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Abstract: The novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused the
ongoing coronavirus disease 2019 (COVID-19) pandemic, with more than 50 million cases reported
globally. Findings have consistently identified an increased severity of SARS-CoV-2 infection in
individuals with diabetes. Osteopontin, a cytokine-like matrix-associated phosphoglycoprotein,
is elevated in diabetes and drives the expression of furin, a proprotein convertase implicated in the
proteolytic processing and activation of several precursors, including chemokines, growth factors,
hormones, adhesion molecules, and receptors. Elevated serum furin is a signature of diabetes mellitus
progression and is associated with a dysmetabolic phenotype and increased risk of diabetes-linked
premature mortality. Additionally, furin plays an important role in enhancing the infectivity of
SARS-CoV-2 by promoting its entry and replication in the host cell. Here, we hypothesize that
diabetes-induced osteopontin and furin protein upregulation results in worse outcomes in diabetic
patients with SARS-CoV-2 infection owing to the roles of these protein in promoting viral infection
and increasing metabolic dysfunction. Thus, targeting the osteopontin-furin axis may be a plausible
strategy for reducing mortality in SARS-CoV-2 patients with diabetes.
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1. Introduction

Since December 2019, there has been an outbreak of a novel coronavirus, which has resulted in
a global pandemic [1]. The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) typically
causes pneumonia-like clinical manifestations such as fever, cough, shortness of breath, or difficulty
breathing, and even loss of taste or smell [2]. The ongoing coronavirus disease 2019 (COVID-19)
pandemic is the third coronavirus-related large-scale pandemic that has occurred over the past two
decades. However, the previous pandemics of severe acute respiratory syndrome (SARS) and Middle
East respiratory syndrome (MERS) were less brutal than COVID-19 [3–5].

During the initial stages of the current pandemic, only patients at high risk were tested for the
SARS-CoV-2 virus, and it first appeared that only people older than 40 were susceptible to COVID-19 [6].
However, with the recent wide-spread testing and back-to-school requirement for students to be tested
before attending college, it is apparent that children and young adults are vulnerable to the SARS-CoV-2
virus infection but typically present with mild disease or remain asymptomatic. Indeed, according
to the Regenstrief Institute of Indiana (https://www.regenstrief.org/covid-dashboard/) that analyzes
the clinical data from the Indiana Network for Patient Care (INPC) managed by the Indiana Health
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Information Exchange and representing a clinical data repository covering about 100 hospitals and
50,000 providers (publicly available data were pulled on 28 October 2020), only 3.11% of children 0–4
years old (56 out 1800 positive), 0.89% of children and teenagers (153 out of 17,132 positive), and 2.50%
young adults and adults (20–29 year old; 731 out of 29,197 positive) were hospitalized. In stark contrast,
among the SARS-CoV-2 virus-positive patients, 11.46% of patients of age 50–59 (2539 out of 22,155),
18.91% of patients of 60–69 (3255 out of 17,216), 31.39% of patients of 70–79 (3348 out of 10,667), and
32.13% of patients of 80+ (2937 out of 9142) were hospitalized. Therefore, intensive measures have
been directed to protect senior individuals with preexisting health conditions. Figure 1A shows a
comparison of statistical data (as of 29 October 2020) publicly available at the website maintained by the
state of Indiana (https://www.coronavirus.in.gov/), indicating that the age distribution of individuals
infected with SARS-CoV-2 shifted towards the much younger generation in July and August of 2020
and then stabilized at the current level later on. It is likely that the observed change in age distribution
of SARS-CoV-2-infected subjects is related to the altered testing pattern of suspected individuals.
Additionally, it is possible that the virus has mutated. Indeed, a D614G mutation [7–10] of SARS-CoV-2,
which has been recently identified, is associated with an increased infectivity and faster SARS-CoV-2
virus spread.

