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Stable coherent mode‑locking 
based on π pulse formation 
in single‑section lasers
Rostislav Arkhipov1,2,3, Anton Pakhomov2, Mikhail Arkhipov1,2, Ihar Babushkin4,5,6* & 
Nikolay Rosanov2,3

Here we consider coherent mode‑locking (CML) regimes in single‑section cavity lasers, taking place for 
pulse durations less than atomic population and phase relaxation times, which arise due to coherent 
Rabi oscillations of the atomic inversion. Typically, CML is introduced for lasers with two sections, 
the gain and absorber ones. Here we show that, for certain combination of the cavity length and 
relaxation parameters, a very stable CML in a laser, containing only gain section, may arise. The mode‑
locking is unconditionally self‑starting and appears due to balance of intra‑pulse de‑excitation and 
slow interpulse‑scale pump‑induced relaxation processes. We also discuss the scaling of the system to 
shorter pulse durations, showing a possibility of mode‑locking for few‑cycle pulses.

Mode-locking is a method to obtain short pulses directly from laser  oscillators1–4. It is a common and very basic 
technique, used in virtually all areas of modern optics. Typical for applications is so called passive mode-locking 
(PML), achieved by incorporating a nonlinear (saturable) absorber with suitable properties into the laser cavity. 
In such two-section cavities, generation of short pulses is achieved due to saturation of the amplifier/absorber 
section, and thus the pulse duration τp is larger than the polarization relaxation time T2 in the amplifier and 
absorber sections. Hence, in such PML-based lasers, pulse duration is fundamentally limited by the inverse 
bandwidth of the gain  medium1,2,5. Opposite situation arises, when the electric field in the cavity is so strong, 
that the Rabi frequency ΩR

6 is larger than the inverse dephasing time of the medium, �R ≫ 1
T2

 . In this case, the 
pulse duration is typically smaller than the dephasing time, τp < T2 , and the light-matter interaction taking place 
on the time of the pulse duration is thus “coherent”, so the mode-locking appeared there is often called “coherent 
mode-locking” (CML). The basic features and key differences between standard PML and CML are summarized 
in the Table 1, where by T1 the population relaxation time is denoted.

The key idea of  CML5,7,8 is to use the gain and absorber sections both in the coherent regime ( τp < T2 ). In the 
absorber section, a pulse of self-induced transparency (SIT)6,9,10 (a 2π pulse) is formed. Such a pulse is a solitary 
wave, which stably propagates in the absorber without losses. As such, it is also stabilized against perturbations, 
in particular against instabilities of the non-lasing state. The gain section, in contrast, has to be arranged in such 
a way, that essentially the same pulse has an area π instead of 2π . Besides, it is assumed that the gain section is 
nearly fully inverted at the moment when the pulse arrives. The π pulse is a “half of Rabi oscillation” and thus 
it returns all the atoms of the gain section to the ground state, so that the energy is fully transferred from the 
medium to the pulse. The resulting pulse duration was predicted to be able to achieve even the single-cycle 
 level11,12. This is in agreement with the theoretical  prediction11–13 and experimental  demonstration14 of Rabi-oscil-
lations and other SIT-based pulses at few- and single-cycle level. CML potentially allows passive mode-locking 
in quantum cascade  lasers15–17, which is known to be otherwise virtually impossible because of too fast carrier 
relaxation  times18. Besides, CML can arise if the absorber section works in the coherent  regime19–21 whereas the 
amplifier section is in the saturable regime. This type of CML was recently demonstrated  experimentally22–25. 
 In26, it was shown that CML should arise as a very stable and even self-starting regime if the cavity round-trip 
time is of the order of T1 , allowing the medium to relax enough in between the pulses.

One of the signatures of CML making them different from PML, is that the pulse duration decreases with 
increasing the output  power24,25. In the case of the coherent absorber section, this is also easy to understand 
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from the dynamics of the gain medium alone. Namely, as it is known, the pulse propagating in an amplifier (in 
a propagation, not a cavity geometry) shortens its duration, whereas the pulse amplitude increases while main-
taining the constant π  area6,10,27. That is, returning to the cavity, more energy is available to the pulse in the gain 
section, shorter its duration becomes in the CML regime. This property takes place for the CML with the only 
absorber section in the incoherent regime. The latter was recently experimentally demonstrated  in24,25.

On the other hand, from the very early days of laser physics it has been known, that a single-section laser 
can demonstrate self-pulsations and mode-locking28, that is, the absorber section is not absolutely necessary. 
It was also realized29–31, that self-pulsations in single-section lasers should appear via an universal bifurcation 
scenario, where the CW regime, arising at the lasing threshold is destabilized at certain pump level often called 
the “second threshold” (the lasing threshold is then known by “first threshold”). The instability at the second 
threshold is refereed to as Risken-Nummendal-Graham-Haken (RNGH) one, and develops into pulsations 
when the intermode interval becomes comparable to the Rabi frequency beatings (thus suggesting that RNGH 
instability is based on coherent interaction).

