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Abstract

The Hawk-Dove game is a classical game-theoretical model of potentially aggressive animal
conflicts. In this paper, we apply game theory to a population of foraging animals that may
engage in stealing food from one another. We assume that the population is composed of
two types of individuals, Hawks and Doves. Hawks try to escalate encounters into aggressive
contests while Doves engage in non-aggressive displays between themselves or concede to
aggressive Hawks. The fitness of each type depends upon various natural parameters, such
as food density, the mean handling time of a food item, as well as the mean times of conflicts
over the food. We find the Evolutionarily Stable States (ESSs) for all parameter combinations
and show that there are two possible ESSs, pure Hawks, or a mixed population of Hawks
and Doves. We demonstrate that for any set of parameter values there is exactly one ESS.

Keywords: Food stealing, kleptoparasitism, ESS, war of attrition, aggressive conflict

1 Introduction

The Hawk-Dove game was introduced in [37, 36] to model
a potentially aggressive conflict over a shareable resource
in a population where each individual can be exhibit one
of the two strategies: Hawk or Dove. Upon encounter
with another individual, both strategies start with dis-
playing aggression. The Hawks then try to escalate into
a real fight. The Dove, if faced with major escalation,
retreats to safety. If not faced with such an escalation,
i.e. in a Dove-Dove conflict, the Doves attempt to share
the resource. For resources that cannot be shared, the
Dove-Dove conflict was further extended into a war of at-
trition, a non-aggressive display of individuals where the
winner is the one who displays longest [6, 28].

The applications of the Hawk-Dove game in biology are
now widespread, see for example [15]. They include mod-
elling of kleptoparasitism, a method of feeding in which
an animal steals food that was found or prepared by an-
other animal [38]. The kleptoparasitic behavior allows the
stealing animal to obtain food without expending much
energy to search for a source [7]. While kleptoparasitism
is most commonly seen in seabirds with large food items
and during periodic food shortages [7], it is also observed
across many taxa [31] and in particular in mammals [32],
fish [26], and insects [46, 17, 5, 19]. Kleptoparasitism
is often crucial for the dynamics of various ecosystems
[20, 34]. Kleptoparasitic interactions can be quite com-
plex with animals exhibiting many different types of de-

1Department of Biomedical Engineering, Virginia Common-
wealth University, Richmond, VA 23284-3068, USA, 2Department
of Mathematics and Applied Mathematics, Virginia Commonwealth
University, Richmond, VA 23284-3068, USA

fending, fighting, and fleeing behavior, see [31] for a re-
view.

Many game-theoretical models of kleptoparasitism now
build on [13] and [10]. The original Hawk strategy
morphed into a strategy that tries to steal and defends
against a stealing attempt while the original Dove mor-
phed into a strategy that does not attempt to steal
and does not defend against stealing, see for example
[11, 14, 12, 9, 21, 40, 45]. Also, many recent models con-
tain a high degree of detail and realism, see for example
[2, 3, 4, 24, 25, 22, 23] and also [39] or [30] for recent
reviews.

In this paper, we try to return to the original inter-
pretation of the strategies. We consider a population in
which all individuals are trying to steal. Hawks also try
to escalate the stealing attempt into an aggressive con-
test if met with resistance. Doves either cease the steal-
ing attempt or give up the resource if met with a major
escalation. If two Doves meet, they engage in a non-
aggressive display modelled by the war of attrition. The
model is motivated by blackbirds Turdus merula. Forag-
ing blackbirds chase competitors away from the feeding
area (aggressive behavior) and they also exhibit postur-
ing displays between the two birds (war of attrition) [16].
A similar behavior was observed amongst oystercatchers
Haematopus ostralegus feeding on mussels Mytilus edulis
[42].

The paper is organized as follows. We set up the game
in Section 2. We consider a Doves only population in
Section 3.1, Hawks only population in Section 3.2, and
a general mixed population in Section 3.3. We conclude
our paper with a discussion in Section 4.
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2 Model

The basic structure of the model follows [12]. Individuals
forage for food, and can be in one of the three behavioral
stages: (1) a searcher looking for food items, (2) a handler
preparing the food item for consumption, or (3) engaged
in a pair-wise contest over the food item with another
individual.

2.1 Types of individuals and behavioral
stages

We consider a polymorphic population consisting of the
two different types: aggressive Hawks and non-aggressive
Doves. Each individual is initially searching for food
items (at rate νf ) or handlers (at rate νh).

The food density is f and so the searchers find food
items at rate νff . Once they find the food item, the indi-
vidual becomes a handler. The handling follows the shell
model [11]; the food item is assumed to be something like
an oyster that has to be removed from the shell. The time
it takes to extract the food is unpredictable and variable
from item to item. We assume that the handling time fol-
lows an exponential distribution with mean th. At the end
of the handling period, the food item is instantaneously
consumed, the handler receives a payoff of one unit and
becomes a searcher again.