Figure 1B shows the data on demographics of positive cases and mortality associated with
COVID-19. Individuals older than 50 remain at a greater risk of poor outcome, whereas younger
individuals infected with SARS-CoV-2 have a better prognosis. Notably, the gender demographics
have also recently changed among SARS-CoV-2-infected individuals who did not survive the disease.
Initially, the Indiana state mortality data pulled in March–April 2020 suggested a markedly increased
vulnerability of males to die of COVID-19 (Figure 1C). Indeed, recently published evidence also
indicated sex differences in SARS-CoV-2 infection, with higher plasma levels of cytokines such as
IL-8 and IL-18 and elevated levels of non-classical monocytes (CD14loCD16+) in male COVID-19
patients than females. Female COVID-19 patients exhibited a more robust T cell response than
male COVID-19 patients. A poor T cell response correlated with a worse clinical course in male
COVID-19 patients, whereas higher levels of innate immune cytokines were associated with a worse
disease progression in female COVID-19 patients [11]. Nonetheless, more recent data indicate that the
gender gap of COVID-19-related deaths decreased in August–September 2020 (SARS-CoV-2-related
deaths averaged over a seven-day period ± standard error of mean (SEM): 37.71 ± 0.91% females
and 62.14 ± 0.96% males on 30 March 2020 versus 48.74 ± 0.02% females and 49.77 ± 0.02% males
on 29 October 2020; Figure 1C). However, the greater susceptibility of females to be infected with
SARS-CoV-2 did not change over the same period of time (SARS-CoV-2-positive cases averaged over
a seven-day period ± SEM: 52.67 ± 0.36% females and 47.21 ± 0.37% males on 30 March 2020 versus
52.50 ± 0.00% females and 46.10 ± 0.00% males on 29 October 2020; Figure 1C). It is unclear at this
time why women present with a higher incidence of SARS-CoV-19 infection. The current Indiana
gender distribution ratio is 50.72% females to 49.28% males, according to the 2020 Census (https:
//worldpopulationreview.com/states/indiana-population). Thus, the number of SARS-CoV-2-positive
females is greater than one can expect from the reported gender distribution. It has been recently
demonstrated that males exhibit higher plasma soluble angiotensin-converting enzyme 2 (ACE2)
protein levels [12,13], and that circulating soluble ACE2 may decrease the ability of SARS-CoV-2
to infect the host cells during COVID-19 infection [14]. It will need to be determined whether the
gender-related difference in circulating soluble ACE2 levels contributes to the higher number of
infections among females.

https://www.coronavirus.in.gov/
https://worldpopulationreview.com/states/indiana-population
https://worldpopulationreview.com/states/indiana-population
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Figure 1. SARS-CoV-2 infection demographics for the state of Indiana from publicly available sources
(https://www.regenstrief.org/covid-dashboard/ and https://www.coronavirus.in.gov/). In each case, an
average over a seven-day period is provided. (A) The number of positive cases during the indicated
periods. One Way Repeated Measures Analysis of Variance (p < 0.001) for 0–19 and 20–29 age
groups. (B) Mortality data at the two indicated time periods, which were averaged over a seven-day
period. (C) Gender demographics for the mortality and positive case data, which were averaged over
a seven-day period.

2. Diabetes and COVID-19

Diabetes Mellitus is a pre-existing condition that results in worse outcomes with COVID-19
infection [15]. It has been identified as an important global health condition that presents a high
disease burden, which is further fueled by the global rise in the prevalence of obesity and unhealthy
lifestyles [16]. Pre-diabetes and diabetes patients often present with other comorbidities such as
dyslipidemia, hypertension, and cardiovascular disease, which further impact the clinical aspects and
pathophysiology of COVID-19 in these patients [17]. The complex pathogenesis and pathophysiology
of COVID-19 infection is reflected in its multifaceted clinical presentations, which most likely may not
be explained by the involvement of just one or two molecular pathways. In diabetes, hyperglycemia and
its associated insulin resistance mediate systemic inflammatory response and oxidative stress, which
contributes to microvascular pathology by promoting endothelial dysfunction [18,19]. Diabetes can
result in multisystem complications with microvascular endpoints including neuropathy, nephropathy,
and retinopathy, and it is considered one of the commonest risk factors for developing cardiovascular

https://www.regenstrief.org/covid-dashboard/
https://www.coronavirus.in.gov/
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disease such as ischemic heart disease [16,18]. Studies have identified that complications and
comorbidities linked to diabetes are associated with a higher mortality rate in patients subsequently
diagnosed with COVID-19 [20]. Obesity is the leading risk factor for developing type 2 diabetes [21],
and a higher risk of having severe COVID-19 occurs in the presence of obesity [22].

