposed therapies is necessary. How information
obtained using this model coincides with that observed
in humans awaits the results of clinical gene therapy
trials investigating the capability of MGMTP140K-tran-
duced CD34+ cells to protect cancer patients during
alkylator-based therapy. In summary, these data suggest
that improved strategies for transfer of MGMTP140K into
primitive hematopoietic precursor cells to increase DNA
repair in hematopoietic cells during high-dose alkylator
therapy are needed, particularly when using MPB as a
stem cell source. This in vivo model provides an innova-
tive approach with which to determine the impact of
high-dose alkylator therapy on human HSC and also to
test strategies predicted to increase substantially the
number of primitive human hematopoietic cells pro-
tected from cytotoxic drug therapy.

MATERIALS AND METHODS

Animals. A breeding colony of NOD.CB17-Prkdcscid (NOD/SCID) mice was

established at the Laboratory of Animal Research Center at the Indiana

University School of Medicine (IUSM) (Indianapolis, IN, USA). All

protocols were approved by the Institutional Animal Care and Use

Committee. Animals were housed in positive-airflow ventilated racks,

bred, and maintained in microisolators under specific-pathogen-free

conditions. Following transplantation, animals were placed on static

racks and housed under a Biobubble (The Colorado Clean Room Co., Ft.

Collins, CO, USA). All mice received 1% neomycin sulfate supplemented

with 1.64% glucose in autoclaved water with three changes weekly.

Retrovirus backbones for expression of MGMTP140k in HSC. The

oncoretroviral vector SF1-MGMTP140K-IRES-EGFP (SF1-P140K) was utilized

to coexpress MGMTP140K and EGFP in human CD34+ cells and was

described previously [7]. Retroviral vectors were pseudotyped with the

GALV envelope using the PG13 packaging cell line (American Type

Culture Collection, Manassas, VA, USA) [35]. Titers were initially

determined on human erythroleukemia cells by limiting-dilution analy-

sis. A high-titer clone, SF1-MGMTP140K-IRES-EGFP (clone 40), produced 2–

3 � 105 infectious units per milliliter and was negative for replication-

competent retrovirus.
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Isolation of MPB CD34+ cells. All protocols described were approved by

the Institutional Review Board at IUSM. For isolation of MPB CD34+ cells,

healthy adult volunteers were treated subcutaneously for 4 days with 10

Ag/kg/day of human G-CSF (Filgrastim, Neupogen; Amgen, Thousand

Oaks, CA, USA). Mononuclear cells were collected by apheresis and CD34+

cells were isolated by immunomagnetic methods using the Isolex 300i cell

selection device according to the manufacturer’s instructions (Baxter

Immunotherapy, Irvine, CA, USA). The range in purity of CD34+ cells was

80–90%.

Transduction of MPB CD34+ cells. The transductions were done as

previously described by our laboratory [7,30]. The starting cell number

prior to prestimulation and transduction was 4 � 106 per mouse

transplanted. Isolated CD34+ cells were prestimulated at a cell density

of 5 � 105 cells/ml in Ex Vivo-10 serum-free medium containing 1%

human serum albumin. The medium was supplemented with G-CSF, SCF

(a generous gift from Amgen, Inc.), and TPO (PeproTech, Rocky Hill, NJ,

USA). Each cytokine was used at 100 ng/ml for prestimulation. Non-

tissue-culture 10-cm plates (Falcon, Franklin Lakes, NJ, USA) were coated

with 2 Ag/cm2 Retronectin (Takara Shuzo, Otsu, Japan) overnight at 48C.

Cells were plated at a concentration of 2 � 105 cells/cm2 for transduction.

Cells were infected with a 1:1 ratio of retrovirus supernatant:complete

medium with cytokines for 4 h on 2 consecutive days, with a change to

complete medium containing cytokines for overnight incubation. After

the second round of infection, cells were allowed to remain overnight on

Retronectin-coated plates with fresh medium and cytokines. The follow-

ing day, the medium was changed and the cells were allowed to adhere to

Retronectin in the presence of 100 ng/ml SCF for an additional 2 days

prior to transplant as previously described [36]. The transduction

efficiency was determined by flow cytometry on the day of the transplant.

MGMT bioactivity assay. MGMT activity was determined as previously

described by Kreklau et al. [31]. Briefly, lysates prepared from BM samples

were incubated with a fluorometric 5V-hexachlorofluorescein phosphor-

amidite-labeled oligonucleotide containing a single O6-methylguanine

residue nested within a PvuII restriction site. Following a phenol–

chloroform extraction, the oligonucleotide was digested with PvuII.

Cleavage of the oligonucleotide by PvuII occurs only if the O6-methyl-

guanine residue is repaired by MGMT. Samples were run on a poly-

acrylamide gel and the amount of cleaved product was quantitated using

the Hitachi FMBio II fluorescence imaging system (Hitachi Genetic

Systems, South San Francisco, CA, USA) Specific activity was equal to

femtomoles of O6-methylguanine removed per milligram of total protein.

Transplantation of NOD/SCID mice. Prior to transplant, NOD/SCID mice

were conditioned with 300 cGy total-body irradiation using a GammaCell

40 (Nordion International, Inc., On, Canada) equipped with two

opposing 137Cs sources. Cells were washed once and resuspended in

IMDM containing 0.2% endotoxin-free BSA and injected into the lateral

tail vein of each animal. The number of cells injected per mouse for MPB

1–5 was 28 � 106, 25 � 106, 38 � 106, 45 � 106, and 49 � 106, respectively.

Chemotherapy administration. 6BG (Sigma, St. Louis, MO, USA) was

dissolved in 40% polyethylene glycol-400 (v/v) and 60% saline (v/v).