The RNGH instability threshold takes place at very high pump levels and, at the same time, long cavities. In 
most realistic situations, especially in solid state lasers, it can never be reached; instead, the CW regime is desta-
bilized much earlier due to various further reasons, leading also to self-pulsations, mode-locking, or to more 
complicated regimes. In particular, mode-locking and self pulsations in single-section lasers have been observed 
in bulk  semiconductor32–36, quantum  well37–40, quantum  cascade41,42, quantum  dash43,44, and quantum  dot45–48 
lasers. The mechanisms responsible for the mode-locked operation in these lasers were identified as four-wave 
 mixing40 or spatial hole  burning49 (see  also50 and references therein). These mechanisms, in contrast to RNGH 
instability, do not assume coherent interaction, that is, no nontrivial atomic polarization dynamics develops. 
This make them different from the CML, where the dynamics of atomic polarization plays the decisive role.

However, self-pulsations in single-section gas lasers, accompanied by coherent effects, were observed experi-
mentally by several  authors51, since gas lasers allow long cavities, large gain, and huge decoherence times T2 . In 
particular, Fox and  Smith51 observed pulsations in He-Ne laser and proposed that they were related to π pulse 
formation. Experimentally observed values of pulse durations were in agreement with theoretical estimations 
for π pulses and reduction of pulse duration with increase of lasing power was observed as further indication 
of coherent  dynamics6. Furthermore, Harvey et al.52 observed π pulses and mode-locking in argon-ion laser. 
Inverse proportionality of the pulse duration to the power was observed in this experiment as well. Dudey et al.53 
investigated coherent effects in argon-ion laser operated in a high-Q-cavity configuration. They recognized some 
features of coherent pulse propagation such as coherent ringing. Casperson and co-workers54,55 reported both 
experimental and theoretical analysis of self mode-locking in xenon laser and observed similar coherent effects 
and harmonic mode-locking regimes with the increase of cavity length. Theoretical modeling performed  in56 
corroborated experimental studies performed earlier in Xe-laser. Even in solid state (semiconductor) optical 
amplifier, coherent effects were observed recently  in57–59.

As it was mentioned above, the absorber section in two-section CML lasers plays the fundamental role since 
it provides stabilization of the mode-locked pulses via formation of a SIT-soliton. In this paper we show that, 
surprisingly, under certain conditions, a very stable, self-starting CML is possible without such absorber-based 
stabilization, that is, in a single-section travelling-wave laser, giving pulses with the area close to π in the gain sec-
tion. Appearance of stable self-starting CML is possible for proper combination of the cavity length and relaxation 
constants, and is rooted in the self-tuning of the pulse duration and energy in such a way, that intra-pulse de-
exitation dynamics is matched to inter-pulse pump-induced excitation. We show, that the mode-locking develops 
via RNGH instability, at rather high pump excesses above threshold. In our case the CW regime remains stable 
before RNGH, as well as the mode-locking regime after it. To analyze the possibility and features of CML we use 
a diagram technique based on the McCall and Hahn area  theorem5,6,9,60 to study inhomogeneously broadened 
media. To study homogeneously broadened media we use numerical simulations of the Maxwell-Bloch (MB) 
laser equations. We compare the dynamics of single-section laser with two-section laser containing coherent 
absorbing medium and show that in certain parameter region single-section laser has similar lasing parameters 
than the two section laser, so introducing the second section for the mode-locking stabilization is not necessary. 
Finally, we find a rescaling of the laser parameters, leaving the dynamics invariant as the pulse duration changes, 
and using it, establish conditions for generation of few-cycle pulses.

The article is organized as follows: in “Coherent pulse propagation and area theorem” section we introduce 
the area-theorem-based diagram technique; in “CML in a single-section laser and the area theorem” section 
we use it to show the possibility of CML in inhomogeneously broadened media; in “Numerical simulations” we 

Table 1.  Standard (incoherent) passive mode-locking (PML) and coherent mode-locking (CML).

Standard passive mode-locking (PML) Coherent mode-locking (CML)

Based on incoherent ( τp > T2 ) gain/absorption saturation Based on Rabi oscillations

�R < 1/T2 , T2 < τp < T1 �R > 1/T2 , τp < T2 < T1

Significant part of energy is left in absorber Almost no losses in absorber ( 2π-pulse of SIT)

Only part of energy is taken from the amplifier Almost all energy stored in the amplifier is taken ( π pulse)

τp is fundamentally limited by T2 τp can be much smaller than T2

Few-cycle pulses are possible only in a broadband media Few-cycle pulsese are possible in narrowband media

τp typically increases with increase of the pump power τp decreases with the pump power
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study homogeneously broadened media via direct numerical solution of the MB equations; in “Condition for 
few-cycle pulse generation in single-section laser” section we derive the conditions of few-cycle pulse generation; 
finally, in “Conclusions” section we discuss the results and draw the conclusions.

