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Abstract 

In this study, the mechanical properties, in terms of stress-strain curves, of additively 

manufactured polymeric composite materials, Tango Black Plus (TB+), Vero White Plus 

(VW+), and their intermediate materials with different mixing ratios, are reported. The ultimate 

tensile strength and elongation at break are experimentally measured using ASTM standard 

tensile test. As the content of VM+ increases, the strength of the polymeric materials increases 

and elongation decreases. Additionally, the Shore A hardness of the materials increases with 

reduced TB+ concentration. In parallel to the experiment, hyperelastic models are employed to 

fit the experimental stress-strain curves. The shear modulus of the materials is obtained from 

the Arruda-Boyce model, and it increases with reduced concentration of TB+. Due to the good 

quality of the fitted data, it is suggested that the Arruda-Boyce model is the best model for 

modeling the additively manufactured polymeric materials. With the well characterized and 

modeled mechanical properties of these hyperelastic materials, designers can conduct 

computational study for application in flexible electronics field. 
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1.Introduction 

Additive manufacturing (AM) is a layer-upon-layer fabrication processes and previously 

applied for rapid prototyping. In the last decade, AM technology has evolved into a decent 

alternative for direct fabrication of tools and functional parts. One of the favorable features of 

AM technology is to 3D print polymeric materials for flexible electronics [1]. Currently, among 

various AM processes, material jetting is the one that possesses the capability of combining 

multiple polymeric materials and varying material compositions or type within the layers [2, 

3], which can improve part performance by adding more complexity and functionality (e.g. 

functionally graded materials [4]). In a typical material jetting process, the inkjet head moves 

in the x and y-axes depositing one or multiple photopolymers which are then smoothed by a 

roller and cured by ultraviolet light after each layer is finished [5].  

In contrast to conventional subtractive manufacturing processes, the properties of AM 

materials are affected by many manufacturing factors, which make these properties different 

from conventional materials. Several previous studies have examined the factors affecting 

material properties. For example, due to the layer-upon-layer nature, orientation effect on the 

properties of material jetting materials has been investigated [6-9]. In addition, material 

properties are also affected by aging and storage conditions [7, 9], as well as warm-up time and 

cleanliness of nozzles [9]. This process-structure-property relationship for material jetting 

process has been reviewed by Ref. [10]. 

Accurate description of the mechanical properties is essential for subsequent design and 

applications of the AM materials. This becomes more critical for polymeric materials since 

they experience much larger deformations compared to metals. Selected mechanical properties 

of common polymers fabricated by material jetting technique are provided by the manufacturer 

[11]. However, there is no complete description of the mechanical property, especially in the 

form of stress-strain curve. Additionally, discrepancy exists among the reported data [6, 7]. In 

this regard, acquiring accurate mechanical properties by reliable experimental measurement 

and using physical models to describe the material behaviors are strongly desirable for 

designers. These are also the objectives of this work. 

Forerunners have put forward many hyperelastic models for polymeric materials to better 
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describe their tensile behaviors. These hyperelastic models can be further divided into two 

groups: (1) phenomenological models, such as Neo-Hookean Model [12], Mooney-Rivlin 

Model [12, 13], Ogden Model [14], Yeoh Model [15], and Gent model [16], and (2) constitutive 

models, such as Arruda-Boyce model [17] and Tehrani-Sarvestani model [18], which provide 

physical connections between the model parameters and mechanical properties of materials. 

Recently, some applications of phenomenological models for additively manufactured 

hyperelastic polymeric materials have been reported [4, 19, 20]. However, due to lack of 

physical meaning, the outcomes of these applications are merely some meaningless model 

parameters which can only be used to reconstruct the stress-strain curves. A constitutive model 

with meaningful parameters will be preferred for designers. To this end, selected constitutive 

models will be used in this study. 

