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Abstract

Though clinicians can now collect detailed information about a variety of tumor characteristics
as a tumor evolves, it remains difficult to predict the efficacy of a given treatment prior to
administration. Additionally, the process of data collection may be invasive and expensive.
Thus, the creation of a framework for predicting patient response to treatment using only
information collected prior to the start of treatment could be invaluable. In this study, we
employ ordinary differential equation models for tumor growth and utilize synthetic data
from a cellular automaton model for calibration. We investigate which parameters have the
most influence upon treatment efficacy by comparing parameter distributions associated with
treatment outcomes. Additionally, we develop a framework for estimating the probability of
observing complete tumor remission following a simulated radiotherapy regimen based only
on a patient’s non-treatment parameters, so that treatment efficacy could be predicted prior
to administration.

Keywords: mathematical oncology, parameter estimation, ordinary differential equations,
radiotherapy treatment

1 Introduction

Cancer is the second leading cause of death worldwide.
According to the World Health Organization, the year
2018 saw 18.1 million new cancer cases and 9.6 million
cancer-related deaths, with approximately 1 in 6 deaths
caused by cancer globally [8]. By 2040, the number of
new cancer cases and cancer-related deaths per year is
expected to rise to 29.5 million and 16.4 million, respec-
tively [7]. Most commonly, cancer results from genetic
mutations, often due to environmental causes such as
chemicals from tobacco smoke or ultraviolet rays from
the sun [6]. These mutations cause abnormal cell divi-
sion, resulting in mass proliferation and resistance to cell
death. Various effective cancer treatments have devel-
oped as medical technology improves, but many questions
remain regarding which treatments are most effective for
which patients. The efficacy of a particular treatment
is often difficult to predict prior to treatment adminis-
tration. As such, it is of great relevance to clinicians to
develop a framework in which information collected prior
to the treatment period can be used to predict how sensi-
tive a patient will be to a particular therapy—this is the
purpose of our investigation.

In this study, we focus primarily on solid tumors (as
opposed to other liquid cancers such as lymphomas and
leukemias). A tumor is an abnormal mass of tissue that

1Department of Mathematics, Lafayette College, Easton, PA

results from an overabundance of cell growth and divi-
sion [4]. Normally cells grow and divide to produce new
cells in a controlled and orderly manner. In contrast, tu-
mors develop when cells mutate, escape the regular cell
cycle, and proliferate unchecked, forming a mass. If a tu-
mor only expands in volume but does not invade nearby
tissues, then that tumor is classified as a benign tumor.
Benign tumors typically do not grow back once removed.
However, malignant tumors—or cancer—can metastasize
to other parts of the body and pose great danger to one’s
health. Common cancer treatments include surgical re-
moval of the tumor from the body, radiotherapy (applying
high doses of radiation to kill cancer cells and shrink tu-
mors), chemotherapy (a chemical drug therapy that tar-
gets fast-dividing cells), and immunotherapy (which fo-
cuses on boosting the immune system to allow it to fight
the cancer naturally), among others. Many of these treat-
ments are used in combination—for example, a patient
may undergo surgery and then have radiation therapy to
target any remaining cells, or they may receive a combi-
nation of chemotherapy and immunotherapy to target the
cancer from two different perspectives. With the current
trend towards personalized medicine, there is a great push
for determining which treatment may be most effective for
each individual tumor, as opposed to a “one-size-fits-all”
approach.

Tumor growth dynamics can be described using a va-
riety of mathematical models. Math models allow sci-
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entists to characterize cancer evolution over time, with
opportunities to extrapolate out into the future and sim-
ulate how a tumor will behave under different treatment
regimens. Tumor evolution has been described using sys-
tems of ordinary differential equations, systems of partial
differential equations, stochastic models, simulation stud-
ies, algebraic models, and even game-theory analysis (see
[9] for an overview of the different types of modeling em-
ployed and a discussion of how to select an appropriate
model for one’s objective).

Our purpose in this study is to set the foundation for
a framework for predicting how a patient might respond
to treatment based only on tumor characteristics and pa-
rameter values that can be estimated prior to treatment
administration. To demonstrate our procedure, we will
employ two ordinary differential equation (ODE) mod-
els, described previously in [1]. In this prior work, much
analysis was done to investigate when use of these mod-
els is appropriate—here, we assume that the model has
already been determined to be appropriate for the sce-
nario at hand, and focus on predicting response to radio-
therapy. Specifically, we focus on computing the prob-
ability of achieving total tumor eradication following a
six-week radiotherapy regimen, where this probability is
constructed by developing a joint parameter distribution
across many simulated patient data sets and extracting
the likelihood that a tumor with specific pre-treatment
parameter values will respond positively. As part of this
process, we first identify which parameters in the model
are the most influential “drivers” in a tumor’s response
to radiotherapy. Though much work remains to be done
to prepare this framework for direct use in the clinic, it
lays the foundation for the design of a targeted treatment
protocol for an individual patient.