Coherent pulse propagation and area theorem
An important quantity describing the pulse dynamics in the coherent regime is the pulse area, defined  as9

where d12 is the transition dipole moment of a two-level atom, and E (t, z) is the pulse envelope. Coherent pulse 
propagation in an amplifying or absorbing inhomogeneously broadened medium is described using so-called 
area  theorem6,9,10:

with

where α0 is the absorption ( α0 < 0 ) or gain ( α0 > 0 ) coefficient per unit length, N0 is the concentration of 
two-level atoms, ω0 is the medium transition frequency and g(�ω) is the inhomogeneously broadened spectral 
distribution function, centered at ω0 , so that 

∫ +∞

−∞
g(�ω)d�ω = 1. Equation (2) is derived assuming the follow-

ing conditions to  hold6,9,10:

where τp is the duration of the generated pulse, 1/T∗
2  is the half-width of the inhomogeneously broadened line of 

the resonant medium and 1/T2 is the half-width of the homogeneously broadened line of a two-level atom. That 
is, it is assumed, that on the pulse duration the individual dipoles belonging to different atomic sub-ensembles, 
dephase. In particular, Eq. (2) is not valid for a homogeneously broadened media. On the other hand, in the 
limit of a small signal and thus small area ( sin� ≈ � ), Eq. (2) describes then an exponential decay or growth 
of the pulse area: � ∼ eα0z/2 . In the case of a homogeneous medium, linearization of Maxwell-Bloch equations 
near non-lasing state gives very similar growth/decay rate:

The solution of Eq. (2) is:

where �0 is the initial pulse area. One can see, that, apart from the trivial solution � = 0 , the area of a station-
ary SIT soliton is � = 2πm for any positive integer m. Two branches of the solution of the area theorem for an 
amplifying medium are plotted in Fig. 1. In this case, the initial pulse of the area 0 < �0 < 2π approaches the 
steady-state, having the pulse area π as the pulse propagates in the medium. At the same time, the pulse duration 
decreases. In the next section, we will use this approach to study the pulses arising inside a cavity.

CML in a single‑section laser and the area theorem
Here, using the results of the previous section, we develop a diagram technique similar to the one introduced  in60 
for a two-section laser. We consider a CML in a ring-cavity single-section laser, having an amplifying section 1 
inside the cavity, and operating in a unidirectional lasing regime, as shown in Fig. 2. The unidirectonal lasing is 
supported by nonreciprocal element 2.

The analysis of a traveling wave in a ring cavity laser is simple and physically transparent. On the other hand, 
for a ring cavity, a counter-propagating wave is not suppressed, in contrast to a two-section cavity, where such 
waves are ruled out by the nonlinear absorber. In practice, unidirectional generation can be set up by using a 
nonreciprocal intracavity element.

The branches of solutions of Eq. (2) in the amplifier are shown in Fig. 1. Let us assume, that a short pulse with 
the infinitesimal area �0 ≪ 1 passes through an amplifier 1 (see Fig. 2) in the coherent regime, gets reflected 
from a mirror M3 with the amplitude reflection coefficient r, and then enters the amplifier once again. We assume 
for simplicity, that other mirrors M1 and M2 do not produce any losses. We also suppose, that the pulse travels 
long enough in the amplifier, such that the active medium is able to recover to its equilibrium state between the 
consecutive pulse passages.

One more question we have to address here is how the pulse area changes upon reflection from the mirror 
in our cavity. Suppose that the electric field of the incident pulse is given as:

(1)�(z) =
d12

�

∫ +∞

−∞

E (t ′, z)dt′,

(2)
d�

dz
=

α0

2
sin�,

(3)|α0| =
8π2N0d

2
12ω0g(0)

�c
,

T∗
2 ≪ τp ≪ T2,

(4)|α0| =
4πN0d

2
12ω0T2

�c
.

(5)tan(�/2) = tan(�0/2)e
α0z/2,

(6)Einc(t, z) =
1

2
Einc(t, z)e

i(ω0t−kz) + c.c.,
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with slowly varying pulse envelope Einc(t, z) and central pulse frequency ω0 . Besides that, we assume that the 
mirror is located at z = 0 and denote as �inc and �ref  the areas of the pulse incident on the mirror and reflected 
from the mirror respectively. Let multiply both sides of Eq. (6) by e−iω0t and integrate over time from −∞ to +∞:

One can see, that first and second integrals in Eq. (7) represent (up to constant factors) the Fourier component 
of the incident pulse at the frequency ω0 and �inc respectively. The third integral can be transformed using 
integration by parts as:

where the first term on the right-hand side turns to zero due to the finite pulse duration. The commonly used 
slowly varying envelope approximation (SVEA) states, that:

Therefore validity of SVEA Eq. (9) would allow us to neglect the second term on the right-hand side of Eq. (7) 
with respect to the first one. Moreover, the presence of the fast-oscillating factor e−2iω0t

′ under the integral sign 
in Eq. (8) can lead to even smaller values of the second term on the right-hand side of Eq. (7), than it could be 
expected from Eq. (9). Indeed, from Eq. (9) one would estimate the ratio of two terms on the right-hand side of 
Eq. (7) to be of the order of ω0τp ≫ 1 . At the same time, if we take for example the envelope of a stationary π
-pulse propagating in the amplifying medium with linear  losses6,10:

(7)
∫ +∞

−∞

Einc(t
′, 0)e−iω0t

′

dt′ =
1

2

∫ +∞

−∞

Einc(t
′, 0)dt′ +

1

2

∫ +∞

−∞

Einc(t
′, 0)e−2iω0t

′

dt′.

