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Abstract

Let k be an algebraically closed field of positive characteristic. For any integer < ≥ 2, we show that the Hodge

numbers of a smooth projective k-variety can take on any combination of values modulo m, subject only to Serre

duality. In particular, there are no non-trivial polynomial relations between the Hodge numbers.

1. Introduction

The Hodge numbers ℎ?,@ (-) = dimC �
@ (-,Ω

?

-
) of an =-dimensional smooth projective variety - over

C satisfy the following conditions:

(1) ℎ0,0 (-) = 1 (connectedness).

(2) ℎ?,@ (-) = ℎ=−?,=−@ (-) for all 0 ≤ ?, @ ≤ = (Serre duality).

(3) ℎ?,@ (-) = ℎ@,? (-) for all 0 ≤ ?, @ ≤ = (Hodge symmetry).

Kotschick and Schreieder showed [8, Theorem 1, consequence (2)] that the only linear relations among

the Hodge numbers that are satisfied by all smooth projective C-varieties of dimension = are the ones

induced by (1), (2), and (3).

In positive characteristic, Hodge symmetry (3) does not always hold [14, Proposition 16], but Serre

duality (2) is still true. Van Dobben de Bruyn proved that (1) and (2) are indeed the only universal linear
relations among the Hodge numbers of =-dimensional smooth projective :-varieties if char : > 0 [5,

Theorem 1].

In [11, Theorem 2], Paulsen and Schreieder solved the construction problem over C for Hodge

diamonds modulo an arbitrary integer < ≥ 2. This means for any dimension = and any collection

of integers satisfying the conditions (1), (2), and (3), there exists a smooth projective C-variety of

dimension = whose Hodge numbers agree with the given integers modulo <. As a corollary, there are

no non-trivial polynomial relations among the Hodge numbers, which strengthens the result from [8]

on linear relations.

In this paper, we solve the construction problem for Hodge diamonds modulo < in positive charac-

teristic:
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2 Remy van Dobben de Bruyn and Matthias Paulsen

Theorem 1. Let : be an algebraically closed field of positive characteristic, and let < ≥ 2 and = ≥ 0

be integers. Let (0?,@)0≤?,@≤= be any collection of integers such that 00,0 = 1 and 0?,@ = 0=−?,=−@ for
all 0 ≤ ?, @ ≤ =. Then there exists a smooth projective :-variety - of dimension = such that

ℎ?,@ (-) ≡ 0?,@ (mod <)

for all 0 ≤ ?, @ ≤ =.

In analogy to [11, Corollary 3], it follows that there are no polynomial relations among the Hodge

numbers in positive characteristic besides (1) and (2) (see Corollary 5.1). This extends the result from

[5, Theorem 1] on linear relations.

Theorem 1 also shows that Hodge symmetry may fail arbitrarily badly in positive characteristic. For

any dimension = and all 0 ≤ ? < @ ≤ = with ? + @ ≠ =, not only can the Hodge numbers ℎ?,@ and ℎ@,?

be different, but can even be incongruent modulo any integer < ≥ 2. Note that Hodge symmetry (3) is

a consequence of Serre duality (2) if ? + @ = = and thus always holds in the middle row of the Hodge

diamond.

A complete classification of the possible Hodge diamonds of smooth projective :-varieties, i.e. a

version of Theorem 1 without the ‘modulo<’ part, seems to be very hard already when Hodge symmetry

is true; see [13] for strong partial results on this in characteristic zero.

The structure of our proof is similar to [11], with some improvements. First we solve the construction

problem modulo < for the outer Hodge numbers, i.e. the Hodge numbers ℎ?,@ with ? ∈ {0, =} or

@ ∈ {0, =} (see Proposition 3.1). Then we prove that for any smooth projective :-variety, there exists a

sequence of blowups in smooth centres such that the inner Hodge numbers of the blowup, i.e. the Hodge

numbers ℎ?,@ with 1 ≤ ?, @ ≤ = − 1, attain any given values in Z/< satisfying Serre duality (2). Hence

we obtain the following result, which might be of independent interest:

Theorem 2. Let : be an algebraically closed field of positive characteristic, and let < ≥ 2 and = ≥ 0

be integers. Let - be a smooth projective :-variety of dimension =, and let (0?,@)1≤?,@≤=−1 be any
collection of integers such that 0?,@ = 0=−?,=−@ for all 1 ≤ ?, @ ≤ = − 1. Then there exists a smooth
projective :-variety -̃ birational to - such that

ℎ?,@ ( -̃) ≡ 0?,@ (mod <)

for all 1 ≤ ?, @ ≤ = − 1.