We begin in Section 2 by introducing the models we
use for demonstration of the framework throughout this
research. In Section 3, we use synthetic data to cali-
brate our models and acquire estimates for the model
parameters—in theory, this step would be replaced by
clinical data if available. In Section 4, we describe our
method for determining which parameters most strongly
influence the tumor’s response to radiation in isolation.
We expand upon this in Section 5 to consider all parame-
ters in conjunction with one another. We estimate a joint
parameter distribution from the parameter estimates ob-
tained in Section 3, and use this distribution to compute
the probability of observing total tumor eradication when
given fixed pre-treatment parameter values, in essence al-
lowing us to predict whether treatment will be effective
prior to its administration.

2 Model Formulation

In general, a tumor is composed of a complex, hetero-
geneous mixture of cells, including regular tumor cells,
stromal cells, cancer stem cells, etc. In order to build
tangible mathematical models, we are forced to make a
number of simplifying assumptions regarding tumor com-
position. For further discussion of the trade-offs between
model complexity and ease of computation, see [1].

In this investigation, we’ll consider two different com-
partment models, which can be used to describe the way
in which materials transition between different compo-
nents of the system. These models were employed in [1]
to demonstrate a framework for appropriate model selec-
tion and calibration—here, we once again utilize them to
illustrate how obtaining estimates for non-treatment pa-
rameters prior to treatment administration may help us
to predict treatment efficacy.

As a simple case, our first model will assume a homoge-
nous mass of proliferating, viable cells. In contrast, our
second model will incorporate an additional layer of com-
plexity, treating the tumor as a two-entity tissue com-
posed of both viable and necrotic cells. In both cases,
we then incorporate a radiotherapy treatment model to
describe the death rate of tumor cells under radiation.

2.1 One-Compartment ODE Model
for Tumor Volume

The one-compartment ordinary differential equation
model—henceforth referred to as the OCM—is character-
ized by a single compartment (V , for “viable”) in which
all cells reside. If a cell leaves the viable compartment, it
immediately exits the system and is no longer tracked by
our model. The OCM is built with three assumptions:

1. The tumor spheroid is a homogeneous entity com-
posed entirely of viable, proliferating cells (denoted
as V ).

2. The growth of the tumor spheroid over time—in
the absence of treatment—is described by a logis-
tic growth model with growth rate λ and carrying
capacity K.

3. Upon natural cell death, a cell is removed instanta-
neously from the tumor. The natural death rate of
cells is denoted by η.

Figure 1 is a demonstration of the growth dynamics
described by the OCM. As per Assumption 2, the OCM
is defined by a logistic growth model with growth rate
λ and carrying capacity K. In addition, we append the
term −ηV to describe the natural death of tumor cells:

dV

dt
= λV

(
1− V

K

)
− ηV. (1)
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V

λ

η

Figure 1: OCM Dynamics Demonstration.

A reformulation of Equation (1) reveals that our model
can alternatively be reparameterized in the form

dV

dt
= AV −BV 2, (2)

where A = λ − η and B = λ
K . We prefer this repa-

rameterization, as it decreases the dimensionality of our
parameter space from [λ,K, η] to [A,B]. This helps us to
avoid issues of parameter identifiability, in the sense that
we can no longer observe the same response using two
different sets of parameter values. For additional details
on assessing both structural and practical identifiability
issues with respect to these two models, see [1]. For the re-
mainder of this investigation, any discussion of the OCM
will be in reference to Equation (2).

Figure 2 illustrates a simulation of tumor growth mod-
eled by the OCM for a variety of A and B values. The
plot on the right displays the impact of varying A on the
growth of the tumor for a fixed value of B. It shows that
when B remains fixed, the tumor volume is directly pro-
portional to the value of A. The plot on the left shows
the impact of varying B on the tumor growth—when A
remains fixed, parameter B and the tumor volume are
inversely proportional.

2.2 Two-Compartment ODE Model
for Tumor and Necrotic Volume

In reality, tumors are far more complex than can be rep-
resented by our simple one-compartment model. As a
tumor mass grows, it tends to develop a necrotic core
composed of cells that have died as a result of being cut
off from nutrients and oxygen. As discussed in [1], in-
corporating a necrotic compartment can drastically im-
prove the accuracy of model predictions in cases where
the necrotic core comprises a significant volume of the
tumor mass. Therefore, to investigate our framework un-
der a slightly higher degree of complexity, we incorporate
a necrotic compartment into our model such that when
viable cells die, they remain in the tumor as dead tissue
for a time before decaying naturally.