This work focuses on two popular types of polymeric materials for flexible electronics 

fabricated by the material jetting technique, Tango Black Plus (TB+) and Vero White Plus 

(VW+). The tensile properties of them and their composites are systematically studied using a 

combined experimental and modeling approach. More specifically, the objectives of this work 

are addressed by the following three steps: (1) the stress-strain curves of the polymeric 

materials are experimentally measured using ASTM standard tensile tests. Hardness 

measurement and microstructure analysis are also conducted; (2) some selected hyperelastic 

models are briefly reviewed and employed to model the stress-strain response; (3) the models 

are evaluated based on the fitting performance and the physical meaning of the fitted 

parameters. The outcome of this work is twofold: (1) The well modeled tensile behaviors and 

reliable mechanical properties of the polymeric materials will be helpful for designers to 

conduct computational design and simulation such as finite element analysis, and (2) the 

hyperelastic models with good fitting performance and physical meaning will be recommended 

for future study of similar polymeric materials for flexible electronics.  

 

2. Methodology 

2.1 Experimental details 

Two Polyjet polymeric materials, a rubber-like material, Tango Black Plus (TB+), and a 
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rigid opaque material, Vero White Plus (VW+), and their mixtures with different mixing ratios 

are investigated: TB+, DM40, DM50, DM60, DM70, DM85, DM95, and VW+. The numbers 

after each material abbreviation “DM” represent its Shore A hardness provided by the 

manufacturer [11].  

The tensile test specimens were printed using a PolyJet printer (Connex 500, Stratasys 

Ltd.), which has the multi-material jetting capacity and can achieve uniform mixing of multiple 

materials. The ASTM D638 standard is followed. To ensure high accuracy, the layer thickness 

was set to be 30 μm, and standard support setting. Two samples of each material were 

fabricated in the preset concentrations.  

The uniaxial tensile test was conducted under the ambient condition at 20 °C. The tester 

used is a universal testing machine (Instron 5567) with a contact strain gauge. During the test, 

the grip keeps moving at a constant speed of 50 mm/min until break.  

 

2.2 Hyperelastic models of polymeric materials 

Hyperelastic models describe the stress-strain response in terms of strain energy, 𝑊. The 

principal Cauchy stress is related to the partial derivative of strain energy: 

 𝜎௜ = 𝜆௜
డௐ

డఒ೔
+ 𝑝 (𝑖 = 1, 2, 3),  (1) 

where 𝑝 is an arbitrary pressure and 𝜆௜ is the principal values of the stretch, such that 

 𝜆௜ = 1 + 𝜀௜
୉୬୥ (𝑖 = 1, 2, 3). (2) 

To eliminate the arbitrary pressure, the stress-stretch relations are frequently written in 

the form of difference in two principal stresses: 

 𝜎ଵ − 𝜎ଶ = 𝜆ଵ
డௐ

డఒభ
− 𝜆ଶ

డௐ

డఒమ
. (3) 

To include the Poisson’s effect into Eqs. (1) and (3), stretch invariants 𝐼ଵ, 𝐼ଶ and 𝐼ଷ 

have to be taken into account. The expressions of the three invariants are 

 𝐼ଵ = 𝜆ଵ
ଶ + 𝜆ଶ

ଶ + 𝜆ଷ
ଶ;  (4a) 

 𝐼ଶ = 𝜆ଵ
ଶ𝜆ଶ

ଶ + 𝜆ଶ
ଶ𝜆ଷ

ଶ + 𝜆ଵ
ଶ𝜆ଷ

ଶ;  (4b) 

 𝐼ଷ = 𝜆ଵ
ଶ𝜆ଶ

ଶ𝜆ଷ
ଶ.  (4c) 

Therefore, hyperelastic models can describe strain energy 𝑊 in terms of 𝐼ଵ and 𝐼ଶ. 
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Rubber-like materials are usually assumed to be fully incompressible. Under this premise, 

𝐼ଷ = 1, which means 

 𝜆ଵ𝜆ଶ𝜆ଷ = 1;  (5) 