(8)
∫ +∞

−∞

Einc(t
′, 0)e−2iω0t

′

dt′ = Einc(t
′, 0)

e−2iω0t
′

−2iω0

∣

∣

∣

+∞

−∞
+

1

2i

∫ +∞

−∞

1

ω0

∂Einc(t
′, 0)

∂t′
e−2iω0t

′

dt′,

(9)
1

ω0

∣

∣

∣

∂Einc

∂t

∣

∣

∣
≪ Einc .

Figure 1.  Branches of the solution of Eq. (2) for the amplifier for different initial pulse areas �0 = 0.2π (curve 
1g) and �0 = 1.8π (curve 2g) for |α0| = 10 cm−1 . This figure was created with Matlab R2016b (http://www.
mathw orks.com).

Figure 2.  Schematic representation of a mode-locked single-section laser with a ring cavity and unidirectional 
counterclockwise lasing. 1—amplifying medium, 2—nonreciprocal element, P-pulse travelling in the cavity, M1, 
M2, M3—cavity mirrors. This figure was created with Paint application for Windows.
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then we find:

so that their ratio is:

what is much larger as compared to just a factor ω0τp.
Considering the above, Eq. (7) finally turns into:

with the Fourier transform of the incident pulse Finc(ω) . The exactly same equality is obtained for the area of 
the reflected pulse. Therefore the areas of �inc and �ref  are simply related through the amplitude reflection coef-
ficient of the mirror r(ω) at the frequency ω0 , assuming that the response of the mirror is broadband enough:

It is worthy noting, that the applicability of the relation Eq. (10) reduces to the applicability of SVEA Eq. (9). 
For long enough pulses with ω0τp ≫ 1 SVEA is reasonably justified, while for few-cycle pulses it can not be 
fulfilled anymore.

Using the area theorem Eq. (2) and branches of it’s solution (similar to that plotted in Fig. 1) we are now able 
to follow the evolution of the pulse area during a single round-trip in a ring laser cavity. As the pulse propagates 
in the amplifier, the corresponding point on the diagram is moving from left to right along the amplifier branch 
from the point 1 to the point 2, see Fig. 3. This propagation is accompanied by the increase of the pulse area. 
After the pulse passes the amplifier, it is reflected by a non-ideal mirror and its area is thus reduced according 
to Eq. (10), what corresponds to the moving of the point on the diagram Fig. 3 along the curve 23 from right 
to left to the point 3. Then, pulse propagates in the amplifier once again along other amplifier branch 34 and so 
on. One can expect, that after many round-trips a stable self-pulsating regime with pulse having the area in the 
vicinity of π , sets up. This limit cycle ABC is shown in Fig. 3 with red lines.

This limit cycle can be obtained analytically as following: Let denote as �k the pulse area after k round-trips 
in the cavity, measured at the output of the gain medium in Fig. 2. According to Eqs. (5) and (10), the pulse area 
after k + 1 round-trips in the cavity �k+1 is related to �k as:

Einc(t
′, z) =

A

cosh
(

t−z/c
τp

) ,

∫ +∞

−∞

Einc(t
′, 0)dt′ =

π

2
Aτp,

∫ +∞

−∞

Einc(t
′, 0)e−2iω0t

′

dt′ =
π

2

Aτp

cos hπω0τp
,

coshπω0τp ≈ eπω0τp/2 for ω0τp ≫ 1,

�inc ≈
4πd12

�
Finc(ω0),

(10)�ref = r(ω0)�inc .

Figure 3.  Evolution of the pulse area � in an amplifier medium from the initial value �0 = 0.05π to the limit 
cycle (red curve ABC); r(ω0) = 0.7 , |α| = 12 cm−1 . This figure was created with Matlab R2016b (http://www.
mathw orks.com).
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From Eq. (11) one finds the pulse area in the steady-state regime �∗ as:

If we denote the function on the right-hand side of Eq. (12) as f (�) , the stability condition of the steady 
state �∗ requires:

We note that the stability of the mapping �∗ defined by (13) does not mean automatically the stability of the 
initial system. It ensures, however, its stability in respect to perturbations with zero frequency.

From Eq. (12) one finds:

Therefore the stability condition Eq. (13) yields:

If

Equation (12) has only one non-lasing steady-state solution, �∗ = 0 and this solution is stable, since Eq. (13) is 
satisfied. On the other hand, if

Equation (12) has two steady-state solutions. The trivial one �∗ = 0 is unstable, since Eq. (13) is not fulfilled. 
Another non-zero solution 0 < �∗ < π/r is shown in Fig. 4 in dependence on the parameters r and α0Lg . Fig-
ure 4 shows, that the stationary solution �∗ approaches π with increase of r or α0Lg . This steady state is always 
stable (in the sense of Eq. (14)). Indeed, since the derivative Eq. (14) is larger than 1 for � = 0 and smaller than 
1 for � = π/r , at the intermediate point �∗ the derivative Eq. (14) must be smaller than 1, otherwise the equal-
ity Eq. (12) could not take place. This fact is demonstrated in Fig. 5, where the derivative Eq. (14) is plotted.