The analogous result in characteristic zero was obtained in [11, Theorem 5]. The fact that all outer

Hodge numbers are birational invariants in positive characteristic was proven by Chatzistamatiou and

Rülling [3, Theorem 1], so Theorem 2 is the best possible statement. Again, it follows that the result

from [5, Theorem 3] on linear birational invariants extends to polynomials (see Corollary 5.2).

In analogy with [5, Theorem 2], our constructions only need Serre’s counterexample [14, Proposi-

tion 16] to generate all Hodge asymmetry. While the structure of our argument is similar to [11], the

absence of condition (3) in positive characteristic raises new difficulties for both the inner and outer

Hodge numbers. There is a quick proof of Theorem 2 assuming embedded resolution of singularities

in positive characteristic; see Theorem 4.4 The proof we present is similar but does a little more work

to avoid using embedded resolution. It relies on Maruyama’s theory of elementary transformations of

vector bundles, which we briefly recall in the Appendix.

In Section 2, we state and prove some lemmas on Hodge numbers that are used later. The constructions

for outer and inner Hodge numbers are carried out in Sections 3 and 4, respectively. Finally, we deduce

corollaries on polynomial relations in Section 5.

Notation

Throughout this paper, we fix an algebraically closed field : of positive characteristic and an integer

< ≥ 2.
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2. Some lemmas on Hodge numbers

In this section, we collect some standard results on Hodge numbers that we will use repeatedly in

the arguments. The only difference between the situation in characteristic zero [8, 11] and positive

characteristic [5] comes from asymmetry of Hodge diamonds; and as in [5], the only example we need

is Serre’s surface:

Theorem 2.1. There exists a smooth projective :-variety ( of dimension two such that ℎ1,0 (() = 0 and
ℎ0,1 (() = 1.

Proof. See [14, Proposition 16], or [5, Proposition 1.4] for a short modern account. �

We use the following well-known formula for Hodge numbers under blowups.

Lemma 2.2. Let - be a smooth projective :-variety, let / ⊆ - be a smooth subvariety of codimension A ,
and let -̃ → - be the blowup of - at / . Then the Hodge numbers of -̃ satisfy

ℎ?,@ ( -̃) = ℎ?,@ (-) +

A−1∑

8=1

ℎ?−8,@−8 (/).

A consequence that will be used repeatedly is that any blowup construction carried out < times does

not change the Hodge numbers modulo <.

Proof (Lemma 2.2). See for example, [6, Corollary IV.1.1.11]. As noted by Achinger and Zdanowicz

[2, Corollary 2.8], it is also an immediate consequence of Voevodsky’s motivic blowup formula [15,

Proposition 3.5.3] and Chatzistamatiou–Rülling’s action of Chow groups on Hodge cohomology [3]. �

The Hodge numbers of a product -1 × -2 can be easily described in terms of the Hodge numbers of

-1 and -2 by a Künneth-type formula.

Lemma 2.3. Let -1 and -2 be smooth projective :-varieties. Then the Hodge numbers of - := -1 × -2

are given by

ℎ?,@ (-) =
∑

?1+?2=?
@1+@2=@

ℎ?1 ,@1 (-1) · ℎ
?2 ,@2 (-2).

Proof. We have Ω- = c∗
1
Ω-1

⊕ c∗
2
Ω-2

, and thus

Ω
?

-
=

⊕

?1+?2=?

c∗1Ω
?1

-1
⊗ c∗2Ω

?2

-2
.

Hence, using the classical Künneth formula for quasi-coherent sheaves, we get

�@ (-,Ω
?

-
) =

⊕

?1+?2=?