 𝐼ଶ =
ଵ

ఒభ
మ +

ଵ

ఒమ
మ +

ଵ

ఒయ
మ.  (6) 

For an incompressible material, according to Eqs. (3-6), after some substitutions and 

arrangements, the following equation can be derived: 

 𝜎ଵ − 𝜎ଶ = 2(𝜆ଵ
ଶ − 𝜆ଶ

ଶ) ቀ
డௐ

డூభ
+ 𝜆ଷ

ଶ డௐ

డூమ
ቁ. (7) 

 

2.2.1 Arruda-Boyce model 

The Arruda-Boyce model is the first complete constitutive model proposed by Arruda and 

Boyce in 1993. This model is based on the statistical mechanics of a material with a cubic 

representative volume element containing eight chains along the diagonal directions [17]. 

Before the Arruda-Boyce model, this concept with three chains [21] or four chains [22] was 

put forward but their simulated results were highly dependent upon the state of imposed 

deformation [17]. Materials in the Arruda-Boyce model are usually assumed to be 

incompressible. 

For chains in the Arruda-Boyce model, the fully extended length is given by 𝑟௅ = 𝑙𝑁 

where 𝑁 is the number of statistical links of length 𝑙, and the initial chain length 𝑟଴ = √𝑁𝑙 

is taken from a random walk consideration of 𝑁 steps of 𝑙 [17]. An important parameter in 

Arruda-Boyce model, limiting network stretch, or locking stretch, 𝜆௅, is then given by 

 𝜆௅ =
௥ಽ

௥బ
= √𝑁.  (8) 

The Arruda-Boyce model expresses the strain energy 𝑊  in terms of the first stretch 

invariant 𝐼ଵ, and use of inverse Langevin function. A reasonable approximation of Arruda-

Boyce model is taking the first five terms of the inverse Langevin function, such that [17] 

 𝑊 = 𝐺 ∑ 𝛼௜𝜆௅
ଶିଶ௜൫𝐼ଵ

௜ − 3௜൯ହ
௜ୀଵ , (9) 

where 𝛼ଵ =
ଵ

ଶ
, 𝛼ଶ =

ଵ

ଶ଴
, 𝛼ଷ =

ଵଵ

ଵ଴ହ଴
, 𝛼ସ =

ଵଽ

଻଴଴଴
, 𝛼ହ =

ହଵଽ

଺଻ଷ଻ହ଴
, and 𝐺 = 𝑛𝜅Θ is a material 

constant, in which 𝑛 is the chain density, 𝜅 is the Boltzmann constant, and Θ is the absolute 
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temperature.  

Another parameter involved in Arruda-Boyce model is the shear modulus, 𝜇, which is 

related to 𝐺. In an undeformed condition, the following equation has to be satisfied: 

 
డௐ

డூభ
ቚ

ூభୀଷ
=

ఓ

ଶ
. (10) 

According to Eqs. (9) and (10), the following equation can then be derived: 

 𝜇 = 𝐺 ቀ1 +
ଷ

ହఒಽ
మ +

ଽଽ

ଵ଻ହఒಽ
ర +

ହଵଷ

଼଻ହఒಽ
ల +

ସଶ଴ଷଽ

଺଻ଷ଻ହఒಽ
ఴቁ. (11) 

Under uniaxial tensile stress, 𝜎ଶ = 𝜎ଷ = 0 , and if the materials are assumed to be 

isotropic, then 𝜆ଶ = 𝜆ଷ. According to Eq. (5),  

 𝜆ଶ = 𝜆ଷ =
ଵ

ඥఒభ
. (12) 

According to Eq. (7) and (12), after some substitutions and arrangements,  

 𝜎ଵ = 2𝐺 ቀ𝜆ଵ
ଶ −

ଵ

ఒభ
ቁ ∑ 𝑖𝛼௜𝜆௅

ଶିଶ௜𝐼ଵ
௜ିଵହ

௜ୀଵ . (13) 

Therefore, the engineering stress is 

 𝜎ଵ
୉୬୥

=
ఙభ

ఒభ
= 2𝐺 ቀ𝜆ଵ −

ଵ

ఒభ
మቁ ∑ 𝑖𝛼௜𝜆௅

ଶିଶ௜𝐼ଵ
௜ିଵହ

௜ୀଵ . (14) 

Once the two parameters in Arruda-Boyce model are obtained, the fitted stress-strain 

curve of the material can then be plotted using Eqs. (2), (11) and (14). 

