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Calcium ions (Ca2+), ubiquitous signaling and second messenger molecules, are communicators for the 

transmission of messages in numerous cell functions. In this issue of Cell Stem Cell, Luchsinger et al. 

(2019) provide evidence through the use of transplantation and mechanistic studies for the finding that, 

“Harnessing Hematopoietic Stem Cell Low Intracellular Calcium Improves Their Maintenance In Vitro.” 

 

 

A prominent role for increased intracellular [Ca2+] in hematopoietic stem cell (HSC) regulation has 

recently gained wider appreciation. Most notably, Uemoto and colleagues recently reported that calcium 

levels are associated with initiation of HSC division (Umemoto et al., 2018). In a new study in this issue 

of Cell Stem Cell, Luchsinger et al. (2019) now report several new insights into how Ca2+ levels impact 

HSC maintenance. 

First, mouse bone marrow (BM) HSCs manifest low intracellular levels of Ca2+, which is associated with 

enhanced activity of “glycolysis-fueled” membrane efflux pumps. Second, low intracellular Ca2+ levels 

are associated with increased ex vivo HSC maintenance as denoted by HSC phenotype, functional 

engraftment, and single-cell signature expression levels. Third, this is linked to target ten-eleven 

translocated (TET) enzymes, which were inhibited by calpain proteases, with TET2 being required for 

low [Ca2+] maintenance of HSCs in vitro. 
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To assess effects of [Ca2+] on maintenance of mouse BM HSCs in vitro for prolonged time periods, the 

investigators first cultured purified HSCs in calcium-free DMEM with serum-free supplement, SCF, and 

TPO in the presence of increasing [CaCl2]. Actual numbers of phenotypically defined HSCs were 2–3 

times greater in low than in high [CaCl2]. Also, the cycling status of HSCs was enhanced in low [CaCl2]. 

The functional HSC populations were tested by competitive transplantation in lethally irradiated 

recipients; donor cell engraftment was increased in donor cells cultured in low (0.02 mM) versus higher 

(2 mM) [CaCl2] prior to transplantation. These results were confirmed in limiting dilution transplants. 

Moreover, [CaCl2] had a larger effect on maintenance of the CD150hi HSC population, previously shown 

to have greater self-renewal capacity, than that on the CD150lo HSCs without lineage bias (similar 

lymphoid/myeloid ratios) in engrafted cell populations. Single-cell RNA sequencing demonstrated 

differences in HSCs cultured in low versus higher [CaCl2]. 

HSC populations manifested lower intracellular [Ca2+] than multipotential progenitors. To associate 

intracellular HSC [Ca2+] with function, the authors separated HSCs based on staining with Indo-1; Indo-

1lo HSCs were enhanced in long-term repopulation compared to Indo-1hi HSCs. There was low 

intracellular Ca2+ efflux pump activity in HSCs, a finding verified by active Ca2+ efflux in HSCs 

compared to progenitors. Higher levels of HSC Ca2+ efflux reflected glycolysis. Calpains are a family of 

calcium-regulated cysteine proteases. Inhibition of calpain activity was associated with low Ca2+ effects 

on HSC maintenance, which was associated with stabilization of Tet enzymes. Tet2 is required for normal 

functioning of HSCs. In contrast to the effects of [CaCl2] on normal HSCs, cultures with low [CaCl2] had 

no effect on the maintenance of phenotypically defined Tet2−/− HSCs, and they did not increase their 

competitive repopulating engraftment capability. Tet2−/− HSCs were insensitive to enhancing effects of 

low [Ca2+]. Human cord blood HSCs had lower [Ca2+] than progenitors. A reduced [Ca2+] external 

environment or calpain inhibition promoted maintenance of human cord blood HSCs in vitro, as assessed 

by limiting dilution engraftment of human cells in sublethally irradiated NSG mice, confirming with 
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human HSCs some of what was found with mouse HSCs. This extensive and intriguing information 

opens up a number of questions (summarized in Figure 1). 

 

Figure 1. Known and As Yet Unknown Role(s) of Hematopoietic Stem Cell Intracellular Levels of [Ca2+] 

and Ca2+ Efflux in HSCs 

HSCs in old mice (e.g., ≥20 months old) are “defective” compared to those in young mouse HSCs. HSC 

aging is characterized by increased numbers of phenotypically defined HSCs but greatly decreased 

engrafting capability in lethally irradiated mice, with altered myeloid-lymphoid ratios of engrafted cells. 

These findings beg the question as to whether there are abnormalities associated with changes in 

intracellular HSC [Ca2+] or plasma membrane Ca2+ efflux pump efficiency in old mice as compared to 

young mice. 