�@
(
-, c∗1Ω

?1

-1
⊗ c∗2Ω

?2

-2

)

=

⊕

?1+?2=?
@1+@2=@

�@1

(
-1,Ω

?1

-1

)
⊗ �@2

(
-2,Ω

?2

-2

)
. �

The next lemma provides a weak Lefschetz theorem for sufficiently ample hypersurfaces.

Lemma 2.4. Let - be a smooth projective :-variety of dimension = + 1 with a very ample line bundle
ℒ = �- (�). Let 30 ∈ Z>0 such that �@ (-,Ω

?

-
(−3�)) = 0 when 3 ≥ 30 and ? + @ ≤ =. Then any

smooth divisor . ∈ |3� | with 3 ≥ 30 satisfies ℎ?,@ (. ) = ℎ?,@ (-) when ? + @ ≤ = − 1.
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Proof. The short exact sequence

0 → Ω
?

-
(−3�) → Ω

?

-
→ Ω

?

-

��
.
→ 0

shows that for all ? + @ ≤ = − 1 and all 4 ≥ 0, we have

�@
(
-,Ω

?

-
(−4�)

)
= �@

(
.,Ω

?

-
(−4�)

��
.

)
. (2.1)

We will prove by induction on ? that �@ (.,Ω
?

-
(−4�) |. ) = �@ (.,Ω

?

.
(−4�)) for all 4 ≥ 0 and

? + @ ≤ = − 1. Together with (2.1), this proves the result by taking 4 = 0. The base case ? = 0

is trivial since �- |. = �. . For ? > 0, the inductive hypothesis, (2.1), and the assumption on 30

imply

�@
(
.,Ω8

. (−4�)
)
= �@

(
.,Ω8

- (−4�)
��
.

)
= �@

(
-,Ω8

- (−4�)
)
= 0 (2.2)

for 8 + @ ≤ = − 1, 4 ≥ 30, and 8 < ?. The conormal sequence

0 → �. (−. ) → Ω
1
-

��
.
→ Ω

1
. → 0

gives a short exact sequence

0 → Ω
?−1
.

(−. ) → Ω
?

-

��
.
→ Ω

?

.
→ 0 (2.3)

since �. (−. ) is a line bundle. Now (2.2) gives

�@
(
.,Ω

?−1
.

(−. − 4�)
)
= �@

(
.,Ω

?−1
.

(
−(3 + 4)�

) )
= 0

for ? + @ ≤ = and 4 ≥ 0. Thus, (2.3) shows that the natural map

�@
(
.,Ω

?

-
(−4�)

��
.

)
→ �@

(
.,Ω

?

.
(−4�)

)

is an isomorphism for ? + @ ≤ = − 1 and 4 ≥ 0, as claimed. �

Corollary 2.5. Let - be a smooth projective :-variety of dimension = + 1 with a very ample line bundle
ℒ = �- (�). Then any smooth divisor . ∈ |3� | with 3 ≫ 0 satisfies ℎ?,@ (. ) = ℎ?,@ (-) when
? + @ ≤ = − 1.

Proof. By Serre vanishing, there exists 30 ∈ Z such that �@ (-,Ω
?

-
(−3�)) = 0 for all 3 ≥ 30 and

@ ≤ =. Then Lemma 2.4 gives the result. �

Remark 2.6. If char : = 0, then by Nakano vanishing, we may take 30 = 1 in Lemma 2.4. This recovers

the usual proof of weak Lefschetz from Nakano vanishing, although usually the implication goes in the

other direction. Similarly, if char : > 0 and Nakano vanishing holds for - , then we may take 30 = 1;

but in general already Kodaira vanishing may fail in positive characteristic [12].

For our application, it’s useful to have some control over the Euler characteristic of ℒ−1.

Lemma 2.7. Let - be a smooth projective :-variety of dimension = + 1, and let 4 ∈ Z. Then, up
to modifying - by blowups in smooth centres that do not change its Hodge numbers modulo <,
we may assume that - admits a very ample line bundle ℒ = �- (�) such that j(-,ℒ−1) ≡

4 (mod <) and such that any smooth divisor . ∈ |� | satisfies ℎ?,@ (. ) = ℎ?,@ (-) when
? + @ ≤ = − 1.
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Proof. Let c : -̃ → - be a blowup in < distinct points ?1, . . . , ?< ∈ - . Then the blowup formula for

Hodge numbers (Lemma 2.2) gives ℎ?,@ ( -̃) ≡ ℎ?,@ (-) (mod <). Let �8 = c
−1(?8) be the exceptional

divisors, and for A ∈ {0, . . . , <}, write �≤A = �1 + . . . + �A . Then the short exact sequence

0 → �-̃ (−�≤A ) → �-̃ → ��≤A
→ 0

shows that

j
(
-̃,�-̃ (−�≤A )

)
= j( -̃,�-̃ ) −

A∑

8=1

j(�8 ,��8
) = j(-,�- ) − A.