When a searcher finds a handler, the searcher tries to
steal the food item. When a Hawks finds a Dove handler,
the Hawk escalates and the Dove handler surrenders the
food item and becomes a searcher while the Hawk be-
comes a handler. If the Hawk encounters a Hawk han-
dler, the handler fights back and both the searcher and
the handler engage in an aggressive conflict. The conflict
times follow the exponential distribution with mean ta.
At the end of the fight, the winner becomes the handler
and the loser becomes a searcher.

When a Dove searcher finds a Hawk handler, the Hawk
defends the item and escalates the conflict almost imme-
diately. The Dove retreats and resumes being a searcher
while the Hawk resumes being the handler. If a Dove
searcher finds a Dove handler, they engage in the war of
attrition [35], a non-aggressive form of display. It is a
classical result [6] that both Doves follow a strategy to
display for the time drawn from the exponential distri-
bution. Since the war of attrition lasts the minimum of
the two times the individuals were prepared to wait, the
average duration of this non-aggressive contest is half of
their means and we will denote it by tw. The individ-
ual that gives up first will become a searcher. The other
individual will become a handler.

2.2 The dynamics of transitions between
behavioral stages

We will assume that the total population has a density
1. By D, we will denote the density of the whole Dove
population and by H = 1−D, we will denote the density
of the whole Hawk population. We denote by Ds, Dh,
Dw the densities of Doves engaged in searching, handling
and the war of attrition, respectively. Similarly, by Hs,
Hh, Ha, we will denote the densities of Hawks engaged in
searching, handling and aggressive contests.

The notation is summarized on Table 1. The transi-
tions between different stages are shown in Figure 1 and
the densities follow the following differential equations.

dDs

dt
=
(
t−1
h + νhHs

)
Dh +

Dw

tw
− (νff + νhDh)Ds (1)

dDh

dt
= νffDs +

Dw

tw
− (t−1

h + νhHs + νhDs)Dh (2)

dDw

dt
= 2νhDhDs − 2

Dw

tw
(3)

dHs

dt
=
Hh

th
+
Ha

ta
− (νff + νhDh + νhHh)Hs (4)

dHh

dt
= (νff + νhDh)Hs +

Ha

ta
− (t−1

h + νhHs)Hh (5)

dHa

dt
= 2νhHhHs − 2

Ha

ta
(6)

with

D = Ds +Dh +Dw (7)

H = 1−D = Hs +Hh +Ha. (8)

To understand how the equations (1)–(6) were derived, we
will comment on (1) in more details. A searching Dove
either becomes a handler at the rate νff or engages in the
war of attrition at the rate νhDh. Since this is happening
to every searching Dove, the density of searching Dove
decreases at the rate (νff + νhDh)Ds. At the same time,
a handling Dove becomes a searcher when attached by a
searching Hawk, i.e., at the rate νhHs, or when finished
handling at the rate t−1

h . A Dove engaged in the war
of attrition becomes a searcher when the war is finished,
i.e. at the rate t−1

w . Thus, the density of searching Doves
increases at the rate

(
t−1
h + νhHs

)
Dh + t−1

w Dw. Putting

it all together yields that the change of Ds,
dDs

dt , is as
given in (1).

As in [11] and [33], we will assume that the population
densities converge to equilibrium exponentially fast, and
we thus concentrate on these equilibrium values only.

2.3 Payoffs

The fitness of the individuals will be evaluated as the
benefits over the unit time [8, 44, 43].
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Figure 1: Phase diagram for Doves (left) and Hawks (right).

Table 1: Notation and model parameters

Symbol Meaning

H Total density of Hawks
Hs Density of searching Hawks
Hh Density of handling Hawks
Ha Density of Hawks in aggressive contests
D Total density of Doves
Ds Density of searching Doves
Dh Density of handling Doves
Dw Density of Doves in wars of attrition
f Density of the food items
νf Rate at which searchers look for food
νh Rate at which searchers look for handlers
th Mean handling time
ta Mean duration of aggressive contests
tw Mean duration of wars of attrition

Assuming the population is in the equilibrium, an in-
dividual Dove spends a proportion Dh/D of the time as
a handler, and during the handling time it acquires the
benefits at the rate t−1

h . The payoff to the Doves is thus
given by

PD =
Dh

thD
. (9)

An individual Hawk spends a proportion Hh/H of the
time as a handler acquiring benefits at the rate t−1

h . The
payoff to the Hawks is thus given by

PH =
Hh

thH
. (10)

2.4 Evolutionary stable states (ESSs)

We will investigate which mixtures of Hawks and Doves
are evolutionarily stable [41, 36, 1, 29], i.e. satisfy the
following conditions:

1. If both types are present in the mixture, then (a)
they have an equal payoff and (b) a small increase of
the proportion of one type lowers its payoff relative
to the other type.

