

DEPARTMENT OF MATHEMATICS Illinois State University

Trigonometric functions in the *p***-norm**

 B_n

Faculty Mentor: Sunil Chebolu

Andrew Hatfield Riley Klette Christopher Moore Beth Warden

Abstract

Trigonometry is the study of circular functions, which are functions defined on the unit circle $x^2\!+\!y^2=1$, where distances are measured using the Euclidean norm. We explore trigonometric functions using the *p*-norm. These are functions defined on the unit *p*-circle $|x|^p + |y|^p = 1$. This approach revealed interesting connections involving transcendental periods, Bell polynomials, Lagrange inversion, Gamma functions, associahedra, and Stirling numbers.

A unit circle in the *p*-norm (squircle) is the curve defined by the equation $|x|^p + |y|^p = 1$, where $p = 2$ gives the unit circle. While the standard 2trigonometric functions are objects of study in many math classes, we wished to examine generalized *p*-trigonometric functions for any real $p \geq 1$ resulting from the following Coupled Initial Value Problem (CIVP):

Graphing these functions and finding their derivatives is computationally intensive. To cir‐ cumvent this, we use their inverse functions, which are well defined:

*p***-Trigonometric Functions**

Figure 1. Squircles with multiple values of *p*

Figure 2. Graph of $\sin_p x$ where red is $p = 1$, blue is $p = 2$, and green is $p = 10$

Figure 3. Graph of $\cos_p x$ where red is $p = 1$, blue is $p = 2$, and green is $p = 10$

$$
x'(t) = -y(t)^{p-1} \t y'(t) = x(t)^{p-1}
$$

$$
x(0) = 1 \t y(0) = 0
$$

We call the unique functions, $x(t)$, $y(t)$, that satisfy this system $\cos_p(t)$, $\sin_p(t)$ respectively.

> For example, when $p = 4$, applying this theorem gives the first few terms of $\sin_4(x)$: $\sin_4(x) = x -$ 18 5! $x^5 +$ 14364 9!

Note that when sin₂¹ $\frac{1}{2}^{-1}(x) \coloneqq \sin^{-1}(x)$ is evaluated at $x=1$, we get the value $\frac{\pi}{2}$ $\pi_p \coloneqq 2 \sin_p^{-1}$ $p^{-1}(1)$, which is also the area of the unit $p\text{-circle.}$

 $\overline{2}$. Thus, we define

We can reformulate the Lagrange Inversion Theorem in a much more geometric setting using the language of associahedra. The associahedron *Kn* is a convex (*n −* 2)‐polytope where distinct vertices correspond to distinct parenthetical groupings of *n* symbols, and edges are drawn between vertices if they are obtain‐ able through applying the associative law once. If we have the same setup as above and $f_1 = 1$, we can find each g_n by

Lagrange Inversion Theorem

For an equation $z = f(w)$, where f is analytic at c and $f'(c) \neq 0$, the Lagrange Inversion Theorem can be used to find the equation's inverse, $w = g(z)$, in a neighborhood of 0.

Specifically, when f and g are formal power series express

$$
f(w) = \sum_{k=0}^{\infty} f_k \frac{w^k}{k!} \quad \text{and} \quad g(z) = \sum_{k=0}^{\infty} g_k \frac{z^k}{k!}
$$

with $f_0 = 0$ and $f_1 \neq 0$, applying the Lagrange Inversion Theorem gives us the following [\[2](#page-0-0)]:

We can calculate π_p using $\pi_p = 2$ \int_{0}^{1} 0

Letting $u = t^p$, we get the beta integral function, which we can then put in terms of gamma using the identity $B(x, y) =$ Γ(*x*)Γ(*y*) $\Gamma(x+y)$, giving us

$$
g(z) = c + \sum_{n=1}^{\infty} g_n \frac{(z - f(c))^n}{n!}, \quad \text{with}
$$

\n
$$
g_n = \frac{1}{f_1^n} \sum_{k=1}^{n-1} (-1)^k n^{(k)} B_{n-1,k}(\hat{f}_1, \hat{f}_2, ..., \hat{f}_{n-k}), \quad n \ge 2, \quad \text{where}
$$

\n
$$
\hat{f}_k = \frac{f_{k+1}}{(k+1)f_1}, \quad g_1 = \frac{1}{f_1}, \quad n^{(k)} = n(n+1) \cdots (n+k-1), \text{ and}
$$

