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Abstract

Timelines of longitudinal studies are often anchored by specific events. In the

absence of fully observed the anchoring event times, the study timeline becomes

undefined, and the traditional longitudinal analysis loses its temporal reference. In

this paper, we considered an analytical situation where the anchoring events are

interval-censored. We demonstrated that by expressing the regression parameter

estimators as stochastic functionals of a plug-in estimate of the unknown anchoring

event time distribution, the standard longitudinal models could be extended to

accommodate the situation of less well-defined timelines. We showed that for a

broad class of longitudinal models, the functional parameter estimates are consistent

and asymptotically normally distributed with a
√

n convergence rate under mild

regularity conditions. Applying the developed theory to linear mixed-effects models, 

we further proposed a hybrid computational procedure that combines the strengths 

of the Fisher’s scoring method and the expectation-expectation (EM) algorithm, 

for model parameter estimation. We conducted a simulation study to validate the
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asymptotic properties and to assess the finite sample performance of the proposed

method. A real data analysis was used to illustrate the proposed method. The

method fills in a gap in the existing longitudinal analysis methodology for data

with less well defined timelines.

Keywords: Empirical process, Interval censoring, Longitudinal data, Nonparametrics,

Pseudo-likelihood.
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1 Introduction

An implicit assumption for longitudinal studies is that they have well-defined timelines. In

clinical research, study timelines usually start at pre-specified events. For example, time-

lines of randomized trials start at the initiation of treatment therapies. In observational

studies of cancer, time of oncogenesis, when cancer cells first emerge in organ tissues,

marks the beginning of a clinical disease. In longitudinal studies, events such as thera-

peutic initiation and oncogenesis define the starting points of study timelines. Herein, we

refer to these events as the anchoring events. Although the anchoring events themselves

are not the outcomes of interest, without the anchoring event times, all outcome measures

lose their temporal reference. For example, one would not be able to assess the rate of

tumor growth without knowing the time of oncogenesis.

In many studies, however, the times at which the anchoring events occur are not

directly observed and are subject to interval-censoring. For example, in studies of pubertal

growth, researchers are interested in assessing the rates of weight change immediately

before and after the pubertal growth spurt (PGS), the time point at which the bodily

height increase reaches its maximum velocity (Tanner and Whitehouse, 1976). The exact

time of PGS in an individual, however, is unavailable – it is only known to occur within a

time interval. This leads us to an interval censoring situation: For a given subject, we have

a random observation interval (L,R], which covers the anchoring-event time T ∈ (L,R].

In the pubertal growth study, had we known the exact PGS times (T ) in the study

participants, we would be able to estimate the rates of weight change around the PGS,

using a piecewise longitudinal regression model. But in the absence of T , the standard

models are no longer applicable. To remedy the situation, researchers proposed a number

of ad hoc methods to impute T , including mid-point and model-based imputation meth-

ods (Shankar et al., 2005; Tu et al., 2009). However, the uncertainty associated with the

3



imputation process not only inflates the standard errors in estimating the model param-

eters, but may also lead to biased estimation. Alternatively, Robinson et al. (2010) and

van den Hout et al. (2013) developed joint modeling approaches by making parametric

assumptions for T . However misspecified parametric distributions often lead to biased

estimation results.

In this paper, we propose a new semiparametric approach to estimate the longitudinal

model parameters in the situation with interval-censored anchoring-event times without

making a parametric assumption for T . Writing the observed data as D = (Y,W, L,R),

where Y and W are respectively the vectors of longitudinally observed outcome and

covariates, we consider the following model

Y
∣∣(W , L,R, T ) ∼ φ(Y

∣∣W , L,R, T ;θ),

where φ(·) is a density function with parameters θ when the anchoring-event time T is

known. The focus of the current research is to estimate θ when T is known inside the

interval (L,R] but subject to an unknown cumulation distribution function (CDF) F .

Since the likelihood for the observed data D can be expressed as a functional of

F of the anchoring-event time T and the model parameters θ, we propose a two-stage

estimation method: In the first step, we estimate F using the nonparametric maximum

likelihood method (NPMLE) for interval-censored data (Groeneboom and Wellner, 1992);

in the second step, we plug in the NPMLE of the CDF, F̂n, into the likelihood of the ob-

served data to obtain model parameter estimates θ̂n. This two-stage estimation method is

essentially a semiparametric maximum pseudolikelihood estimation method (SPMPLE),

and the estimates of the model parameters can be viewed as stochastic functionals of F̂n,

i.e., θ̂n = Qn(F̂n). In general, the asymptotic normality is not automatically assured for

this type of functional estimators. In fact, previous research showed that for nonparamet-
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ric models with interval-censored data, functional estimates tended to have convergence

rates that are slower than n1/2 (Zhang et al., 2016), but for linear mixed-effects models

with right-censored data, functional estimates could still achieve an asymptotic normality

(Kong et al., 2017).

In this paper, we examined the asymptotic behavior of stochastic functional estimates

θ̂n = Qn(F̂n). We showed that for a broad class of longitudinal models, asymptotic

normality could indeed be achieved under fairly mild regularity conditions. To the best

of our knowledge, this is the first systematic study of stochastic function estimates in

semiparametric longitudinal models when the anchoring-event times are interval censored.

In pursuing the research, we have put forward a theoretical foundation upon which the

traditional longitudinal models can be extended to situations where the study timelines

are less well defined.

The rest of paper is organized as follows. In Section 2, we propose the functional

estimates of the model parameters from semiparametric pseudolikelihood analysis for lon-

gitudinal data with interval-censored anchoring-event times and study their asymptotic

properties. In Section 3, we present an adaptive numerical algorithm for parameter es-

timation in the context of the linear mixed-effects models. Simulation studies and real

data analysis are presented in Sections 4 and 5, respectively. We conclude the paper in

Section 6 with a discussion of the proposed method. Technical details, including a more

generally applicable asymptotic theorem for the semiparametric Z-estimators that can be

used to prove the theorem given in Section 2, are presented in the Appendix and online

supplementary material.

5



2 A two-stage semiparametric pseudolikelihood method

2.1 The model and parameter estimation

We consider a generic setting where the anchoring events that define the study timeline in a

longitudinal study are interval-censored. From each subject, we observe a response vector

Y , a covariate vector W from longitudinally repeated measurements, and a censoring

interval (L,R] that contains the unobserved anchoring-event time T , i.e., L < T ≤ R.

Given W , L,R and the unobserved T , the conditional density of Y can be modeled

as

Y
∣∣(W , L,R, T ) ∼ φ(Y

∣∣W , L,R, T ;θ), (1)

for a known density function φ with parameter θ, whose true value θ0 is of the interest.

Here, the conditional density function φ can be any continuous or discrete distributions.

For the main theoretical result to hold, we only require φ to satisfy a set of regularity con-

ditions (see Section 2.2). In most of the modeling situations, φ is assumed to be a member

of the exponential family of distributions, though the proposed modeling structure does

allow other distributions. When φ is the density function of a normal distribution, the

model can be written in the familiar form of linear mixed-effects models, which we shall

examine as a special case with greater details in Section 3.

In traditional longitudinal models, the parameter θ is defined only when W , L,R,

and T are fully observed; when T is not observed, the true value θ0 cannot be estimated

from Model (1). To estimate θ0 in the absence of T , we focus on the density function of

Y given the observed data W , L, R, and L < T ≤ R, i.e.,

Y
∣∣(W , L,R, L < T ≤ R) ∼

∫
φ(Y

∣∣W , L,R, t;θ) dFT |(W ,L,R,L<T≤R;θ)(t),
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where FT |(W ,L,R,L<T≤R;θ) is the conditional CDF of T given the observed covariatesW , L,R,

L < T ≤ R, and parameter θ.

