
HETEROGENEOUS GRAPH-BASED NEURAL NETWORK FOR SOCIAL

RECOMMENDATIONS WITH BALANCED RANDOM WALK INITIALIZATION

A Thesis

Submitted to the Faculty

of

Purdue University

by

Amirreza Salamat

In Partial Fulfillment of the

Requirements for the Degree

of

Master of Science in Electrical and Computer Engineering

December 2020

Purdue University

Indianapolis, Indiana

ii

THE PURDUE UNIVERSITY GRADUATE SCHOOL

STATEMENT OF THESIS APPROVAL

Dr. Ali Jafari, Co-Chair

Department of Computer and Information Technology

Dr. Brian King, Co-Chair

Department of Electrical and Computer Engineering

Dr. Xiao Luo

Department of Computer and Information Technology

Approved by:

Dr. Brian King

Head of the Graduate Program

iii

Dedicated to my parents who are my main source of motivation.

iv

ACKNOWLEDGMENTS

First and foremost, I would like to express my sincere gratitude to my thesis

commitee, Dr. Jafari, Dr. Luo and Dr. King for helping me immensely. I would

also like to thank Sherrie Tucker for keeping me on track since the beginning of the

program. Last but not least, I thank all the members of the CyberLab for creating

such a wonderful atmosphere for me to research and learn in.

v

TABLE OF CONTENTS

Page

LIST OF TABLES . vii

LIST OF FIGURES . viii

SYMBOLS . x

ABBREVIATIONS . xi

ABSTRACT . xii

1 INTRODUCTION . 1

1.1 Graph Recommender . 1

1.2 Balanced Random Walks . 5

2 RELATED WORK . 8

3 COURSENETWORKING . 14

3.1 Rumi . 15

3.2 Rumi Challenges . 17

3.3 Quotes Competition . 17

3.3.1 Introduction . 20

3.3.2 Main Quote Page . 21

3.3.3 User Feedback . 21

3.3.4 Competition Termination . 22

3.3.5 Leaderboard . 23

3.3.6 Embedding Quotes . 24

3.4 Deployment Setup . 26

3.4.1 Database . 26

3.4.2 Cassandra . 29

4 NEURAL NETWORK ARCHITECTURE 33

4.0.1 Model Description . 33

vi

Page

4.0.2 Node Aggregations . 37

4.0.3 Predictions . 39

5 BALANCED RANDOM WALKS . 40

5.1 Walk Prediction . 41

5.2 Balanced Random Walk . 43

5.3 Learning Features . 44

6 EXPERIMENTAL RESULTS . 48

6.1 HeteroGraphRec . 48

6.1.1 Experimental Setup . 48

6.1.2 Rating Prediction Performance 52

6.1.3 Model Analysis . 55

6.2 Balanced Random Walks . 58

6.2.1 Dataset . 58

6.2.2 Walking Strategy . 61

6.2.3 Link Prediction . 62

6.2.4 Parameter Sensitivity . 63

6.2.5 Embedding Visualization . 64

7 CONCLUSION AND FUTURE WORK . 66

REFERENCES . 68

vii

LIST OF TABLES

Table Page

5.1 Binary operators for learning edge features from node embeddings. 45

6.1 General statistics about the size of the social networks including their
users, items, and the connections between them. 49

6.2 MAE Performance of HeteroGraphRec compared to other recommender
systems . 52

6.3 RMSE Performance of HeteroGraphRec compared to other recommender
systems . 52

6.4 Area Under Curve (AUC) scores for link prediction using the Average
binary operator. 59

6.5 Area Under Curve (AUC) scores for link prediction using the Hadamard
binary operator. 60

6.6 Area Under Curve (AUC) scores for link prediction using the Weighted-L1
binary operator. 61

6.7 Area Under Curve (AUC) scores for link prediction using the Weighted-L2
binary operator. 62

viii

LIST OF FIGURES

Figure Page

1.1 A sample directed graph with nodes with various in-degrees to demon-
strate that random walks on this graph tends to select bias towards the
nodes with more direct or propagated in-degrees. 7

2.1 Left: The attention mechanism a
(
W~hi,W~hj

)
employed by Graph At-

tention Network, parametrized by a weight vector −→a ∈ R2F ′
, applying

a LeakyReLU activation. Right: An illustration of multihead attention
(with K = 3 heads) by node 1 on its neighborhood. Different arrow styles
and colors denote independent attention computations. The aggregated
features from each head are concatenated or averaged to obtain ~h′1. 12

2.2 Neural Structured Learning (NSL) is a new learning paradigm to train
neural networks by leveraging structured signals in addition to feature
inputs. Structure can be explicit as represented by a graph or implicit as
induced by adversarial perturbation. 13

3.1 The skills section of a user’s ePortfolio in CourseNetworking 15

3.2 The skills section of a user’s ePortfolio in CourseNetworking with other
user’s endorsements . 15

3.3 User’s interactions with other users in CourseNetworking. 16

3.4 CN bio section which contains the user’s tagline (highlighted as red) 18

3.5 The flowchart of the rumi quote competition. 18

3.6 Rumi Quote introduction page for the first-time users of the service. 19

3.7 Rumi Quotes main quote selection page. 20

3.8 The page that is shown to the user when the competition is terminated. . . 22

3.9 The Rumi Quotes leaderboard page. 23

3.10 The behavior of the Rumi Quotes leaderboard menu upon scrolling. 24

3.11 BERT input representation. The input embeddings are derived from the
sum of the token embeddings, the segmentation embeddings and the po-
sition embeddings. 25

ix

Figure Page

3.12 MongoDB replicaset structure with one Primary, one Secondary and one
Arbiter shards. 28

3.13 CAP Theorem affirms that a modern database cannot satisfy all three
constraints of Consistency, Availability and Partition Tolerance. 28

4.1 Basic model for social recommenders. 34

4.2 Heterogeneous model of social recommenders. 34

4.3 The architecture of HeteroGraphRec, which consists of a rating predictor
and two node aggregators for the target user (left section) and item (right
section). 35

5.1 Node frequency in CourseNetworking user-follower network in log-log scale. 45

5.2 Node frequencies in a Random Walk (left) and Balanced Walk (right) of
length 8. (The nodes are sorted by degree.) 46

5.3 Jensen-Shannon divergence of random and balanced walks based on the
walk length. 46

6.1 Sensitivity of the model to user embedding dimension size. 53

6.2 Sensitivity of the model to user embedding dimension size. 53

6.3 Sensitivity of the model to each of its four components in the Ciao
dataset. 53

6.4 Sensitivity of the model to each of its four components in the Douban
dataset. 54

6.5 Sensitivity of the model to each of its four components in the Epinions
dataset. 54

6.6 Performance of HeteroGraphRec@10 throughout the training process with
using random and node2vec initializations. 55

6.7 Area Under Curve (AUC) scores for link prediction on the CourseNet-
working dataset. 59

6.8 Top 500 most connected users in the CourseNetworking dataset visualized
by applying t-SNE over the Balanced Walk Embeddings and colored using
K-means clustering. 65

x

SYMBOLS

A graph adjacency matrix

C size of the context window

d embedding dimensions

E graph edges

f node occurence frequencies

G graph

h node latent features

i item

l walk length

V graph vertices

u user

xi

ABBREVIATIONS

AI Artificial Intelligence

CN CourseNetworking

CNN Convolutional Neural Network

DevOps Development and IT Operations

GAT Graph Attention Network

GCN Graph Convolutional Network

GNN Graph Neural Network

ML Machine Learning

NN Neural Network

NCE Noise Contrastive Estimate

NLP Natural Language Processing

RNN Recurring Neural Network

SoRec Social Recommender

xii

ABSTRACT

Salamat, Amirreza. MSECE, Purdue University, December 2020. Heterogeneous
Graph-Based Neural Network for Social Recommendations with Balanced Random
Walk Initialization. Major Professor: Ali Jafari and Brian King.

Research on social networks and understanding the interactions of the users can

be modeled as a task of graph mining, such as predicting nodes and edges in networks.

Dealing with such unstructured data in large social networks has been a challenge for

researchers in several years. Neural Networks have recently proven very successful in

performing predictions on number of speech, image, and text data and have become

the de facto method when dealing with such data in a large volume. Graph Neural

Networks, however, have only recently become mature enough to be used in real

large-scale graph prediction tasks, and require proper structure and data modeling

to be viable and successful. In this research, we provide a new modeling of the social

network which captures the attributes of the nodes from various dimensions. We also

introduce the Neural Network architecture that is required for optimally utilizing the

new data structure. Finally, in order to provide a hot-start for our model, we initialize

the weights of the neural network using a pre-trained graph embedding method. We

have also developed a new graph embedding algorithm. We will first explain how

previous graph embedding methods are not optimal for all types of graphs, and then

provide a solution on how to combat those limitations and come up with a new graph

embedding method.

1

1. INTRODUCTION

1.1 Graph Recommender

Social recommendations have been the topic of study for several years and are

crucial in filtering vast amounts of information for every person into small digestible

pieces. Research on social networks and understanding the interactions of the users

can be modeled as a task of graph mining, such as predicting nodes and edges in

networks. Learning the user’s preferences from all the possible sources of information

is one of the main challenges when building social recommenders. GNNs (Graph Neu-

ral Networks) have been gaining momentum in recent years and have been successful

when dealing with large-scale graphs, and they can be applied to social networks with

some modifications. In this research, we propose the HeteroGraphRec, which provides

social recommendations by modeling the social network as a heterogeneous graph and

utilizing GNNs and attention mechanisms to intelligently aggregate information from

all sources when building the connections between user to user, item to item, and user

to item. HeteroGraphRec is capable of gathering information about the user’s con-

nections (friendships, trust network), item interaction history, and item similarities

to attain rich information about the preferences. To evaluate the HeteroGraphRec,

we use three real-world benchmark datasets and demonstrate that the proposed Het-

eroGraphRec achieves superior performance compared to ten other state-of-the-art

social recommender systems. We extensively analyze the HeteroGraphRec model to

illustrate the effectiveness by changing the embedding dimensions of the users and

items and show the interpretability of our model by examining each component of

the model’s contribution. The model analysis shows that HeteroGraphRec is robust

and can consistently perform better than the other systems.

2

Social recommenders need to consider user interactions and item preferences to

provide accurate recommendations. Most of the typical social recommender systems

consider the interactions between users and items through various previous activities;

these interaction histories are the first clues to understanding user’s preferences. The

interaction between a user and other users creates a social network that gives insight

into each user’s preference because a user’s friends or connections generally influence

their choices. Moreover, the preference of other users who like the same items is

another valuable source of information and shows the collective preference of the

users.

The similarity between items are often considered in many collaborative filtering

based algorithms. However, they are generally defined within the vector space, and are

inefficient when working with large graph data. In other words, the connections are

represented as vectors, which are as natural and dynamic as the graph representation

is.

On the other hand, for an accurate and robust recommender system, aggregating

information from various sources to gain a full picture of the user preferences is

crucial. Hence, there are several challenges when dealing with social data with graph

representations.

The main challenge is that graphs are, by nature, unstructured. So that most

machine learning algorithms cannot be applied to graphs, or they are highly inefficient.

The scalability of the algorithms working with graph representation is the other key

concern when dealing with social networks. It is not out of the ordinary to have

hundreds of thousands of nodes and millions of edges in a graph. When providing

social recommendations, there are two or more different entities (users, items and

etc.) with various features and different types of interactions.

Graph Neural Networks (GNNs) [1] [2] [3] [4] have proven effective when dealing

with graph data and have shown success when applied to tasks like node classifi-

cation and social predictions. Recent studies [4] [5] have introduced the attention

mechanisms to the neural network, which makes it possible to attend to relevant

3

neighborhood information instead of all the neighbors simultaneously, which is in-

valuable for social recommenders. Yet, there is still room to improve the framework

of social modeling and utilize the GNNs structure to use the strength of these neural

networks in social models.

In this paper, we propose a versatile social recommender system based on GNNs,

which captures various aspects of a social network and makes recommendations and

predictions based on this knowledge. This method takes advantage of the recent im-

provements in GNN architecture. It modifies the neural network architecture and

social modeling to provide accurate recommendations and overcome the aforemen-

tioned social recommenders. Different from the existing research in the literature, we

develop a new model of a social network where items are connected in a way similar to

how users are connected. Furthermore, we provided a framework that takes advantage

of the new model to create a more accurate, more versatile social recommender.

We believe the items in the social network are structured signals and have simi-

larities between each other. These similarities can be explicitly derived (e.g., through

item categories or the likeness of the item content) or inferred (e.g., from user in-

teractions). Sequentially, these items could be interconnected based on structural

information. These connections represent the structure of the items. By feeding the

structure of items alongside other inputs to the neural network, the model can have

a better perception of the network as a whole, ergo, receiving a boost to recommen-

dation accuracy.