 

2.2.2 Mooney-Rivlin model 

The Mooney-Rivlin model expresses the strain energy 𝑊 in terms of 𝐼ଵ and 𝐼ଶ. In the 

Mooney-Rivlin model, the strain energy is given by [12, 13] 

 𝑊 = ∑ ∑ 𝐶௜௝(𝐼ଵ − 3)௜(𝐼ଶ − 3)௝
௝௜ + 𝐷(𝐽 − 1)ଶ,  (15) 

where 𝐽 = ඥ𝐼ଷ = 𝜆ଵ𝜆ଶ𝜆ଷ. If a material is fully incompressible, then 𝐽 = 1. 𝐷 is a constant 

describing the incompressibility of the material and can be eliminated if the material is assumed 

to be fully incompressible. The constants 𝐶௜௝ and 𝐷 will be determined by curve-fitting.  

In Eq. (15), if both 𝑖 and 𝑗 are taken from the range of 0 to 1, then 3 parameters, 𝐶଴ଵ, 

𝐶ଵ଴, and 𝐶ଵଵ, will be determined by curve-fitting and used to describe the curve. If the range 

is 0 to 2, then 5 parameters will be involved. Materials can always be perfectly fitted by more 

parameters of Mooney-Rivlin models. However, due to lack of physical meaning, the Mooney-
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Rivlin model should be used with caution. 

Under uniaxial tensile stress, with the same deriving process in the Arruda-Boyce model, 

the engineering stress in the 5-parameter Mooney-Rivlin model is 

 𝜎ଵ
୉୬୥

= 2 ቀ𝜆ଵ −
ଵ

ఒభ
మቁ ቂ𝐶ଵ଴ + 𝐶ଵଵ ቀ2𝜆ଵ +

ଵ

ఒభ
మ − 3ቁ + 2𝐶ଶ଴ ቀ𝜆ଵ

ଶ +
ଶ

ఒభ
− 3ቁቃ  

 +2 ቀ1 −
ଵ

ఒభ
యቁ ቂ𝐶଴ଵ + 𝐶ଵଵ ቀ𝜆ଵ

ଶ +
ଶ

ఒభ
− 3ቁ + 2𝐶଴ଶ ቀ2𝜆ଵ +

ଵ

ఒభ
మ − 3ቁቃ. (16) 

 

2.2.3 Neo-Hookean and Gent hyperelastic models 

The Neo-Hookean model is an inchoate phenomenological model and has been 

superseded by Mooney-Rivlin model. The Neo-Hookean model does not predict that increase 

in modulus at large strains and is typically accurate only for strains less than 20% [23]. The 

strain energy of the Neo-Hookean model is given by  

 𝑊 =
ଵ

ଶ
𝐺(𝐼ଵ − 3) + 𝐷(𝐽 − 1)ଶ. (17) 

It is worth mentioning that when the limit network stretch of the Arruda-Boyce model, 

𝜆௅, is sufficiently large, or when the deformation is sufficiently small, the Arruda-Boyce model 

will reduce to the Neo-Hookean model. The former proposition can be easily derived by 

eliminating the terms with 𝜆௅ in the denominator in Eq. (9). In addition, the Neo-Hookean 

model is also a special case of the Mooney-Rivlin model when only one parameter, 𝐶ଵ଴, is 

taken into account. 

The Gent model is a phenomenological model based on the concept of limiting network 

stretch, 𝜆௅. It has been shown in Ref. [24] that the Gent model is a simplified approximation 

of the Arruda–Boyce model. In this study, the Neo-Hookean model and Gent hyperelastic 

model were evaluated, but the results are not presented in this paper. 