We assume that T is conditionally independent of W , given L and R; (L,R] is

an independent censoring interval and its distribution is not informative to θ. These

assumptions lead to FT |(W ,L,R,L<T≤R;θ)(t) = 1(L < t ≤ R)
(
F0(t) − F0(L)

)/(
F0(R) −

F0(L)
)
, where F0 denotes the true but often unknown CDF of the anchoring-event time

T . Then we have

Y
∣∣(W, L,R, L<T ≤R) ∼

∫ R

L

φ(Y
∣∣W, L,R, t;θ)dF0(t)

F0(R)− F0(L)

∝
∫ R

L

φ(Y
∣∣W, L,R, t;θ)dF0(t). (2)

Since F0 is also unknown, we estimate it with a semiparametric pseudolikelihood

approach. Given a random sample {Di = (Y i,W i, Li, Ri) : i = 1, · · · , n}, i.e., in the

absence of known anchoring event time Ti, i = 1, · · · , n, we first estimate F0 through the

NPMLE method with the interval-censored data {(Li, Ri] : i = 1, · · · , n}. That is, we

estimate F0 by the step function F̂n that has jumps only at the points {L1, R1, L2, R2, · · · }

and maximizes the nonparametric likelihood function

L(F ) =
n∏
i=1

(
F (Ri)− F (Li)

)
,

over the class F of one-dimensional CDFs. According to Groeneboom and Wellner (1992),

the NPMLE F̂n converges to F0 in the supremum norm with a convergence rate of n1/3.

Zhang and Jamshidian (2004) provided an overview of the efficient and robust algorithms

for calculating F̂n.

With the estimated CDF F̂n, we then estimate θ0 by θ̂n, the maximizer of the pseu-
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dolikelihood

Ln(θ, F̂n) =
n∑
i=1

log

(∫ Ri

Li

φ(Y i

∣∣W i, Li, Ri, t;θ)dF̂n(t)

)
. (3)

The algorithmic efficiency for computing the parameter estimates θ̂n from Model (3)

depends on the specific distribution φ. In Section 3, we provide a hybrid algorithm in the

case of Gaussian linear mixed-effects models.

2.2 The asymptotic properties of θ̂n

The estimator θ̂n is a stochastic functional of the NPMLE F̂n. Consider the following

stochastic functional Qn, which maps a CDF F ∈ F to

Qn(F ) = arg max
θ∈Θ

(Ln(θ, F ))

= arg max
θ∈Θ

{
n∑
i=1

log

(∫ Ri

Li

φ(Y i

∣∣W i, Li, Ri, t;θ)dF (t)

)}
.

Here θ̂n is the value of Qn assessed at the estimated distribution F̂n, i.e., θ̂n = Qn(F̂n).

If F0 is known, the true parameter θ0 can be estimated from Model (2). Let θ̃n be the

estimate under F0, i.e., θ̃n = Qn(F0). It follows from the standard maximum likelihood

theory that θ̃n is a consistent and asymptotic normal estimator of θ0.

When F0 is unknown, we approach the problem as follows: Suppose F̂n is a consistent

estimator of F0, and Qn is a smooth functional, then θ̂n = Qn(F̂n) is potentially asymp-

totically equivalent to θ̃n = Qn(F0), so it is possibly a consistent estimator of θ0. While

the idea behind the approach is simple, a rigorous study of the asymptotic properties

of θ̂n is much involved, because of the extra variability associated with the estimation

of F̂n. Here, the n1/3 rate of convergence of F̂n (Groeneboom and Wellner, 1992), also
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complicates the study of the asymptotic distribution of θ̂n.

To study the asymptotic properties of θ̂n, we use techniques from the empirical pro-

cess theory. The following regularity conditions are sufficient to justify the forthcoming

theorem on the asymptotic properties of θ̂n.

1. Regularity conditions on the interval-censored data

F1: There exist constants τ1 < τ2 <∞ such that the support of the density function

of the anchoring-event time T is contained in [τ1, τ2].

F2: The anchoring event time T is conditionally independent of W , given L and

R. The censoring interval (L,R] is independent of T .

F3: The support of F0 is included in the union of the supports of the CDF of L

and the CDF of R. And F0 uninformative to θ.

F4: There exists a constant c such that P
(
F0(R)− F0(L) > c

)
= 1.

F5: The sum of density functions of L and R, fL+fR, is strictly positive in [τ1, τ2].

F6: The joint density function of (L, T,R), is twice differentiable in [τ1, τ2]. In

particular, fL and fR are differentiable and uniformly bounded in [τ1, τ2].

F7: The density function of T is twice differentiable.

2. Regularity conditions on the longitudinal model when F0 is known.

Let ∇k
θ denote the differential operator of all kth order partial derivatives with

respect to the vector variable θ. Let d = dim(θ) be the dimension of θ. The model

parameter space Θ is a subset of Rd such that:

M1:
∫ R
L
φ(Y

∣∣W , L,R, t;θ1)dF0(t) 6=
∫ R
L
φ(Y

∣∣W , L,R, t;θ2)dF0(t) for any θ1 6= θ2.

M2: The true parameter θ0 is an inner point of Θ.

M3: The support of
∫ R
L
φ(Y

∣∣W , L,R, t;θ)dF0(t) does not dependent on θ ∈ Θ.
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M4: The conditional density function φ = φ(Y
∣∣W , L,R, T ;θ) is continuous. The

third order partial derivative ∇3
θ(φ) exists and is continuous. Both φ and its

partial derivative function u = ∇θ(φ) have continuous partial derivatives with

respect to T .

M5: Let P be the probability measure associated with (Y ,W , L,R), then

∇θ
[
P

[
log

(∫
φdF0

)]]
= P

[
∇θ
[
log

(∫
φdF0

)]]

∇2
θ

[
P

[
log

(∫
φdF0

)]]
= P

[
∇2
θ

[
log

(∫
φdF0

)]]
3. The random vector (Y ,W , L,R) is bounded with probability 1.

Theorem 2.1. Under the stated regularity conditions, the model estimate θ̂n of Model (3)

is consistent and asymptotically normally distributed. More precisely, let P and Pn be the

respective probability measure and empirical probability measure associated with (Y ,W , L,R),

θ0 the true parameter, u = ∇θ(φ) the gradient of φ with respect to θ,

Uθ0,F0 =
[∫ R

L
udF0

/∫ R
L
φdF0

]
θ=θ0

the score function and A =
[
P
(
∇θ(Uθ,F0)

)]
θ=θ0

the Hessian matrix when F0 is known, and Φ = Φ(L,R) the multidimensional function

that has mean zero and uniquely solves the following integral equation system

∫
L<t≤R

Φ(L,R)dP =

∫
St

[(∫ R

L

φdF0

)−2(
u

∫ R

L

φdF0 − φ
∫ R

L

udF0

)]
θ=θ0

dPt,

where St denotes the domain of (Y ,W , L,R) given value T = t, and Pt the conditional

measure of P when restricted to St. Then

√
n
(
θ̂n − θ0

)
= −A−1 ·

√
nPn

(
Uθ0,F0 + Φ

)
+ op(1). (4)
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In particular,
√
n
(
θ̂n − θ0

) P−→N (0,Σ), with the asymptotic variance Σ given by

Σ = A−1 +A−1P
(
Uθ0,F0Φ

t + ΦU t
θ0,F0

+ Φ⊗2
)
A−1,

where M⊗2 denotes MM t for a matrix M .

We also establish a more general asymptotic normality theorem for semiparametric Z-

estimators in the Appendix. To prove Theorem 2.1, one only has to verify the conditions

for the general theorem.

A few remarks are in order for Theorem 2.1.

Remark 1. Parallel to the classical result of Gong and Samaniego (1981) on parametric

maximum pseudo-likelihood estimation, Theorem 2.1 shows that the asymptotic variance

Σ for the semiparametric maximum pseudolikelihood estimation can be decomposed into

two components, with the first component being the asymptotic variance in estimating

the model parameters when the nuisance infinite dimensional parameter F0 is known, and

the other component the extra variability associated with the estimation of F0.

Remark 2. The regularity conditions are mild and they pose no extra restrictions in

most applications. The first set of conditions are usually assumed in order to guarantee

that the values of smooth functionals on estimated CDF of the interval-censored event

times have good properties (Geskus and Groeneboom, 1999). The second set of conditions

are the usual regularity conditions assumed in the maximum likelihood theory. The third

condition is generally satisfied in practice. It means that, as long as the data do not contain

substantial amount of extreme observations, the parameter estimate is asymptotically

normally distributed as described in Theorem 2.1.