As described above, the two-compartment model
(TCM) allows for cells to exist in one of two states—viable

Figure 2: Simulated growth of tumor volume over 70 days,
for a sequence of parameter values A and B. On the left,
we fix A at 0.3; on the right, we fix B at 0.5.

V N

λ

η ζ

Figure 3: TCM Dynamics Demonstration.

or necrotic—and tracks both populations over time. The
model is an extension of the OCM model, with the fol-
lowing assumptions:

1. The tumor spheroid is a heterogeneous body com-
posed of viable (V ) and necrotic cells (N).

2. Viable cells are assumed to grow logistically in the
absence of treatment with growth rate λ and carrying
capacity K.

3. When viable cells die, they convert to necrotic cells—
the death rate of viable cells is denoted by η.

4. Necrotic cells decay naturally over time at a rate of
ζ. Upon natural decay, the cells are eliminated from
our system.

Figure 3 demonstrates the dynamics of the TCM. Tak-
ing the assumptions into consideration, we arrive at the
following system of ordinary differential equations to de-
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scribe the changes in V and N over time:

dV

dt
= λV

(
1− V

K

)
− ηV (3a)

dN

dt
= ηV − ζN (3b)

As per Assumption 3, the conversion of viable cells to
necrotic cells is incorporated via the term ηV—we observe
that upon exiting the viable compartment, this quantity
immediately enters the necrotic compartment, represent-
ing the conversion of viable cells to necrotic material upon
cell death.

2.3 The Linear-Quadratic Model
for Radiotherapy

We now incorporate a treatment model into our two ex-
isting ODE models. In this investigation, we focus on
radiotherapy as the treatment protocol.

The radiotherapy (RT) model employed here uses a
linear-quadratic equation with radiosensitivity parame-
ters α and β, which represent single-strand and double-
strand DNA breaks, respectively [3]. The fraction of cells
that survive administration of a dose d of radiation is
given by

Survival Fraction = e−αd−βd
2

. (4)

Since previous work has shown that α and β are not
simultaneously identifiable, for the remainder of the in-
vestigation we fix α = 0.14 and vary β only as outlined in
[1]. Namely, we investigate varying radiosensitivity levels
indicated by the ratio α/β over a range of [1, 10], where a
small ratio (i.e. α/β = 1) represents higher radiosensitiv-
ity due to a larger number of double-strand DNA breaks
per single-strand break. Further work is currently be-
ing conducted to determine other methods for identifying
both α and β uniquely.

For the OCM, the death of viable cells due to radiation
manifests as immediate removal of those cells from the
system, since there is no mechanism for necrotic mate-
rial to remain. Thus, within the OCM model, the effect
of radiation on the viable cells is incorporated computa-
tionally via the mechanism

V (t+i ) = V (t−i ) · e−αd−βd
2

, (5)

in which the tumor volume after radiation, V (t+i ), is
equivalent to the volume before, V (t−i ), multiplied by the
survival fraction. In Equation (5), ti denotes the time
at which radiotherapy is delivered and t±i represents the
time immediately before and after radiotherapy is admin-
istered.

Figure 4: Simulated tumor spheroid growth using the
OCM with RT incorporated for varying levels of β and
parameter set [A,B] = [0.3, 0.5].

Figure 4 displays the evolution of tumor volume for
a simulated tumor spheroid under the effect of radia-
tion with varying radiosensitivity levels (indicated by the
value of α/β) using the OCM. For the purpose of this in-
vestigation, we utilize a Monday-Friday treatment sched-
ule with a 2 Gy/day dosage for a six week period, start-
ing on Day 15. After the treatment ends, we continue to
model the tumor volume for an additional two weeks to
simulate a potential regrowth period. In all simulations,
we begin with an initial tumor volume of 0.02 cm3. We
observe that in general, larger α/β ratios (representing
smaller numbers of double-strand breaks for each single-
strand break) result in a weaker response to treatment,
as expected.

The incorporation of RT works similarly in the TCM,
with the exception that when viable cells are destroyed
by radiation, they move into the necrotic compartment
as opposed to immediately exiting the system. As such,
in Figure 5, we don’t observe an instantaneous decline
in overall tumor volume, but rather see a spike in the
necrotic fraction followed by a delayed decrease in tumor
volume as those necrotic cells decay naturally over time.