3. Diabetes and Dysregulation of the Renin-Angiotensin System

Potential derangement of several different pathways has been advanced to account for the
mechanisms that influence the development of diabetes and its complications. One well researched
mechanism involves the renin-angiotensin system (RAS). Many tissues have local RAS expression,
including the kidneys, adrenal glands, the heart, the nervous system, and vasculature [23], and the
RAS has functions in cardiovascular homeostasis [23–25]. The RAS also plays key roles in cellular
growth, proliferation, differentiation, migration, and apoptosis, in addition to extracellular matrix
remodeling and inflammation [26]. Multiple clinical trials have demonstrated that RAS inhibitors
significantly reduce the incidence of vascular complications in Diabetes Mellitus patients [27–30].

Angiotensin II (Ang II) of RAS has a particularly prominent role in diabetes and has been
found to interfere with the insulin-stimulated increase in insulin receptor substrate 1-associated
Phosphoinositide 3-kinases activity resulting in insulin resistance [31]. Ang II is implicated in the
pathogenesis of hypertension and diabetic microvascular complications such as diabetic retinopathy
and diabetic nephropathy [32,33]. Angiotensin-converting enzyme 2 (ACE2) is the primary enzyme of
the protective arm of the RAS. ACE2 catalyzes the hydrolysis and conversion of Ang II to angiotensin
1–7 (Ang 1–7), thus countering the activity of Ang II. ACE2 expression is modified by the presence of
diabetes in experimental animals and is also low in diabetic individuals. This provides a rationale for
mechanisms to regulate ACE2 levels in diabetes.

4. The Role of ACE2 in COVID-19

Viruses can take over many cell surface-associated molecules for use as their receptors. The SARS
coronaviruses usurp ACE2 for use as their receptors. The entry of the SARS coronaviruses is complex
and requires strong receptor binding to ACE2 and proteolytic processing of the SARS spike (S)
protein by cellular endopeptidases to allow fusion of the viral and cellular membrane of the host
cell [34–37]. Specifically, the SARS-CoV-2 spike protein has to be cleaved by cell surface host protease
TMPRSS2 [38,39] that belongs to the Type II Transmembrane Serine Proteases (TTSPs) family to enable
virus–cell membrane fusion involving extensive and irreversible conformational changes [40–42].
TMPRSS2 is highly expressed in the heart, liver, prostate, intestines, and lung, implying roles there.
Elevated TMPRSS2 activity causes increases in both cell death and viral replication of SARS-CoV
in vitro [43] by enhancing priming and subsequently fusion. Remarkably, the activity of TMPRSS2
during SARS-CoV-2 infection can be enhanced by the serine protease, furin [44–46].

5. Furin and Osteopontin in COVID-19

Furin is a subtilisin-like type I transmembrane serine-protease and proprotein/prohormone
convertase from the subtilisin/Kexin (PCSK) family that is expressed in virtually all cells. Human furin
is initially produced as a 100-kDa precursor and is rapidly converted into an active ∼94-kDa form [47].
It is one of only three proprotein convertases that possess a transmembrane domain/cytoplasmic tail
in the C-terminal region. This feature allows it to cleave its substrates into two distinct intracellular
compartments: the trans-Golgi network (TGN) and the endosomal compartment [7]. Furin specifically
recognizes the consensus site of Arg-X-Lys/Arg-Arg and is capable of cleaving precursors of a wide
variety of proproteins and prohormones [48]. These proteins include growth factors, serum proteins
(including proteases of the blood-clotting and complement systems), matrix metalloproteinases,
receptors, a disintegrin and metalloproteinase domain-containing protein 17 (ADAM17), interferon-γ,
viral-envelope glycoproteins, and bacterial exotoxins. Through proteolytic cleavage of ADAM17,
furin also indirectly promotes the ADAM17-dependent activation of tumor necrosis factor, an important
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proinflammatory cytokine involved in systemic inflammation. Additionally, furin is critical for
activating the transmembrane form of the (pro)renin receptor [49], which is implicated in binding and
activating prorenin in a non-proteolytic manner to regulate the RAS and maturate the transforming
growth factor (TGF)-β1.