Remark 3. The asymptotic variance Σ has a complicated expression. Equation 4 in

Theorem 2.1 showed that the proposed estimator θ̂n is asymptotically linear and normally
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distributed. By Mammen (2012, Theorem 1, Chapter 1), Σ can be consistently estimated

from the following bootstrap resampling method. For a data set containing n subjects,

we draw bootstrap samples that contain n subjects, each of which is drawn from the

original data set with equal weight and with replacement. The parameter estimate is

obtained using the bootstrap samples. We independently repeat this procedure to obtain

B estimates θ̂
(b)

n , b = 1, · · · , B, where B is a pre-specified number. The sample variance

matrix of
{
θ̂
(b)

n : b = 1, . . . , B
}

is a consistent estimate of Σ.

3 Linear mixed-effects models: A case study

As a more concrete example, we used the general method described in Section 2 to

study parameter estimation in linear mixed-effects models with interval-censored anchor-

ing events.

3.1 Linear mixed-effects models with interval-censored anchor-

ing events

As before, we let Y be the longitudinal outcome, W the covariates, and (L,R] the time

interval that brackets the unobserved anchoring event time T . We consider a linear

mixed-effects model as follows:

Y
∣∣(W , L,R, T, r) ∼N

(
Xβ +Zr, σ2I

)
, r ∼N (0,G),

where G is the fixed but unknown covariance matrix of the random effects r, X =

X(W , L,R, T ) and Z = Z(W , L,R, T ) are respectively the design matrices for the fixed

and random effects. Entries of X and Z are functions of W , L, R and T . The parameter
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vector of interest is θ = (β, σ2,G).

To estimate the true parameter θ0 using the semiparametric pseudolikelihood method

proposed in Section 2.1, we first obtain the NPMLE F̂n of F0 by using the interval-censored

data (L,R]. Assuming that F̂n has jumps pj at time sj, j = 1, · · · , k, we can write the

pseudolikelihood of Y
∣∣(W , L,R, L < T ≤ R) (2) as

∑
L<sj≤R

pj∑
L<sk≤R

pk
|V (sj)|−1/2 exp

(
−1

2

(
Y −X(sj)β

)t
V (sj)

−1(Y −X(sj)β
))
,

where X(sj) = X|T=sj , Z(sj) = Z|T=sj and V (sj) = σ2I +Z(sj)GZ(sj)
t.

Given a random sample
{
Di = (Y i,W i, Li, Ri) : i = 1, · · · , n

}
, for the i-th sub-

ject and index j such that Li < sj ≤ Ri, we write X ij = X(W i, Li, Ri, sj), Zij =

Zi(W i, Li, Ri, sj), V ecij = Y i−X ijβ, V ij = σ2I+ZijGZ
t
ij, and pij = pj

/ ∑
Li<sk≤Ri

pk .

Under this abbreviated notation, we write the log pseudolikelihood for the observed

data as

Lpln (θ) ∝
n∑
i=1

log

 ∑
Li<sj≤Ri

pij|V ij|−1/2 exp

(
−1

2
V ectijV

−1
ij V ecij

) . (5)

The parameter estimate θ̂n is the maximizer of the above function Lpln (θ).

3.2 Computation

Although the proposed semiparametric pseudolikelihood estimation has reduced compu-

tation burden than a joint estimation of F and θ, maximizing the function Lpln (θ) is still

not an easy task, because it has a complicated structure. The commonly used computa-

tion algorithms for fitting traditional mixed-effects models, namely the profile likelihood

method and the restricted maximum likelihood method, do not seem to be easily ap-
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plicable to maximize Lpln (θ). Therefore, we propose a hybrid computation algorithm to

maximize Lpln (θ), combining the Fisher-Scoring (FS) algorithm with an EM-algorithm.

The hybrid algorithm is more robust than the FS-algorithm, and converges faster than

the EM-algorithm.

The following notation is defined for description of the computation algorithm. For a

positive definite matrix G, there exists a unique lower triangular matrix A with positive

diagonal entries such that G = AAt. We reparameterize G with A for the computational

advantage that the boundary condition is easier to check, because G is positive definite if

and only if A has positive diagonal entries. To simplify the notation, for any parameter

value θ = (β, σ2,A), interval (Li, Ri], and index j such that Li < sj ≤ Ri, we let p̃ij(θ)

denote the quantity p̃ij(θ) = pij|V ij|−1/2 exp
(
−1

2
V ectij · V −1ij · V ecij

)
, and let pij(θ)

denote the quantity pij(θ) = p̃ij(θ)

/ ∑
Li<sk≤Ri

p̃ik(θ) . Let X i and Zi denote the functions

of T , defined as X i(T ) = X(W i, Li, Ri, T ) and Zi(T ) = Z(W i, Li, Ri, T ).

The score function U(θ) can be expressed as U(θ) = ∂
∂θ

(
Lpln (θ)

)
=

n∑
i=1

U i(θ), where

U i(θ) is the score function computed from the i-th subject. Using vector calculus (Wand,

2002), we compute the component functions of U i(θ) as follows:

U i(β) =
∑

Li<sj≤Ri
X t

ijV
−1
ij V ecij · pij(θ),

Ui(σ
2) =

∑
Li<sj≤Ri

1
2
Tr
(
(V −1ij V ecij)

⊗2 − V −1ij
)
· pij(θ),

Ui(apq) =
∑

Li<sj≤Ri
Et
pZ

t
ij

(
(V −1ij V ecij)

⊗2 − V −1ij
)
ZijAEq · pij(θ),

where apq is the (p, q)-th entry ofA and p ≥ q, andEk is the column vector with all entries

being zero and the kth entry being 1. With the above formulae, we use the FS-algorithm

with a step-halving line search strategy.

To implement the FS-algorithm, a good initial value is essential. To ensure a good
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initial value, we start with an EM-algorithm. The derivation of the E-step and M-step

is lengthy and algebraically heavy. We provide the essential details in the online supple-

mentary material. Given the current parameter estimate θ(k) =
(
β(k), σ2(k),G(k)

)
, the

EM-algorithm computes the next estimate θ(k+1) =
(
β(k + 1), σ2(k + 1),G(k + 1)

)
as

β(k + 1) = β(k) + σ2(k) · arg min
∆

n∑
i=1

Bi(k)

σ2(k + 1) = σ2(k) + σ4(k)

(
n∑
i=1

qi

)−1{
min
∆

n∑
i=1

Bi(k)−
n∑
i=1

ETi(k) [Tr (V i(k)−1)]

}
G(k+1) = G(k)+ 1

n
G(k)

(
n∑
i=1

ETi(k)

[
Zt
i

((
V i(k)−1V eci(k)

)⊗2− V i(k)−1
)
Zi

])
G(k)

where Bi(k) = ETi(k)

[(
V i(k)−1V eci(k)−X i∆

)t]⊗2
is a function of ∆; ETi(k) denotes

the expectation with respect to the random variable Ti(k), which has density pij(θ
(k)) at

sj ∈ (Li, Ri] and 0 elsewhere; V i(k) = σ2(k)I +ZiG(k)Zt
i and V eci(k) = Y i −X iβ(k)

are functions of T = Ti(k); and qi is the number of observations for the i-th subject. Note

that
n∑
i=1

Bi(k) is a quadratic function of ∆. So minimizing
n∑
i=1

Bi(k) over ∆ is easily

accomplishable. The above formula for θ(k+1) does not guarantee σ2(k+1) or G(k+1) to

be non-negatively definite. The step-halving line search strategy is built in the algorithm

to guarantee that θ(k+1) stays inside Θ.

Regardless of initial values, the FS-algorithm could still fail to converge because of

the quality of approximating the Hessian matrix, especially when the sample size is small.