Numerical simulations
The diagrammatic technique presented above gives a qualitative picture of the evolution of the pulse area in a 
single-section laser with a unidirectional lasing regime in an inhomogeneously broadened media. For homoge-
neously broadened media, the area theorem does not hold anymore. Nevertheless, here we show that basically 
the same dynamics takes place in the homogeneously broadened media as well. Besides, we reveal the details 
of bifurcation scenario as well as the scaling behavior of the pulse with the pump, and the relation between the 

(11)�k+1 = 2 arctan

[

tan
r�k

2
exp

(

α0Lg/2
)

]

.

(12)�∗ = 2 arctan

[

tan
r�∗

2
exp

(

α0Lg/2
)

]

.

(13)
∣

∣

∣

df

d�

∣

∣

∣

�=�∗
< 1.

(14)
df

d�
=

r exp
(

α0Lg/2
)

1+ sin2 r�∗

2 (exp
(

α0Lg
)

− 1)
.

(15)r exp
(

α0Lg/2
)

< 1+ sin2
r�∗

2
(exp

(

α0Lg
)

− 1).

(16)r exp
(

α0Lg/2
)

< 1,

(17)r exp
(

α0Lg/2
)

> 1,

Figure 4.  Non-trivial steady-state solution �∗ of Eq. (12) vs. parameters r and α0Lg . White dashed line shows 
the boundary between domains Eqs. (16) and  (17), i.e. to the left of this boundary non-trivial solution �∗ does 
not exist. This figure was created with Matlab R2018a (http://www.mathw orks.com).
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pulse durations in a single-and two-section cavities. For this, we will perform direct numerical simulations of 
the laser equations.

For our simulations, we used the set of Maxwell-Bloch equations describing propagation of light in a two-level 
amplifying medium under the slowly-varying envelope and rotating-wave  approximations6,8,10,26,27,60:

where g(z) = d12(z)
2�  , κ = 4πω0d12N0(z) , F(z, t) = 4g(z)A(z, t)ps(z, t) , ps(z, t) is the slowly-varying envelope of 

the imaginary part of the non-diagonal element of the density matrix of a two-level particle, n(z, t) is the popula-
tion difference between the lower and upper energy levels of a two-level particle, n0(z) = −1 is the stationary 
value of n(z, t) in the absence of the pulse for amplifier ( n0 = 1 for the absorber), A(z, t) is the real-valued slowly-
varying amplitude of the cos-component of the electric field. The parameters of the two-level particles are the 
transition dipole moment d12 , concentration of the particles in the gain medium N0 , relaxation times T1 = 1/γ1 
and T2 = 1/γ2 as well as the eigen-frequency of the medium ω0 . The set of equations Eqs. (18)–(20) allows accu-
rate modeling of the evolution of extended two-level media in a cavity, assuming relatively long pulse durations 
and intensities at which the Rabi frequency �R ≪ ω0 , so that no multilevel dynamics come into play. The equa-
tions naturally take into account longitudinal multi-mode dynamics and the accompanying nonlinear coherent 
effects. In Eqs. (18)–(20), we dropped the equations for the real part of the non-diagonal element of the density 
matrix pc(t) and the sine-component of the electric field As(z, t)5, since in the case of the resonant light-matter 
interaction pc = 0 , and hence As = 06.

In the example that will be considered below, the following parameters were used: the wavelength � = 0.7µm , 
the reflection coefficient of the mirror r = 0.8 , the cavity length L = 3 cm, the length of the gain section Lg = 1 
cm, the transition dipole moment d12 = 5 Debye, T1 = 0.5 ns, T2 = 0.25 ns.

First, we preformed a set of simulations with gradially increased the concentration of the active particles 
N0 , each time starting simulations from non-lasing state perturbed by noise. We found the first threshold at 
around N0 = Nt ≈ 6.7× 1010 cm−3 . After this first threshold, the laser was operating in a CW mode. At a value 
of N0 = Nf ≈ 0.165 · 1014 cm−3 , small pulsations in the CW mode appeared, indicating its destabilization. This 
second threshold thus takes place at rather high values of pump Nf /Nt ≈ 250 . This is to be compared to the 
estimation for RNGH instability threshold, given  by29–31

Our numerical result is comparable with this estimation, although somewhat lower. Taking into account that 
Eq. (21) is only an estimation and was derived for a cavity with distributed parameters, whereas in our case the 
parameters change significantly across the cavity, we think that the CW instability in the second threshold does 
correspond to RNGH.

With further increase of the concentration, self-pulsations turn into a pronounced mode-locking regime with 
a single pulse per roundtrip, see Fig. 6a,b.