The other advantage of the proposed HeteroGraphRec model is that the items

are treated as nodes rather than the features for users. Thus, having general node

information, the aggregation method can find latent features for both users and items

in a similar manner. Prediction tasks such as rating prediction can use node aggrega-

tors for the target user and item to make predictions, while friend recommendations

can use the same node aggregator architecture for target users. Item bundling and

similarity prediction can again use the same node aggregator but for two target items

4

instead. Therefore modeling items as nodes and having a general node aggregator

can make the social recommender more flexible and versatile.

We evaluate our results on three real-world data sets against ten other state-of-the-

art recommender systems. Our model consistently outperforms the compared ones

based on the returned Mean Absolute Error (MAE) and Root Mean Square Error

(RMSE) values. The results also show that our model can extract deep connections

in the network to make relevant recommendations. We implement extensive model

analysis to demonstrate the effectiveness of our model from different prospects, such

as embedding dimensions of users and items, the components of the framework, and

so on. Finally, we compared the performance of the model in making top-K predic-

tions and demonstrated how initialization could help with the convergence speed of

the model. The results show that our model, HeteroGraphRec, is robust and can

consistently outperform the state-of-the-art recommender systems.

Our contribution in this research can be summarized in two steps:

• We provide a model for social network data that models the network as a

heterogeneous graph with the differentiation that items in this network are

treated as structured data, and are interconnected based on their structure and

similarities.

• We design a recommender system that utilizes the social model mentioned above

to obtain information from more sources for each node, and attempts to augment

its data by collecting information from similar items. This results in a more

accurate, more robust recommendations.

• We demonstrate that the item connections provide consistency in modeling

social networks, as the items are treated as a node rather than a feature for

users, which, as mentioned before, can make the recommender system more

versatile.

5

• We thoroughly evaluated our model against the most recent recommendation

models using three different real-world data sets. The results show that our

approach consistently outperforms all previous baselines on all three datasets.

1.2 Balanced Random Walks

Additional to the new Neural Network Architecture, we also introduce another

initialization method which improves the training accuracy and the performance of the

model by initializing the network with pre-trained network representations to provide

a hot-start to the network. The challenges of building the graph representation include

engineering features used by learning algorithms. Recent research in representation

learning can automate the prediction by learning the features themselves. Many types

of research have performed graph sampling using random walks or its derivatives.

However, the random walk sometimes cannot represent the features of the graph

accurately enough. In this research, we propose BalNode2Vec – a new sampling

algorithm for learning feature representations for nodes in networks by using balanced

random walks. We define a notion of a node’s network neighborhood and design a

balanced random walk procedure, which adapts to the graph topology. We show that

through exploring the graph through a balanced random walk can generate richer

representations. Efficacy of BalNode2vec over existing state-of-the-art techniques on

link prediction is demonstrated by using several real-world networks from different

domains.

The most recent research in graph networks investigated approaches to generate

graph embedding, which learns a mapping from a network to a vector space while

preserving relevant network properties. DeepWalk [6], LINE [7], and node2vec [8] are

the graph embedding algorithms used in various domains, such as assessing protein

interactions or predictinggenome interactions. Graph embedding not only improves

the efficiency and accuracy of user profiling but also enables vector analysis techniques

to be applied. So that data can be transformed with less computational costs. The

6

applications built upon the graph network, such as the recommender system can be

more scalable and also be used in real-time applications.

The Node2Vec is built based on the idea of word embedding generation techniques,

such as the Skip Gram model [9]. The basic theory is that performing short random

walks on a scale-free graph can generate node frequencies that closely follows Zipf’s

law [6], which is similar to the word distribution of a corpus. Although the random

walk provides a means for sampling the graph, it may not represent the features of

the graph accurately, especially with a directed graph. The first issue is that the

initial starting node is chosen at random, meaning that the nodes with lower degrees

are treated equally with the higher degree nodes. As the length of the random walk

increases, the walks bias towards nodes with more in-degrees and moves away from the

nodes with fewer in-degrees, which causes those nodes to be underrepresented while

the nodes with more in-degrees are over-represented. This behavior is illustrated by

Figure 1.1, which shows that node A might not be walked on very often, and node

E appears on several walks. While the latter issue emerges in directed graphs, the

former appears in both directed and undirected graphs.

On the other hand, the notion of using random walks for sampling a graph was

that in a scale-free network, the short random walks follow the power-law similar to

the degree distribution [6]. Therefore, word embedding techniques like Skip Gram

could be applied to the graph to create embeddings. However, with this type of

approach, there are two issues:

• The sampling error increases as the size of the graph increases.

• The node distribution diverges from the power-law as the length of the walk

increases. Hence, more in-depth, more abstract features cannot be extracted

from the network.

In this research, our objective is to develop a novel algorithm to prevent the

sampling issues in calculating the probabilities of walking each node when using a

random walk and comparing them with the actual degree distribution (which follows

7

Fig. 1.1. A sample directed graph with nodes with various in-degrees to
demonstrate that random walks on this graph tends to select bias towards
the nodes with more direct or propagated in-degrees.

the power-law). Therefore, the sequences are more suitable for being used in an algo-

rithm like the Skip Gram algorithm. Specifically, we propose a balanced random walk

sampling algorithm – BalNode2Vec to generate the graph embedding. The algorithm

is designed to walk on the nodes that are underrepresented using the random walk and

put less emphasis on the nodes that are walked often. This new approach balances

the node distribution and adjusts suit the Skip Gram optimizer. This proposed BalN-

ode2Vec is able to produce relevant representations for large graphs without biasing

on the nodes with more in-degrees and efficient for running and updating without

advanced dedicated hardware, scalable to vast networks of hundreds of thousands of

edges, adaptable to the variance of the data over time. We evaluate the BalNode2Vec

on five different data sets. The comparison against the state-of-the-art algorithms

demonstrates that BalNode2Vec gains the highest AUC scores on all data sets.

8

2. RELATED WORK

Social recommendations has been the subject of several studies in recent years in

recent years [10] [11] [12]. These methods utilize the fact that the user’s preference is

affected by the neighboring or connected users, which can be confirmed from social

correlation theories [13] [14] [15]. Based on these social correlation theories, SoRec

[16] proposed a co-factorization method, which shares a common latent user-feature

matrix factorized by ratings and by social relations. TrustMF [17] modeled mutual

influence between users and mapped users into two low-dimensional spaces: truster

space and trustee space, by factorizing social trust networks. SoDimRec [10] first

adopted a community detection algorithm to partition users into several clusters and

then exploited the heterogeneity of social relations and weak dependency connections

for a recommendation.

Neural Networks achieved relative success in modeling vibrant and abstract data

in large quantities. Deep Neural Networks were already being used in fields like speech

processing, Computer Vision, and Natural Language Processing. In contrast, they

were not initially effective at modeling graphs [18]. They went through several itera-

tions before achieving relative success [19]. Early attempts in using neural networks

in arbitrarily structured data used recursive neural networks to process data repre-

sented in graph domains as directed acyclic graphs [20] [21]. GNNs were generalized

in [2] [1] and they could directly deal with a more general class of graphs, e.g., cyclic,

directed and undirected graphs. This network updates node states by exchanging

neighborhood information recurrently until a stable equilibrium is reached. Then, a

neural network would produce an output for these predictions.

SMRMNRL [22] developed a social-aware movie recommendation in social media

from the viewpoint of learning a multimodal heterogeneous network representation

for ranking. They exploited the recurrent neural network and convolutional neural

9

network to learn the representation of movies’ textual description and poster image

and adopted a random-walk based learning method into multimodal neural networks.

In all these works [23] [22], they addressed the task of cross-domain social recommen-

dations for ranking metric, which is different from traditional social recommender

systems.

The most relevant work with neural networks includes DLMF [24] and Deep-

SoR [25]. DLMF [24] used auto-encoder on ratings to learn representation for ini-

tializing an existing matrix factorization. A two-phase trust-aware recommendation

process was proposed to utilize deep neural networks in matrix factorization’s initial-

ization. The system synthesizes the user’s interests and their trust friends’ interests

together with the impact of community effect based on matrix factorization for rec-

ommendations. DeepSoR [25] integrated neural networks for user’s social relations

into probabilistic matrix factorization. They first represented users using pre-trained

node embedding technique, and further exploited k-nearest neighbors to bridge user

embedding features and neural network.

Graph embedding algorithms can embed the structural information of nodes into

vectors, which can then be added to the existing user features to generate recommen-

dations [26] [27] [28] [29]. For instance, Deepwalk [6] and Node2Vec [8] embed nodes

into vectors based on the probability of node co-occurrences in a random walk.

DeepWalk [6] introduced deep learning (unsupervised feature learning) techniques

that learn representations of graph vertices and by modeling a stream of random walks

on the graph and feeding the generated strings into Skip Gram. DeepWalk achieved

scalability and adaptability in large networks but was not configurable to the pattern

that we wanted to capture from the graph.

LINE [7] is another embedding generation algorithm that embeds the graph into

d dimensional vectors and learns d/2 embeddings using Breadth-First Search (BFS)

and another d/2 using Depth First Search(DFS), this method loses several benefits

of random walk which is explained in [8] and is not entirely configurable to different

patterns of data.

10

In the paper of Node2Vec [8], it describes that the prediction task in graphs is

comprised of two different aspects of the network, homophily and structural equiva-

lence. Homophily hypothesis formulates the nodes which belong to the same commu-

nity and have frequent interactions must be embedded together [30], while structural

equivalence hypothesis [31] states that nodes with similar structural role should be

embedded together. Node2vec [8] followed the same procedure as Deepwalk except

that it used second-order random walks and introduced two new parameters, return

parameter and in-out parameter, and claimed that these two parameters simulate

the effects of BFS and DFS which represent structural equivalence and homophily

respectively. This algorithm allowed the random walks to be configured based on

the requirements, but it distorts the node frequencies that Negative Sampling needs

to consider. This issue is elevated when dealing with graphs that have lower aver-

age edge per node. Also, in the same study, several link prediction algorithms were

proposed to evaluate the performance of the model, these link prediction algorithms

were compared in [32] [33] [34] in terms of performance, the major shortcoming in all

of these techniques has high computational efficiency.

The metapath2vec and metapath2vec++ were introduced in [35], which incorpo-

rated metapaths to model heterogeneous networks better, but the drawback of these

methods is that domain knowledge is required to define these metapaths which may

not be a viable option in many scenarios. Walklet [36] was another approach that

captured multiscale node representation on graphs by sampling edges from higher

powers of the adjacency matrix and as a consequence, skipping some nodes. The

authors claimed that sampling from each order of the adjacency matrix captures a

specific dimension of social interactions, but some deeper connections can only be

extracted from a blend of different orders of the adjacency matrix. Additionally, the

training was carried out by a MultiLayer Perceptron, which has performance issues

on larger output classes.

PinSage [37] used this concept of random walk for recommendations in webscale

graphs. sRMGCNN [38] adopted GNNs to extract graph embeddings for users and

11

items, and used the RNN for the diffusion process. While these methods are capable

of adding the structural information into node features, one issue is that they consider

all the neighboring nodes, but ignore the fact that not all neighboring nodes have equal

influence on the user. Detecting the important connections out of all the neighbors

is crucial, especially in some prediction tasks. Resolving this issue requires deeper,

more complex algorithms to comprehend all the neighborhood information fully.

Graph Convolutional Network (GCN) addresses the cyclic mutual dependencies

architecturally using a fixed number of layers with different weights in each layer. The

convolution operation is more convenient and efficient when dealing with neighbor-

hood information. This method aggregates all the neighboring information of a node

using an aggregate function to derive the latent features of a particular node. The

most common aggregator function for GCN’s is the mean function which means all

the neighboring nodes are considered with equal weights. One advantage of GCN’s is

that they are transductive, meaning that even if a new node arrives in the network,

the network can obtain information about it by comparing it to another node with

the same connection structure.