TET2 is implicated in the regulation of normal HSCs and leukemia stem/initiating cells (Cai et al., 2018). 

Tet2−/− HSCs have pre-leukemia and/or leukemia characteristics. Luchsinger et al. tantalizingly suggest 

that low [Ca2+] had some suppressive effects on in vitro maintenance of Tet2−/− HSCs. Repopulating 

Tet2−/− cells might be less sensitive to enhancing effects of low intracellular [Ca2+]. Can modulation of 

intracellular [Ca2+] serve as an intervention treatment for pre-leukemia and/or leukemia? 
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Studies compared human cord blood to mouse bone marrow HSCs. While more studies are warranted 

with human HSCs, would there be differences in human cord blood versus human bone marrow HSCs? 

How might modulation of intracellular Ca2+ levels additionally influence cell survival, proliferation, self-

renewal, differentiation, migration, homing, and/or mobilization of HSCs? Luchsinger et al. provide 

significant insight into HSC maintenance. Will this phenomenon have therapeutic benefit? The efficacy of 

hematopoietic cell transplantation (HCT) is sometimes limited by low donor cell numbers (e.g., cord 

blood). Ex vivo HSC expansion is being considered to address this concern as reported in recent papers 

(Li et al., 2018, Wilkinson et al., 2019), but only a few such previous ex vivo procedures have been 

clinically evaluated, and not yet confirmed by others for efficacy. Can modulation of intracellular [Ca2+] 

synergize with various cytokines and effectors? Enhanced HSC maintenance ex vivo should link to 

ex vivo increased functional HSC numbers. Is Ca2+ involved in the recently reported massive 236- to 899-

fold ex vivo expansion of HSCs (Wilkinson et al., 2019)? 

Most intriguing to me is the plethora of publications offering mechanistic insight into HSC regulation, 

papers seemingly being reported endlessly. How do these regulatory molecules and interactions fit 

together, and potentially so in the context of intracellular HSC [Ca2+]? Regulators include, but are not 

limited to, cytokines, chemokines, and growth modulating proteins including non-chemokine 

heterochromatin remodeling nuclear protein DEK that when released from the cell functions as a cytokine 

acting through the CXCR2 chemokine receptor (Capitano et al., 2019), prostaglandin E, ascorbate 

(Agathocleous et al., 2017), and valine (Taya et al., 2016), with numerous intracellular signaling 

molecules being implicated. Interactions of this vast number of regulatory molecules and elements are not 

fully understood in the context of overall regulation of HSC biology. How are these numerous regulators 

linked? Are there truly “Master” regulators for different HSC functions, and how might they be related to 

[Ca2+], if at all? We tend to study specific regulators to achieve insight into HSC regulation, but we 

typically ignore how these fit into an overall schema of HSC function or functions. Clinical efforts, even 

“successful ones,” are usually associated with side-effects, which are sometimes worse than the disease 
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itself. To better understand potential treatment outcomes, putting together an inclusive or close to 

inclusive “map” of all regulators and regulation would be extremely helpful. This may seem 

overwhelming, but a start in this direction, sooner rather than later, could entail meetings of investigators 

invested in this area of research think-tanking this massive undertaking. Linking or un-linking various 

regulatory molecules with external and internal influences could lead to more rational treatments and 

improved health benefits. 

Does the present work by Luchsinger et al. on Ca2+, as well as most other regulatory studies reported, 

accurately mimic activities of HSCs when in their in vivo hypoxic microenvironment? Mitochondria are 

linked to HSC biology (Filippi and Ghaffari, 2019). Roles for mitochondria in HSC function in the 

context of cell collections and processing in hypoxia (3% O2) versus ambient air (normoxic, ∼20% O2) 

have been reported (Mantel et al., 2015). While low O2 effects on the growth of HSCs and progenitors 

have been documented since the 1970s, such cells assessed under low O2 cultures had been first removed 

in ambient air, which was found to induce rapid differentiation of HSCs to progenitors, a phenomenon 

termed Extra Physiologic Shock/Stress (EPHOSS). HSC and progenitor numbers and functions in 

multiple knockout mouse studies were grossly different with cells collected and processed at 3% O2 

(never exposed to ambient air) compared to those collected and processed in ambient air (Mantel et al., 

2015). Would intracellular Ca2+ levels and their effects on HSC function be different if cells were 

collected and processed in hypoxia? 

There is clearly much more that needs to be done regarding elucidating roles for Ca2+ and other HSC 

regulatory events. Hence, there exists a continued need to investigate HSC biology and optimize HSC 

modulation for clinical advantage. 
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