To overcome this algorithmic difficulty, we propose the following hybrid approach: For

the current parameter estimate θ(k), we compute a temporary parameter estimate θ̃
(k+1)

using the FS-algorithm. If Lpln
(
θ̃
(k+1)

)
≥ Lpln

(
θ(k)
)

, the updated parameter estimate

θ(k+1) is set to be θ̃
(k+1)

. Otherwise, θ(k+1) is obtained by running the EM-algorithm

for N iterations, where N ≥ 2 is a pre-specified number. In other words, this hybrid

algorithm attempts to use the FS-algorithm to accelerate the EM, while also keeping the

FS-iterations in the right track of increasing the likelihood with the assistance of the EM.
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The performance of this algorithm was tested in the simulation study and in a real data

analysis reported in the following sections. In all these applications, the hybrid algorithm

produced algorithmically convergent series of updated parameter estimates.

4 Simulation studies

Simulation studies were conducted to investigate the performance of the proposed model

in finite-sample situations. Two sample sizes were considered: n = 200, and 400. To

evaluate the impact of the interval lengths, for each given sample size n, we simulated

two scenarios: (1) average censoring interval length l = 1; and (2) average censoring

interval length l = 2.

For a given sample size n and the average interval length l, we generated a total of 1500

simulated data sets as follows: For the ith subject, the true anchoring-event time Ti was

independently generated from a Weibull distribution with shape parameter 80 and scale

parameter 12. For each non-overlapping time window (kl, (k+ 1)l], where k = 0, 1, 2, · · · ,

a uniformly distributed screening time was generated. The censoring interval (Li, Ri] was

identified as the adjacent screening times that bracket Ti, i.e., Li < Ti ≤ Ri. To allow

covariates in the proposed method, we also simulated a binary covariate X1i with equal

probability P (X1i = 0) = P (X2i = 1) = 1/2, and a continuous covariate X2i that was

N(0, 1) distributed. The observations at the two endpoints of the censoring interval, YL,i

and YR,i, were then generated from the following linear mixed-effects model


YL,i = λ+ β1X1i + β2X2i + α(Li − Ti) + λi + αi(Li − Ti) + εL,i

YR,i = λ+ β1X1i + β2X2i + β(Ri − Ti) + λi + βi(Ri − Ti) + εR,i

(6)

where (λ, β1, β2, α, β) were the parameters for the population fixed effects, (λi, αi, βi) were
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the subject-specific random deviations, and εL,i and εR,i were the independent error terms.

The true values of the parameters were λ = 50, β1 = −2, β2 = −3, α = 5, β = 8. The

random effects (λi, αi, βi) were generated from N (0,G), and the error terms (εL,i, εR,i)

were generated from N (0, diag(σ2, σ2)), where σ2 = 2.25 and

G =


9 1 −1

1 3 −1

−1 −1 4

 .

This data setting mimics the PGS study that is illustrated in the next section.

For each simulated data set, three models were fitted. First, Model (6) was fitted

using the proposed functional estimation procedure, with standard errors of estimators

estimated using bootstrap method with 50 resamples. The second model that we fitted

used the midpoint of the censoring interval to impute the unobserved Ti, i.e., set Ti =

1
2
(Li +Ri), as done in practice (Shankar et al., 2005). Finally, we fitted Model (6), using

the true anchoring event time Ti. In real world applications, this final model is unrealistic

because of unknown T . In the simulation study, we simply use the model with true T

values to benchmark the performance of the proposed method.

We note that the standard algorithm for computing the maximum likelihood estimates

for longitudinal normal data with midpoint imputation failed to converge in about 20% of

the simulated data sets. For each sample size n and average censoring interval length l, we

summarized the simulation result from the first 1000 data sets that provided numerically

convergent parameter estimates from all of the three methods. The percentage of bias

in parameter estimates (% Bias), Monte-Carlo standard deviation (M-C SD), average

bootstrap standard error (Av. SE) and coverage probability of the 95% Wald-confidence

intervals (95% CP) are reported in Tables 1 and 2.
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##Insert Table 1 here##

##Insert Table 2 here##

The simulation results in Tables 1 and 2 showed that the proposed method had an

excellent finite-sample performance. Estimation bias was very small and virtually ignor-

able when the sample size was large (less than 1%). Both bias and Monte-Carlo standard

deviation decreased with sample size. The bootstrap standard error were very close to

Monte-Carlo standard deviation, which justified the use of bootstrap method in estimat-

ing the standard errors. The empirical coverage probabilities of the 95% Wald-confidence

intervals were all close to the nominal level. The result clearly validates the large sample

theory derived in Theorem 2.1.

For a fixed sample size n, the simulation study showed an improved model performance

with wider censoring intervals, which are expected in view of the regularity condition (F4).

When the censoring interval is narrow and n is not sufficiently large, the NPMLE F̂n may

not be a satisfactory estimate of F0, thus leading to a decreased performance of the

proposed method. In such situations, a larger sample size is generally required to have

an asymptotic normal distribution for the estimated model parameters.

Not surprisingly, the midpoint imputation method did not fare well at all, with dras-

tically larger biases, especially in α and β, the main parameters of interest. The bias

remained substantial even when the sample size was increased to 400. At the same time,

Monte-Carlo standard deviations almost tripled in comparison with that of the proposed

method. Interestingly, however, estimates for the parameters that are not associated with

the anchoring time T , such as λ, β1, β2, the biases were less severely affected.

As expected, the method using the true anchoring event time outperformed all its

competitors. But it is important to note that the proposed method also had practically

ignorable bias and comparable efficiency in parameter estimation. To empirically evaluate
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the relative efficiency, we computed the ratios of the Monte-Carlo standard deviations of

the parameter estimates between the proposed method and the model under the known

true anchoring event times; see Tabel 3. The Monte-Carlo standard deviations of the

parameter estimates in the proposed method were 1.4%-12.3% larger, indicating only a

mild loss of efficiency compared to the ideal situation of knowing T values.

## Insert Tabel 3 here ##

To investigate the robustness of the normality assumption on the error terms in the

proposed method, we repeated the previous simulation with a change in the error terms

εL,i and εR,i in Model (6). We simulated errors from a mixture of normal distributions

Z1Z2 + (1− Z1)Z3,

where Z1 was a binary random variable with equal probability P (Z1 = 0) = P (Z1 = 1) =

1/2, Z2 ∼ N(−1, 12), and Z3 ∼ N(1, 0.52). The simulation result was provided in the

online supplementary material. It generally showed patterns similar to those reported in

Tables 1, 2, and 3, which indicated that the normal assumption on the error terms in the

proposed method was generally robust for larger samples.

5 Analysis of weight change around the PGS

In a longitudinal study of pubertal growth and blood pressure regulation, school children

aged from 5 to 17 were recruited for longitudinal assessment of somatic growth and blood

pressure. At each assessment, somatic growth measures were taken and recorded. The

detailed study protocol was described in Tu et al. (2009, 2014). For each study participant,

the investigators identified the interval that showed the greatest rate of height increase

and used it as the interval containing the PGS (Shankar et al., 2005).
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An overarching objective of this research was to quantify the weight changes around

the time of PGS, with the goal of improving the existing understanding of the adolescent

growth. We focused on growth rates around of the time of PGS, because they are thought

to set the trajectory of adolescent development into the adulthood. The outcome of

interest in this particular analysis was weight, which is one of the the primary markers

of body development. Specifically, we attempted to compare: (1) the pre and post-PGS

rates of weight increase, (2) the average weights at the time of PGS between races, and (3)

the race difference in weight increase rates around the time of PGS. Because of the known

differences in pubertal growth patterns between boys and girls, analyses often proceed

in sex-specific groups. The current analysis was based on data from 188 boys. Because

the focus of the current analysis was the quantification of local rates of skeletal changes

around the PGS, we used only data collected at the two ends of the peak growth intervals.

The peak growth intervals, i.e., the censoring intervals containing the unobserved

PGS, are presented in the left panel of Figure 1. Weights measured at the endpoints of

the censoring intervals are depicted in the right panel of Figure 1. The pre and post-PGS

weight measures from the same individual are connected by a line segment.