2. If only one type is present in the mixture and the
other type somehow appears in very small numbers
(with a density approaching 0), then the payoff of
the rare type would be smaller than the payoff of the
prevalent type.

2.5 Differences from [12]

Our model is an extension of [12]. We added a com-
partment Dw to explicitly include the possibility for non-
aggressive contests, exhibited for example by foraging
blackbirds during posturing displays [16]. With this ad-
dition, our model also more closely mimics the original
game [37, 36]. We can still recover the model from [12]
by setting tw close to 0, i.e. by assuming the war of attri-
tion between two Doves is resolved almost immediately.

At the same time, [12] assumed that Doves did not look
for handlers and consequently could find the food faster
than Hawks. While this assumption is logical, we did
not consider this option as it did not seem happening in
blackbirds [16] nor oystercatchers [42].

3 Analysis

The system (1)–(6) is too complex to be solved analyt-
ically. We will therefore start by considering the popu-
lations consisting either entirely of Doves or entirely of
Hawks.

3.1 Dove only population

In the population without Hawks, the search for the equi-
libria of the system (1)–(6) reduces to solving the follow-
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ing algebraic equations

0 =
Dh

th
+
Dw

tw
− (νff + νhDh)Ds (11)

0 = νffDs +
Dw

tw
− (t−1

h + νhDs)Dh (12)

0 = 2νhDhDs − 2
Dw

tw
(13)

1 = Ds +Dh +Dw. (14)

By (13),
Dw = twνhDsDh. (15)

Subtracting (12) from (11) yields

Ds = (thνff)−1Dh. (16)

Substituting (15) and (16) into (14) yields

thνff = Dh(1 + thνff) + twνhD
2
h. (17)

Thus, setting T = 1 + thνff yields

Dh =


T − 1

T
, if twνh = 0,

−T +
√
T 2 + 4twνh(T − 1)

2twνh
, otherwise.

(18)

To summarize, the solution to the system (11)-(14) is
given by (18), (16) and (15). Note that it follows from

(18) that that Dh is decreasing form
thνff

1+thνff
to 0 as twνh

increases from 0 to ∞.
Let us now check the conditions under which a popu-

lation consisting of only Doves will be an ESS. Introduc-
ing a very small amount of Hawks into a population of
Doves will not (significantly) change the payoff to Doves.
To evaluate the payoff for Hawks, we need to evaluate
Hh/H. Because there are only a few Hawks, there will
be essentially no fights, i.e. we can assume Ha = 0 and
thus Hs +Hh = H. Subtracting (5) from (4) and setting
the time derivative to 0 yields

Hs = (thνff + thνhDh)−1Hh (19)

and thus

Hh

H
=

1

1 + (thνff + thνhDh)−1
(20)

=
thνff + thνhDh

1 + thνff + thνhDh
. (21)

Since Dh > 0, and the function f(x) = x
1+x is increasing,

we get
Hh

H
>

thνff

1 + thνff
≥ Dh

D
. (22)

Consequently, a small number of Hawks will always do
better in a population of Doves. Thus, Doves are never
an ESS.

3.2 Hawk only population

In the population without Doves, the search for the equi-
libria of the system (1)–(6) reduces to solving

0 =
Hh

th
+
Ha

ta
− (νff + νhHh)Hs (23)

0 = νffHs +
Ha

ta
− (t−1

h + νhHs)Hh (24)

0 = 2νhHhHs − 2
Ha

ta
(25)

1 = Hs +Hh +Ha. (26)

By (25),
Ha = taνhHhHs. (27)

Subtracting (24) from (23) yields

Hs = (νffth)−1Hh. (28)

Substituting (28) and (27) into (26) yields

thνff = Hh + thνffHh + taνhH
2
h. (29)

Thus, when we again set T = 1 + thνff ,

Hh =


T − 1

T
, if taνh = 0,

−T +
√
T 2 + 4taνh(T − 1)

2taνh
, otherwise.

(30)

To summarize, the solution to a system (23)-(26) is given
by (30), (28) and (27).