Above the second threshold, the dependence of the pulse duration on the concentration of amplifying par-
ticles N0 was calculated numerically and is shown in Fig. 7. There, the curve 1 shows the dependence of the 
FWHM pulse duration τp (normalized to the cavity round-trip time τc = L/c ) on the reciprocal pump 

(18)∂tps(z, t) = −γ2ps(z, t)+ gn(z, t)A(z, t),

(19)∂tn(z, t) = −γ1[n(z, t)− n0(z)]− F(z, t),

(20)∂tA(z, t)+ c∂zA(z, t) = κps(z, t),

(21)Nf /Nt ≈ 4π2c2T1T2/L
2 ≈ 490.

Figure 5.  Derivative f ′(�∗) for the non-trivial steady-state solution �∗ of Eq. (12), describing its stability, vs. 
parameters r and α0Lg . White dashed line shows the boundary between domains Eqs. (16) and  (17), i.e. to the 
left of this boundary non-trivial solution �∗ does not exist. This figure was created with Matlab R2018a (http://
www.mathw orks.com).
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Q =

(

N0
Nf

)−1
 normalized to its value at the second threshold (of a single-section laser) Nf  . In the region of Q 

from 0.4 to 0.8, the dependence is close to linear, which demonstrates a characteristic feature of CML: the pulse 
duration decreases with increasing  power24,25. Up to Q ≈ 0.4 , the lasing takes the form of a single pulse. An 
example solution is shown in Fig. 6b. At Q ≈ 0.35 , the nature of the solutions changes. In addition to the main 
pulse, a lower intensity pulse appears. These are two coupled pulses of the 0π-pulse type, that is, the envelope 
changes its sign. An example of such pulse is given in Fig. 6c,d. With further increase of N0 , that is, decrease of 
Q, the solution becomes irregular, but then settles to a harmonic mode-locking with two pulses in the cavity (not 
shown in the figure). Then, the solution becomes irregular again, after which regular solutions with three pulses 
in the cavity show up. This scenario with increasing the number of pulses, followed by an irregular regime, repeats 
itself (not shown).

It is interesting to compare the dynamics to the case of smaller T2 , that is, out of the coherent regime. Such 
comparison is made in Fig. 8. In Fig. 8a a simulation is shown with the same parameters as in Fig. 6b, but with 
10 times smaller T2 . This results in a CW regime, since the excess over the first threshold also decreases, accord-
ing to Eq. (4). To return back to the same excess over the lasing threshold we need to increase the pump by the 
same ratio. As it is seen in Fig. 8b,c, this leads to irregular pulsations. From these simulations we see that the 
mode-locking in the coherent regime (for large T2 ) is more stable and survives higher pump levels, than the 
mode-locking in a laser with small T2 . In comparison, if we increase T1 , keeping all other parameters fixed, then 

Figure 6.  Examples of numerical solutions in regular mode-locking regime. (a) Intensity time trace A2 near 
the second threshold at N0 = 0.17 · 1014 cm−3 ; (b) A mode-locked regime with a single pulse in the cavity at 
N0 = 0.45 · 1014 cm−3 ; (c) and (d) dependence of A2 and A in the case of two coupled pulses per roundtrip at 
N0 = 0.5 · 1014 cm−3 . This figure was created with Matlab R2018a (http://www.mathw orks.com).

Figure 7.  Dependence of the pulse duration τp normalized to the round-trip time τc for a single-section [curve 
1 (blue)] and two-section [curve 2 (red)] laser on Q, the reciprocal pump excess, normalized to the second 
threshold of the single-section laser. This figure was created with Matlab R2016b (http://www.mathw orks.com).
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the pulse duration, as given by numerical simulations, increases, since, due to decrease the pump rate N0/T1 , 
the overall power also decreases.

Furthermore, we compared our simulations of a single-section laser with a laser, containing both an ampli-
fier and absorber and working in the CML regime. The length of the absorber section was taken to be the half of 
the length of the amplifier, the concentration was three times less than in the amplifier section, and the dipole 
moment was twice larger. This twofold difference in the dipole moments is necessary for the implementation 
of coherent mode-locking in a two-section  laser7. The relaxation times were taken as: T1 = 0.2 ns, T2 = 0.1 ns. 
In contrast to a single-section laser, self-pulsations start at the higher pump level and exist in the range from 
Q = 0.57 to Q = 0.1 (see Fig. 7, curve 2). After that, the mode-locking regime becomes unstable, and several 
pulses appear in the generation. With further increase of N0 , harmonic mode-locking was observed. As in the 
case of a single-section laser, the instability zones alternated with harmonic mode-locking zones took place. 
Comparison of the curves 1 and 2 in Fig. 7 shows that in the given example, the minimum pulse durations in 
the mode-locking regime differ 3 times between single- and two-section lasers. That is, an absorber allows to 
reduce the pulse duration, in comparison to the single-section laser without absorber. This happens via more 
effective preventing the development of “tails” of the pulses that arise in a single-section laser, that is, via bet-
ter protecting the non-lasing background after the pulse against perturbations. However, the achievable decrease 
of the pulse durations is not so dramatic, as it could be expected. In both cases, the area of the pulse after the 
amplifying medium in the mode-locking zone was close to π . The corresponding dependence is shown in Fig. 9.

