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Abstract

Trigonometry is the study of circular functions, which are functions defined on the unit circle
x2+y2 = 1, where distances are measured using the Euclidean norm. We explore trigonometric
functions using the p‐norm. These are functions defined on the unit p‐circle |x|p+|y|p = 1. This
approach revealed interesting connections involving transcendental periods, Bell polynomials,
Lagrange inversion, Gamma functions, associahedra, and Stirling numbers.

p-Trigonometric Functions

Figure 1. Squircles with multiple values of p

A unit circle in the p‐norm (squircle) is the curve
defined by the equation |x|p + |y|p = 1, where
p = 2 gives the unit circle. While the standard 2‐
trigonometric functions are objects of study in
many math classes, we wished to examine gen‐
eralized p‐trigonometric functions for any real
p ≥ 1 resulting from the following Coupled Ini‐
tial Value Problem (CIVP):

x′(t) = −y(t)p−1 y′(t) = x(t)p−1

x(0) = 1 y(0) = 0

Wecall the unique functions, x(t), y(t), that sat‐
isfy this system cosp(t), sinp(t) respectively.
Graphing these functions and finding their
derivatives is computationally intensive. To cir‐
cumvent this, we use their inverse functions,
which are well defined:
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Figure 2. Graph of sinp x where red is p = 1, blue is p = 2, and green is p = 10

Figure 3. Graph of cosp x where red is p = 1, blue is p = 2, and green is p = 10

Lagrange Inversion Theorem

For an equation z = f (w), where f is analytic at c and f ′(c) ̸= 0, the Lagrange Inversion Theorem
can be used to find the equation’s inverse, w = g(z), in a neighborhood of 0.
Specifically, when f and g are formal power series expressed as
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k!
and g(z) =
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with f0 = 0 and f1 ̸= 0, applying the Lagrange Inversion Theorem gives us the following [2]:

g(z) = c +
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where this sum is taken over all sequences j1, j2, j3, ..., jn−k+1 of non‐negative integers that sat‐
isfy j1 + j2 + ... + jn−k+1 = k and j1 + 2j2 + 3j3 + ... + (n − k + 1)jn−k+1 = n. These are the Bell
polynomials.

The Taylor series expansion of sinp(x) is obtained when the above theorem is applied to

sin−1
p (x) =

∫ x
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For example, when p = 4, applying this theorem gives the first few terms of sin4(x):

sin4(x) = x − 18
5!

x5 + 14364
9!

x9 − ...

Note that when sin−1
2 (x) := sin−1(x) is evaluated at x = 1, we get the value π

2 . Thus, we define
πp := 2 sin−1

p (1), which is also the area of the unit p‐circle.

Associahedra

Figure 4. Image Credits: Niles Johnson [4]

We can reformulate the Lagrange Inversion Theorem
in a much more geometric setting using the language
of associahedra. The associahedron Kn is a convex
(n − 2)‐polytope where distinct vertices correspond
to distinct parenthetical groupings of n symbols, and
edges are drawn between vertices if they are obtain‐
able through applying the associative law once. If we
have the same setup as above and f1 = 1, we can
find each gn by

gn =
∑

F face of Kn

(−1)n−dim F fF

where fF = fi1 · · · fim for any face F = Ki1 × · · · ×
Kim of Kn.

Computing πp

Figure 5. a 3.162‐circle (red), a unit circle
(blue), and a square (green)

We can calculate πp using πp = 2
∫ 1

0
1

(1−tp)
p−1

p
dt.

Letting u = tp, we get the beta integral function, which we
can then put in terms of gamma using the identity B(x, y) =
Γ(x)Γ(y)
Γ(x+y) , giving us

πp =
2Γ2(1

p)
pΓ(2

p)
.

Using this equation, we can find values of π3 and π4 to be

π3 =
2Γ2(1

3)
3Γ(2

3)
≈ 3.533 and π4 =

2Γ2(1
4)

4Γ(2
4)

≈ 3.708

When p ≈ 3.162, the area of the unit squircle is approximately
halfway between the areas of a unit circle and a square with
side length 2. This gives us π3.162 ≈ (π2 + 4)/2; see figure 5.

Applications

Figure 6. Image Credits: Arthur Van Siclen [6]

Squigonometry has several applications, specifically
in design. Rather than using rounded rectangles, Ap‐
ple uses p‐circles for their icons, as the curvature
continuity leads to a more sleek look, unifying the
design of their hardware and icons [6]. Another de‐
sign application can be found in squircular dinner
plates, designed to allow a greater surface area for
food while taking up the same amount of cabinet
space as their circular counterparts [5].

Future Research

We have been working towards a closed form solution for the successive derivatives of functions
of the form cosmp (t) sinn

p(t), which led to a connection to Stirling numbers. Extending from our gen‐
eralization of the standard trigonometric functions, we plan to investigate other transcendental
functions in the p‐norm. These include the p‐hyperbolic functions and p‐exponential functions,
which can be related via the equation expp(t) := sinhp(t) + coshp(t) that is motivated by the for‐
mula et = cosh(t) + sinh(t).
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