GCMC [39] proposed a graph auto-encoder framework, which produced latent fea-

tures of users and items using these convolutional layers. The concept of borrowing

features from adjacent nodes is also known as message passing. GCN considers equal

weights for each neighboring node when passing features. As the number of neigh-

bors of a node can vary from one to thousands, it is inefficient to take the full size

of a node’s neighborhood. GraphSage [40] adopts sampling to obtain a fixed number

of neighbors for each node. Graph Attention Network (GAT) adopts the attention

mechanism to assign a weight to each neighbor based on how relevant they are, so that

more important nodes receive larger weights. ScAN [41] employed the co-attention

mechanism to find the important friends of each user, which influence their decision

the most, and used this information to improve the recommendations. The adoption

of attention mechanisms over the convolution allowed the model to learn which inter-

actions to attend. Thus, it can provide more fine-grained control of information when

12

Fig. 2.1. Left: The attention mechanism a
(
W~hi,W~hj

)
employed by

Graph Attention Network, parametrized by a weight vector −→a ∈ R2F ′
,

applying a LeakyReLU activation. Right: An illustration of multihead
attention (with K = 3 heads) by node 1 on its neighborhood. Different
arrow styles and colors denote independent attention computations. The
aggregated features from each head are concatenated or averaged to obtain
~h′1.

training. As a result, it provided more accurate recommendations. GraphRec [42]

also uses the attention mechanism similar to ScAN. It uses the attention network to

gather information about the users who use the same item in addition to what ScAN

does. One limitation of this method is that it does not directly consider the structure

of the items, and the similarities between items to supplement its information of the

item.

Unlike the previous research, our model considers the items as structured data

and models the network as a heterogeneous graph. It then utilizes the recent neural

network architectures and attention mechanism to find important information from

all the sources intelligently. The concept of using the data structure as one of the

inputs has already been used in Neural Structured learning [43] [44] [45] [46] in fields

13

Fig. 2.2. Neural Structured Learning (NSL) is a new learning paradigm
to train neural networks by leveraging structured signals in addition to
feature inputs. Structure can be explicit as represented by a graph or
implicit as induced by adversarial perturbation.

of image processing [47] [48] as show in 2.2 and shown improvements in prediction

and classification tasks. In the following sections, we elaborate on how items can

be represented as node structure, and the additional item to item connections can

improve the model’s accuracy.

14

3. COURSENETWORKING

CourseNetworking(CN) [49] is an educational website which is constituted by three

main aspects: LMS, Eportfolio and Social Network.

The LMS aspect of CN consists of courses which can be issued by the university,

or personally made for custom groups. Courses allow for posts, polls, events and

contents that are made available per instructor’s request.

The ePortfolio aspect of CN allows for a user to store and showcase various types

of their learning evidence, such as their skills 3.1 and expertise 3.2. From the data

modeling standpoint, there are two types of information that a user can store, personal

and collaborative. Personal information (like education, skills, expertise) are related

only to the specific user, while recommendations, endorsements and connections 3.3

are about the interactions between two users.

The social network aspect of the CN also allows features posts and polls and

events between large number of people that share the same interest. User’s can join

different communities based on their preferences and attempt to collaborate and share

information between themselves.

The main challenge in modeling the data in such graphs is the unstructured nature

of them. Most of the users do not fill all the information in all fields, and the

connections between users is not identical as well. For instance, one user may have

more than 100 connections while another user may have no connections. This unique,

unstructured data is best modeled as a graph in which the nodes are the users and

the edges are their connections. These nodes and edges can have various features

based on their profile.

15

Fig. 3.1. The skills section of a user’s ePortfolio in CourseNetworking

Fig. 3.2. The skills section of a user’s ePortfolio in CourseNetworking with
other user’s endorsements

3.1 Rumi

Learning Management Systems (LMS’s) are essential to online instructors. With

the existence of these systems, online teachers can share their courses and interact

16

Fig. 3.3. User’s interactions with other users in CourseNetworking.

with students around the world. There are plenty of LMS’s on the market such as

Canvas, Blackboard, etc. which are static and not tailored to the individual user’s

personal needs. The use of an Intelligent Agent can make these learning environments

more dynamic and personalized by guiding students to increase their productivity [51].

Rumi [50] is the codename of the intelligent agent developed at the IUPUI Cyber-

Lab in collaboration with CourseNetworking LLC (theCN.com). In this presentation,

graduate students at IUPUI will discuss and demonstrate the research and develop-

ment of Rumi using Artificial Intelligence (AI) as a resource provider, networking

agent, and caring mentor to incentivize students to use the LMS .

As an intelligent agent, Rumi is designed to be an expert on users and their

preferences. It makes recommendations that are useful to the users and are tailored

17

to their personal needs using AI techniques such as Machine Learning (ML), pattern

recognition, and data mining.

Rumi is expected to play the role of a digital mentor, personal teaching assistant,

career advisor, caring classmate, and an entertaining buddy. The agent will dynami-

cally and intelligently recommend ePortfolio customization opportunities, networking

activities, career plans, new learning credentials, and even job recommendations to

users.

Rumi is designed to function within both an ePortfolio and LMS environment.

Current ePortfolio and LMS systems are built to be static lacking the interactivity

and personalization users require. Adoption of an intelligent agent can substantially

improve the stickiness and effectiveness of these legacy learning environments.

3.2 Rumi Challenges

Like all other recommender systems, Rumi needs data from interactions to improve

his recommendation accuracy, this problem is known as “Cold Start” in recommender

systems. One of the ways we can prevent cold start in such systems in gamification.

By creating competition and rewarding winners, the users are motivated to log in

more often and through logging in, they interact more with Rumi and then Rumi

can gather more data about the users. This boost in data and interaction also helps

Rumi perform the other functionalities better too since he has more knowledge about

the user and the user becomes more trusting to Rumi and his capabilities, thus, a

circle of trust is formed between the user and the agent.

3.3 Quotes Competition

Rumi Quote Competition is one of the services that Rumi offers which promotes

gamification. In this competition, every user’s tagline 3.4 is gathered, and then Rumi

shows these quotes to the users in a pair of two, and asks them which of the two they

like more. Rumi then collects result of the user’s choices and ranks the quotes based

18

Fig. 3.4. CN bio section which contains the user’s tagline (highlighted as
red)

Fig. 3.5. The flowchart of the rumi quote competition.

on them to find the quotes that the user’s like the most. The ranking is based on an

ELO rating system. the flowchart of the process is shown in Figure 3.5. The records

19

Fig. 3.6. Rumi Quote introduction page for the first-time users of the
service.

of the interactions that are stored could be used as the label for the neural network

to be trained on in order to better understand what types of quotes does each user

prefer.

20

Fig. 3.7. Rumi Quotes main quote selection page.

3.3.1 Introduction

The first time the user quotes are shown, Rumi greetings page appears as in 3.6

and gives them an introduction. This introduction will persist until the user confirms

it.

21

3.3.2 Main Quote Page

After accepting the introductory text, two quotes are shown to the user which

he/she can either choose one of the quotes that they like the most, or request another

pair of quotes. This page can be seen in figure 3.7

The quotes are chosen from the pool of available quotes. The pool of available

quotes consists of the quotes that all the users submitted minus the following quotes:

• User’s own quote

• Duplicate quotes (quotes that were shown to that user before)

• Eliminated quotes (explained later)

From the pool of available quotes, the quote which has the minimum views is

chosen, this would determine the first quote. For the second quote, the quote that

has the closest winrate(score/views) to the first quote is found and set as the second

quote.

3.3.3 User Feedback

If the user selected one of the quotes, that quote will have it’s score incremented

by 1, while the other quote will have its score decremented by 1. Also, the view counts

of both quotes are incremented by 1. If the user opted for two different quotes, the

scores remain unchanged but the view count is incremented by one for both quotes.

After modifying the scores and views, winrate (= score/views) is calculated for the

quotes. The quotes that have more losses than a certain threshold will be eliminated

from the competition and will not be shown anymore. Currently this threshold is set

as 3 meaning quotes that have 3 or more losses will be removed.

22

Fig. 3.8. The page that is shown to the user when the competition is
terminated.

3.3.4 Competition Termination

As the game progresses, more quotes are eliminated and fewer quotes remain, this

process continues until only 50 quotes remain, then the competition will officially end

and and the competition terminated page will be shown as in Figure 3.8.

23

Fig. 3.9. The Rumi Quotes leaderboard page.

3.3.5 Leaderboard

In the leaderboard, the quotes are ranked based on score and elimination time.

First, the quotes that are eliminated are ranked based on order (the sooner they

eliminate, the lower the ranking is), then, the remaining quotes (the ones that are

not eliminated) will be ranked based on score among themselves.

In the leaderboard page, the user will always be shown no matter the rank, and

the quotes that are eliminated will be greyed out. An arrow is shown next to the

user that shows how they have changed over the last day. The color is relative to

24

Fig. 3.10. The behavior of the Rumi Quotes leaderboard menu upon
scrolling.

the user’s change in ranking, so green shows improvement from last time, red means

lower rank and yellow means no change.

The page view changes based on the user’s placement in the rankings. The panel

stays on the top when the other quotes are lower and stays on the bottom when the

other quotes are higher, this behaviour is shown in Figure 3.10

In each recommendation, a visual report of the overall progress of the competition

(including the estimated time left until the end of the competition) is shown and by

clicking it the user will see the leaderboard. For first time viewers, the progress bar

will be blinking. The first time user views the progress bar, it should be flashing to

prompt the users to click on it. The leaderboard page can be seen in Figure 3.9.

3.3.6 Embedding Quotes

In order to embed text into feature vectors for future use with Neural Networks,

a sentence embedding technique has to be used. Word2Vec has been very effective

in converting words into feature vectors, however, one main issue with it is that it

does not consider the context when generating word embeddings [52], hence, words

with multiple meanings based on context are not going to be embedded properly.

BERT [52] is a new pre-trained word embedding model which is based on attention

mechanism and has achieved state-of-the-art accuracy in many text classification

25

Fig. 3.11. BERT input representation. The input embeddings are derived
from the sum of the token embeddings, the segmentation embeddings and
the position embeddings.

tasks. BERT also produces different embeddings based on the context of the word

which is very useful for short, ambiguous texts. BERT achieves this performance by

converting words into tokens and then embedding the words based on their constituent

tokens and their position as shown in Figure 3.11

The quotes of the users are embedded into feature vectors using the BERT pre-

trained network. The resulting vector has a variable length and in order to equalize

the number of features in all quotes, we take the average of the embeddings to create

the final feature vector for every quote.

26

3.4 Deployment Setup

The Rumi server is written on Python language and is served using the Flask

library. The whole application is containerized using Docker containers in order to

have a unified environment for both development and deployment. The database that

we use for storing and retrieving data is MongoDB which is a NoSQL database. The

periodic tasks and time consuming jobs that don’t need immediate results are done

by Celery which will schedule these jobs and run them using a worker. Celery uses

a message queue in order to synchronize jobs between workers, the message queue in

our case is RabbitMQ.

3.4.1 Database

MongoDB was chosen as the database to use alongside Rumi as it had many

of the desired features. MongoDB is a document-oriented database, a document is

equivalent to a row or entry in the database. Each of these entries is a collection of key-

value pairs. The values of these fields could be a string, integer, array, or even another

nested key-value pair, these values are stored as BSON (Binary JavaScript Object

Notation) format in the database. Every document in the database has a unique

identifier that is used for finding that document, MongoDB refers to this identifier

as “ObjectId”. This identifier consists of a 4-byte timestamp, 5-byte random, and

3-byte incrementing counter which makes a total of 12 bytes. The main advantage of

documents over rows in relational databases is that the document does not follow a

rigid structure, and can have a fluid schema independent of the other documents [53].

One of the advantages of MongoDB is the support for vertical scaling as well as

horizontal scaling. Vertical scaling is done by upgrading the hardware to increase

the number of resources accessible to the software running it, while horizontal scal-

ing scales up the application by adding identical replicas of the software and then

attempting to distribute the load between them using a load balancing mechanism.

Vertical scaling is easier to achieve as it does not change the structure of the code

27

that is being run, however, upgrading the hardware would be very expensive or even

impossible beyond some point. That’s why modern software must be able to scale

horizontally to meet the demands.

In recent years, MongoDB was able to achieve horizontal scalability by using an

architecture called “Replica Sets”. Replica sets provide high availability and data

redundancy features and consists of three main components. The first component is

the replica set which consists of nodes that contain the data. The second component

is the query router, the router receives queries from the user and then runs those

query scripts on the replica set. The last component is the config server, the config

server contains the centralized metadata for all the nodes and the replica set [54].

MongoDB previously followed the master/slave scheme rather strictly and there-

fore, was vulnerable to having a single point of failure which was the master. This

problem has been resolved in the replica set architecture by creating some fallback

mechanisms in case the master went offline. Nodes in replica set send heartbeats

to each other to ensure the liveness and readiness of the other nodes. If a node is

considered as dead based on the result of the heartbeat, the remaining nodes will

hold an election to select the next master, thus, maintaining the availability of the

system by using secondary nodes.