3 Model Calibration and
Parameter Estimation

Our objective of predicting a patient’s response to radio-
therapy based solely on the values of their non-treatment
parameters (i.e. [A,B] in the OCM and [λ,K, η, ζ] in
the TCM), requires that we estimate those parameters
through model calibration. The process of model calibra-
tion revolves around identifying those parameter values
that yield the best possible fit of the model to a data set.
Ideally, we would use experimental data or data collected
in the clinic. However, as this type of data is expensive
and difficult to come by, we demonstrate our framework
here using a synthetic data set generated by a cellular
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Figure 5: Simulated tumor spheroid growth using the
TCM with RT incorporated for α/β = 9 (i.e. β = 0.0156)
and parameter set [λ,K, η, ζ] = [0.5, 1, 0.12, .07].

automaton (CA) model.

Our cellular automaton model—originally developed in
[5] and further adapted in [1] to include radiotherapy
treatment—incorporates far more complexity by track-
ing three types of cells (proliferating, quiescent, and
necrotic), and simulating oxygen diffusion throughout the
tumor. Our CA model is stochastic; that is, cells convert
between compartments at random with specified proba-
bilities. The CA model gets its name from the cellular
grid setup. Over the course of the algorithm, we track
each of the spatial cells and what type of tumor cell they
contain at any given time.

The additional complexity of this model allows us to
generate synthetic data that is closer-to-reality than that
which we might generate from our ODEs. Throughout
this investigation, we treat this synthetic data as “truth”.
Using this CA model, we generated 1000 sets of syn-
thetic tumor spheroid data by varying the parameters
that control the mean and standard deviation of the cell
cycle duration (effectively controlling the natural death
rate), the oxygen thresholds for determining the con-
version from proliferating-to-quiescent and quiescent-to-
necrotic, the radiosensitivity parameter β, and the prob-
ability of necrotic cell removal at each iteration (which
controls the decay rate of the necrotic material). Table 1
lists the parameter ranges and default values used for gen-
eration of the synthetic tumor data.

Following generation of our synthetic data, we then cal-
ibrate the model using the MATLAB function fmincon,
which minimizes the sum-of-squares of the differences be-
tween the data and the model predictions under a set of
constraints (here, we constrain all parameter values to
be at least zero, so as to be physically reasonable). As
a result, we finish with 1000 sets of parameter estimates
chosen to yield the best possible fits to the 1000 synthetic
data sets.

We note that the OCM is not bi-stable; that is, the

only stable equilibrium occurs when the tumor reaches
carrying capacity. The zero state (tumor eradication)
is an unstable equilibrium—unless the model reaches ex-
actly zero computationally, the tumor will regrow in the
simulation. Since, computationally speaking, the ODE
solver nearly always reports small fractions of cells when
close to tumor eradiction instead of a strictly zero vol-
ume, we never observe OCM simulations where tumors
remain eradicated after treatment is complete. Biologi-
cally speaking, we know that when a tumor is reduced
to a small enough volume, the immune system is capa-
ble of clearing the remainder of the tumor. As such, we
model this phenomenon in the OCM by introducing an
immune threshold—a value below which we set the tumor
volume to zero to represent total eradication. This im-
mune threshold was determined to be 4.4913×10−4 cm3,
and was estimated by comparing outcomes (eradicated
vs. not-eradicated) between the OCM and CA models for
each of the 1000 simulated spheroids and choosing the
threshold value that would maximize the number of out-
come matches between the two. The OCM model was
then recalibrated with the immune threshold incorpo-
rated computationally to arrive at the final parameter
estimates. Though the TCM is bistable and capable of
producing long-term eradicated behavior, we still incor-
porated this threshold when calibrating the TCM in order
to mimic the behavior of the immune system at a rudi-
mentary level. Further work is currently being done to
investigate other means by which we can incorporate the
immune system without making our models too complex
for this analysis.

Figure 6 illustrates examples of fitting the one- and
two-compartment models to synthetic data generated by
the cellular automaton model. In our OCM example, the
tumor volume decreases to zero by Day 40. This indicates
that the tumor is completely eradicated at this point. As
a result, the tumor volume remains at zero for the rest
of the simulation period, as enforced by our incorpora-
tion of the immune threshold. In our TCM example,
generated using a different sample data set, the tumor
volume reaches its lowest point around Day 56 (the final
day of treatment) but then increases. Since the tumor
is not completely eradicated during the six-week treat-
ment period, we observe a period of regrowth following
the completion of the radiotherapy regimen.

4 Investigating Parameters with
Respect to Treatment Outcome

Having completed our parameter estimation procedure,
we now move to determining which parameters are most
influential in determining how a tumor will react to ra-
diotherapy. Throughout this section, we consider each
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Table 1: A summary of the parameters used in the CA model and their default values (and ranges, where relevant).
Default parameter values were estimated using experimental data from the prostate cancer cell line, PC3, in [5].