 

2.2.4 Modeling tensile test using the hyperelastic models to 3D printed polymeric materials 

The stress-strain curves acquired from the tensile tests in Section 2.1 are imported to the 

material library in ANSYS for analysis. The fitting algorithms in ANSYS are employed to fit 

the experimental data and compute the model parameters. The fitted stress-strain curves are 

retrieved using Eq. (14) and Eq. (16) and compared with experimental data. Since Arruda-
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Boyce model is a constitute model, it is preferential if its fitted curve matches the experimental 

data.  

 

3. Results and discussion 

3.1 Experimental results 

3.1.1 Stress-strain curves 

The experimental stress-strain curves of all samples are summarized in Fig. 1. Since the 

two samples of each material show similar stress-strain curve, for each material only one stress-

strain curve is displayed. These curves will be fitted by the hyperelastic models later. Because 

the magnitude of ultimate tensile strength of VW+ is much larger than others, its stress-strain 

curve is embedded as inset in Fig. 1. As shown in Fig. 1, as the content of rubber-like TB+ 

decreases, the 3D printed polymeric materials become harder, as demonstrated with increased 

stress and reduced strain. For DM95, since the concentration of TB+ in DM95 is too small, it 

possesses an obvious hardening region like a rigid material. The initial slopes in the stress-

strain curves are the indication of Young’s modulus. It is clear that the Young’s modulus values 

increase with the increased concentration of VW+, the hard phase in the composite. 
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Figure 1: Experimental stress-strain curves of all samples, with VW+ as the inset.  

 

Table 1 summarizes the experimentally measured ultimate tensile strength (𝜎௨ ) and 

elongation strain at break (𝜀௙). The data provided by the manufacturer [11] and Ref. [7] are 

also included in the table for comparison. 

 

Table 1: Experimentally measured ultimate tensile strength 𝜎௨ and elongation strain at break 

𝜀௙ in this study, compared with the literature data in Refs. [7] and [11] 

 𝜎௨ (MPa) 𝜀௙ (%) 

 This study Ref. [11] Ref. [7] This study Ref. [11] Ref. [7] 

TB+ 0.59 0.8-1.5 0.39 125 170-220 180 

DM40 0.89 1.3-1.8 - 110 110-130 - 

DM50 1.32 1.9-3.0 - 104 95-110 - 

DM60 1.57 2.5-4.0 1.13 85 75-85 127 

DM70 2.16 3.5-5.0 - 77 65-80 - 

DM85 3.4 5.0-7.0 2.59 74 55-65 114 
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DM95 5.91 8.5-10.0 - 68 35-45 - 

VW+ 23.2 50-65 45.27 30 10-25 19 

 

As shown in Table 1, the ultimate tensile strength values in this study are much lower 

than those provided by the manufacturer [11], but close to those of Ref. [7]. Regarding the 

elongation strain at break, the measured values are in good agreement with the manufacturer 

data [11], while lower than those of Ref. [7]. Please note that Refs. [7] and [11] only provide 

these properties, but not the full stress-strain curves, which are needed for accurately 

description of the large deformation in whole strain range. It should also be noted that the 

experimental settings to obtain the mechanical properties are not provided in Ref. [11], which 

means the data from Ref. [11] may not be reliable. 

A potential reason causing the difference in the property data is the type of the 

extensometer. The experiment in this study uses a contact gauge, which works by exerting a 

load on the samples. In general, this load is not statistically significant. However, since the 

ultimate strength of the materials in this study is relatively low, this load may cause a difference 

compared to the results using a non-contact gauge. Another testing parameter, strain rate, may 

also contribute to deviation [25]. In addition, the aforementioned manufacturing factors may 

be also a reason. Different settings and orientations in printing procedure may cause large 

difference in the mechanical properties of samples. Optimization of the manufacturing factors 

for additively manufactured parts has been addressed by the applications of machine learning 

models in literature [26-29], which is beyond the scope of this work. 