MongoDB’s replica set requires a minimum of three nodes, and scaling up beyond

three nodes also requires nodes to be in groups of three. A replica consists of three

data-bearing members, with one of the three nodes being the primary and the other

two being the secondary. However, if maintaining three data-bearing nodes is not

feasible either due to costs or other reasons, one of the secondary nodes could be

replaced by an arbiter. Rumi also follows this schema, the diagram of this schema is

shown in Figure 3.12. In the first scenario, one of the secondary nodes will become

the next primary in times of election, while in the second scenario, the arbiter would

hold an election and make the decision to switch to the other secondary [54].

Both of the aforementioned scenarios can recover from the master being down, but

the first scenario is generally favored because of having a higher expected availability

28

Fig. 3.12. MongoDB replicaset structure with one Primary, one Secondary
and one Arbiter shards.

Fig. 3.13. CAP Theorem affirms that a modern database cannot satisfy
all three constraints of Consistency, Availability and Partition Tolerance.

uptime due to having two data-bearing nodes. After the master is back online, it will

rejoin the replica set.

29

There are multiple parameters to consider when choosing a database. CAP Theo-

rem [55] states that a modern database cannot satisfy all three constraints of Consis-

tency, Availability and Partition Tolerance, as shown in Figure 3.13 which is from ??.

For the purposes of a learning agent, we should first consider which two of the three

parameters in CAP Theorem is more important for us. Rumi is going to be storing

logs of most of the user’s actions and preferences in the future, therefore, holding all

the information in one partition for such a large amount of data may not be feasible.

On the other hand, since the agent does not rely on having critical information such

as passwords or payment information, immediate availability may not be as crucial

for the agent. Therefore MongoDB could be a viable choice as the database for Rumi.

3.4.2 Cassandra

Another major competitor in the choice of the database was Apache Cassandra.

Cassandra had many useful attributes that were important for a learning agent [57]

and could streamline the data pipeline processes.

Cassandra is a column-oriented, open-source database written in Java that was

initially developed by Facebook for handling the increasing load on their databases.

This project became open-source in 2009 and was further developed by the commu-

nity. Cassandra’s overall data structure consists of a Keyspace, column families, rows,

and columns. This structure makes it inherently NoSQL, but it also shares a lot of

similarities with traditional SQL databases in terms of overall data structure [58].

The Keyspace is an abstract container or environment created to hold a logical

grouping of unique identifiers for multiple datasets. There could be one or multi-

ple column-families in each Keyspace, these column-families bundle a multitude of

columns within themselves. Every row can also have several columns assigned to

them, these assignments are very flexible and do not follow a rigid structure like

the SQL databases do, as a result, rows in Cassandra can have a varying number

of columns with any required data type. Every row in the database has a unique

30

identifier to differentiate it from other rows and is also indexed for fast lookups, these

identifiers are called UUID (universally unique id) [58].

The way Cassandra handles the scaling is by distributing the data to multiple

identical replicas of the database on multiple virtual machines, every virtual machine,

in this case, is called a node. These nodes could either be physically separated on

different computers or virtually separated like the server instances for cloud providers.

One major difference between Cassandra and some databases like MongoDB is that

Cassandra has a masterless architecture and this enables the database to be more

resilient and less sensitive to the failure of one node. Every row of data is assigned

to one or more nodes based on the configured number of replicas for that row. The

load balancing of such replicas of data between nodes is done through a hash function

that achieves near-randomness when performing data distribution [58].

As mentioned before, all these replicas of the database are identical, therefore, the

initial node that they need to connect to does not matter from an end user’s perspec-

tive. All the nodes have a manifest containing the location of the data regardless of

whether that data resides in that particular node or not. The connections between

the nodes are similar to a ring which means that each node could only directly com-

municate with the neighboring nodes but all the nodes are eventually interconnected

and can communicate with each other in order either directly, or using neighboring

nodes to retrieve the required data.

In order to ensure that the nodes in the cluster are online and ready to accept

requests, and also to maintain the correctness and consistency of the data, Cassandra

employs the gossip protocol. Gossip is the message system that the nodes use to

transfer information regarding the state of the cluster, such as the node readiness and

data replication factor. This messaging system is run every second and with each

gossip, information is transferred between adjacent nodes, and eventually, through

consecutive gossips, the local information is transported globally to the whole cluster

and all the nodes receive the latest information about one another. This method of

31

transmitting information locally is very efficient and still manages to relay information

to all the nodes in a short and acceptable time frame.

Cassandra is classified in the AP category in the CAP theorem3.13. This category

has availability and partition tolerance but sacrifices consistency to achieve that. It

should be noted that consistency, in this context, refers to the immediate consistency,

and Cassandra guarantees eventual consistency for the data. In an update trans-

action, for example, different replicas of the data receive the update information at

different times, hence, different users that are reading the data from different nodes

at the specific time that the update is propagating, receive conflicting information.

This issue is temporary though, and eventually, the information spreads to the whole

cluster and all the nodes become up-to-date. The importance of this limitation de-

pends on the specific use case, and that’s why Cassandra is used for datasets that

do not update their information frequently but they require very fast write and read

speed. A good example of this use case is the storage of sensor information or user

logs.

Cassandra also provides a complete query language called CQL (Cassandra Query

Language) to make querying the data very intuitive for developers. This query lan-

guage is very similar to SQL (Structured Query Language) which is widely used not

only for querying relational databases but also for many NoSQL databases. Many

Most of the people who have worked with a database are familiar with SQL script-

ing and on that account, can also be very productive with Cassandra and its query

language even though the internals are quite different.

While Cassandra provides numerous advantages, in our specific use case, there

were two main reasons for not choosing Cassandra over MongoDB:

• Our main website (thecn.com) already operates on MongoDB so accessing data

in one place reduces the access latency and data migration complexity.

32

• Cassandra, while having a more flexible schema than SQL databases, is still

not as flexible as a document database, so it may cause some complications in

schema design later down the road.

33

4. NEURAL NETWORK ARCHITECTURE

In the following Section 4.0.1, we explain how we model the social network data

differently from the traditional approaches. Section 4.0.2 describes the neural network

model and the way it passes the data to produce latent features for nodes. Finally,

Section 4.0.3 demonstrates how this framework can be used in various prediction

scenarios.

4.0.1 Model Description

A social network can be modeled as a graph with each node representing a user,

and each edge representing a connection. Each user in a social network has interac-

tions with some items, a user can interact with multiple items, and multiple users can

interact with the same item. Generally, in GNN-based social recommenders, the so-

cial network is modeled a graph of users with items as features of the users, shown as

Figure 4.1. The limitation of this model is that it has little insight into the structure

of the items. For instance, users who interacted with similar items hold valuable infor-

mation that can be used by the recommender to gather more information about user

preference. However, such information cannot be directly and explicitly extracted

from this model, and the recommender has to perform extra processing to derive the

data.

Typically, the items are connected to each other based on some similarity measure

or equivalent metrics, such as items being in the same category, or even the items

with the same ratings from the users. Often, we connect two items based on their

similarity metric (e.g., cosine similarity). However, due to a large number of items,

it is more computationally feasible to reduce these connections into few, powerful

34

Fig. 4.1. Basic model for social recommenders.

Fig. 4.2. Heterogeneous model of social recommenders.

connections. For instance, we could connect items with a cosine similarity of more

than a threshold, and leave the rest of the items intact.

In this research, we propose a heterogeneous graph structure to model the social

network. The heterogeneous graph consists of two types of entities – users and items,

and three different types of edges which are the user-user, item-item and user-item

35

Fig. 4.3. The architecture of HeteroGraphRec, which consists of a rating
predictor and two node aggregators for the target user (left section) and
item (right section).

connections 4.2. This heterogeneous graph modeling of the social network has two

main benefits:

• Connecting the items allows the recommender system to associate better the

users who like similar items, and allows deeper connections to be more easily

extracted from the network. In other words, the item-item connections in the

network provide another dimension to aggregate. This dimension can be de-

scribed as the structure of the items in the network, which might not add any

additional information to the network per se, but it “guides” the neural network

into considering the similarities between item features when making predictions.

• Items in this model can be treated almost the same way the users are, making

it more convenient and versatile when designing a recommender system. More-

over, many previous graph algorithms can be applied to social data without

many additional configurations because the items are not simply featured for

users and are actually treated as a separate entity.

To formalize the definition of this heterogeneous social model, let U = {u1, u2,un}

and V = {v1, v2, ..., vn} be the sets of users and items respectively, with n being the

36

total number of users and m is the total number of items. The whole network consists

of three separate graphs: user-user, item-item, and user-item graphs.

The user-user graph’s adjacency matrix is R = Rnxn, in which 1 presents a pair of

users in the same trust network and 0 otherwise. The user-item adjacency matrix is

R = Rnxm with each element of it being rij, which is the rating that user ui gave to

the item vj, if there has been no interactions between the user and the item, rij = 0

is given. Finally, the item-item adjacency matrix is R = Rmxm, and the connections

between items are based on similarity. In our case, the matrix element of sij is 1 if

the two items i and j are very similar. Otherwise, it is set as 0.

We also define feature vectors for the nodes in the graph. The features of the

users and items in the network could be represented as a binary sparse feature vector.

However, such vectors grow very large and become inefficient when dealing with

large numbers of users and items. The goal of the embedding layer is to convert each

user and item into a dense vector { ~hu1, ~hu2, ..., ~huN} and { ~hi1, ~hi2, ..., ~hiN} respectively.

These embeddings are updated throughout the training to extract the latent features.

To demonstrate the use of such heterogeneous graph structure for a rating pre-

diction task, the HeteroGraphRec model is proposed. First and foremost, the social

network is modeled as a heterogeneous graph. Then, the users and items embeddings

are generated to feed to a neural network for prediction.

The overall architecture of HeteroGraphRec model is shown in Figure 4.3. The

framework consists of three main modules: user aggregator, item aggregator, and

predictor. The user aggregator consists of two attention networks. The user-user

attention network finds the important users from their connections with attention

coefficients αu1, αu2, ..., whereas the user-item attention network chooses the impor-

tant items that the user has previously interacted with, with attention weights of

βu1, βu2, The results of the two attention networks are merged to find the user la-

tent features. The item aggregator also takes a similar approach to merge the results

of the two attention networks to create item latent features. The item-user attention

network chooses the important users that have interacted with that specific item with

37

a weight of αi1, αi2, ..., and the second attention network (item-item) chooses similar

items that the network should attend to, with weights βi1, βi2, Finally, the predic-

tor uses the two latent features of users and items to make the final prediction about

the ratings.

4.0.2 Node Aggregations

The node aggregator gathers information from two spaces, the user space, and

the item space. For a user, the user space holds the connections to adjacent users,

while the item space holds the items that the user has interacted with. For an item,

the user space is the set of users that interacted with that specific item, and the item

space is the set of similar items to the target item.

The user space aggregator receives a set of node features Hu = { ~hu1, ~hu2, ..., ~huN}

and hi ∈ RF , where N is the number of nodes(users), and Fu is the number of features

in each node. The layer produces a new set of node features (of potentially different

cardinality F’) H ′u = { ~h′u1,
~h′u2, ...,

~h′uN}.

To obtain sufficient expressive power to transform the input features into higher-

level features, a shared linear transformation, parametrized by a weight matrix, W ∈

RF ′xF , is applied to every node. We then perform self-attention on the nodes -—

a shared attention mechanism a : RF ′
xRF ′ −→ R computes attention coefficients

mentioned below:

eij = a(W~hui,W~huj) (4.1)

These attention coefficients indicate how important one node is to the other. These

coefficients need to be computed only nodes that are actually connected. We perform

masked attention to ensure that only the neighboring node’s attention coefficients are

calculated, as shown in the equation below:

αij = softmaxj (eij) =
exp (eij)∑

k∈Ni
exp (eik)

(4.2)

38

In this experiment, the attention mechanism a is a single layer feed-forward neural

network, parametrized by a weight vector −→a ∈ R2F and passed through a Leaky ReLu

activation function. The resulting coefficients can be expressed as:

αij =
exp

(
LeakyReLU

(−→a T
[
W~hui‖W~huj

]))
∑

k∈Ni
exp

(
LeakyReLU

(−→a T
[
W~hui‖W~huk

])) (4.3)

Once the attention coefficients are calculated, the output of the attention layer

is derived by computing the linear combination of the attention coefficients and the

corresponding node features, and applying a nonlinearity:

~h′i = σ

(∑
j∈Ni

αijW~huj

)
(4.4)

Employing single attention is unstable and can sometimes result in losing impor-

tant information. In order to stabilize the learning process and increase representa-

tional power in our model, multi-head attention is used. The multi-head attention

employs k independent attention heads and concatenates the results, as mentioned

in [59]:

~h′i = ‖Kk=1σ

(∑
j∈Ni

αk
ijW

k~huj

)
(4.5)

The item space aggregator is identical to the user space aggregator in architecture,

with only the dimensions of features being different due to aggregating another entity.