Parameter Description Value Units

l Cell size 0.0018 cm
L Domain length 0.36 cm

τ̄cycle Mean (std. dev.) cycle time [15, 30] ([0, 5]) hr
c∞ Background O2 conc. 2.8× 10−7 mol/cm3

D O2 diffusion constant 1.8× 10−5 cm2/s1

cQ O2 conc. threshold for viable cells [0.5, 0.8] —
cN O2 conc. threshold for quiescent cells [0.5, cQ] —
κV O2 consumption of viable cells per time step 257.24 —
κQ O2 consumption of quiescent cells per time step 128.57 —
pNR Rate of lysis of necrotic cells [.001, .01] 1/hr
β Radiosensitivity for double-strand breaks [.014, .14] 1/Gy2

(a)

(b)

Figure 6: (a) OCM fit to CA data for a sample
spheroid. The final estimated parameter set is [A,B, β] =
[0.30013, 0.74326, 0.094226]. (b) TCM fit to CA for
a sample spheroid, with the final estimated parame-
ter set [λ,K, η, ζ, β] = [0.5004, 2.000, 0.088744, 0.15414,
0.065836].

parameter in isolation, temporarily disregarding any cor-
relation between them. Our goal is to gain some prelim-
inary insight as to which parameters may have the most
impact on response to RT to further motivate our later in-
vestigation. We recognize that response to RT may in fact
be driven by combinations of parameters working in tan-
dem, and address this further in Section 5. This section
is specifically intended to see whether we can rule out any
parameters as being influential in determining chances of
eradication via a hypothesis testing framework.

We separate the 1000 spheroids synthesized in Section 3
into two clusters depending on whether or not their tu-
mor volumes reach zero during the treatment period. We
note that while biologically speaking, a spheroid residing
in the non-zero cluster doesn’t necessarily indicate that it
hasn’t responded positively to RT, mathematically speak-
ing, we must choose a numerical cutoff for clustering the
spheroids. Zero, in this case, makes the most sense as a
break point.

In order to determine the influential parameters, we
form and compare each parameter’s distributions between
the two clusters. For each pair of distributions (represent-
ing a single parameter across the two groups), we compare
their means and variances using hypothesis tests to deter-
mine whether a parameter’s distributions differ by clus-
ter. Performing a hypothesis test gives us a way to test
an assumption about the value of an unknown parameter.
We frame our test using a null hypothesis (H0), the claim
that is initially assumed to be true, and an alternative
hypothesis (Ha), representing a contrasting claim. Based
on our sample, we gather evidence to either reject the
null claim (in which case we have evidence in support of
the alternative hypothesis) or fail to reject the null. The
decision about whether or not to reject the null can be
made in one of two ways; either we can compare a com-
puted test statistic (a measure that helps us distinguish
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between normal and abnormal sample results under the
assumption that the null claim is true) to a rejection re-
gion, or compare the p-value to a pre-specified threshold.
A p-value represents the probability of obtaining a test
statistic value that is at least as extreme as the observed
value from our sample under the assumption that the null
hypothesis is true. The smaller the p-value, the stronger
the evidence we have in support of our alternative hy-
pothesis. Therefore, we reject H0 when the p-value is less
than or equal to the pre-specified significance level; else,
we fail to reject H0 and conclude that we have insuffi-
cient evidence to suggest that the null claim is not true.
For further information regarding the hypothesis testing
framework, we recommend [2].

In this investigation, we utilize hypothesis tests to com-
pare distributions across clusters with respect to both
their means and variances, since these are two major com-
ponents of a distribution representing center and spread.
If either the center or spread of the two distributions be-
ing compared is found to be significantly different, we
have evidence to suggest that there is a relationship be-
tween the cluster (eradicated vs. not-eradicated) and that
parameter, indicating that the parameter in question can-
not be ruled out as influential in determining a tumor’s
response to radiotherapy. The boxplots shown in Figures
7 and 8 visualize the parameter distributions by cluster
for both models. Excluding outliers, all parameter distri-
butions appear to be relatively normal. For all hypothesis
tests, we utilize a significance level of α = 0.01.

To compare the means of the distributions, we employ
a two-sample t-test. Our null hypothesis states that the
two clusters come from independent, normally distributed
random samples with equal means, or H0 : µ1 − µ2 = 0,
where µ1 and µ2 represent the true but unknown means
of the parameter distributions for the eradicated and not-
eradicated tumors, respectively. Alternatively, our con-
trasting claim is Ha : µ1 − µ2 6= 0; that is, there is a dif-
ference between the two true means. The results of the
mean tests for the OCM and TCM are shown in Tables
2 and 3.