Take A ∈ {0, . . . , < − 1} with A ≡ j(-,�- ) − 4 (mod <).

Let ℳ be an ample line bundle on -̃ . By Serre vanishing, there exists 00 ∈ Z such that for all 0 ≥ 00,

the line bundle ℒ = ℳ
⊗0 ⊗ �-̃ (�≤A ) is very ample and satisfies

�@
(
-,Ω

?

-
⊗ ℒ

−3
)
= 0 (2.4)

for 3 > 0 and @ ≤ =. Taking 0 divisible by the product of < and the denominators of the coefficients of

the Hilbert polynomial %(C) = j( -̃,ℳ⊗C ⊗ �-̃ (−�≤A )), we see that

j
(
-̃,ℒ−1

)
≡ j

(
-̃,�-̃ (−�≤A )

)
≡ 4 (mod <).

Finally, ℒ satisfies weak Lefschetz by (2.4) and Lemma 2.4. �

3. Outer Hodge numbers

In this section, we solve the construction problem for the outer Hodge numbers. Because of Serre

duality and the fact that ℎ0,0 = 1, it suffices to consider the Hodge numbers ℎ?,@ with (?, @) ∈ �=,

where

�= = {(1, 0), . . . , (=, 0), (0, 1), . . . , (0, =)}.

The main result of this section is the following:

Proposition 3.1. Let = ≥ 0. For any given integers 01,0, . . . , 0=,0 and 00,1, . . . , 00,= with 0=,0 = 00,=,
there exists a smooth projective :-variety - of dimension = such that

ℎ?,@ (-) ≡ 0?,@ (mod <)

for all (?, @) ∈ �=.

The construction will be carried out by induction on the dimension using the weak Lefschetz results

from Corollary 2.5 and Lemma 2.7.

Lemma 3.2. Let =, 3 ≥ 0 be integers such that 3 ≥ = − 1. If Proposition 3.1 holds in dimension 3 for
01,0, . . . , 03,0 and 00,1, . . . , 00,3 with 03,0 = 00,3 , then it also holds in dimension = for 01,0, . . . , 0=−1,0, 1

and 00,1, . . . , 00,=−1, 1 for any 1 ∈ Z.

Proof. Let - be a smooth projective :-variety of dimension 3 with the given Hodge numbers 0?,@ . We

may assume that 3 ≥ =+1 by multiplying - with P2, which does not change its outer Hodge numbers in

degree ≤ =−1. By repeatedly replacing - with a smooth hyperplane section of sufficiently high degree,

we may further assume that 3 = = + 1 by Corollary 2.5. By Lemma 2.7, after possibly replacing - with

a blowup that does not change its Hodge numbers modulo <, there exists a very ample line bundle ℒ

on - such that
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6 Remy van Dobben de Bruyn and Matthias Paulsen

j(-,ℒ−1) ≡ (−1)= (00,= − 00,=+1 − 1) (mod <) (3.1)

and such that a smooth section . of ℒ satisfies ℎ?,@ (. ) ≡ 0?,@ (mod <) for ? + @ ≤ = − 1. The short

exact sequence

0 → ℒ
−1 → �- → �. → 0

gives j(-,ℒ−1) = j(-,�- ) − j(.,�. ). Since ℎ0,@ (-) = ℎ0,@ (. ) for @ ≤ = − 1, we conclude that

j(-,ℒ−1) = (−1)=ℎ0,= (-) + (−1)=+1ℎ0,=+1 (-) − (−1)=ℎ0,= (. )

≡ (−1)=
(
00,= − 00,=+1 − ℎ0,= (. )

)
(mod <).