The item space aggregator finds the important items for the user by following the

steps mentioned above, assuming the item feature inputs are Hi = { ~hi1, ~hi2,. . . , ~hiM}

with M being the total number of nodes(items) and Fi being the features of each

node. The output of the item aggregator is the feature set H ′i = { ~h′i1, ~h′i2, ..., ~h′iM}

with each node having F ′i features.

Finally, after aggregating the user space and item space information, the resulting

feature vectors are concatenated and fed into a feed–forward network with Leaky

39

ReLu nonlinearity. The final feature vector H = { ~h1, ~h2, ..., ~hN} with each node

having F ′ features, the output features can be calculated using the formula below:

h′i = LeakyReLu (W (h′u ‖ h′i)) (4.6)

The node aggregators can be stacked for multiple layers and for different spaces

(both user and item) to search the network deeper and produce richer features. How-

ever, it is noteworthy to mention that adding more aggregation layers expands the

search radius of the neural network exponentially. It can cause performance issues

without adding too much important information.

4.0.3 Predictions

One of the significant advantages of this model is that the users and items are

aggregated similarly but independently. This process simplifies the process of social

recommendations to the choice of predictor specific to the problem. For example,

if the objective is to predict the rating of an item given by a user, the aggregated

features of the target user and item can be fed to a feed-forward network to predict

the ratings. On the other hand, to predict whether two users are in the same trust

network or not, the predictor’s input would be the aggregated features of the target

users. Likewise, if the objective is to measure the similarity between two items, or

whether or not they could be bundled, the predictor’s input would be the aggregated

features of the target items.

In this work, the specific case of rating prediction is chosen as the prediction

problem. Therefore, the user and item aggregated information is fed to a feed-forward

network to predict the ratings. Assuming Ou is the final aggregated user features, and

Oi are the final aggregated item features, the rating is predicted using the formula

below:

r = LeakyReLu (W (Ou ‖ Oi)) (4.7)

40

5. BALANCED RANDOM WALKS

The main objective in language modeling is to estimate the likelihood of a specific

sequence of words appearing in a corpus. Equivalently, we can perform a series of

walks on a graph to turn them into a sequence of nodes. By that definition, our

problem can be formally defined as estimating the probability of observing vertex vi

given all the previous vertices visited:

Pr (vi| (v1, v2, · · · , vi−1)) (5.1)

Assuming our network graph is G = (V,E), we define the mapping Φ = V εv −→

Rd as mentioned in [8]:

Pr (vi| (Φ (v1) ,Φ (v2) , · · · ,Φ (vi−1))) (5.2)

Calculating the Equation 5.2 mentioned above is computationally expensive, so

two assumptions are made to have the calculations more feasible. First, instead of

using the context to predict a node, it uses one node to predict the context. Secondly,

the context is composed of the adjacent nodes (both left and right) with any order,

meaning that there are no differences between the adjacent nodes in the context. This

simplifies our algorithm to Equation 5.3.

maximize
Φ

log Pr ({vi−w, · · · , vi+w} \vi|Φ (vi)) (5.3)

In the following sections, in Section 5.1, we describe how node sequences are

generated using balanced random walks. Section 5.3 presents how the model learns

the representations based on the input sequences.

41

5.1 Walk Prediction

As mentioned in the previous sections, node occurrences in random walks diverge

from the degree distribution based on the graph topology. Initially, we calculate

the frequency of each node in a random walk to adapt our walking strategy. The

first order of the adjacency matrix of a graph shows the possible destinations after a

single walk. Normalizing each row of this matrix shows the probability of moving to

a node from a chosen source node. By summing over the column of this normalized

adjacency matrix results in a vector, we can calculate the frequency of a destination

node through a random walk of length 1.

The same process can be repeated for higher powers of the adjacency matrix, such

as An, outputs a similar frequency vector except that the destination is reached after

n walks. Through adding these vectors together, it shows the frequency of passing

through each node in n walks.

Algorithm 1 Node frequency measurement in a random walk

Input: Graph G=(V, E, W),

Output: f node frequencies

1: A=Adjacency Matrix(G)

2: Anorm = normalize(A) over rows

3: An = normalize(A) over rows

4: W = normalizeddegreehistogram(G)

5: for i = 1 to walk length do

6: An = matmul(An, Anorm)

7: W = W +
∑

<i>A
n
i,j

8: end for

9: Wnorm = normalize(W) over rows

10: return Wnorm

42

The adjacency matrix of a graph shows possible transitions from each node to

another. By adding all the values in a column, we can acquire the number of times

that a node was walked on in a single step. The second order of adjacency matrix

has a similar effect except that the values are calculated for two steps. Continuing

for higher orders of the adjacency matrix provides us with a simulation of the walker

trajectory in a random walk. Finally, summing over all the values for each node in

every order provides us with an estimate of the number of times that a specific node

is walked on.

Having the estimation for each specific node, we can observe that the number

of times each node is walked on is different from the degree of the node. Although

this calculation adds some overhead to the random walk algorithm, the calculation is

done only once for the graph and the sparsity of the adjacency matrix to keep this

overhead to the minimum.

To choose the initial node, the probability of initially choosing a node to walk

on is proportional to their degree, this ensures that the initial values follow the Zipf

distribution. The algorithm 1 measures the frequency of each node in a random walk

using the graph adjacency matrix.

Assuming the graph has E edges and V nodes, the adjacency matrix is O(E) space

complexity because of the sparse nature of it, however, the An is a space complexity

between O(E) and O(V 2) and this complexity gravitates towards the latter since the

matrix becomes dense as n increases. The space required for storing the frequencies,

on the other hand, is O(V) and therefore, comparatively trivial. The process of

matrix multiplication, addition and normalization altogether have a time complexity

of O(N) with N being the number of non-zero elements in the matrix. So for An, the

time maximum complexity is O(V 2).

43

5.2 Balanced Random Walk

After finding the frequency of the nodes in a random walk, these frequencies are

compared with the degree distribution to modify the node preferences when walk-

ing. The nodes with a higher frequency compared to their degree are at a penalty;

conversely, the nodes with a lower frequency compared to their degree are preferred

during the walk. The algorithm 2 performs the comparisons and carries out the

balanced walk.

Algorithm 2 Balanced Random Walk

Input: Graph G=(V, E, W), Wnorm

Output: W walks

1: for all nodes do

2: coefficient[node] = degree[node]/W [node]

3: end for

4: for i = 1 to number of walks do

5: weight[node] = degree[node]

6: initial node = choose random node with given weight

7: weight[node] = coefficient[node]

8: walk = random weighted walk from node with the given weight

9: append walk to walks

10: end for

11: return walks

The initial value of A0 ensures that the short walks are close to the power-law

while the following weights ensure that the walks do not diverge from this initial

value. It is also worth noting that random walks are random, and the variance of

the node frequencies increase as the walk becomes longer. Since our objective is to

ensure the walks follow the power-law on average, the balanced walks produce a more

consistent output than the random walk.

44

5.3 Learning Features

After performing the balanced random walks, the strings of nodes have been cre-

ated. First, these strings are shuffled to randomize their order, and then they fed

to the Skip Gram model to extract the representations of the nodes. The training

objective of the original Skip Gram model is to find word representations that are

useful for predicting the surrounding words in a sentence or a document. Applying

full softmax in training is not efficient for large networks because it evaluates all the

outputs to obtain the results; therefore, other methods have replaced it.

Hierarchical Softmax is a computationally efficient approximation of Softmax. In-

stead of evaluating all the output nodes, hierarchical Softmax only evaluates the log

base 2 of the outputs, resulting in significant computational gains. Noise Contractive

Estimate (NCE) loss is an alternative to hierarchical Softmax. NCE loss reduces

the language model estimation problem to the problem of estimating the parame-

ters of a probabilistic binary classifier that uses the same parameters to distinguish

samples from the empirical distribution from samples generated by the noise distri-

bution. Essentially, this is more computationally attainable in large networks than

Softmax since it subsamples frequent words instead of considering all the words in

the vocabulary. The Skip Gram model is concerned with learning high-quality vector

representations, so we are free to simplify NCE as long as we maintain the vector

representation quality. The negative sampling algorithm is then defined as:

log σ
(
v′nO

>vnI

)
+

k∑
i=1

Eni∼Pn(n)

[
log σ

(
−v′ni

>vnI

)]
(5.4)

Where Pn is the noise distribution, n1, n2, ..., ni is the sequence of nodes and

σ(x) = 1/(1+exp(x)). In language modeling, in very large corpora, the most frequent

words can easily occur hundreds of millions of times (e.g., “in”, “the”, and “a”). Such

words usually provide less information value than rare words. The same phenomenon

happens in social networks, a few users possess most of the edges in the network;

45

[h]

Fig. 5.1. Node frequency in CourseNetworking user-follower network in
log-log scale.

Table 5.1.
Binary operators for learning edge features from node embeddings.

Operator Symbol Definition

Average ⊕ [f(u)⊕ f(v)]i = fi(u)+fi(v)
2

Hadamard [f(u) f(v)]i = fi(u) ∗ fi(v)

Weighted-L1 ‖ · ‖1 ‖f(u) · f(v)‖1i = |fi(u)− fi(v)|

Weighted-L2 ‖ · ‖2 ‖f(u) · f(v)‖2i = |fi(u)− fi(v)|2

therefore, they don’t contain valuable information in most cases. To counter the

imbalance between the rare and frequent nodes, assuming f(ni) is the frequency of

the i’th node, a simple subsampling approach was used which the nodes in the training

set is discarded by:

P (ni) = 1−

√
t

f (ni)
(5.5)

46

Fig. 5.2. Node frequencies in a Random Walk (left) and Balanced Walk
(right) of length 8. (The nodes are sorted by degree.)

Fig. 5.3. Jensen-Shannon divergence of random and balanced walks based
on the walk length.

The context size is one of the primary parameters of the training, nodes in the

context window can be paired together and fed into the network. Having a larger

window allows our model to understand the more distant features in our network

better. But the larger the context size, the more data it requires to train the model.

It may not be necessary for most of the networks.

47

In a directed graph, each edge contains information about the directions too,

therefore, the direction of the context is very helpful and depends on the type of data

under study.

48

6. EXPERIMENTAL RESULTS

The experimental results are divided to two sections, HeteroGraphRec and Balanced

Random Walks. The former shows the experimental setup for the new Neural Network

architecture that is introduced, while the latter studies the Balanced Random Walk

node embedding in independent sets of experiments.

6.1 HeteroGraphRec

6.1.1 Experimental Setup

Datasets

We test our HeteroGraphRec model on three real-world datasets: Ciao [60],

Douban [61] and Epinions [62]. The details of these datasets are listed in Table

6.1.

• Ciao: Ciao is a real-world dataset published by Guo et al. [15] which contains

movie rating records of users and trust relations between them.

• Douban: Douban Movie is a Chinese website that allows Internet users to

share their comments and viewpoints about movies. Users can post short or

long comments on movies and give them marks. The dataset was published by

Zhong et al. [64] in 2014.

• Epinions: Epinions is another social network in which users rate items and

issue trust statements. It was published on the LIBREC website.

These social networks allow users to rate items from 1 to 5 and add other users

to their trust network. To model these social networks as a heterogeneous graph, we

49

Table 6.1.
General statistics about the size of the social networks including their
users, items, and the connections between them.

Dataset Epinions Ciao Douban

#users 49,289 17,589 24,562

#items 22,173 16,121 46,643

#ratings 138,207 62,452 244,936

#social 487,183 40,133 513,010

must first create the item-item connections. One way to develop such connections is

to connect all the items that are in the same category. However, this approach could

create dense graphs for these specific datasets, making the model computationally

expensive. Hence, we made a reasonable compromise and grouped items based on

both their categories and the ratings that they received from users to create a sparse

graph where the items connected had a strong similarity. We demonstrate that even

a few meaningful item connections like this can considerably improve the accuracy of

the predictions.

Evaluation Metrics

The performance of HeteroGraphRec is evaluated by the measured error between

the actual rating and the predicted rating. The two performance metrics used for this

evaluation are Mean Absolute Error (MAE) and Root Mean Square Error (RMSE).

The objective of the model is to minimize these error values. It is also worth noting

that even small reductions in these metrics can significantly improve top-k recom-

mendations [65].

50

Baselines

In this research, our HeteroGraphRec model is compared with GraphRec and three

other groups of methods including traditional recommender systems, traditional social

recommender systems, and deep neural network based recommender systems. The

compared baselines are listed below:

• PMF [66]: Models latent factors of users and items by applying Probabilistic

Matrix Factorization on the user-item matrix.