Intracellular furin can be shed into the extracellular milieu [50] when its membrane and C-domains
are liberated by other furin-like proprotein convertases or even by autocleavage with furin itself [51].
Notably, the ‘’shed” furin retains its catalytic activity. The furin cleavage site, which is important
for the protein shedding, was mapped to SR683 amino acid residues [51], the segment located just
C-terminally to the cysteine-rich domain (Figure 2). The catalytic activity of furin is regulated by the
P-domain (Figures 2 and 3). The rate of catalytically active furin secretion into the blood is enhanced in
individuals with diabetes [38,52], suggesting that the protein may contribute to the pathogenesis of
diabetes or to SARS-CoV-2 infection in diabetes.
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Figure 2. Block diagrams of the osteopontin and furin proteins. Osteopontin contains an N-terminal
“secretion peptide” responsible for targeting the protein to the secretory pathways. Osteopontin is
subject to thrombin-mediated cleavage, which is critical for exposing the SVVYGLR-integrin binding
site. The furin protein is a proprotein convertase that may be membrane bound or shed. The catalytic
domain of furin is shown in green. The D153 residue of furin is important for its catalytic activity. In the
furin block diagram, there is an N-terminal “inhibitory propeptide” that is blocking the catalytic activity
of furin even after autoproteolytic cleavage and needs to be degraded to make furin functionally active;
the P-domain stands for the regulatory proprotein convertase domain; TM stands for transmembrane
domain; and CRD stands for cysteine-rich domain. The SR683 residues were shown to serve as the
proteolytic site for furin shedding.
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Figure 3. Structure of the soluble domain of human furin protein lacking the N-terminal
propeptide (PDB ID: 6 hza). Furin was complexed with an artificial substrate-cyclic model peptide
c[glutaryl-Arg-Arg-Lys]-Arg-4-Amba, which is shown as an orange colored stick model with blue
nitrogens. Furin is a Ca2+-dependent endoprotease. In the structure, the Ca2+ cations are shown as red
spheres; Na+ cations are shown as blue spheres; and the Cl- anion is shown as a yellow sphere. The
furin’s catalytic domain is shown in green, and the P-domain is depicted in blue.

Furin expression is positively regulated by secreted osteopontin, a glycoprotein and
proinflammatory cytokine, that is elevated in individuals with diabetes, especially those who exhibit
diabetic complications such as diabetic retinopathy and nephropathy [53,54]. Osteopontin belongs
to the family of non-collagenous proteins [55] known as SIBLING (small integrin-binding ligand,
N-linked glycoprotein) [56], and it was initially isolated from osteoblast and osteocytes [57,58].
Later, osteopontin was found in various cancer cells (reviewed in [59]). Tumor-derived osteopontin
functions in tumorigenesis by promoting tumor cell survival and metastasis [60]. Physiologically,
osteopontin is secreted by dendritic cells, neutrophils, macrophages, NK cell, T cells, and B cells [61–63].
It is also expressed by the kidney epithelial cells and is present in bodily fluids such as milk,
blood, and urine [57,64,65]. The osteopontin protein contains three integrin binding sites (Figure 2),
namely, the RGD- (1), SVVYGLR- (2), and ELVTDFTDLPAT- (3) binding domains [66]. Additionally,
the osteopontin protein has two Ca2+ binding sites (CaBS) and a CD44 binding site [67]. Osteopontin
is elevated during the inflammation and is secreted by macrophages to serve as chemoattractant for
monocytes and T cells and is important for activation, survival, and/or proliferation of macrophages
and T cells [67]. Osteopontin is known to promote insulin resistance in diabetes [68].

Osteopontin induces furin expression in a CD44 → p38 MAP kinase → NF-κB-dependent
manner [69]. Notably, osteopontin is present in human lung airways [70], the major target
tissue of infection in COVID-19 patients. Osteopontin levels are highly upregulated at sites of
inflammation [71,72] and in diabetes [73]. Specifically, high glucose was identified as a potent inducer
of histone acetylation and methylation causing upregulation of osteopontin gene expression [74].
Additionally, Ang II, the major component of the RAS, was shown to upregulate osteopontin gene
expression [75]. Remarkably, it was shown that osteopontin isoforms are present in human and bovine
milk and the protein is important during development [76]. Thus, physiological levels of osteopontin
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are beneficial. However, it remains unclear whether high milk consumption may increase plasma
osteopontin levels in individuals with diabetes.

Osteopontin levels are higher in human airways of individuals with mild to moderate asthma,
contributing to recruitment of alveolar macrophages [77] and promoting inflammation. Elevated
osteopontin secretion was observed in African green monkeys infected with SARS-CoV [78].
Notably, this was associated with developing more severe acute lung injury and acute respiratory
distress syndrome.