With (3.1), we get ℎ0,= (. ) ≡ 1 (mod <), so Serre duality gives ℎ=,0 (. ) ≡ 1 (mod <). �

Note that in characteristic zero, Lemma 3.2 immediately implies Proposition 3.1, giving an alternative

approach to a variant of [11, Proposition 4]. In positive characteristic, however, the failure of Hodge

symmetry raises new difficulties, since e.g. ℎ=−1,0 = ℎ0,=−1 is true for varieties of dimension = − 1 but

not for all varieties of dimension =. This problem is solved in the following construction, which together

with Lemma 3.2 implies Proposition 3.1.

Lemma 3.3. Let = ≥ 2. For any given integers 00,1, . . . , 00,=−1 and 01,0, . . . , 0=−1,0, there exists a
smooth projective :-variety - of dimension ≥ = − 1 such that

ℎ?,@ (-) ≡ 0?,@ (mod <)

for all (?, @) ∈ �=−1.

Note that we do not assume 00,=−1 = 0=−1,0 here, so we typically need dim - ≥ =.

Proof (Lemma 3.3). First consider the case = = 2. Let � be an elliptic curve, and let ( be the surface

from Theorem 2.1. Choose 8 ≥ 0 and 9 ≥ 1 with 8 ≡ 00,1 − 01,0 (mod <) and 9 ≡ 01,0 (mod <), and

set - = (8 × � 9 . Then it follows from Künneth’s formula (Lemma 2.3) that ℎ0,1 (-) ≡ 8 + 9 ≡ 00,1

(mod <) and ℎ1,0 (-) ≡ 9 ≡ 01,0 (mod <).

Now assume = ≥ 3. By Lemma 3.2, we may assume inductively that Proposition 3.1 holds in

dimensions ≤ =− 1. Therefore, there exists a smooth projective variety . of dimension = − 1 with outer

Hodge numbers

ℎ?,@ (. ) ≡




(−1)@ , ? = 0, 0 ≤ @ < = − 1,

0, ? = 0, @ = = − 1,

0, ? > 0, @ = 0.

(mod <).

By Proposition 3.1 in dimension 2, there exists a smooth projective surface ( with outer Hodge numbers

ℎ1,0 (() ≡ ℎ2,0 (() ≡ ℎ0,2 (() ≡ 0 (mod <) and ℎ0,1 (() ≡ 1 (mod <). The Künneth formula from

Lemma 2.3 shows that ( × . has outer Hodge numbers ℎ?,@ (( × . ) ≡ 0 (mod <) for (?, @) ∈ �=−1,

except ℎ0,0 (( × . ) = 1 and ℎ0,=−1 (( × . ) ≡ (−1)= (mod <).

Finally, by Proposition 3.1 in dimension = − 1, there exists a smooth projective variety / with outer

Hodge numbers given by

ℎ?,@ (/) ≡

{
0?,@ , (?, @) ∈ �=−1 \ {(0, = − 1)},

0=−1,0, (?, @) = (0, = − 1).
(mod <)
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Taking - = / × (( × . )8 for 8 ≥ 0 gives outer Hodge numbers

ℎ?,@ (-) ≡

{
0?,@ , (?, @) ∈ �=−1 \ {(0, = − 1)},

0=−1,0 + (−1)=8, (?, @) = (0, = − 1).
(mod <)

The result follows by taking 8 ≡ (−1)= (00,=−1 − 0=−1,0) (mod <). �

4. Inner Hodge numbers

The aim of this section is to prove Theorem 2, i.e. to modify the inner Hodge numbers of a smooth

projective :-variety via successive blowups. We first show how to produce certain subvarieties with

asymmetric Hodge numbers that we will blow up later.