• SoRec [16]: Performs co-factorization on two user-item adjacency matrix and

user-user adjacency matrix.

• SoReg [11]: Constrains the matrix factorization framework by modeling social

network information as regularization terms.

• SocialMF [67]: Incorporates the trust information into the matrix factoriza-

tion model and propagates it in the network.

• TrustMF [17]: Considers trust as a directional property, and using matrix

factorization, maps the users into two spaces of truster space and trustee space.

• NeuMF [68]: Introduces Neural Network-based Collaborative Filtering ap-

proach, which enhances the performance of Collaborative Filtering by replacing

the inner product with a neural architecture. We adjust its loss to the squared

loss for the rating prediction task since the original implementation is for rec-

ommendation ranking task.

• DeepSoR [25]: Proposes a deep neural network-based model to learn non-

linear features of each user from social relations and to integrate into proba-

bilistic matrix factorization for rating prediction problem.

• GCMC+SN [39]: Presents a graph auto-encoder framework based on dif-

ferentiable message passing on the bipartite interaction graph. To incorporate

51

social network information into GCMC, they utilize the Node2Vec [8] to gen-

erate user embedding as user side information instead of using the raw feature

social connections T ∈ RNxN directly due to the raw features being very large

and inefficient in size as mentioned before.

• ScAN [41]: Employs a co-attention neural network, which learns the influence

value between the user and her friends from the historical data of the interaction

between the user/her friends and an item. The social data in this network is

initialized using Node2Vec as well.

• GraphRec [42]: Utilizes attention mechanism to intelligently aggregate infor-

mation on both user and item space. the information about the user’s interac-

tion history and trust network is collected from the user space, and information

about the users that used the same items are collected in the item space.

The compared models above fall into three major categories. PMF and NeuMF

are pure collaborative filtering models with no social network information for rating

prediction, and three baselines of DeepSoR, GCMC+SN, and GraphRec are neural

network-based social recommenders.

HyperParameter Setting

We split our dataset into training, validation, and test sets with two different

percentage values. These values were once set as 80%, 10%, 10%, and another time

as 60%, 20%, 20% respectively. The neural network has two stacked node aggregators

for both user and item space, and the weights of the network were initialized with the

Xavier Initialization method [69]. Leaky ReLu was chosen as the activation function.

Early stopping strategy with a patience value of 10 was adopted for the training

process. The experimental results are repeated for ten random seed initialization and

are statistically significant, with a p-value of less than 0.05. The default value for

user embedding size and item embedding size is 64 and 128 respectively.

52

Table 6.2.
MAE Performance of HeteroGraphRec compared to other recommender
systems

2* Dataset Algorithms

PMF SoRec SoReg SocialMF TrustMF NeuMF DeepSoR GCMC+SN ScAN GraphRec HeteroGraphRec

Ciao(60%) 0.956 0.8489 0.8967 0.8394 0.7622 0.8294 0.7896 0.7741 0.7629 0.7566 0.7414

Ciao(80%) 0.8975 0.8548 0.8519 0.8307 0.7628 0.7993 0.7685 0.7511 0.7495 0.7406 0.7304

Douban(60%) 0.9701 0.8542 0.9114 0.8517 0.7730 0.8613 0.8009 0.7880 0.7816 0.7638 0.7571

Douban(80%) 0.9289 0.8612 0.8745 0.8348 0.7806 0.8131 0.7841 0.7752 0.7638 0.7521 0.7427

Epinions(60%) 1.0211 0.9086 0.9412 0.8965 0.8550 0.9097 0.8520 0.8602 0.8548 0.8476 0.8367

Epinions(80%) 0.9918 0.8916 0.9169 0.8794 0.8376 0.9028 0.8229 0.8607 0.8441 0.8192 0.81037

Table 6.3.
RMSE Performance of HeteroGraphRec compared to other recommender
systems

2* Dataset Algorithms

PMF SoRec SoReg SocialMF TrustMF NeuMF DeepSoR GCMC+SN ScAN GraphRec HeteroGraphRec

Ciao(60%) 1.1948 1.0719 1.102 1.0637 1.0513 1.0851 1.0488 1.0209 1.0184 1.0093 0.9980

Ciao(80%) 1.1197 1.0704 1.0811 1.0572 1.0422 1.0655 1.0348 1.0252 1.0207 0.9813 0.9721

Douban(60%) 1.2241 1.1024 1.1943 1.0718 1.0681 1.0977 1.0553 1.0361 1.0257 1.0105 1.006

Douban(80%) 1.1546 1.0924 1.0958 1.0623 1.0590 1.0852 1.0472 1.0410 1.507 1.449 0.9962

Epinions(60%) 1.2814 1.1496 1.1877 1.1380 1.1526 1.1627 1.1205 1.0981 1.0968 1.0907 1.0755

Epinions(80%) 1.2156 1.1582 1.1634 1.1478 1.1484 1.1504 1.0961 1.0692 1.0687 1.0647 1.0483

6.1.2 Rating Prediction Performance

We compared our HeteroGraphRec model to the baselines mentioned above in Ta-

bles 6.2 and 6.3. Our model outperforms all the previous baselines in both MAE and

RMSE performance. These results confirm that PMF has the lowest accuracy since

it performs Collaborative Filtering on ratings only. NeuMF outperforms PMF, which

suggests that neural networks can have improvements over Collaborative Filtering

methods.

53

Fig. 6.1. Sensitivity of the model to user embedding dimension size.

Fig. 6.2. Sensitivity of the model to user embedding dimension size.

Fig. 6.3. Sensitivity of the model to each of its four components in the
Ciao
dataset.

SoRec, SoReg, SocialMF, and TrustMF perform matrix factorization on not only

the ratings but also the social info. Hence, they are more accurate than PMF as well.

54

Fig. 6.4. Sensitivity of the model to each of its four components in the
Douban
dataset.

Fig. 6.5. Sensitivity of the model to each of its four components in the
Epinions dataset.

DeepSoR and GCMC+SN, similar to NeuMF, utilize the neural network structure to

boost the performance of the model. The performance of GCMC+SN is a testament

to the potency of GNNs in graph prediction tasks.

ScAN surpassed the previously mentioned baselines, which shows the importance

of attention mechanism in neural recommenders. GraphRec’s performance exceeded

even ScAN because of the additional item space aggregations using a similar attention

mechanism.

To sum up, our model consistently outperforms all the baselines, as mentioned

above, due to the inherent strength of attention networks. The improved social mod-

55

Fig. 6.6. Performance of HeteroGraphRec@10 throughout the training
process with using random and node2vec initializations.

eling provided more profound insight into the data and allowed for more dimensions

for information collection.

6.1.3 Model Analysis

Embedding Dimensions

We measured the sensitivity of our model to the sizes of user and item embedding

size in Figures 6.1 and 6.2 respectively. The x-axis is the log of the embedding

dimension. All the other parameters are set to default except the one understudy.

The performance of the model drops at smaller embedding sizes due to the em-

beddings being unable to contain all the necessary information related to the nodes.

Increasing the number of embedding dimensions beyond some point increases the

time required for the training. The reason is that the model may face complications

in convergence due to the increasing number of variables that need to be tuned –

the larger number of items required larger embedding dimensions than the users to

contain their information. Epinions was the most sensitive dataset to the embed-

ding dimension size, while Ciao relied on accurate tuning as the model’s performance

varied less when changing the values.

56

Model Components

In order to demonstrate the interpretability of the model, we evaluated the affect of

each component demonstrated in Figure 4.3. The functional effects of each component

are detailed as below:

• user-user: This component measures the influence of a user’s fiend or trust

network in their preferences. This information represents the user-user connec-

tions in the model.

• user-item: This component of the model quantifies the value of the user’s

interaction history and how much it identifies the user’s preferences. .

• item-user: This component analyzes the effect of other users that have inter-

acted with the same item, which is almost equivalent to Collaborative Filtering,

as it collects preferences from other users.

• item-item: This component shows the amount of information the neural net-

work can gain from an item by referring to other items with similar character-

istics.

We disabled one component at a time, then measured the accuracy of the model

to view the effects of a specific component in deriving the final output. Figures 6.3

to 6.5 show the performance of the model with one of the four components being

disabled. For example, RMSE or MAE of user-user means the performance of the

model when the user-user component is disabled. The figures show the comparison of

each case with the complete model’s performance. The significance of each component

for deriving the final output varies from one data set to another. However, it is

consistent with all data sets that the most substantial components, in this case, were

user-user and user-item connections, which show the importance of trust network and

the users. The item-user component is closely following the previous two components

in terms of significance, which means that the model heavily relies on this aspect of

the network when making predictions. This result also explains that the algorithms

57

that only consider user-user and user-item connections can perform relatively well.

Although the item-item component shows a smaller change in the performance when

it is disabled, the results still demonstrate the effectiveness of this component.

The changes in the performance of the components were relatively marginal, mean-

ing that there is some overlap between the information that each component provides.

The difference in performance was comparatively lower in the RMSE results, possibly

due to the RMSE dampening smaller error values. This difference is most evident in

the item-item results for Douban compared to the final HeteroGraphRec result.

The removal of the item-item component essentially converts the HeteroGraphRec

model into GraphRec. Therefore, we can infer that even though item-item connections

provide the least amount of information than the other three components. However,

including the item-item connections can still boost the performance of the network

and contribute to the final output of the model.

Node Feature Initialization

Proper weight initialization is one of the determining factors in the convergence

rate of the model. In this research, we compared two different initialization methods

to view their impact on the convergence rate of the HeteroGraphRec model. The first

initialization method is the random initialization from a Gaussian distribution with

mean 0 and variance 1. The second method pre-trains the model using Node2Vec [8],

to obtain embedding vectors for users and items, then performs the training using

the acquired features as input vectors to the HeteroGraphRec model.

The performance of the above-noted initialization methods can be measured through

the hit ratio in the top-K list [70] [71]. Hit ratio is the number of correct predictions

(hits) in the top-K recommendations, and this value is calculated as follows:

HR@K =
Number of Hits@K

|GT |
(6.1)

58

Where, the denominator |GT | is the number of all test sets, and the numerator is

the sum of the number of test sets present in each user’s top-K list.

Figure 6.6 shows the result of the top-k recommendations for k=10 throughout

the training process. The results confirm that using pre-trained feature vectors as

initializations for the model can considerably improve the model’s convergence rate.

Among the datasets, Ciao had the highest accuracy for the top-10 recommendations,

followed by Douban and then Epinions. These results are consistent with the RMSE

and MAE evaluations of the model.

6.2 Balanced Random Walks

In this section, we provide the details of our datasets, then we evaluate the walking

strategy, compare the performance of the whole model against other state-of-the-art

algorithms, and evaluate the parameter sensitivity of the proposal BalNode2Vec. The

experimental results are repeated for 10 random seed initialization and are statistically

significant with a p value of less than 1%.

6.2.1 Dataset

We use five different data sets in this research, which 4 of them are publicly avail-

able. One of the data sets is generated from an academic and social networking site

– CourseNetworking [49]. The user-follower network of the CourseNetworking is ex-

tracted from this academic and social networking site to illustrate the performance of

the BalNode2Vec. There are 61151 nodes and 313923 edges. The nodes of this graph

represent users, and an edge between a source and target node represents the follower

and followee, respectively. The distribution of the edges closely follows the pattern

of Zipf degree distribution, as shown in Figure 5.1. Therefore, the network graph is

scale-free so that the BalNode2Vec model can be used to learn the representations

of this network. This network consists of nodes with different “roles” like student or

59

Table 6.4.
Area Under Curve (AUC) scores for link prediction using the Average
binary operator.

Algorithm CourseNetworking Reddit Hyperlink PPI arXiv Facebook

BalNode2Vec 0.7480 0.7644 0.7097 0.7157 0.7570

DeepWalk 0.7324 0.7488 0.6647 0.6853 0.7360

Walklet 0.7127 0.7503 0.6451 0.6740 0.7470

LINE 0.7054 0.7096 0.6429 0.6843 0.7217

Node2Vec 0.7431 0.7422 0.6772 0.6932 0.7443

GraRep 0.7453 - 0.6819 0.7049 0.7518

Fig. 6.7. Area Under Curve (AUC) scores for link prediction on the
CourseNetworking dataset.

teacher, which means that a large number of source and destination nodes exist in

this network.

The other data sets used in this research include the following:

60

Table 6.5.
Area Under Curve (AUC) scores for link prediction using the Hadamard
binary operator.