Osteopontin-regulated furin is broadly involved in maintenance of cellular homeostasis.
Higher plasma furin concentration is largely associated with a pronounced dysmetabolic phenotype
and an elevated risk of diabetes and premature mortality [38]. Proteolytic cleavage by furin is
immensely important in producing a plethora of bioactive proteins and peptides. A study utilizing
furin knock-out mice revealed that the genetic ablation of furin resulted in embryonic death at day
11 due to cardiac ventral defects and hemodynamic insufficiency, thus depicting the physiological
importance of furin [79]. Likewise, endothelial-cell-specific knock-out of furin resulted in cardiac
malformation and death shortly after birth in transgenic mice [80].

Viral pathogens can exploit cellular proteases such as furin during replication and maturation of
their preproteins. Furin plays a crucial role in processing and activation of viral glycoproteins [81].
Most viral envelope glycoproteins require proteolytic cleavage to mediate entry into host cells,
exploiting cellular endoproteases such as furin for this purpose [82]. Furin-mediated cleavage is
important for infection and pathogenicity of numerous evolutionarily diverse virus families, including
Herpes-, Corona-, Flavi-, Toga-, Borna-, Bunya-, and Filo, and is implicated in the pathogenesis of the
novel β-coronavirus, SARS-CoV-2.

Being ubiquitously expressed, furin is found in several human organs, such as the lungs, heart,
and small intestine, that can be invaded by SARS-CoV2. Furin, a pH and Ca2+-activated serine protease
that is normally housed in the trans-Golgi network (TGN), cleaves the SARS-CoV-2 S protein during
virus egress. However, in critically ill COVID-19 patients, the TGN-mediated SARS-CoV-2 egress
pathway may be disrupted. In this case, furin “shed” into the blood may mediate the priming of
SARS-CoV-2, which may facilitate the virus spread throughout organs of the hosts.

Furin’s ability to promote the maturation of cytokines, such as TNFα, may contribute to the
“cytokine storm” in COVID-19 patients with diabetes. Additionally, furin was linked to promoting
atherosclerosis and cancer progression. Moreover, SNPs in the furin gene are linked to hypertension.
Thus, it is important to investigate the effects of elevated blood plasma furin in the setting of diabetes
in COVID-19 subjects and compare the data to those obtained in COVID-19 subjects without diabetes.
Such research would also be helpful to better understand the role of furin during atherosclerosis
development and cancer progression in COVID-19 patients. Table 1 summarizes recent articles on
Furin, Osteopontin, ACE2, diabetes as related to COVID-19.

Table 1. Summary of recent research on Furin, Osteopontin, diabetes, and angiotensin-converting
enzyme 2 (ACE2) as related to corona virus disease 2019 (COVID-19).

Title Author (Year) Results/Interpretation

Clinical observation and management of
COVID-19 patients Li et al. (2020) [2]

Patients require respiratory supportive
treatment in addition to timely

multiorgan evaluation and treatment.

Diabetes is a risk factor for the
progression and prognosis of COVID-19 Guo et al. (2020) [20]

Patients with diabetes are at higher risk of
severe pneumonia, tissue-injury-related

enzymes, and excessive uncontrolled
inflammation. This implies that diabetes

should be considered a risk factor for
rapid progression and poor prognosis in

COVID-19 infection.
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Table 1. Cont.

Title Author (Year) Results/Interpretation

Risk factors for disease progression in
patients with mild to moderate

coronavirus disease 2019: a multicenter
observational study

Cen et al. (2020) [6]

This study identified aging, male sex,
presence of hypertension, diabetes,

chronic obstructive pulmonary disease
and coronary artery disease as risk factors

for disease progression.

A pneumonia outbreak associated with
a new coronavirus of probable bat origin Zhou et al. (2020) [1]

The study characterizes the new
coronavirus (SARS-CoV-2) and shows that

the virus is 96% identical at the whole
genome level to bat coronavirus.

It confirms that the virus uses the same
cell entry receptor-angiotensin-converting

enzyme II (ACE2) as SARS-CoV.

Activation of the SARS-CoV-2 receptor
Ace2 by cytokines through pan

JAK-STAT enhancers

Hennighausen and Lee
(2020) [46]

ACE2 together with TMPRSS2 are
important for SARS-CoV-2 host cell entry.
Pan JAK-STAT components in mammary
alveolar cells and in Type II pneumocytes

together with STAT1 and STAT5
autoregulation suggest a role for

cytokine-signaling pathways in cells
targeted by SARS-CoV-2.