##Insert Figure 1 here##

To analyze, we considered the following piece-wise linear mixed-effects model with

random intercepts and random post-PGS growth rates. We did not include random

pre-PGS slopes because existing literature suggests that heterogeneity in rate of weight

increase started at the PGS.
YL,i = λ1 + α1(Li − Ti) +

(
λ2 + α2(Li − Ti)

)
∗ Iw + λi + εL,i

YR,i = λ1 + β1(Ri − Ti) +
(
λ2 + β2(Ri − Ti)

)
∗ Iw + λi + βi(Ri − Ti) + εR,i

(7)

where (Li, Ri] was the censoring interval for the i-th subject; Ti was the unobserved PGS
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time; YL,i and YR,i were the respective weights measured at Li and Ri; Iw was an indicator

for being whites; λ1 was the average weight at PGS in non-whites; and α1 and β1 were

the respectively average pre and post-PGS weight growth rates in non-whites. Similarly,

λ2, α2 and β2 respectively represented the differences in average value, pre and post-PGS

weight growth rates between non-whites and whites. Here λi and βi were the random

intercept and slope; and εL,i and εR,i were the random errors.

All regularity conditions were satisfied in this data application. For example, Condi-

tion (F2) was satisfied, as Figure 1 did not show substantial differences in PGS distribu-

tions between whites and non-whites. So we applied the proposed functional estimation

method to fit Model (7). The parameter estimates θ̂n = (λ̂n,1, λ̂n,2, α̂n,1, β̂n,1, α̂n,2, β̂n,2)

are summarized in Table 4.

## Insert Table 4 here##

The following covariance matrix Σ̂n of the parameter estimates was estimated using

bootstrap resampling method with 100 resamples.

Σ̂n =



3.613 −3.409 0.278 0.769 −0.329 −0.659

−3.409 3.968 −0.117 −0.879 0.334 0.733

0.278 −0.117 0.658 −0.442 −0.671 0.491

0.769 −0.879 −0.442 1.009 0.450 −1.004

−0.329 0.334 −0.671 0.450 0.942 −0.741

−0.659 0.733 0.491 −1.004 −0.741 1.577


.

We then proceeded to make inferences on parameters of interest along the lines laid

out by Theorem 2.1. First, the pre and post-PGS rates of weight increase can be compared
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by testing hypothesis that α1 = β1 and α2 = β2 in all ethnic groups. Using contrast

M =

 0 0 1 −1 0 0

0 0 0 0 1 −1

 ,

the test statistic

Tn = (Mθ̂n)t(MΣ̂nM
t)−1(Mθ̂n)

was approximately χ2(2)-distributed under the null hypothesis. The observed value of Tn

was calculated to be 10.150, which resulted in a p-value of 0.006 for a χ2-test. So we had

evidence that rate of weight growth was greater in the post-PGS period.

To compare the average weight at PGS between individuals in different ethnic groups,

we simply tested the hypothesis that λ2 = 0. Under the null hypothesis, the Z-score of λ̂2

was calculated as −6.927/1.992 = −3.477, which resulted in a p-value of 0.0005 for the

two-sided Z-test. So we concluded that whites and ethnic minority children had different

weights at PGS, with whites had lower weights.

Finally, to compare the rates of weight increase around PGS between individuals

of different ethnic groups, we tested the hypothesis α2 = β2 = 0. To implement, we

calculated the value of the statistic (α̂n,2, β̂n,2) ·Σ̂
′−1
n ·(α̂n,2, β̂n,2)t, which was approximated

by a χ2(2)-distribution under the null hypothesis. Here matrix Σ̂
′
n was the covariance

matrix of α̂n,2 and β̂n,2, which was a submatrix of Σ̂n. The observed value of this statistic

was calculated to be 5.877, which led to a p-value of 0.053. So we concluded that there

was some indication that whites had slower rate of weight gain around PGS, although the

difference did not reach the threshold of 0.05 to be statistically significant. We note that

all findings were consistent with the observed data shown in Figure 1.

Through this real data example, we demonstrated the operations of parameter esti-
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mation and statistical inference using the new method, which handled interval-censored

PGS times nicely in this application. While the findings were largely consistent with the

existing theory of human growth (Hall, 2006), no studies to the best of our knowledge

have actually quantified the growth parameters around PGS, because of the traditional

longitudinal models’ inability to accommodate the unobserved anchoring event times in

the absence of strong parametric assumptions.

6 Discussion

In the past quarter of century, we have witnessed a remarkable growth of methodology in

longitudinal data analysis. The development, in many ways, has not only enhanced statis-

ticians’ analytical toolbox, but also influenced the way that scientists approach their inves-

tigations. Among other things, quantitative depiction of temporal changes has becoming

more commonplace and generally accepted, with important discoveries being made along

the way. If the raison d’être of longitudinal data analysis is indeed characterization of

changes in the response of interest over time, as some have convincingly argued (Fitzmau-

rice and Ravichandran, 2008), a necessary but often implicit requirement is a well-defined

study timeline. In many research settings, such as clinical trials, the requirement is au-

tomatically satisfied because of the use of explicitly specified starting points. But there

are many studies whose timelines are anchored by unobserved events. Such situations

are especially abundant in clinical investigation. Examples include unobserved oncogenic

onset and puberty growth spurt; the latter was described in the current paper. In the

absence of directly observed anchoring events, study timelines become undefined and all

measurements lose their temporal references, thus rendering the longitudinal models in-

operable or uninterpretable. Considering how common the situation is, it is surprising

that the problem has not caught more attention earlier.
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In this research, we took the initial steps towards solving the problem for a general

class of longitudinal models. Here, the data likelihood is essentially a function of the

model parameters θ ∈ Θ and a nuisance parameter F (CDF of the interval-censored

anchoring-event time). While it is straightforward to formulate the model and likelihood

function, jointly estimating θ and F is a computationally daunting, if not impossible

task, unless F is specified parametrically. In this research, we present a solution that is

conceptually simple and computationally straightforward: By expressing the longitudinal

model parameter estimators θ̂n as stochastic functionals of F , we were able to achieve

valid parameter estimates via a semiparametric pseudolikelihood method, built upon the

well studied NPMLE of F from interval-censored observations.

Along this line, we established asymptotic normality for the functional estimates in

a general class of longitudinal models without imputing the anchoring event times or

making parametric assumptions for their distribution. To illustrate its use, we presented

a case study of the frequently used linear mixed-effects models, along with an efficient

computational algorithm. We also provided comprehensive numerical evidence in support

of its good finite-sample performance, even in presence of model misspecification. We

explicitly stated the sufficient conditions for the main theoretical results. These conditions

are mild and are generally satisfied by most observational longitudinal studies. Although

our numerical example depicts a situation where there are only two observation time

points, the method is readily extendable to studies with multiple follow-up assessments.

By studying analytical methods in longitudinal studies with less well defined time-

lines, we hope to broaden the scope of application for the existing longitudinal models

so that they could better meet the need of scientific investigation. But considering the

levels of maturity of the existing longitudinal models, this work is still an initial attempt

towards the goal of a more complete solution. There are certainly important questions
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that remain to be addressed. Among them are the incorporation of functional analysis of

longitudinal outcomes and covariate-dependent anchoring-event time distributions. In a

situation where the anchoring-event time T depends on a set of covariates W , there are a

number of semiparametric models for interval-censored survival data (Huang and Wellner,

1997) that can be used to estimate the distribution function of T given W , F̂n(t|W ). All

of the technical steps presented in this paper can similarly proceed by replacing F̂n with

F̂n(t|W ). Although the notation will be more involved in the method development and

the empirical process arguments, the main theoretical result will hold with mild regularity

conditions. New computational algorithms, however, will be needed for model fitting.

Notwithstanding these limitations, we put forward a carefully justified method for

analyzing longitudinal data with interval-censored anchoring events. The method helps

to address the scientific need for estimating the change rates around an unobserved an-

choring event, a need that would be difficult to meet with the traditional longitudinal

data analysis.
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APPENDIX

Proof of Theorem 2.1. We need a general theorem on the asymptotic normality of

semiparametric Z-estimators and a technical lemma, whose proof is provided in the on-

line supplementary material. To state the general theorem, let P be the probability

measure associated with observed data D and Pn, the empirical measure associated with

n independent and identically distributed copies of D. For any P-measurable function f ,

the integrals
∫
fdP and

∫
fdPn are respectively denoted as P(f) and Pn(f).

Let P be the probability measure associated with observed data D and Pn, the empir-

ical measure associated with n independent and identically distributed copies of D. For

any P-measurable function f , the integrals
∫
fdP and

∫
fdPn are respectively denoted as

P(f) and Pn(f).