Algorithm CourseNetworking Reddit Hyperlink PPI arXiv Facebook

BalNode2Vec 0.8837 0.9792 0.7796 0.9541 0.971

DeepWalk 0.8452 0.9530 0.7481 0.9354 0.9591

Walklet 0.8430 0.9618 0.7129 0.9110 0.9480

LINE 0.8247 0.9436 0.7244 0.887 0.9323

Node2Vec 0.8539 0.9627 0.7563 0.9374 0.9620

GraRep 0.8651 - 0.7580 0.9418 0.9567

• Reddit Hyperlink [72]: The hyperlink network represents the directed connec-

tions between two subreddits (a subreddit is a community on Reddit). The

network is extracted from publicly available Reddit data of 2.5 years from Jan

2014 to April 2017. There are 55,863 nodes and 858,490 edges.

• Protein-Protein Interactions (PPI) [73]: In the PPI network for Homo Sapiens,

nodes represent proteins, and an edge indicates a biological interaction between

a pair of proteins. The network has 19,706 nodes and 390,633 edges.

• arXiv ASTRO-PH [72]: This is a collaboration network generated from papers

submitted to the e-print arXiv where nodes represent scientists, and an edge is

present between two scientists if they have collaborated in a paper. The network

has 18,722 nodes and 198,110 edges.

61

Table 6.6.
Area Under Curve (AUC) scores for link prediction using the Weighted-L1
binary operator.

Algorithm CourseNetworking Reddit Hyperlink PPI arXiv Facebook

BalNode2Vec 0.8793 0.9754 0.7701 0.9463 0.9676

DeepWalk 0.8312 0.9499 0.7455 0.9334 0.9517

Walklet 0.8368 0.9670 0.7114 0.9048 0.9483

LINE 0.8219 0.9428 0.7211 0.8947 0.9315

Node2Vec 0.8547 0.9684 0.7647 0.9352 0.9579

GraRep 0.8697 - 0.7671 0.9388 0.9497

• Facebook [72]: In the Facebook network, nodes represent users, and edges rep-

resent a friendship relation between any two users. The network has 4,039 nodes

and 88,234 edges.

6.2.2 Walking Strategy

Figure 5.2 compares the node distribution by using the random walk and a bal-

anced walk. As shown from the results, the balanced walk reduces the sampling

error and generates samples that follow the power-law more closely and, as a result,

produces a sequence that is more suitable for applying the Skip Gram algorithm.

To numerically measure the difference between the node frequencies in a walk,

and the degree distribution, which is the target distribution, we used the statistical

distance methods. The Jensen-Shannon divergence is used in this evaluation. The

results of figure 5.3 show that the predictions have successfully managed to balance

62

Table 6.7.
Area Under Curve (AUC) scores for link prediction using the Weighted-L2
binary operator.

Algorithm CourseNetworking Reddit Hyperlink PPI arXiv Facebook

BalNode2Vec 0.8724 0.9620 0.7514 0.9481 0.9648

DeepWalk 0.8349 0.9476 0.7428 0.9294 0.9516

Walklet 0.8407 0.9596 0.7150 0.9127 0.9429

LINE 0.8258 0.9428 0.7213 0.8920 0.9317

Node2Vec 0.8511 0.9644 0.7428 0.9341 0.9606

GraRep 0.8687 - 0.7601 0.9447 0.9542

the node representations during the walk. Because of the initial condition of choosing

nodes based on their degree, the BalNode2Vec has a minimal error in very short walks

and even in longer walks, it manages reduce the rate of divergence significantly, thus

it allows for a longer walk length in order to capture deeper network connections.

6.2.3 Link Prediction

To evaluate the link predictions, typically, we use the output embedding to predict

the future edges in the graph [8]. This experiment is carried out by selecting 50% of

the edges at random, with the constraint that the residual graph must be connected,

and then performing the training on the residual graph and predicting the removed

links. The output node embeddings are then converted to edge embeddings using

binary operators mentioned in 5.1. The edge embeddings are compared with the

removed edges of the graph to measure a model’s performance.

63

In this research, we compare the proposed BalNode2Vec against the most recent

state-of-the-art algorithms DeepWalk [6], Node2Vec [8], LINE [7], GraRep [74], and

Walklet [36]. Tables 6.4 to 6.7 show the Area Under the Curve (AUC) score for each

binary operator mentioned in Table 5.1. We could not measure the performance of

GraRep on the Reddit Hyperlink dataset due to out of memory error. This is because

GraRep is not scalable on graphs with near one million edges. Based on the results,

BalNode2Vec performs better than all the other methods on every data set. The

performance improves more significantly when dealing with networks that have less

reciprocal connections like CourseNetworking and Reddit Hyperlink datasets. When

we look at operators individually (Table 5.1), BalNode2Vec outperforms the others

in all different operators. Node2Vec works better than the other methods except on

Reddit Hyperlink involving the Average Binary operator in which DeepWalk performs

better than Node2Vec. When Hadamard operator is used, the performance of the

BalNode2Vec shows more improvement than the other methods across all datasets.

6.2.4 Parameter Sensitivity

The proposed BalNode2Vec has several parameters related to the sampling strat-

egy and network training that need to be fine-tuned for each network. With the same

procedure for link prediction, Figure 6.7 shows the sensitivity of the model to various

parameters. All the parameters are set to default value except the one being tested.

The default values for this experiment were: walk per edge: 12, embedding dimension

d=128, context window w=18 and walk length l=64.

We measure the AUC score against the number of features d, the walk length l,

and context window size w and how they affect the performance. We observe that

performance tends to saturate once the dimensions of the representations reach around

100. Similarly, we observe that increasing the number and length of walks improves

performance. The context window size, w, also improves performance and training

depth at the cost of increased training time. However, the performance differences

64

are not that large when w is close to 20. The number of negative samples also has a

diminishing effect on the accuracy of the model, and after some point (around 32), it

is not computationally efficient to increase the number of negative samples.

6.2.5 Embedding Visualization

The final embeddings generated for the CourseNetworking dataset are generated

using this method and then clustered using the K-means clustering technique with

K=6. In order to visualize the nodes and their respective cluster, one of the dimen-

sionality reduction techniques need to be used to bring the embedding dimensionality

back to 2. The reason the training is not done with d=2 is that our goal is to evaluate

the performance of the model in the production scale, which has a high embedding

size, and training with a lower dimension undermines our ability to visualize the actual

performance of the model. Two dimensionality reduction techniques were considered

for the visualization, t-SNE and PCA.

Principal component analysis (PCA) [75] simplifies the complexity in high-dimensional

data while retaining trends and patterns. It does this by transforming the data into

fewer dimensions, which act as summaries of features. High-dimensional data are

very common in biology and arise when multiple features, such as expression of many

genes, are measured for each sample. This type of data presents several challenges

that PCA mitigates: computational expense and an increased error rate due to mul-

tiple test correction when testing each feature for association with an outcome. PCA

is an unsupervised learning method and is similar to clustering1—it finds patterns

without reference to prior knowledge about whether the samples come from different

treatment groups or have phenotypic differences.

t-SNE [76] is a tool to visualize high-dimensional data. It converts similarities

between data points to joint probabilities and tries to minimize the Kullback-Leibler

divergence between the joint probabilities of the low-dimensional embedding and the

high-dimensional data. t-SNE has a cost function that is not convex, i.e. with different

65

Fig. 6.8. Top 500 most connected users in the CourseNetworking dataset
visualized by applying t-SNE over the Balanced Walk Embeddings and
colored using K-means clustering.

initializations we can get different results. For discrete probability distributions P

and Q defined on the same probability space, X, the Kullback–Leibler divergence

from Q to P is defined [77] to be:

DKL(P‖Q) =
∑
x∈X

P (x) log

(
P (x)

Q(x)

)
(6.2)

which is equivalent to:

DKL(P‖Q) = −
∑
x∈X

P (x) log

(
Q(x)

P (x)

)
(6.3)

t-SNE differs from PCA by preserving only small pairwise distances or local sim-

ilarities whereas PCA is concerned with preserving large pairwise distances to max-

imize variance. We chose t-SNE over PCA specifically because of the non-linearity

which inherently exists in the embeddings, additionally, we also used MahalaNobis

distance [78] as our metric for measuring the difference between embeddings. The

result of the visualization for top 500 most connected users in CourseNetworking can

be seen in Figure 6.8.

66

7. CONCLUSION AND FUTURE WORK

In this research, we proposed and evaluated a novel graph-based recommender sys-

tem, HeteroGraphRec, which uses modern neural network structures to intelligently

aggregate both the item-related and user-related information in a social network. This

new model of the social network naturally contains item–item connections based on

similarity or similar metrics. These connections contain information about the struc-

ture of the items in the network. Then, we proposed a neural network architecture

that utilizes the various connections and uses the structured input to improve the

recommender system’s performance. We illustrated the effectiveness of the Hetero-

GraphRec model by comparing them with previous baselines in graph recommenders.

Our HeteroGraphRec model consistently outperforms all the baselines, meaning that

the additional item–item dimension is valuable in providing more accurate recom-

mendations.

We also provide a scalable, adaptable, and efficient node embedding method -

BalNode2Vec. We investigate the limitations of the random walk sampling strat-

egy for sequence generation for the Skip Gram model and propose the BalNode2Vec

model, which is capable of devising a model and improving the performance of the

baseline Node2Vec model. By adopting a new sampling direction, BalNode2Vec can

analyze the graph structure and modify the path accordingly, hence, ensuring that

all the nodes are adequately sampled. We compare the proposed BalNode2Vec model

against five different state-of-the-art models on five different data sets. The results

demonstrate the BalNode2Vec can provide more consistent and accurate results and

performs better than the existing models.

Currently, our model aggregates all the local information related to a particular

node in the graph, without constructing the global parameters related to the net-

work. The global parameters can be used to analyze the most popular or the most

67

well-received items in the entire network, which could help provide accurate recom-

mendations. In the future, we plan to incorporate global parameters in aggregators to

improve our model’s prediction accuracy further. Another future direction to enhance

our model is to consider the dynamic behavior of the social network by intelligently

incorporating temporal data into our model.

We also plan to use the embeddings generated using this technique to improve the

recommendation engine and provide offer community and role-based results based on

these embeddings. As for the algorithm, in the future, our effort will be to make

the optimizer and sampler more interactive so that the graph sampling will be based

on the optimizer’s result, and the sampler would sample what the optimizer needs

instead of performing random walks.

REFERENCES

68

REFERENCES

[1] M. Gori, G. Monfardini, and F. Scarselli. A new model for learning in graph
domains. IEEE International Joint Conference on Neural Networks, pp. 729734,
2005.

[2] F. Scarselli, M. Gori, A. C. Tsoi, M. Hagenbuchner, and G. Monfardini.
The graph neural network model. IEEE Transactions on Neural Networks,
20(1):61–80, 2009.

[3] T. Kipf and M. Welling. “Semi-supervised classification with graph convolutional
networks.” ICLR 2017

[4] P. Velickovi c, G, Cucurull, A, Casanova, A, Romero, P, Liò, and Y, Bengio.
2018. Graph Attention Networks. ICLR (2018)

[5] X. Wang, H. Ji, C. Shi, B. Wang, C. Peng, Y. P., and Y. Ye, “Heterogeneous
graph attention network,” in WWW, 2019.

[6] B. Perozzi, R. Al-Rfou, and S. Skiena, “Deepwalk: Online learning of social
representations,” in KDD, 2015.

[7] J. Tang, M. Qu, M. Wang, M. Zhang, J. Yan, and Q. Mei. LINE: Large-scale
Information Network Embedding. In WWW, 2015.

[8] A. Grover and J. Leskovec. 2016. Node2Vec: Scalable Feature Learning for Net-
works. In KDD ’16. ACM, 855–864.

[9] Y. Goldberg and O. Levy. 2014. word2vec Explained: deriving Mikolov et al.’s
negative-sampling word-embedding method. CoRR abs/1402.3722 (2014).

[10] J. Tang et al. Recommendation with social dimensions. 30th AAAI Conference
on Artificial Intelligence, AAAI 2016. AAAI press, 2016. p. 251-257. Research
output: Chapter in Book/Report/Conference proceeding Conference contribu-
tion

[11] H. Ma, D. Zhou, C. Liu, M. R Lyu, and I. King. 2011. Recommender systems with
social regularization. In Proceedings of the fourth ACM international conference
on Web Search and Data Mining. ACM, 287–296.

[12] J. Tang, X. Hu, H. Gao, and H. Liu. 2013. Exploiting local and global social
context for recommendation. In IJCAI, Vol. 13. 2712–2718.

[13] P. V Marsden and N. E Friedkin. 1993. Network studies of social influence.
Sociological Methods Research 22, 1 (1993), 127–151.