For the OCM, we find evidence that the true means
differ between clusters for all three parameters, [A,B, β],
as evidenced by observing p-values for all three tests that
are less than α = 0.01. Similarly, in the TCM, we find ev-
idence that the true means differ between groups for all
parameters [λ,K, η, ζ, β]. This evidence is further sup-
ported by our construction of 99% confidence intervals to
capture the true difference in means (eradicated minus
not-eradicated). In all cases, we find that the confidence
intervals do not contain zero, suggesting that zero is not
a plausible value for µ1 − µ2.

To compare the variances, we employ the two-sample
F -test, which compares the ratio of sample variances to
determine whether it is plausible that the underlying pop-

Figure 7: Boxplots of the OCM parameter clusters.
Group 1 represents the eradicated cluster and Group 2
represents the non-eradicated cluster.

Figure 8: Boxplots of the TCM parameter clusters.
Group 1 represents the eradicated cluster and Group 2
represents the non-eradicated cluster.
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Table 2: Hypothesis test results and confidence intervals
for the difference in the means of OCM parameter distri-
butions generated from the two-sample t-test.

Parameter p-value CI for Mean

A 3.9437× 10−21 (−0.0466,−0.0276)
B 4.2242× 10−6 (0.0427, 0.1475)
β 3.8169× 10−39 (0.0178, 0.0256)

Table 3: Hypothesis test results and confidence intervals
for the difference in the means of TCM parameter distri-
butions generated from the two-sample t-test.

Parameter p-value CI for Mean

λ 3.9436× 10−10 (0.0760, 0.1718)
K 1.4749× 10−16 (−0.4249,−0.2347)
η 4.2715× 10−14 (0.0705, 0.1331)
ζ 1.0369× 10−19 (0.4712, 0.7804)
β 3.6572× 10−26 (0.1308, 0.1932)

ulation variances are equal. Our null hypothesis is that
the two parameter distributions have the same underly-
ing population variances; H0 : σ2

1/σ
2
2 = 1. The alternative

hypothesis is given by Ha : σ2
1/σ

2
2 6= 1. The p-values gen-

erated from the variance tests are shown for both models
in Tables 4 and 5. For parameters A and β in the OCM,
and parameters [λ,K, η, β] in the TCM, we conclude that
we have sufficient evidence to suggest a difference in the
underlying population variances, as shown by the p-values
that are less than α = 0.01. In contrast, the confidence in-
tervals for B in the OCM and ζ in the TCM both include
1, suggesting that it is plausible that the underling pop-
ulation variances are equivalent across clusters for these
two parameters.

Combining the results of the t- and F -tests for the
OCM, we observe that the two sets of parameter clus-
ters for A and β have significantly different means and
variances. Even though there is not sufficient evidence to
indicate that the variances of the B clusters are unequal,
we have evidence suggesting that the means of these clus-
ters are different. Since the parameter distributions of
the eradicated and not-eradicated tumors for A, B and
β are all significantly different, we cannot rule out A, B
or β as potential drivers in a tumor’s response to radio-
therapy. However, further investigation must be done to
determine whether each of these parameters is in fact in-
fluential, or whether there is an underlying confounding
effect; i.e. a correlation between two different parameter
values is driving the significant test results for one pa-
rameter. Additionally, we note that hypothesis testing
is vulnerable to manipulation by sample size; for a large
enough sample size, any difference between samples can

Table 4: Hypothesis test results and confidence intervals
for the ratio of variances of TCM parameter distributions
generated from the two-sample F -test.

Parameter p-value CI for Variance

A 1.7979× 10−14 (0.2465, 0.4703)
B 0.0136 (0.5318, 1.0148)
β 4.8101× 10−25 (0.1558, 0.2973)

Table 5: Hypothesis test results and confidence intervals
for the ratio of variances of TCM parameter distributions
generated from the two-sample F -test.

Parameter p-value CI for Variance

λ 2.5432× 10−10 (1.5729, 3.2249)
K 3.9556× 10−8 (0.3036, 0.6225)
η 3.5832× 10−24 (2.3934, 4.9072)
ζ 0.1408 (0.8666, 1.7768)
β 4.6439× 10−93 (6.6140, 13.5608)

be concluded to be significant. As we are working with
sample sizes of 152 and 848 in the OCM, and 119 and
881 in the TCM (Groups 1 and 2, respectively), we must
be cautious when interpreting these seemingly significant
results.

Moving to the TCM analysis, we observe again that
the clusters of all TCM parameters have significantly dif-
ferent underlying distributions. As a result, we conclude
that λ, K, η, ζ, and β are all still candidates when it
comes to determining which parameters are driving a tu-
mor’s response to radiotherapy. Section 5 will delve into
the relationships between these parameters to determine
which parameters are the most influential.