We consider semiparametric model that satisfies

P
(
ψ(D, F0,θ0)

)
= 0

where = ψ(D, F,θ) is a d-dimensional estimating function for θ ∈ Θ ⊂ Rd given

F ∈ F , a class of functions, and θ0 ∈ Θ and F0 ∈ F are the true model parameters.

When F0 is unknown, as long as a consistent estimator F̂n of F0 can be obtained from

the data, one can obtain a Z-estimator of θ0 by solving the estimating equation

Pn
(

(D, F̂n,θ)
)

= 0,

for θ, denoted by θ̂n.

The following theorem provides sufficient conditions for
√
n(θ̂n − θ0) to converge in

distribution. For convenience of presentation, we define a mapping Ψ : Θ × F → R by
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setting Ψ(θ, F ) = P
(
ψ(D, F,θ)

)
for any (θ, F ) ∈ Θ×F . Let Ψn be the empirical version

of Ψ, i.e., Ψn(θ, F ) = Pn
(
ψ(D, F,θ)

)
.

Theorem 1. Suppose θ0 satisfies Ψ(θ0, F0) = 0. Let θ̂n be a solution of Ψn(θ, F̂n) = 0,

where F̂n is an estimate of F0 from the sample. If the following conditions hold,

T1. θ0 is an inner point of Θ. The function θ 7→ Ψ(θ, F0) has continuous second order

derivatives in a neighborhood of θ0 and the matrix A = ∇θΨ(θ0, F0) is nonsingular;

T2. θ̂n
P−→θ0;

T3.
√
nΨn(θ0, F̂n)

D−→Z for some random vector Z;

T4.
(

1 +
√
n‖θ̂n − θ0‖

)−1∥∥∥√n(Ψ(θ̂n, F0) + Ψn(θ0, F̂n)
)∥∥∥ P−→0,

then
√
n(θ̂n − θ0)

D−→−A−1Z.

Condition T1 in Theorem 1 is the general regularity condition for parametric models

when F0 is known, which is usually satisfied if the estimating function is a smooth function

of θ. Methods for verifying Conditions T2 and T3 depend on the specific model setting,

and usually require more efforts with empirical process theory. Condition T4 is essentially

equivalent to the general result given by van der Vaart et al. (2007) for studying the

asymptotics in pseudolikelihood estimation methods. This condition is, however, easier to

verify than van der Vaart-Wellner’s condition for proving Theorem 2.1 with the following

lemma, which stipulates a set of sufficient conditions that justify Condition T4.

Lemma 2. Let Θ be a compact set that contains θ0 as an inner point. Let ‖ · ‖∞ be the

supremum norm on F . Assume that

L1. For any F ∈ F , the Stieltjes-Lebesgue measure dF exists and is supported in a finite

closed interval [τ1, τ2], where the constants τ1 < τ2 do not depend on F .
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L2. ‖F̂n − F0‖∞ = op(n
−1/4).

L3.
√
n
(
Ψn(θ̂n, F )−Ψ(θ̂n, F )

)
−
√
n
(
Ψn(θ0, F )−Ψ(θ0, F )

)
= op(1 +

√
n‖θ̂n−θ0‖),

uniformly over the class F .

L4. Ψ(θ, F̂n)−Ψ(θ, F0) =
∫
κ(θ, t)d(F̂n(t)− F0(t)) +Op(‖F̂n − F0‖2∞) uniformly over

Θ, where κ(θ, t) ∈ C1
(
Θ × [τ1, τ2]

)
, the set of functions on Θ × [τ1, τ2] that have

continuous first-order derivatives.

Then Condition T4 of Theorem 1 is satisfied.

In the remaining part of the Appendix, we apply Theorem 1 to study the asymptotic

distribution of the proposed model parameter estimates, under the regularity conditions

stated in Section 2.2. Let K denote a constant, whose value may differ from place to

place.

Recall that φ = φ(Y |W , L,R, T,θ) denote the conditional density of Y givenW , L,R

and the anchoring-event time T , and u = ∇θφ its partial derivative with respect to θ.

Let H, P and Pn denote, respectively, the density function, the probability measure, and

the corresponding empirical measure of D = (Y ,W , L,R). By the regularity condition

3 , the probability measure P has a compact support, which we denote by Ω. To apply

the general result in Theorem 1, we define the following multivariate random functional,

ψ(D, F,θ) =

∫ R
L
u(Y ,W , L,R, t;θ) dF (t)∫ R

L
φ(Y ,W , L,R, t;θ) dF (t)

=

∫ R
L
u dF∫ R

L
φ dF

which is the score function of the parameter θ based on the conditional likelihood of

Y |(W , L,R, L ≤ T < R), assuming the CDF of T is F ∈ F . By the second set of

regularity conditions, the usual MLE theory implies that the true parameter θ0 solves the
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estimating equation

P
(
ψ(D, F0,θ)

)
=

∫ ∫ R
L
u dF0∫ R

L
φ dF0

dP = 0.

From the regularity conditions (M2) and (M4), there exists a closed ball Θ with radius

K > 0 and with center θ0, over which the function P
(
ψ(D, F0,θ)

)
is C3 (i.e., having

continuous third-order derivatives), and strictly convex with respect to θ. Let Fδ denote

the class of all CDFs supported in [τ1, τ2] (the finite interval from the regularity condition

F1), whose ‖ · ‖∞-distances from F0 are less than a small number δ. For the sake of

notational convenience, we let Uθ,F denote the following random variable on Ω, where

(θ, F ) ∈ Θ×Fδ.

Uθ,F (D) = ψ(D, F,θ), where D ∈ Ω.

Define an empirical process Ψn by setting Ψn(θ, F ) = PnUθ,F , and the corresponding

functional Ψ by setting Ψ(θ, F ) = PUθ,F , where (θ, F ) ∈ Θ×Fδ.

To prove Theorem 2.1, we first need to study the properties of several classes of

functions that are relevant to the problem.

Let G = G(D, t;θ), which could be either the function φ or a component function of

u in our application. Let GΘ,Fδ be the following induced class of function on Ω indexed

by Θ×Fδ.

GΘ,Fδ =

{
Gθ,F =

∫ R

L

GdF =

∫ R

L

G(D, t;θ) dF (t) : F ∈ Fδ,θ ∈ Θ

}
.

We evaluate N[ ](ε,GΘ,Fδ , L2(P)), the L2(P)-norm ε-bracketing number of GΘ,Fδ with re-

spect to the probability measure P.

By Theorem 2.7.5 of van der Vaart and Wellner (1996), the family Fδ can be covered

by Nε number of ε-brackets in L2-norm ‖ · ‖2 with respect to the Borel measure with
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Nε ≤ exp(K
ε

). In other words, there exist pairs of measurable functions

{(
F−i (t), F+

i (t)
)

: i = 1, · · ·Nε

}
such that there exists for any F ∈ Fδ a bracket

(
F−i (t), F+

i (t)
)

satisfying F−i (t) ≤ F (t) ≤

F+
i (t) and ‖ F−i (t) − F+

i (t) ‖2< ε. We assume that each bracket contains at least one

function F in Fδ. Otherwise, such a bracket should be removed and results in fewer

ε-brackets. We can also require that 0 ≤ F+
i ≤ 1 and 0 ≤ F−i ≤ 1. It is obvious that

there are no more than
(
K
ε

)d
solid hypercubes {Q1, Q2, · · · , QK}, whose union covers Θ

and whose sides have lengths ε.

For any hypercube Qj and any t ∈ [τ1, τ2], define the following functions S−j,t, S
+
j,t, S

′−
j,t

and S
′+
j,t of D ∈ Ω.

S−j,t(D) = min
θ∈Qj

G(D, t;θ), S+
j,t(D) = max

θ∈Qj
G(D, t;θ);

S
′−
j,t (D) = min

θ∈Qj
∂G
∂t

(D, t;θ), S
′+
j,t (D) = max

θ∈Qj
∂G
∂t

(D, t;θ).