The area in Fig. 9 was calculated numerically as the integral over the pulse envelope over the whole roundtrip. 
Such definition does not allow to determine the area of the pulses when multiple of them are present in the cav-
ity. On the other hand, in this way we can continue the definition of the area to the self-pulsing regimes with a 
small amplitude and even to the CW regime. With a such defined area, numerical simulations revealed another 

Figure 8.  Dynamics for smaller T2 , out of the coherent mode-locking regime. (a) Intensity-time trace A2 for N0 
the same as in Fig. 6b and T2 = 25 ps (10 times smaller than in Fig. 6b). (b) A(t), and (c) A2(t) for T2 = 25 ps 
and N0 = 0.45 · 1015 cm−3 , 10 times larger than in (a), providing the same excess above threshold as in Fig. 6b. 
Other parameters are the same as in Fig. 6. This figure was created with Matlab R2016b (http://www.mathw orks.
com).

Figure 9.  Dependencies of the pulse area at the output of the amplifying medium on Q for a single- (curve 1) 
and for a two-section laser (curve 2). The area was calculated numerically as the integral of the envelope over the 
complete roundtrip. This figure was created with Matlab R2016b (http://www.mathw orks.com).
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remarkable feature of a single-section laser: near the second threshold, the pulse area is still close to π , staying 
still slightly larger than this value. It even slightly increases with the increase of the pump. After exceeding the 
second threshold, when self-pulsations start, the area begins to decrease. In the region where the stable mode-
locking is achieved, the area is smaller than π . The dependence of the area on the pump for a two-section laser is 
also nonmonotoneous: at large durations (low pumps) the area grows but then begins to decrease. Nevertheless, 
it also stays close to π.

As we see, our numerical simulations give, in general, pulses with the area around π , similarly with the result 
for inhomogeneous broadened media predicted by a mapping in the previous section. Nevertheless, some dif-
ferences to the mapping-based solutions do exist. First, in contrast to the mapping, the area can exceed the value 
of π . Also, differently from the mapping, direct numerical simulations are able to give us the pulse shape which 
can significantly vary with the pump level. In particular, the mapping predicts, that the solutions with the area 
around π arise directly at the first threshold. On the other hand, it says nothing about the corresponding pulse 
durations. Our results indicate that those nonzero solutions born at threshold according to the mapping may 
correspond to the CW solution described in this section.

The mechanism, determining stable self-starting mode-locking in our single-section laser is essentially the 
same as in the two-section CML laser described  in26 (because, as mentioned before, the second (absorber) section 
only introduces some stabilizing effect, without altering the dynamics). Namely, the passage of a π-pulse leaves 
nearly all the atoms of the gain section in the ground state. During the roundtrip time, the pump ensures that the 
population relaxes back. In this situation, if the cavity length is selected properly, the medium has enough time 
to relax before the next pulse comes. If the cavity length is too long (or, putting it in the other way, the pump is 
too strong), the number of pulses over the roundtrip time increases as was described before.

Condition for few‑cycle pulse generation in single‑section laser
The consideration above suggests that, in order to decrease the pulse duration, we need to decrease the cavity 
length. In this respect, it is useful to establish a general scaling of Eqs. (18)–(20) which would allow us to rescale 
existing solutions to the shorter pulse durations. For this, let us suppose that all times in our system are decreased 
by a factor K: t → t/K ,T1 → T1/K ,T2 → T2/K , except the transition frequency ω0 (and thus the wavelength � ) 
which we keep the same. This is possible since ω0 only appears in κ , so we compensate this by modifying another 
variable entering κ only, as discussed below. The physical meaning of n and ps requires that they remain intact by 
the rescaling: n → n , ps → ps . In order to keep balance in Eq. (20), we need to rescale the space coordinate in the 
same way as time z → z/K . This means that all intracavity elements, including the whole cavity length, must be 
also reduced K times. Besides, we keep g the same. From Eq. (18) we immediately obtain that A → KA . This, in 
turn, means, that in Eq. (20) we need to rescale κ as κ → K2κ . We can achieve this by a corresponding change 
of N0 : N0 → K2N0 . This all defines a rescaling, which, being applied to Eqs. (18)–(20), leaves the equations 
unchanged; also all the possible regimes including mode-locking remain intact. For a mode-locking regime, the 
pulse duration decreases K times, but the pulse shape does not change, and the ratio τp/τc of the pulse duration 
τp to the cavity length τc , as well as the pulse area, remain the same. We note that this is not the only rescaling 
which is possible in Eqs. (18)–(20), but we find this particular one the most suitable for practical realizations.

We explored this scaling by direct numerical simulations as illustrated in Fig. 10. The dependence in Fig. 10a 
shows that τp/τc remains constant as we modify the cavity length (together with the other parameters as pre-
scribed by the scaling). Note the logarithmic scale in Fig. 10, allowed to vary L from 3 m to 3 mm. Figure 10b 
shows the dependence of the maximum pulse amplitude on the cavity length as we change L according to the 
rescaling. This curve reveals that  Emax grows with exactly the same rate as 1/L as suggested by the scaling.