5 Predicting Response to
RT Using Non-Treatment
Parameters

Ideally, we would like to be able to predict the efficacy of
a particular treatment prior to the administration of the
treatment regimen, allowing clinicians to compare and
contrast different treatment methods to choose the one
that will most benefit the particular patient. Since we
are interested in predicting the probability of a tumor be-
ing eradicated prior to administering treatment, we turn
our focus to analyzing how non-treatment parameters (A
and B for the OCM model and λ, K, η and ζ for the
TCM model) may help us to predict how sensitive a tu-
mor will be to radiation, with the assumption that β (the
radiosensitivity parameter) is as of yet unknown.

www.sporajournal.org 2021 Volume 7(1) page 32

http://www.sporajournal.org


Predicting Tumor Response to Radiotherapy Huang, Lewis

Unlike in Section 4, where we consider the parame-
ters in isolation and conduct hypothesis tests on each
to determine which may be candidates for influential pa-
rameters, in this section, we consider this question more
generally. Specifically, we investigate how non-treatment
parameters work together in tandem to drive response to
radiotherapy. To achieve this, we first return to the exist-
ing parameter combinations generated through our model
calibration procedure in Section 3. We create a matrix
of all 1000 parameter combinations, including β, and use
this matrix to estimate a joint multivariate density across
all model parameters using the MATLAB mvksdensity

command. Then, for a grid of non-treatment parame-
ter values, we consider the conditional densities for β,
the treatment parameter. For instance, in the OCM, we
can transition from the total joint density f(A,B, β) to
a conditional distribution f(β | A = a, B = b) by fixing
[A,B] = [a, b] and analyzing the distribution of values
observed in β for this fixed pair [2].

Next, we estimate the probability of obtaining an erad-
icated tumor using the conditional distributions for β.
For each fixed pair (A = a, B = b) under considera-
tion, we find the threshold value of β for which a tumor
with parameter pair (a, b) would be eradicated, if such
a threshold exists. By numerically integrating the por-
tion of the conditional distribution for which the tumor
would be eradicated and dividing by the total area of the
conditional distribution, we can estimate the probability
of achieving total tumor eradication under these condi-
tions. That is, by exploiting the information we gained
in Section 3 about which parameters values are likely to
occur in combination with one another, we can estimate
how likely a spheroid is to undergo total eradication by
knowing only the values of its non-treatment parameters
A and B. For the TCM, we can conduct a similar analy-
sis to predict the likelihood of tumor eradication given a
fixed set of [λ,K, η, ζ] values.

5.1 One-Compartment Model Results

In Figure 9, we present the results for the one-
compartment model. Figure 9(a) plots a set of possible
parameter pairs (a, b) and their corresponding β thresh-
olds in a 3-dimensional scatterplot, allowing us to see
the relationship between a non-treatment parameter pair
(a, b) and the β threshold value that would be required to
eradicate the tumor. As can be observed from the figure,
parameter A is much more highly correlated with the β
threshold than B; that is, the choice of an eradication
threshold value is closely tied to the net growth rate of
the tumor and less impacted by the carrying capacity.

Figure 9(b) demonstrates the probability of obtaining
an eradicated tumor on a 2-dimensional heat map. From
the figure, we find that both A and B are influential

(a)

(b)

Figure 9: (a) OCM scatterplot demonstrating the corre-
lation between the non-treatment parameters A, B, and
the β threshold. (b) OCM heat map describing probabil-
ity of tumor eradication as a function of non-treatment
parameters.

in regards to the probability of total tumor eradication,
though A is much more so. In general, the larger the ra-
tio of A/B, the more likely that a tumor spheroid cannot
be eradicated. To connect this result to the underlying
biology, we recall that in the reformulation of the OCM,
A = λ − η, representing the net growth rate of a tu-
mor. For a fixed value of B, a larger net growth rate A
will result in a decreased likelihood of tumor eradication.
We also observe that the dependence of tumor eradication
probability on B seems to increase slightly as A increases.
Recall that in the OCM reformulation, B represents the
ratio of the growth rate (λ) of a tumor to the carrying
capacity (K). Thus, our figure suggests that the larger
the net growth rate, the greater the dependence of the
eradication probability on the carrying capacity—this is
unsurprising, as only tumors with large net growth rates
are likely to reach their carrying capacity in the short
term.
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5.2 Two-Compartment Model Results

Figure 10(a) illustrates possible values of the four non-
treatment parameters—{λ,K, η, ζ}—with respect to the
β thresholds that would be required to achieve eradication
for the two-compartment model. We observe a positive
correlation between the growth rate λ and the required
β threshold; as the growth rate of a tumor increases, a
more drastic radiotherapy response is required to elimi-
nate the tumor. On the contrary, the natural death rate
of viable cells, η, and the β threshold are negatively cor-
related; larger death rates may be matched with smaller
radiotherapy responses and still achieve a positive out-
come, since tumor cells are dying more rapidly of their
own accord. It can be observed that K and ζ are not
correlated with the β threshold values.