By the regularity condition (M4) on the smoothness of φ and u, and by the regularity

condition 3, both G and ∂G
∂t

are continuous on the compact set Ω×Θ, and hence absolutely

continuous. So |S+
j,t − S−j,t| ≤ Kε and |S ′+

j,t − S
′−
j,t | ≤ Kε for all j and t, where the value

of K does not depend on j or t. For any bracket
(
F−i (t), F+

i (t)
)

and hypercube Qj, we

define the following functions of D ∈ Ω.

G−ij(D) = S−j,R(D) ·
(
F−i (R) · 1(S−j,R(D) > 0) + F+

i (R) · 1(S−j,R(D) ≤ 0)
)

−S+
j,L(D) ·

(
F+
i (L) · 1(S+

j,L(D) > 0) + F−i (L) · 1(S+
j,L(D) ≤ 0)

)
−
∫ R

L

S
′+
j,t (D) ·

(
F+
i (t) · 1(S

′+
j,t (D) > 0) + F−i (t) · 1(S

′+
j,t (D) ≤ 0)

)
dt
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G+
ij(D) = S+

j,R(D) ·
(
F+
i (R) · 1(S+

j,R(D) > 0) + F−i (R) · 1(S+
j,R(D) ≤ 0)

)
−S−j,L(D) ·

(
F−i (L) · 1(S−j,L(D) > 0) + F+

i (L) · 1(S−j,L(D) ≤ 0)
)

−
∫ R

L

S
′−
j,t (D) ·

(
F−i (t) · 1(S

′−
j,t (D) > 0) + F+

i (t) · 1(S
′−
j,t (D) ≤ 0)

)
dt.

Although the expressions ofG−ij andG+
ij are complicate, it is easy to see that the summands

of these functions bracket the summands of the following integral in order.

Gθ,F =

∫ R

L

GdF = G
∣∣
t=R
· F (R)−G

∣∣
t=L
· F (L)−

∫ R

L

∂G

∂t
· F dt,

where F−i ≤ F ≤ F+
i and θ ∈ Qj. So we have G−ij ≤ Gθ,F ≤ G+

ij. In other words, the set

of brackets
{(
G−ij, G

+
ij

)
: i, j

}
covers Gθ,F . Let ‖ ·‖2,P denote the L2(P)-norm with respect

to the probability measure P. It is shown in the online supplementary material that the

‖ · ‖2,P-length of the bracket
(
G−ij, G

+
ij

)
satisfies

‖G+
ij −G−ij‖2,P ≤ Kε. (8)

In summary, we found a total of (K/ε)dNε brackets for GΘ,Fδ , each of length ≤ Kε,

whereK is independent on ε. SoN[ ](ε,GΘ,Fδ , L2(P)), the L2(P)-norm ε-bracketing number

for GΘ,Fδ , is bounded by (K/ε)d exp(K/ε). Then it follows that

J[ ]
(
ε,GΘ,Fδ , L2(P)

)
=

∫ 1

0

√
log
(
N[ ](ε,GΘ,Fδ , L2(P))

)
dε

≤
∫ 1

0

√
K

ε
−K log(ε)dε <∞.

By Donsker’s Thoerem (van der Vaart (1998), page 270), GΘ,Fδ is a P-Donsker class.
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The above argument directly yields the conclusion that the following two classes

NUMΘ,Fδ =

{∫ R

L

udF : F ∈ Fδ,θ ∈ Θ

}
and

DENΘ,Fδ =

{∫ R

L

φdF : F ∈ Fδ,θ ∈ Θ

}
are P-Donsker. The regularity condition 3 implies that both NUMΘ,Fδ and DENΘ,Fδ

are uniformly bounded. For a small enough δ > 0, DENΘ,Fδ is uniformly bounded away

from zero. By Theorem 2.10.6 of van der Vaart and Wellner (1996), both the point-wise

quotient class

UΘ,Fδ =

{
Uθ,F =

∫ R
L
udF∫ R

L
φdF

: θ ∈ Θ, F ∈ Fδ

}
and the smooth transformation class

MΘ,Fδ =

{
Mθ,F = log

(∫ R

L

φdF

)
: θ ∈ Θ, F ∈ Fδ

}

are also P-Donsker. HenceMΘ,Fδ is a Glivenko–Cantelli class as well. By Example 2.10.7

of van der Vaart and Wellner (1996), the difference class

DUΘ,Fδ =
{
Uθ1,F1 −Uθ2,F2

∣∣∣ Uθ1,F1 ,Uθ2,F2 ∈ UΘ,Fδ
}

is also P-Donsker.

Next, we need to study the properties of the functional Ψ. For any θ ∈ Θ, a direct

computation shows Ψ(θ, F )−Ψ(θ, F0) = (I)− (II) + (III), where

(I) =

∫ (∫ R

L

φdF0

)−2
·
(∫ R

L

udF ·
∫ R

L

φdF0 −
∫ R

L

udF0 ·
∫ R

L

φdF

)
dP
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(II) =

∫ (∫ R

L

φdF0

)−2
·
∫ R

L

ud(F − F0) ·
∫ R

L

φd(F − F0) dP

(III) =

∫ (∫ R

L

φdF

)−1
·
(∫ R

L

φdF0

)−2
·
(∫ R

L

udF ·
∫ R

L

φd(F − F0)

)2

dP

The first term (I) can be further calculated as

(I) =

∫ [∫
St

(∫ R

L

φdF0

)−2(
u

∫ R

L

φdF0 − φ
∫ R

L

udF0

)
dPt

]
d(F − F0),

where St denotes the domain of D = (Y ,W , L,R) given value t, and Pt denotes the

induced conditional probability measure on St. By the regularity condition (M4) on the

smoothness of φ and regularity condition (F6) on H, a straightforward algebra yields that

κ(θ, t) =

∫
St

(∫ R

L

φdF0

)−2(
u

∫ R

L

φdF0 − φ
∫ R

L

udF0

)
dPt (9)

is a C1 function on Θ× [τ1, τ2].

Using the regularity condition 3, the terms (II) and (III) can be controlled by

∣∣− (II) + (III)
∣∣ ≤ (

1

K
max(‖u‖) max(Φ) +

1

K
max(‖u‖) max(Φ)2

)
×
∥∥Fn − F0

∥∥2
∞

= K
∥∥Fn − F0

∥∥2
∞.

Since the constant K does not depend on θ, we proved that

Ψ(θ, Fn)−Ψ(θ, F0) =

∫
κ(θ, t)d(Fn − F0) +Op(‖Fn − F0‖2∞), (10)

uniformly on Θ, as required in Condition L4 of Lemma 2.

We are now ready to verify the four conditions in Theorem 1 as follows.
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1. Condition T1.

This is included in the regularity condition 2.

2. Condition T2: θ̂n
P−→θ0.

By definition, θ̂n maximizes PnMθ,F̂n
, where Mθ,F̂n

= log
(∫ R

L
ΦdF̂n

)
. Since

MΘ,Fδ is a P-Glivenko–Cantelli class containing Mθ,F̂n
, it follows that

max
θ∈Θ
|
(
Pn − P

)
Mθ,F̂n

| P−→0.

Since n1/3‖F̂n − F‖∞
P−→0 by Groeneboom and Wellner (1992), it can be easily

shown by the Dominated Convergence Theorem (DCT) that

max
θ∈Θ
|PMθ,F̂n

− PMθ,F0|
P−→0.

Hence max
θ∈Θ
|PnMθ,F̂n

−PMθ,F0|
P−→0 as well. It follows from the regularity condition

2 that PMθ,F0 is strictly convex over Θ with local maximum at θ0, which implies

max
θ∈Θ,‖θ−θ0‖>ε

PMθ,F0 < PMθ0,F0 .

Therefore by Theorem 5.7 of van der Vaart (1998), there exists a θ̂n ∈ Θ that

maximizes PnMθ,F̂n
and θ̂n

P−→θ0. In particular, when n is large, θ̂n is a maximizer

inside Θ and hence a solution of Ψn(θ, F̂n) = 0, which is the proposed estimate of

the model parameter θ.

3. Condition T3:
√
nΨn(θ0, F̂n)

P−→Z for a zero mean normal distribution Z.