[14] M. McPherson, L. Smith-Lovin, and J. M Cook. 2001. Birds of a feather: Ho-
mophily in social networks. Annual review of sociology 27, 1 (2001), 415–444

69

[15] G. Guo, et al. “Etaf: An extended trust antecedents framework for trust predic-
tion.” Proceedings of the 2014 IEEE/ACM International Conference on Advances
in Social Networks Analysis and Mining. IEEE Press, 2014.C

[16] H. Ma, H. Yang, M. R Lyu, and I. King. 2008. Sorec: social recommendation
using probabilistic matrix factorization. In Proceedings of the 17th ACM confer-
ence on Information and Knowledge Management. ACM, 931–940.

[17] B. Yang, Y. Lei, J. Liu, and W. Li. 2017. Social collaborative filtering by trust.
IEEE transactions on pattern analysis and machine intelligence 39, 8 (2017),
1633–1647.

[18] Z. Zhang, P. Cui, and W. Zhu, “Deep learning on graphs: A survey,” arXiv
preprint arXiv:1812.04202, 2018, [online] Last Date Accessed: 2020-07-08.

[19] S. Cao, W. Lu, and Q. Xu. Deep neural networks for learning graph representa-
tions. In AAAI, 2016.

[20] A. Sperduti and A. Starita. Supervised neural networks for the classification of
structures. Trans. Neur. Netw., 8(3):714–735, May 1997. ISSN 1045-9227. doi:
10.1109/72.572108, [online] Last Date Accessed: 2020-07-08.

[21] P. Frasconi, M. Gori, and A. Sperduti. A general framework for adaptive pro-
cessing of data structures. IEEE transactions on Neural Networks, 9(5):768–786,
1998.

[22] Z. Zhao, Q. Yang, H. Lu, T. Weninger, D. Cai, X. He, and Y. Zhuang. 2018.
Social-aware movie recommendation via multimodal network learning. IEEE
Transactions on Multimedia 20, 2 (2018), 430–440.

[23] X. Wang, X. He, L. Nie, and T. Chua. 2017. Item silk road: Recommending
items from information domains to social users. In Proceedings of the 40th In-
ternational ACM SIGIR conference on Research and Development in Information
Retrieval. ACM, 185–194.

[24] S. Deng, L. Huang, G. Xu, X. Wu, and Z. Wu. 2017. On deep learning for
trust-aware recommendations in social networks. IEEE transactions on neural
networks and learning systems 28, 5 (2017), 1164–1177.

[25] W. Fan, Q. Li, and M. Cheng. 2018. Deep Modeling of Social Relations for
Recommendation. In AAAI.

[26] S. Yan, D. Xu, B. Zhang, H. Zhang, Q. Yang, and S. Lin. 2007. Graph embedding
and extensions: A general framework for dimensionality reduction. IEEE TPAMI
29, 1 (2007)

[27] P. Goyal, E. Ferrara, Graph Embedding Techniques, Applications, and Perfor-
mance: A Survey (2018), Knowledge-Based Systems.

[28] W. L. Hamilton et al. 2017. Representation Learning on Graphs: Methods and
Applications. IEEE Data Engineering Bulletin on Graph Systems.

[29] O. Barkan and N. Koenigstein, “Item2vec:Neural Item Embedding for Collabo-
rative Filtering.” Phil. Trans. Roy. Soc. London, vol. A247, pp. 529–551, April
1955.

70

[30] J. Yang and J. Leskovec. Overlapping communities explain core-periphery orga-
nization of networks. Proceedings of the IEEE, 102(12):1892–1902, 2014.

[31] K. Henderson, B. Gallagher, T. Eliassi-Rad, H. Tong, S. Basu, L. Akoglu, D.
Koutra, C. Faloutsos, and L. Li. RolX: structural role extraction mining in
large graphs. In KDD, 2012.

[32] X. Li, N. Du, H. Li, K. Li, J. Gao, and A. Zhang. A deep learning approach to
link prediction in dynamic networks. In ICDM, 2014.

[33] Y. Dong, J. Zhang, J. Tang, N. V. Chawla, and B. Wang. 2015. CoupledLP:
Link Prediction in Coupled Networks. In KDD ’15. ACM, 199–208.

[34] D. L. Nowell and J. Kleinberg. 2003. The link prediction problem for social
networks. In Proceedings of the twelfth international conference on Information
and knowledge management (CIKM ’03). ACM, New York, NY, USA, 556-559.
DOI: https://doi.org/10.1145/956863.956972, [online] Last Date Accessed: 2020-
07-08.

[35] Y. Dong, Yuxiao N. V. Chawla A. Swami(2017). metapath2vec:
Scalable Representation Learning for Heterogeneous Networks. 135-144.
10.1145/3097983.3098036.

[36] B. Perozzi, V. Kulkarni, H. Chen, and S. Skiena. Don’t walk, skip!: Online
learning of multi-scale network embeddings. In Advances in Social Networks
Analysis and Mining (ASONAM), 2017.

[37] R. Ying, R. He, K. Chen, P. Eksombatchai, W. L. Hamilton, and J. Leskovec.
2018. Graph Convolutional Neural Networks for Web-Scale Recommender Sys-
tems. In KDD ’18. ACM, 974–983.

[38] F. Monti, M. Bronstein, and X. Bresson. 2017. Geometric matrix completion
with recurrent multi-graph neural networks. In Advances in Neural Information
Processing Systems. 3700–3710

[39] R. v d Berg, T. N Kipf, and M. Welling. 2017. Graph convolutional matrix
completion. arXiv preprint arXiv:1706.02263 (2017), [online] Last Date Accessed:
2020-07-08.

[40] W. Hamilton, Z. Ying, and J. Leskovec, “Inductive representation learning on
large graphs,” in Proc. of NIPS, 2017, pp. 1024–1034.

[41] M. Li, K. Tei, and Y. Fukazawa, “An efficient co-attention neural network for
social recommendation,” in Proc. IEEE/WIC/ACM Int. Conf. Web Intell. (WI),
October. 2019, pp. 34–42.

[42] W. Fan, Y. Ma, Q. Li, Y. He, E. Zhao, J. Tang, and D. Yin. Graph neural
networks for social recommendation. In WWW, 2019.

[43] T. Bui, S. Ravi and V. Ramavajjala. “Neural Graph Learning: Training Neural
Networks Using Graphs.” WSDM 2018

[44] T. Bansal, D. Juan, S. Ravi and A. McCallum. “A2N: Attending to Neighbors
for Knowledge Graph Inference.” ACL 2019

71

[45] I. Goodfellow, J. Shlens and C. Szegedy. “Explaining and harnessing adversarial
examples.” ICLR 2015

[46] T. Miyato, S. Maeda, M. Koyama and S. Ishii. “Virtual Adversarial Training:
a Regularization Method for Supervised and Semi-supervised Learning.” ICLR
2016

[47] D. Juan, C. Lu, Z. Li, F. Peng, A. Timofeev, Y. Chen, Y. Gao, T. Duerig, A.
Tomkins and S. Ravi “Graph-RISE: Graph-Regularized Image Semantic Embed-
ding.” WSDM 2020

[48] Google Brain Team, “Neural Structured Learning: training with structured
signals”, https://www.tensorflow.org/neural structured learning. [online] Last
Date Accessed: 2020-07-08.

[49] A. Jafari, “CourseNetworking, a global, academic social-networking site with
unique, next-generation technology solutions for learning and collaboration for
universities”, thecn.com, Cyberlab.iupui.edu, [online], Last Date Accessed: 2020-
07-04.

[50] IUPUI CyberLab, “Rumi, an intelligent online personal learning assistant”,
rumi.thecn.com, [online], Last Date Accessed: 2020-07-04.

[51] “Coursenetworking, white paper”, https://www.thecn.com/aboutus, 2012, [on-
line] Last Date Accessed: 2019-02-20.

[52] J. Devlin, M. W. Chang, K. Lee and K. Toutanova, Bert: Pretraining of
deep bidirectional transformers for language understanding. arXiv preprint
arXiv:1810.04805, 2018, [online] Last Date Accessed: 2020-07-08.

[53] K. Banker, “MongoDB in Action”, Manning Publications Co. Greenwich, CT,
USA c©2011, ISBN:1935182870 9781935182870

[54] https://docs.mongodb.com/manual/replication/,[online] Last Date Accessed:
2020-011-15.

[55] S. Gilbert and N. Lynch, “Brewer’s conjecture and the feasibility of consistent,
available, partition-tolerant web services”, ACM SIGACT News, Volume 33 Issue
2 (2002), pg. 51–59. doi:10.1145/564585.564601, [online] Last Date Accessed:
2020-07-08.

[56] M. Shertil, “traditional RDBMS to NOSQL database: new era of databases for
big data” (2016).

[57] A. Lakshman, “Cassandra: a decentralized structured storage system”, ACM
SIGOPS Operating Systems Review Volume 44 Issue 2, April 2010, Pages 35-40

[58] https://cassandra.apache.org/doc/latest/architecture/index.html,[online] Last
Date Accessed: 2020-011-15.

[59] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N Gomez,
L. Kaiser, and I. Polosukhin. Attention is all you need. arXiv preprint
arXiv:1706.03762, 2017, [online] Last Date Accessed: 2020-07-08.

[60] https://www.librec.net/datasets.html, [online] Last Date Accessed: 2020-03-28.

72

[61] https://sites.google.com/site/erhengzhong/datasets, [online] Last Date Ac-
cessed: 2020-03-28.

[62] http://www.trustlet.org/downloaded epinions.html, [online] Last Date Ac-
cessed: 2020-03-28.

[63] K. Li, J. Gao, S. Guo, N. Du, X. Li, and A. Zhang. LRBM: A restricted boltz-
mann machine based approach for representation learning on linked data. In
ICDM, 2014

[64] E. Zhong, W. Fan, and Q. Yang. “User behavior learning and transfer in com-
posite social networks.” ACM Transactions on Knowledge Discovery from Data
(TKDD) 8.1 (2014): 6

[65] Y. Koren. 2008. Factorization meets the neighborhood: a multifaceted collabo-
rative filtering model. In Proceedings of the 14th ACM SIGKDD international
conference on Knowledge discovery and data mining. ACM, 426–434

[66] R. Salakhutdinov and A. Mnih. 2007. Probabilistic Matrix Factorization. In 21th
Conference on Neural Information Processing Systems, Vol. 1. 2–1.

[67] M. J. and Martin Ester. 2010. A matrix factorization technique with trust propa-
gation for recommendation in social networks. In Proceedings of the fourth ACM
conference on Recommender systems. ACM, 135–142.

[68] X. He, L. Liao, H. Zhang, L. Nie, X. Hu, and T. Chua. 2017. Neural Collaborative
Filtering. In Proceedings of the 26th International Conference on World Wide
Web, WWW. 173–182.

[69] X. Glorot and Y. Bengio. Understanding the difficulty of training deep feedfor-
ward neural networks. In AISTATS, 2010

[70] M. Ji, J. Han, and M. Danilevsky. 2011. Ranking-based classification of hetero-
geneous information networks. In KDD ’11. ACM, 1298–1306.

[71] J. Zhang, J. Tang, C. Ma, H. Tong, Y. Jing, and J. Li. 2015. Panther: Fast top-k
similarity search on large networks. In KDD ’15. ACM, 1445–1454.

[72] J. Leskovec and A. Krevl. SNAP Datasets: Stanford large network dataset col-
lection. http://snap.stanford.edu/data, June 2014, [online], Last Date Accessed:
2020-07-01.

[73] Y. Bengio, A. Courville, and P. Vincent. Representation learning: A review and
new perspectives. 2013. B.-J. Breitkreutz, C. Stark, T. Reguly, L. Boucher, A.
Breitkreutz, M. Livstone, R. Oughtred, D. H. Lackner, J. Bähler, V. Wood, et
al. The BioGRID interaction database. Nucleic acids research, 36:D637–D640,
2008.

[74] S. Cao, W. Lu, and Q. Xu. Grarep: Learning graph representations with global
structural information. In KDD, 2015.

[75] K. Pearson (1901). “On Lines and Planes of Closest Fit to Sys-
tems of Points in Space”. Philosophical Magazine. 2 (11): 559–572.
doi:10.1080/14786440109462720, [online] Last Date Accessed: 2020-07-08.

73

[76] L.J.P. van der Maaten and G.E. Hinton. Visualizing High-Dimensional Data
Using t-SNE. Journal of Machine Learning Research 9(November):2579-2605,
2008.

[77] D. J.C. MacKay (2003). Information Theory, Inference, and Learning Algorithms
(First ed.). Cambridge University Press. p. 34. ISBN 9780521642989.

[78] P. C. Mahalanobis, “On the Generalized Distance in Statistics,” Proceedings of
National Institute of Sciences (India), Vol. 2, No. 1, 1936, pp. 49-55.