Fig. 2 shows the ultimate tensile strength and elongation at break of all samples, using the 

data in Table 1. As expected, it’s clear that with increased concentration of VW+, ultimate 

tensile strength increases and elongation at break decreases. Similarly, the shear modulus is 

expected to have the same trend as ultimate tensile strength, as discussed later in the modeling 

results in Section 3.2. 
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Figure 2: Ultimate tensile strength and elongation at break values of all printed materials 

except VW+. 

 

3.1.2 Hardness and its correlation to ultimate strength and elongation at fracture 

Since all materials in this study vary only in the concentration of VW+ and TB+, it is 

expected that there should be a trend in properties. In this study, due to lack of manufacturing 

information of exact concentration in these intermediate materials, the trend will be shown in 

terms of the sample name. As shown in Fig. 3, the Shore A hardness increases with reduced 

concentration of TB+. This is because TB+ is the soft phase in the composites. 
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Figure 3: Measured Shore A hardness and simulated shear modulus of all samples except 

VW+. 

 

3.1.3 Microstructure analysis 

The optical images of fractured samples except VW+, after the tensile test are shown in 

Fig. 4. The samples recovered the elastic deformation after fracture, which indicates that they 

are indeed hyperelastic.  
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Figure 4: Optical images of the fractured samples (from left to right: DM95, DM85, DM70, 

DM60, DM50, DM40, TB+, except VW+). 

 

The SEM images of the cross-section views of the fracture surfaces are shown in Fig. 5. 

As shown in the figure, as the content of TB+ is decreased, the fracture surfaces gradually 

change from ductile to brittle manner. Fig. 5a shows the fracture surface of TB+, whose flaky 

patterns are the indication of large elastic deformation and fracture tear in rubber materials. 

Figs. 5b - 5g show the fracture surfaces with wavy shape, suggesting a less ductile deformation 

manner. Fig. 5h shows a flat fracture surface, as expected in the brittle VW+ material. The 

SEM microstructure images are consistent to the observed stress-strain curve trend in Fig. 1. 
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Figure 5: The SEM images of the cross-section views of the fracture surfaces. (a) TB+, (b) 

DM40, (c) DM50, (d) DM60, (e) DM70, (f) DM85, (g) DM95, and (h) VW+. The scale bar 

in the figure is 100 m. 

 

3.2 Hyperelastic modeling results 

The stress-strain curves in Section 3.1 are fitted to Arruda-Boyce model using the fitting 

algorithms in the ANSYS material library. The retrieved stress-strain curves using the fitted 

parameters of all samples are shown in Fig. 6, compared against experimental curves. It is not 

necessary to perform the hyperelastic simulation to VW+ since it is a rigid material. From Fig. 

6, it can be seen that for TB+ and DM40, DM50, DM60, DM70, and DM85, the Arruda-Boyce 

model successfully fits the experimental curves with good agreement. 
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Figure 6: Simulated stress-strain curves using the Arruda-Boyce model, compared against 

experimental curves for (a) TB+, (b) DM40, (c) DM50, (d) DM60, (e) DM70, (f) DM85, and 

(g) DM95. The Mooney-Rivlin model is also included for comparison in (g) DM95. 
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squared error (RMSE) normalized by the ultimate tensile strength. The RMSE, normalized by 

the maximum value (i.e. ultimate tensile strength) in the dataset, can be used to quantitatively 

assess the model performance and directly compare with each other without considering the 

magnitude of different series of data. The normalized RMSE of Arruda-Boyce model for TB+, 

DM40, DM50, DM60, DM70 and DM85 is less then 0.05, indicating the excellent performance 

of Arruda-Boyce model. The verification of the performance of the Arruda-Boyce model for 

TB+, DM40, DM50, DM60, DM70 and DM85 also confirms the reliability of its outcomes 