BCNU (Sigma) was dissolved in 10% ethanol (v/v) and 90% normal

saline solution (v/v). BCNU was placed on ice and used immediately

after reconstitution. At 4 weeks posttransplant, cohorts of mice were

randomly grouped and either not treated or treated with low- or high-

dose therapy according to the schema in Fig. 1. A low-dose cycle

consisted of 20 mg/kg 6BG followed by 5 mg/kg BCNU 1 h later. A

high-dose cycle consisted of 30 mg/kg 6BG followed by 10 mg/kg

BCNU 1 h later and 15 mg/kg 6BG 7 h later. In vivo-selected SF1-

P140K-transduced NOD/SCID BM or fresh NOD/SCID BM was infused

following high-dose chemotherapy to maintain murine hematopoiesis

as detailed under Results and Discussion and Fig. 1A.

Analysis of human cell engraftment. Mice were sacrificed at 8 weeks

post-6BG/BCNU injection and single-cell suspensions of the BM pre-

pared. Human cell engraftment measured by human CD45 staining and

the proportion of engraftment in various lineages was determined by

immunostaining and flow-cytometric analysis. Aliquots of 1–2 � 105
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cells/tube were stained with various antibodies (2 Al per sample) for 25

min at 48C in complete medium and washed one time in PBS containing

1% FBS. All antibodies were titered and used at saturating concen-

trations. The lack of cross-reactivity of human-specific antibodies with

murine cells was confirmed in every experiment by staining BM from a

nontransplanted mouse with each antibody combination. Cells were

stained with peridinin chlorophyll-conjugated anti-human CD45 (anti-

HLe-1; Becton–Dickinson Immunocytometry, San Jose, CA, USA) alone

or in combination with phycoerythrin (PE)-conjugated anti-human

CD33 (anti-Leu-M9; Becton–Dickinson). Identical aliquots were stained

with allophycocyanin-conjugated anti-human CD34 (clone 581; Phar-

Mingen, San Diego, CA, USA) in combination with anti-human CD19–

PE (PharMingen) or anti-human CD38–PE (anti-Leu-17; Becton–Dick-

inson). The forward- and right-angle light scatter parameters were used

to set the gates for analysis. In experiments in which engraftment of

human cells was N5%, ~20,000–40,000 events were collected and

analyzed. In experiments in which human engraftment was b5%,

~200,000 events were collected and analyzed. All samples were acquired

and analyzed on a Becton–Dickinson FACSCalibur using CellQuest

software (Becton–Dickinson).

Statistical analysis. Analysis was done using SAS version 9 (Cary, NC,

USA). Statistical tests were conducted as two-sided at the a = 0.05

significance and 0.10 marginal levels. Pair-wise comparisons between the

three groups, nontreated and low-dose and high-dose treatment, were

adjusted for multiple comparisons using the Bonferroni method ( P b

0.017 for each comparison to maintain overall a of 0.05). The P values

for overall significance, difference between groups, and pair-wise

comparisons are presented.

The percentage of huCD45+, the percentage of huCD45+EGFP+, and

the number of huCD45+EGFP+ obtained per femur were analyzed

separately. Due to nonconstant variance for each measure, a violation

of the assumption of normality, transformations of the data were

performed for analysis. A natural logarithm transformation was used

for the number of huCD45+EGFP+ and arcsine of the square root

transformation was used for proportions of huCD45+ and huC-

D45+EGFP+. For each analysis, a mixed linear model was fit with a

variance–covariance structure that incorporated correlation of multiple

observations from the same donor. Typically, samples obtained from the

same donor will be more similar than samples obtained from different

donors. The percentages of CD19+, CD33+, and CD34+ in the BM were

compared separately between the three groups. Except for the percentage

of CD34+ cells in the mice treated with high-dose therapy, comparisons

were analyzed as Poisson distributions of counts using the natural

logarithm of total cells as the offset (count of CD19+ or CD33+ cells of

the total cells analyzed per sample). Generalized Linear Model analysis

was used to account for the correlation between repeated samples from

the same donor. Sources of correlation include input percentage of EGFP+

cells, percentage of EGFP+CFU+, total number of cells injected, and

number of EGFP+ cells, which are constant for each donor. Nonpara-

metric Wilcoxon sum rank test was used to compare the percentage of

CD34+ obtained in the mice treated with high-dose therapy to percen-

tages in the other two treatment groups, since all 20 values of CD34

percentage were equal to 0.

ACKNOWLEDGMENTS
We thank Carla Thomas, RN, Melissa Lee, CRA, and the staff at the Riley

Hospital Apheresis Facility for their expert technical assistance with apheresis

and collection of MPB. We also thank Rebecca Britton and the staff in the

Stem-Cell Laboratory at IUMC for isolating the CD34+ cells from MPB. We

thank the National Vector Production Facility for their expert technical help

with RCR testing. This work was supported by an Indiana University School

of Medicine Biomedical Research grant (K.E.P.), a grant through the Hope

Street Kids Foundation (K.E.P.), and the Core Centers of Excellence in

Molecular Hematology (NIH P30 DK49218). S.C., W.S.G., and K.E.P. were

also supported by the Riley Children’s Foundation. We also thank Dr. Arthur

R. Baluyut for his support, helpful discussions, and critical evaluation of the

manuscript.
1025

http://dx.doi.org/10.1016/j.ymthe.2005.11.017


ARTICLE doi:10.1016/ j.ymthe.2005.11 .017
RECEIVED FOR PUBLICATION JUNE 6, 2005; REVISED SEPTEMBER 26, 2005;

ACCEPTED NOVEMBER 2, 2005.

APPENDIX A. SUPPLEMENTARY DATA
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