Figure 10.  (a) Dependence of the pulse duration τp normalized to the cavity round-trip time τc on the cavity 
length in log scale. (b) Dependence of the pulse maximum on the inverse cavity length. This figure was created 
with Matlab R2016b (http://www.mathw orks.com).
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Such rescaling makes it possible, using the simulations above, to “rescale” the existing solutions and thus to 
estimate the parameters of the laser, at which the mode-locking with the pulse duration we want, takes place. By 
that, we should not however cross the boundary of the validity of the slow envelope approximation (that means 
that we must consider pulses of at least several cycles in duration), since the rescaling mentioned above does not 
work anymore for the equations free from the slow envelope. Taking the target pulse duration to be 10 optical 
cycles (23 fs) and assuming τp/τc = 0.08 (cf. Fig. 7), using our rescaling one can obtain K = 34 in respect to the 
configuration in Fig. 6b, thus the cavity and the gain section lengths should be about 0.88 mm, and 0.29 mm 
correspondingly, with T1 = 1.4 ps, T2 = 0.7 ps, and N0 = 5.3 · 1018 cm−3 . We note that the pulse repetition rate 
in such a short cavity should be as high as 0.34 THz. We checked these parameters by numerical simulations 
and indeed found a stable mode-locking with required pulse duration, and the dynamics similar to Fig. 6b, and 
with 34 times higher amplitude.

Although such short pulses are formally supported by Eqs. (18)–(20), the practically achievable pulse duration 
in every physical realization will be most probably limited by further physical processes. In particular, it is not 
easy to realize relaxation times in ps range needed for such few-cycle pulses; besides, large pump powers in the 
range of hundreds Watts will be required in this situation, most probably leading to heating and related problems. 
Finally, to realize a traveling-wave cavity of 0.1 mm-scale length is also rather challenging.

Conclusions
To summarize, we have demonstrated that a stable, self-starting coherent mode-locking regime is possible in a 
single-section laser, containing only an amplifying section. Coherent mode-locking, taking place if the decay 
time T2 exceeds the pulse duration, was up to now known to appear in lasers containing both absorbing and 
amplifying sections. Nevertheless, if the cavity length and the pump/loss balance are tuned properly, that is, in 
such a way that the relaxation after the pulse passage is matched to the fast population change during the pulse, 
the resulting mode-locking is so stable, that the absorbing section is not needed anymore and can be removed. 
The self-starting behaviour is ensured since at the required pump levels both non-lasing and CW regimes are 
highly unstable. On the other hand, as our results show, in the coherent regime (large T2 ) the pulsations are much 
more stable than in the incoherent case.

In the article, for inhomogeneously broadened media, we established the existence of the coherent mode-
locking and its stability (to zero-frequency perturbations) by constructing a mapping, based on the area theorem 
Eq. (2). In the case of nonzero frequency detuning between the pulse and the medium, the chirped pulse area 
theorem should be  used61. It yields exactly the same equation for the evolution of the pulse area as Eq. (2), just 
with slightly different definition of the pulse area. Therefore, all results from the “CML in a single-section laser 
and the area theorem” section of our manuscript should hold for the respective chirped pulse area as well.

For homogeneously broadened media, we have shown the existence and stability of the mode-locking using 
direct simulations of Maxwell-Bloch equations. In this latter case we established that as the pump increases, 
mode-locking arises from a CW regime via self-pulsations caused by RNGH instability.

In the mode-locking regime, the pulse area is around π , that is, a half of the Rabi oscillation. Taking into 
account that just before the pulse arrival the medium is almost fully inverted, and just after the pulse passage 
this whole energy is fully transferred into radiation, this regime requires unusually strong pump levels. In the 
examples considered above, the pump needed for mode-locking exceeds the lasing threshold by hundreds of 
times. Such high levels might look completely unrealistic for, for instance, semiconductor lasers with electrical 
pumping, but other media/schemes such as optically pumped gases, or alkali metal vapors, or optically pumped 
quantum dots, could be promising candidates. This is supported by pulsed regimes already observed in the gas- 
and vapor based  lasers6,22–25,51–55. We note that CML is in fact dissipation-less in the sense that all the pump energy 
can be converted into radiation. So, if the parasitic dissipation channels such as heating and other non-radiative 
processes are suppressed, the high excess above threshold should not posses a problem. As it was mentioned 
before, most promising candidates in this respect are gases and vapors. Also, an interesting possibility could be 
superfluidic helium, since in superfluidic phase the coupling to phonons is suppressed.

Using the scaling established here we showed that, at the cost of reducing the cavity length and increasing the 
pump power, the pulse durations even in few-cycle range can be obtained. The general scaling obtained by us is 
the following: to reduce the pulse duration K times, the cavity length and roundtrip times τc should be decreased 
by factor of K, accomplished by an increase K3 times of the pump power N0/τc . Besides, relaxation times must 
be decreased K times as well. Since even shorter, single-cycle, pulses were predicted to be achievable with CML 
in a two-section  cavity11,12, we expect that this can be also possible for the single-section scheme. This problem 
requires however rather different theoretical approach and is beyond the scope of the paper.
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