(i.e. the shear modulus in Table 3). For DM95, large deviation between the fitted curve of 

Arruda-Boyce model and experimental curve is shown by both the visulization in Fig. 6(g) and 

the large value of normalized RMSE. This is reasonable, as hyperelastic models are designed 

to describe the tensile behaviors for hyperelastic materials, while DM95 shows an obvious 

hardening region and behaves more like a rigid material. In this case, the 5-parameter Mooney-

Rivlin model is also employed for comparison. Note the material is assumed to be fully 

incompressible in the Mooney-Rivlin model. For DM95, the fitted parameters in the 5-

paramenter Mooney-Rivlin model are (unit: MPa): C10 = -133.408, C01 =147.161, 

C20=145.6603, C11 = -466.481, and C02= 432.4102. The value of its normalized RMSE, 

0.0304, indicates the good fitting performance of the 5-parameter Mooney-Rivlin model. If 

needed, an even better fitted curve can be obtained by simply increasing the number of 

parameters in the Mooney-Rivlin model. However, there is no physical meaning in these 

parameters. 

 

Table 2: Root-mean-squared error (RMSE) normalized by the ultimate tensile stregnth 

 Material 
Normalized RMSE (MPa) 

Arruda-Boyce model Mooney-Rivlin model 

TB+ 0.0253 \ 

DM40 0.0299 \ 

DM50 0.0205 \ 

DM60 0.0279 \ 

DM70 0.0404 \ 
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DM85 0.0389 \ 

DM95 0.1254 0.0304 

 

Table 3 shows the parameters derived from fitting the experimental curves using the 

Arruda-Boyce model - the limiting network stretch λL and shear modulus μ. The calculated 

shear modulus, μ, is included in Fig. 2. Note that the shear modulus of DM95 may not be 

accurate since the Arruda-Boyce model failed to fit it. In spite of this, it’s clear that the shear 

modulus increases with increased concentration of VW+, which is the expected result. 

 

Table 3: Derived material parameters used in the Arruda-Boyce model 

Material λL μ (MPa) 

TB+ 1.89×107 0.27418  

DM40 1.9116 0.34675  

DM50 1.5433 0.46799  

DM60 1.6866 0.76580  

DM70 3.8079 1.30639  

DM85 4.74×107 2.16190  

DM95 4.03×108 4.95370  

 

Overall, the mechanical properties of two additively manufactured polymeric materials, 

VW+ and TB+, as well as their composite, are measured by experiments, and modeled by 

hyperelastic models. The well characterized and modeled mechanical behaviors of these 

hyperelastic materials enable designers to conduct computational study for applications in 

flexible electronics field. Based on the modeling results presented above, the Arruda-Boyce 

model works well for most flexible materials, except for DM95 who behaves more like a rigid 

material. Therefore, as a constitutive model, the Arruda-Boyce model is recommended for 

future design and optimization of additively manufactured hyperelastic materials.  

 

4. Conclusions 



19 
 

In this paper, two additively manufactured polymeric materials, VW+ and TB+, along 

with their intermediate materials with different mixing ratios of the two materials are 

investigated by combined experiment and modeling studies. The conclusions are summarized 

as follows: 

1. The ultimate tensile strength and elongation at break are experimentally determined 

from the tensile stress-strain curves. As the content of VM+ increases, the strength increases 

and the elongation decreases.  

2. The cross-section views of the fracture surfaces reveal that, as the content of TB+ is 

decreased, the fracture surfaces gradually change from ductile to brittle manner, which is 

consistent to the observed trend in the experimental stress-strain curves. 

3. The Shore A hardness of the materials increases with reduced concentration of TB+. 

4. The shear modulus of each flexible material is obtained by fitting the Arruda-Boyce 

model, and it increases with reduced concentration of TB+. 

5. Due to the good quality of the fitted data, it is suggested that the Arruda-Boyce model 

is the best model for future design and optimization of additively manufactured hyperelastic 

materials. 
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