Loss of angiotensin-converting enzyme 2
exacerbates diabetic retinopathy by

promoting bone marrow dysfunction
Duan et al. (2018) [33]

ACE2-/y-Akita mice have reduction of
both short-term and long-term

repopulating hematopoietic stem cells,
a shift of hematopoiesis towards

myelopoiesis, and an impairment of
lineage-c-kit+ hematopoietic

stem/progenitor cell (HS/PC) migration
and proliferation.

Loss of angiotensin-converting enzyme-2
exacerbates diabetic cardiovascular

complications and leads to systolic and
vascular dysfunction: a critical role of the

angiotensin II/AT1 receptor axis

Patel et al. (2012) [32]

Reduction or loss of ACE2 results in
increased oxidative stress, excessive

extracellular matrix degradation, and
vascular dysfunction.

Microglia influence host defense, disease,
and repair following murine coronavirus

infection of the central nervous system
Mangale et al. (2020) [65]

Elevated expression of disease associated
proteins such as Osteopontin, ApoE and
Trem2 was found in mice infected with

neurotropic coronavirus.

Prognostic significance of serum
osteopontin levels in small cell

lung cancer
Xu et al. (2020) [70]

Serum osteopontin levels in small cell
lung cancer (SCLC) patients were found

to be clinically valuable as a biomarker to
predict prognosis in SCLC patients.

Tumor-derived osteopontin isoforms
cooperate with TRP53 and CCL2 to

promote lung metastasis
Giopanou et al. (2016) [60]

Osteopontin modulates cell–cell
interactions, thus enhancing tumor

metastasis and progression. This study
found that intracellular tumor-derived

osteopontin promotes tumor cell survival.

Activation of the SARS coronavirus spike
protein via sequential proteolytic cleavage

at two distinct sites
Belouzard et al. (2009) [40]

Sequential cleavage at two distinct sites in
the vicinity of S1/S2 junction of the

SARS-CoV Spike protein is required for
its full fusion activity.

First comprehensive computational
analysis of functional consequences of

TMPRSS2 SNPs in susceptibility to
SARS-CoV-2 among different populations

Paniri et al. (2020) [39]

The function and structure of TMPRSS2
was affected by 21 SNPs, which influence

the protein folding, post translational
modifications, splicing, and miRNA

effects on the protein.

SARS-CoV-2 cell entry depends on ACE2
and TMPRSS2 and is blocked by a
clinically proven protease inhibitor

Hoffmann et al. (2020) [44]

Receptor binding motif analysis revealed
that most amino acid residues essential

for ACE2 binding by SARS-CoV are
conserved in SARS-CoV-2. SARS-CoV-2

uses ACE2 for host cell entry and
TMPRSS2, a serine protease, for priming

its spike protein. Camostat mesylate,
which blocks TMPRSS2 activity, may be

useful in inhibiting viral entry into
host cells.
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Table 1. Cont.

Title Author (Year) Results/Interpretation

Plasma levels of the proprotein convertase
furin and incidence of diabetes

and mortality
Fernandez et al. (2018) [38]

Individuals with high plasma furin
concentration have a pronounced

dysmetabolic phenotype and elevated risk
of diabetes mellitus and

premature mortality.

Furin controls β-cell function via
mTORC1 signaling Brouwers et al. (2020) [52]

β cell dysfunction results from
mTORC1-AFT4 hyperactivation in β cells

lacking furin.

Significant expression of FURIN and
ACE2 on oral epithelial cells may facilitate

the efficiency of 2019-nCov entry
Zhong et al. (2020) [37]

Differential expression of ACE2 and Furin
was observed on epithelial cells of

different oral mucosal tissues, suggesting
that tissues of the oral mucosa present

a feasible environment for
SARS-CoV-2 infection.