Let us now check the conditions under which a popu-
lation consisting of only Hawks will be an ESS. Introduc-
ing a small amount of Doves into the population will not
change the payoffs to Hawks. Subtracting (2) from (1)
and setting the time derivative to 0 yields

0 =
Dh

th
+ νhHsDh − νffDs (31)

and thus

Ds = Dh
1 + thνhHs

thνff
. (32)

Since Ds +Dh = D (as Dw ≈ 0 since D is so small that
DsDh ≈ 0), we get

Dh

D
=

thνff

1 + thνff + thνhHs
=

thνff

1 + thνff + νh
νff

Hh
. (33)

Hawks do better than Doves if Hh = Hh/H is bigger than
Dh/D, i.e. if

Hh >
thνff

1 + thνff + νh
νff

Hh
, (34)
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Figure 2: Payoff for Doves (solid) and Hawks (dotted)
in an equilibrium as it depends on the density of Doves
in the population, D. Values of other parameters are
νh = 1, th = 1, tw = 4, ta = 2, νff = 1. The value of D
for which the payoffs intersect is ESS.

which is equivalent to

H2
h

νh
νff

+Hh (1 + thνff)− thνff > 0 (35)

which is, by (29), equivalent to

H2
hνh

(
1

νff
− ta

)
> 0. (36)

Consequently, Hawks do better than Doves if ta <
1
νff

,

i.e. when the time of the fight is smaller than the time to
find a food item. If ta >

1
νff

, the Doves can invade the

Hawks.

3.3 General mixture

The analytical solution for the equilibrium of the full sys-
tem (1)–(6) proved impossible as it yields to a quartic
equation. Therefore, we set the left hand side of equa-
tions (1)–(6) to 0 and found solutions that also satisfied
(7) and (8) numerically using Matlab. We did this for
given values of parameters νff , νh, th, ta and tw and ev-
ery Dove density D ∈ {0, 0.01, 0.02, . . . , 1}. We obtained
four sets of solutions (Ds, Dh, Dw, Hs, Hh, Ha). Two sets
had imaginary components and one set had components
outside [0, 1]. This allowed us to find a unique equilibrium
of (1)–(6) with real values in (0, 1) that also satisfied (7)
and (8). We then calculated the payoff for Doves, PD,
and Hawks, PH , as in (9) and (10), see Figure 2.

We observed that PH −PD was increasing in D. From
Section 3.1 we know that PH > PD when D = 1. From
Section 3.2 we know that PD < PH when D = 0 and
ta >

1
νff

. Thus, there is only one ESS and the density

of Doves in the ESS, DESS is either 0 when ta <
1
νff

or

between 0 and 1 when ta >
1
νff

.

The dependence of DESS parameter values is shown
in Figure 3. DESS is increasing in νff and ta (unless
ta <

1
νff

in which case DESS = 0). DESS is decreasing in

tw and also slightly decreasing in νh and th.

4 Conclusions and Discussion

In this paper we studied the population of foraging indi-
viduals that adopt one of the two strategies: aggressive
Hawk or non-aggressive Dove. We studied how the den-
sity of Doves in an ESS depends on parameter values.
This extended the original Hawk-Dove game [37, 36] to
model kleptoparasitic interactions.

We saw that when ta <
1
νff

, i.e. the mean duration of

the aggressive contest is less than the expected time to
find a food item, Hawk is an ESS. Otherwise, there is a
unique mixed ESS. The density of Doves in the mixed ESS
increases with increasing νff (when food items are abun-
dant and easy to find) and with ta (when Hawks spend
too much time in an aggressive contest). These results are
in qualitative agreement with the original game [37, 36]
as ta could be seen as the cost of the aggressive contest
and 1

νff
represents the value of a food item. Similarly,

the density of Doves in the mixed ESS decreases with tw
(when Doves spend more time in the non-aggressive war
of attrition) and also slightly decrease with increasing th
(when individuals stay longer as handlers) and νh (when
handlers are easier to find).

Our model is a variation of a model from [12]. Unlike in
our model which closely mimics the original game [37, 36],
in [12] Doves did not attempt to steal. In our model, this
could be achieved by choosing tw close to 0, i.e. by as-
suming the war of attrition between two Doves is resolved
almost immediately. At the same time, [12] assumed that
Doves did not look for handlers and consequently could
find the food faster than Hawks. Consequently, unlike in
our model or in [37, 36], Doves alone could be ESS in [12]
for some parameter values.

A stochastic variant of the Hawk-Dove game in a finite
population was studied in [27], see also [18, 9]. While the
stochastic models generally agree with the deterministic
ones, the outcomes are much richer and the dependence
on the parameter values is more complex than for the
deterministic models.

Finally, we note that [11] considered other strategies
such as including Retaliators who do not attempt to steal
but aggressively defend the food items and Marauders
who try to steal but do not defend. An addition of these
two strategies made any Hawk-Dove mixture evolutionary
unstable because it could be invaded either by Retaliators
or by Marauders. It would be interesting to see what
would happen in our model when these two strategies are
introduced.
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Figure 3: Density of Doves in ESS as it depends on different parameter values. When not changing, the values are
νh = 1, th = 1, tw = 4, ta = 2, νff = 1.
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Revisiting the “fallacy of averages” in ecology: ex-
pected gain per unit time equals expected gain di-
vided by expected time. Journal of Theoretical Bi-
ology, 483:109993.

[9] Broom, M., Crowe, M., Fitzgerald, M., and Rychtář,
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