Figure 10(b) illustrates the expected probability of tu-
mor eradication under each of the two-dimensional pro-
jections of the TCM non-treatment parameter space. We
note that there are four non-treatment parameters for the
TCM model, [λ,K, η, ζ]. To incorporate the effects of all
four, we project into two-dimensional parameter regimes
and average the probability of eradication over all values
of the remaining two parameters for each pair under con-
sideration. This allows us to account for potential corre-
lations between parameters and determine which param-
eters are truly responsible for influencing the probability
of achieving complete tumor eradication.

Analyzing all six projections in unison, we quickly ob-
serve that the main “drivers” in the function are λ and
η; any noticeable differences with respect to the average
probability of tumor eradication occur in accordance with
changes in these two parameters. Perhaps the most in-
teresting heat map is that which projects into the (λ, η)
space. Here we see that the probability of eradication de-
creases with increasing λ and decreasing η. Biologically,
this agrees with our intuition; the probability of eradi-
cating the tumor should increase proportionally with an
increasing death rate of viable cells (η), but should be
indirectly related to the growth rate (λ).

When observing any of the maps that project into the
K or ζ spaces, we see that there is very little relation-
ship between eradication probability and these two pa-
rameters. Indeed, the (K, ζ) map shows a stable average
probability of roughly 0.58, regardless of the values of K
and ζ. We conclude that K and ζ are relatively uninflu-
ential in determining a spheroid’s sensitivity to radiation,
and deduce that the significant results seen with respect
to these two parameters in Section 4 were in fact due to
correlations with λ, η, and/or β. For example, if large
values of K were likely to exist only in conjunction with
large values of η, as determined by the model calibration
procedure, then our clustering of spheroids with respect
to eradication would result in two K clusters with signif-

(a)

(b)

Figure 10: (a) TCM scatterplots demonstrating the cor-
relation between the non-treatment parameters λ, K, η,
ζ, and the β threshold. (b) TCM heat maps describing
probability of tumor eradication as a function of non-
treatment parameters.
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icantly different means, despite the fact that K was not
the parameter responsible for prompting that behavior.

In summary, we conclude that the non-treatment pa-
rameters λ and η are most influential when it comes to
predicting the probability of achieving total eradication.
That is, if one could determine prior to treatment that
a particular spheroid possessed a large value of λ and a
small value of η, one could be reasonably confident that
the proposed treatment regimen would be effective. In
contrast, determining the values of K and/or ζ in ad-
vance of treatment administration does not help one to
predict the efficacy of the treatment.

6 Conclusion

Cancer is a devastating and stubborn disease. Even in
the era of rapid development of medical technology, sci-
entists are still devoted to discovering and improving the
most effective treatments for tumor eradication. The re-
cent trend towards personalized medicine supports the
the design of treatments tailored to individuals; however,
this approach is often inefficient with respect to both time
and expense. Given the promising future of personalized
medicine, we conducted this research with the goal of
laying the foundation for a framework in which one could
predict the efficacy of treatment for an individual based
solely on the values of their non-treatment model param-
eters, obtained from a model calibration performed prior
to treatment administration.

With the use of hypothesis testing conducted on pa-
rameter distributions clustered by treatment outcome,
we are able to investigate how different parameter val-
ues may yield different results with regards to treatment
outcomes. In addition, by utilizing conditional distribu-
tions for treatment parameters at fixed values of non-
treatment parameters, we are able to make predictions
about the probability of tumor eradication using only
non-treatment parameter values. For the OCM, we dis-
cover that A, the net growth rate of a tumor, has the most
impact on the eradication probability. For the TCM, we
find that λ and η—representing the growth and natu-
ral death rates of viable tumor cells, respectively—are
ultimately responsible for determining the probability of
successful eradication.

As experimental data was not available for our research,
we utilized synthetic data generated from a cellular au-
tomaton model. As a result, additional validation and
verification would be required before any direct conclu-
sions could be drawn at the clinical level. Specifically,
ongoing work is being conducted with respect to deter-
mining conditions under which non-treatment parameters
can be uniquely identified using only pre-treatment data,
identifying how much data must be available in order to

accurately estimate these parameters, and deciding how
to choose an appropriate level of model complexity for
any given situation. Regardless, this work lays the foun-
dation for a framework that could eventually assist in the
decision-making process in a clinical setting.
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