\n
$$
k(x_1, x_2, ..., x_{n-k+1}) = \sum \frac{n!}{j_1! j_2! \cdots j_{n-k+1}!} \left(\frac{x_1}{1!}\right)^{j_1} \left(\frac{x_2}{2!}\right)^{j_2} \cdots \left(\frac{x_{n-k+1}}{(n-k+1)!}\right)^{j_{n-k+1}}
$$

,

where this sum is taken over all sequences *^j*1*, j*2*, j*3*, ..., jn−k*+1 of non‐negative integers that sat‐ isfy $j_1 + j_2 + ... + j_{n-k+1} = k$ and $j_1 + 2j_2 + 3j_3 + ... + (n - k + 1)j_{n-k+1} = n$. These are the Bell polynomials.

The Taylor series expansion of $\sin_p(x)$ is obtained when the above theorem is applied to

$$
\sin^{-1}_{p}(x) = \int_{0}^{x} \frac{1}{(1-t^{p})^{\frac{p-1}{p}}} dt = \sum_{k=0}^{\infty} \left(\frac{p-1}{p}\right)^{(k)} \frac{x^{kp+1}}{k!(kp+1)}.
$$

$$
x^9 - \dots
$$

Associahedra

Figure 4. Image Credits: Niles Johnson [\[4](#page-0-1)]

$$
g_n = \sum_{F \text{ face of } K_n} (-1)^{n - \dim F} f_F
$$

where $f_F = f_{i_1} \cdots f_{i_m}$ for any face $F = K_{i_1} \times \cdots \times$ K_{i_m} of K_n .

Computing *π^p*

Figure 5. a 3*.*162‐circle (red), a unit circle (blue), and a square (green)

$$
\frac{1}{(1-t^p)^{\tfrac{p-1}{p}}} \, dt.
$$

$$
\pi_p = \frac{2\Gamma^2(\frac{1}{p})}{p\Gamma(\frac{2}{p})}.
$$

Using this equation, we can find values of π_3 and π_4 to be

$$
\pi_3 = \frac{2\Gamma^2(\frac{1}{3})}{3\Gamma(\frac{2}{3})} \approx 3.533
$$
 and $\pi_4 = \frac{2\Gamma^2(\frac{1}{4})}{4\Gamma(\frac{2}{4})} \approx 3.708$

When $p \approx 3.162$, the area of the unit squircle is approximately halfway between the areas of a unit circle and a square with side length 2. This gives us $\pi_{3,162} \approx (\pi_2 + 4)/2$; see figure 5.

Applications

Figure 6. Image Credits: Arthur Van Siclen [\[6\]](#page-0-2)

Squigonometry has several applications, specifically in design. Rather than using rounded rectangles, Ap‐ ple uses *p*-circles for their icons, as the curvature continuity leads to a more sleek look, unifying the design of their hardware and icons[[6](#page-0-2)]. Another de‐ sign application can be found in squircular dinner plates, designed to allow a greater surface area for food while taking up the same amount of cabinet space as their circular counterparts [\[5\]](#page-0-3).

Future Research

We have been working towards a closed form solution for the successive derivatives of functions of the form cos *m* $\frac{m}{p}(t)\sin\frac{n}{p}$ $\frac{n}{p}(t)$, which led to a connection to Stirling numbers. Extending from our generalization of the standard trigonometric functions, we plan to investigate other transcendental functions in the *p*‐norm. These include the *p*‐hyperbolic functions and *p*‐exponential functions, which can be related via the equation $\exp_p(t):=\sinh_p(t)+\cosh_p(t)$ that is motivated by the formula $e^t = \cosh(t) + \sinh(t)$.

References

- [1] Pamela E. Harris, Erik Insko, Aaron Wootton, editor. *A Project‐Based Guide to Undergraduate Research in Mathematics*. Foundations for Undergraduate Research in Mathematics. Springer International Publishing, 2020.
- [2] Wikipedia Contributors. Lagrange inversion theorem, 3 2021.
- [3] David E. Edmunds, Petr Gurka, and Jan Lang. Properties of generalized trigonometric functions. *J. Approx. Theory*, 164(1):47–56, January 2012.
- [4] Niles Johnson. Associahedron K5, 3 2021.
- [5] Peter Lynch. Squircles, 7 2016.
- [6] Arthur Van Siclen. Rounded corners in the apple ecosystem, 6 2020.