Lemma 4.1. Let - be a smooth projective :-variety of dimension =, let 1, 2 ∈ Z be integers, and let
3 ∈ {2, . . . , = − 2}. Then there exists a smooth projective variety -̃ and a birational morphism -̃ → -

obtained as a composition of blowups in smooth centres that does not change the Hodge numbers
modulo < such that -̃ contains a smooth subvariety, of dimension 3 satisfying

ℎ3,0 (,) = ℎ0,3 (,) ≡ 0 (mod <) (4.1)

and

ℎ3−1,0 (,) ≡ 1, ℎ0,3−1 (,) ≡ 2 (mod <). (4.2)

Proof. Let -1 → - be the blowup of - in a point. The assumption on 3 implies = ≥ 4, so the

exceptional divisor of -1 contains P3. By Proposition 3.1, there exists a smooth projective surface (0

such that ℎ2,0 ((0) = ℎ
0,2 ((0) ≡ 0 (mod <) and

ℎ1,0 ((0) ≡ 1, ℎ0,1 ((0) ≡ 2 (mod <).

Choose a possibly singular surface (1 ⊆ P3 birational to (0. By embedded resolution of surfaces [1,

Theorem 9.1.3] (see also [4, Theorem 1.2]), there exists a birational morphism -2 → -1 obtained as

a composition of blowups in smooth centres contained in P3 such that the strict transform ( of (1 is

smooth. Since ( is also birational to (0, we have ℎ2,0 (() = ℎ0,2 (() ≡ 0 (mod <) and

ℎ1,0 (() ≡ 1, ℎ0,1 (() ≡ 2 (mod <).

Consider the blowup -3 → -2 in (. The exceptional divisor is a P=−3-bundle P( (ℰ) over (. Let

/ ⊆ P=−3 be a smooth hypersurface of degree 3 in a linear subspace P3−1 ⊆ P=−3; in particular, /

satisfies ℎ3−2,0 (/) = ℎ0,3−2 (/) = 1.

By Maruyama’s theory of elementary transformations (see Proposition A.8), there exists a diagram

%̃

( × P=−3 P( (ℰ) -3 ,

5 5 ′

where 5 and 5 ′ are blowups in smooth centres . and . ′, respectively, such that . ∩ (( × /) is smooth.

Then the blowup -4 → -3 in . ′ contains the strict transform

, = �( × / = Bl.∩((×/ ) (( × /)

of ( × / under 5 . Birational invariance of outer Hodge numbers (in the case of a blowup, this is

Lemma 2.2) and the Künneth formula (Lemma 2.3) give]
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8 Remy van Dobben de Bruyn and Matthias Paulsen

ℎ3,0 (,) = ℎ0,3 (,) = ℎ3,0 (( × /) = ℎ2,0 (()ℎ3−2,0 (/) ≡ 0 (mod <),

ℎ3−1,0 (,) = ℎ3−1,0 (( × /) = ℎ2,0 (()ℎ3−3,0 (/) + ℎ1,0 (()ℎ3−2,0 (/) ≡ 1 (mod <),

ℎ0,3−1 (,) = ℎ0,3−1 (( × /) = ℎ0,2 (()ℎ0,3−3 (/) + ℎ0,1 (()ℎ0,3−2 (/) ≡ 2 (mod <).

Blowing up < − 1 more points coming from - and repeating the above construction < − 1 more times

in each exceptional P=−1 separately, the blowup formula of Lemma 2.2 shows that the Hodge numbers

of - do not change modulo <. �

Corollary 4.2. Let - be a smooth projective :-variety of dimension =, let 1, 2 ∈ Z be integers, and let
A ∈ {1, . . . , = − 1}. Assume that 1 = 2 if A = 1 or A = = − 1. Then there exists a birational morphism
-̃ → - obtained by a sequence of blowups in smooth centres such that

ℎA ,1( -̃) ≡ ℎA ,1 (-) + 1, ℎ1,A ( -̃) ≡ ℎ1,A (-) + 2 (mod <)

and

ℎ?,1( -̃) ≡ ℎ?,1 (-), ℎ1, ? ( -̃) ≡ ℎ1, ? (-) (mod <)

for all ? > A .

Proof. If A ∈ {2, . . . , = − 2}, then Lemma 4.1 shows that there exists a successive blowup - ′ → - that

does not change the Hodge numbers modulo < such that - ′ contains a subvariety , of dimension A

satisfying (4.1) and (4.2). Letting -̃ → - ′ be the blowup in, gives the result by Lemma 2.2.

For A = 1, we consider the blowup in 8 ≥ 0 points where 8 ≡ 1 = 2 (mod <). Then the statement

follows again from Lemma 2.2.

