
Using Machine Learning to Measure
Sentiment During the COVID-19 Pandemic

Truong (Jack) P. Luu | Mentors: Prof. Rosangela Follmann and Prof. James Wolf
School of Information Technology | Illinois State University, Normal, IL 61790

Introduction
During the COVID-19, many people have used
Twitter to share their thoughts and viewpoints on
various facets of their lives. In this project, we ex-
amine COVID-19-related tweets produced in the
United States between April and August 2020. We
analyze the relationship between user sentiment
and COVID-19 cases across the United States and
the impact of particular COVID-19 milestones on
sentiment scores.

Word cloud of tweet messages.
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Methodology

 

Obtaining tweets IDs 

Retrieving complete tweets from 
tweet IDs (hydrating) 

 

Preprocessing/Cleaning 
tweets data 

Conducting sentiment 
analysis 

Analayzing results 

TextBlob - Open source python library for sentiment
analysis. It can be used to determine the polarity (pos-
itive or negative) of a text along with its subjectivity [1].

Tweets Distribution and Sentiment Score
Out of 66,094 geo-tagged tweets in the United States, we discovered that 55% of them expressed a positive
sentiment score, 27% expressed a neutral sentiment score, and 17% expressed a negative sentiment score.
The top four most populous states California, Florida, New York, and Texas all showed a similar pattern
in sentiment distribution, accounting for almost half of COVID-19-related tweets.
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Sentiment Score and COVID-19 Cases
Correlations results indicate that an increase in the
number of deaths poses a more threatening chal-
lenge compared with an increase in the number of
new cases which, even though threatening, still has
the door open for a possible recovery.
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A-B: r = 0.29, p < 0.001 and r = 0.30, p < 0.0008,
respectively. C-D: r = -0.35, p < 0.00001 and r =
-0.27, p < 0.01, respectively. n = 127

Conclusion and Future Directions
In the United States, there is a connection between sentiment scores, confirmed COVID-19 cases, and death toll. Signif-
icant events, such as new legislative laws, major holiday celebrations, and social tensions, may directly impact public
sentiment.

Future directions include collecting up to date Twitter data, and develop a sentiment classifier applicable to Emoji.

Reasoning Between Polarity Score and the COVID-19 Milestones
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Predominantly the oscillations in polarity show a direct
connection with the pandemic itself. However, other fac-
tors connected or not with the pandemic may have a punc-
tual influence on the polarity score, as illustrated by the
selected significant events.

Polarity and Subjectivity

Skewed distribution showing more points towards the
positive polarity and higher subjectivity (>0.5), suggest-
ing that the more positive-oriented a tweet is, the more
opinion-oriented its meaning will be.
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