Since F̂n is the NPMLE from an interval censored data satisfying the regularity

condition 1, the Hellinger differentiability (Geskus and Groeneboom, 1999, Pages

631-632) of Ψ(θ0, F ) with respect to F at F0, as shown in Equation (10), implies
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that there exists a unique zero mean random variable Φ(L,R) such that

√
nΨ(θ0, F̂n) =

√
nΨ(θ0, F̂n)−

√
nΨ(θ0, F0) =

√
nPn

(
Φ(L,R))

)
+ op(1)

by Corollary 2.1 of Geskus and Groeneboom (1999) and Theorem 3.1 of van der

Vaart (1991). The function Φ(L,R) is characterized as the solution to the integral

equation ∫
L<t≤R

Φ(L,R)dP = κ(θ0, t),

where κ(θ0, t) is given in Equation (9).

On the other hand, we have

√
nΨn(θ0, F̂n)−

√
nΨn(θ0, F0) =

√
nPn

(
Uθ0,F̂n

−Uθ0,F0

)
=
√
n(Pn − P)

(
Uθ0,F̂n

−Uθ0,F0

)
+
√
nP
(
Uθ0,F̂n

−Uθ0,F0

)
= op(1) +

√
nΨ(θ0, F̂n).

where the first term is op(1) by Corollary 2.3.12 of van der Vaart and Wellner (1996),

because Uθ0,F̂n
−Uθ0,F0 is in the P-Donsker class DUΘ,Fδ and n1/3‖F̂n − F‖∞

P−→0

implies P
(
Uθ0,F̂n

−Uθ0,F0

)2 P−→0 by DCT. Thus, we have shown that

√
nΨn(θ0, F̂n) =

√
nΨn(θ0, F0) +

√
nΨ(θ0, F̂n) + op(1)

=
√
nPn

(
Uθ0,F0) +

√
nPn

(
Φ
)

+ op(1).

In particular, we have
√
nΨn(θ0, F̂n)

P−→Z, where Z is the limiting distribution of

√
nPn

(
Uθ0,F0 + Φ

)
, which is normally distributed with a zero mean.

4. Condition T4.
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We verify the four sufficient conditions in Lemma 2. The first two conditions follow

directly from the regularity conditions, and the n1/3-convergence rate of F̂n (Groene-

boom and Wellner, 1992). The last condition follows from Equation (10). It remains

to check the third condition.

For any F ∈ F , we have

√
n
(
Ψn(θ̂n, F ) − Ψ(θ̂n, F )

)
−
√
n
(
Ψn(θ0, F )−Ψ(θ0, F )

)
=
√
n(Pn − P)

(
U θ̂n,F

−Uθ0,F

)
.

Notice that U θ̂n,F
−Uθ0,F is a member in the P-Donsker class DUΘ,Fδ . Using the

regularity condition 3, the consistency of θ̂n, and the fact that the measure dF has

support in the compact set [τ1, τ2], it follows by DCT that P
(
U θ̂n,F

−Uθ0,F

)2 P−→0.

Hence
√
n(Pn − P)

(
U θ̂n,F

−Uθ0,F

)
= op(1)

by Corollary 2.3.12 of van der Vaart and Wellner (1996). This verifies the third

condition in Lemma 2.

So Condition T4 is satisfied by Lemma 2.

Finally, we complete the proof of Theorem 2.1 by applying Theorem 1 to obtain

√
n
(
θ̂n − θ0

)
= A−1 ·

√
nPn

(
Uθ0,F0 + Φ

)
+ op(1),

where A is the information matrix, which is also the negative of Jacobian of P (Uθ,F0) at

θ = θ0. So we have
√
n
(
θ̂n − θ0

) P−→N (0,Σ), where Σ = A−1P ((Uθ0,F0 + Φ)⊗2)A−1.
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Since A = P
(
U⊗2θ0,F0

)
, the asymptotic variance matrix Σ can be decomposed as

Σ = A−1 +A−1P
(
Uθ0,F0Φ

t + ΦU t
θ0,F0

+ Φ⊗2
)
A−1

as in Theorem 2.1.
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Table 1: Simulation results for Scenario 1
sample size =200 sample size =400

λ β1 β2 α β λ β1 β2 α β
Proposed Model
% Bias 0.073 0.834 0.976 1.145 0.838 0.067 0.063 0.620 0.640 0.541
M-C SD 0.571 0.469 0.812 0.415 0.432 0.383 0.335 0.559 0.284 0.290
Av. SE 0.565 0.468 0.803 0.400 0.418 0.395 0.328 0.568 0.283 0.294
95% CP 0.947 0.942 0.935 0.921 0.923 0.951 0.943 0.945 0.940 0.948
Midpoint Imputation
% Bias 0.437 0.710 0.784 8.076 5.234 0.373 0.341 0.351 6.482 4.100
M-C SD 0.917 0.506 0.878 1.370 1.414 0.620 0.368 0.623 0.931 0.953
Av. SE 0.895 0.502 0.871 1.316 1.359 0.631 0.358 0.621 0.930 0.961
95% CP 0.944 0.947 0.943 0.929 0.938 0.939 0.954 0.950 0.933 0.935
Known Anchoring Time
% Bias 0.021 1.194 0.868 0.048 0.041 0.009 0.078 0.526 0.256 0.087
M-C SD 0.536 0.447 0.769 0.390 0.397 0.353 0.323 0.533 0.253 0.263
Av. SE 0.523 0.442 0.766 0.357 0.368 0.370 0.314 0.544 0.254 0.262
95% CP 0.947 0.938 0.945 0.929 0.930 0.965 0.945 0.954 0.944 0.946

Table 2: Simulation results for Scenario 2
sample size =200 sample size =400

λ β1 β2 α β λ β1 β2 α β
Proposed Model
% Bias 0.119 0.148 0.051 0.607 0.436 0.112 0.063 1.098 0.501 0.328
M-C SD 0.612 0.496 0.840 0.285 0.312 0.420 0.338 0.597 0.202 0.212
Av. SE 0.616 0.492 0.843 0.287 0.305 0.433 0.343 0.597 0.203 0.212
95% CP 0.949 0.938 0.944 0.946 0.938 0.955 0.958 0.947 0.944 0.945
Midpoint Imputation
% Bias 0.855 0.155 0.694 7.630 4.895 0.734 0.571 0.792 6.464 3.903
M-C SD 1.029 0.616 1.083 0.811 0.848 0.712 0.439 0.754 0.545 0.573
Av. SE 1.011 0.611 1.060 0.779 0.823 0.712 0.435 0.754 0.550 0.580
95% CP 0.928 0.948 0.950 0.916 0.916 0.917 0.953 0.948 0.915 0.927
Known Anchoring Time
% Bias 0.005 0.198 0.017 0.001 0.126 0.021 0.056 0.915 0.081 0.098
M-C SD 0.569 0.475 0.788 0.281 0.298 0.382 0.328 0.560 0.192 0.199
Av. SE 0.556 0.458 0.794 0.269 0.280 0.393 0.325 0.563 0.191 0.198
95% CP 0.952 0.928 0.944 0.944 0.937 0.957 0.946 0.946 0.951 0.953
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Table 3: Ratio of Monte Carlo standard deviations: proposed model v.s. the model
knowing true anchoring event times

sample size =200 sample size =400
λ β1 β2 α β λ β1 β2 α β

Scenario (1)
ratio 1.065 1.049 1.056 1.064 1.088 1.085 1.037 1.049 1.123 1.103
Scenario (2)
ratio 1.076 1.044 1.066 1.014 1.047 1.099 1.030 1.066 1.052 1.065

Figure 1: Peak growth intervals and observed weight
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Table 4: Parameter estimates of the example data
λ1 λ2 α1 β1 α2 β2

estimate 54.478 -6.927 7.526 9.730 -1.583 -0.543
se 1.901 1.992 0.811 1.005 0.971 1.256

42


	Introduction
	A two-stage semiparametric pseudolikelihood method
	The model and parameter estimation
	The asymptotic properties of n

	Linear mixed-effects models: A case study
	Linear mixed-effects models with interval-censored anchoring events
	Computation

	Simulation studies
	Analysis of weight change around the PGS
	Discussion