6. Are Osteopontin, Furin, and TMPRSS2 Acting in Concert to Facilitate SARS-CoV-2 Infection?

A growing body of evidence suggests that osteopontin, furin, and TMPRSS2 act in concert for
facilitating SARS-CoV-2 infection, with furin playing a presumably precursory role. It has been
demonstrated that the cleavage of SARS-CoV-2 spike protein by the serine protease TMPRSS2 is critical
for the infectivity of SARS-CoV-2 [44,83,84]. The TMPRSS2 cleavage site is located in a shallow pocket
on the lateral surface of the SARS-CoV-2 spike protein [85] that may be obstructed by a protein loop
containing an additional canonical cleavage site for furin (PRRAR↓SV) located near of the conserved
TMPRSS2 cleavage site. Furin cleavage may increase accessibility of the TMPRSS2 site for TMPRSS2
cleavage in SARS-CoV-2. The SARS-CoV spike protein does not have furin-like proteolytic cleavage
sites in the adjacent protein loop. This may at least in part underlie the lower transmissibility and
pathogenicity of SARS-CoV compared to SARS-CoV-2. The ability of ‘’shed” furin to activate ADAM17
by proteolytic cleavage would result in consequently increased shedding of the soluble ACE2, due to
proteolytic cleavage of membrane anchored ACE2, a target of ADAM17. Since ACE2 is the protective
axis of the RAS, soluble ACE2 shedding could exacerbate the clinical outcome of COVID-19 patients
by reducing ACE2 levels on the surface of the endothelium, promoting vascular dysfunction [85,86].
However, soluble ACE2 may serve to scavenge circulating SARS-CoV-2 and thus serve a protective
function [14]. Secreted osteopontin may be elevated in the lungs of COVID-19 patients with diabetes
increasing furin expression and shedding, further worsening the COVID-19 patient outcome.

With this background, we propose a hypothesis that, in COVID-19 patients presenting with
diabetes, the overactivity of the “High Glucose-Osteopontin-Furin Axis” enhances the virulence of
the SARS-CoV-2 virus by promoting the TMPRSS2-dependent cleavage of the SARS-CoV-2 Spike
protein and facilitating SARS-CoV-2 entry into target cells as well as enhancing the replication of
SARS-CoV-2 (Figure 4). High Glucose-Osteopontin-driven furin overproduction and subsequent furin
shedding may also contribute to reducing the function of the protective axis of RAS by shedding soluble
ACE2. Importantly, plasma furin levels are significantly elevated in individuals with diabetes [38,87];
therefore, it may contribute to poor outcomes in COVID-19 patients presenting with diabetes.
Remarkably, angiotensin II receptor blockers and statins were shown to reduce elevated plasma
levels of osteopontin [88], providing a possible strategy for treatment.
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7. Future Directions

To test the hypothesis, it is important to ascertain the influence of osteopontin and furin on
SARS-CoV-2 virus.

(1) The contribution of TMPRSS2 in regulating the virus infectivity can be investigated utilizing the
SARS-CoV-2 isolates harboring the D614G mutation to examine whether the osteopontin-furin
axis activation enhances SARS-CoV-2 infectivity.

(2) The effect of increasing levels of osteopontin on furin levels in the supernatants from lung
epithelial cell cultures (alveolar type II cells) can be established in the presence or absence of high
glucose and/or Ang II.

(3) Bronchoalveolar lavage and blood plasma samples from COVID-19 patients with diabetes can be
obtained and analyzed to determine the relative levels of soluble ACE2, osteopontin, and furin
present and can be compared to those in COVID-19 patients without diabetes, and healthy
subjects. This would provide an estimate of the impact of the High Glucose-Osteopontin-Furin
axis to the pathogenesis of COVID-19.

(4) The levels of TMPRSS2, osteopontin, furin, and ACE2 in fixed lung tissue samples from COVID-19
patients with and without diabetes can be assessed.

(5) Inhibitors of p38 MAP kinase and NF-κB signaling as well as statins or Ang II receptor blockers
can be employed to assess their protective potential against SARS-CoV-2 infection in a transgenic
humanize mouse model expressing human ACE2 in a targeted manner.

8. Conclusions

In contemplating the reason for the observed worse phenotype of COVID-19 disease presented by
patients with pre-existing diabetes, high levels of ‘’shed” furin can be implicated. Here, we proposed
that the axis involving High Glucose/Ang II→ Osteopontin→ p38 MAP kinase→ NF-κB→ Furin
signaling might contribute to the worsening outcome in COVID-19 individuals with diabetes. It is
worth noting that the SARS-CoV-2 Spike protein’s susceptibility to proteolytic cleavage by furin may



Cells 2020, 9, 2528 11 of 15

play a key role in SARS-CoV-2 ability to infect the host cells and subsequently invade secondary organs,
resulting in worse disease outcomes, including death.
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