For A = =−1, we first blow up - in 8 ≥ 0 points, where 8 ≡ 1 = 2 (mod <). Then, in each exceptional

P=−1, we blow up a smooth hypersurface / of degree =. Since ℎ=−2,0 (/) = ℎ0,=−2 (/) = 1, the result

follows from Lemma 2.2. �

We are now able to solve the construction problem modulo < for the second outer Hodge numbers,

i.e. the inner Hodge numbers ℎ?,@ with ? ∈ {1, =−1} or @ ∈ {1, =−1}, via repeated blowups in smooth

centres. By Serre duality, it is enough to consider the Hodge numbers ℎ?,@ with (?, @) ∈ �=, where

�= =

{
(1, @)

��� @ ∈ {1, . . . , = − 1}
}
∪
{
(?, 1)

��� ? ∈ {1, . . . , = − 1}
}
.

Corollary 4.3. Let - be a smooth projective :-variety of dimension =. For any given collection of
integers (0?,@)(?,@) ∈�= with 0=−1,1 = 01,=−1, there exists a birational morphism -̃ → - obtained by a
sequence of blowups in smooth centres such that

ℎ?,@ ( -̃) ≡ 0?,@ (mod <)

for all (?, @) ∈ �=.

Proof. For A ∈ {1, . . . , = − 1}, let 1 = 0A ,1 − ℎA ,1(-) and 2 = 01,A − ℎ1,A (-). We see that 1 = 2 if A = 1

or A = =− 1. Hence, we may apply Corollary 4.2 for all A ∈ {1, . . . , =− 1} in descending order to obtain

the result. �

Finally, we are ready to prove Theorem 2, which together with Proposition 3.1 implies our main

result Theorem 1.

Proof (Theorem 2). We will proceed by induction on =. The case = ≤ 1 is vacuous, as there are no inner

Hodge numbers. Let = ≥ 2, and assume the result is known in all dimensions ≤ =− 1. By Corollary 4.3,
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there exists a birational morphism -1 → - obtained by a sequence of blowups in smooth centres such

that for (?, @) ∈ �=, we have

ℎ?,@ (-1) ≡ 0
?,@ − ℎ?−1,@−1

(
P=−2

)
(mod <).

Let -2 → -1 be the blowup in a point, and let P=−2 ⊆ -2 be a hyperplane in the exceptional divisor.

By the induction hypothesis, there exists a birational morphism %̃ → P=−2 obtained by a sequence of

blowups in smooth centres such that the Hodge numbers of %̃ are given by

ℎ?,@ (%̃) ≡

{
ℎ?,@

(
P=−2

)
, ? ∈ {0, = − 2} or @ ∈ {0, = − 2},

0?+1,@+1 − ℎ?+1,@+1(-1), else.
(mod <)

Since %̃ → P=−2 is a sequence of blowups in smooth centres, we can blow up the (strict transforms of)

the same centres in -2 to get a birational morphism -3 → -2 such that the strict transform of P=−2 is

%̃. Blowing up < − 1 more points coming from -1 and applying the same construction in each of the

exceptional divisors separately gives a birational morphism -4 → -1 that does not change the Hodge

numbers modulo < by the blowup formula of Lemma 2.2. Finally, if we let -̃ → -4 be the blowup in

one of the %̃ obtained in this way, we get

ℎ?,@ ( -̃) = ℎ?,@ (-1) + ℎ
?−1,@−1 (%̃) ≡ 0?,@ (mod <)

for all (?, @) with 1 ≤ ?, @ ≤ = − 1, which finishes the induction step. �

Theorem 4.4. The proof above can be simplified if one assumes embedded resolution of singulari-
ties in arbitrary dimension. Indeed, by blowing up a finite number of points, we may assume that
ℎ1,1 (-) ≡ 01,1 − 1 (mod <) and - contains P=−1. Now we claim that we can construct an (= − 2)-
dimensional subvariety . in a blowup - ′ → - with ℎ?,@ (- ′) ≡ ℎ?,@ (-) (mod <) such that
ℎ?,@ (. ) ≡ 0?+1,@+1 − ℎ?+1,@+1(-) (mod <). Then the blowup -̃ → - ′ in . has the required Hodge
numbers.

To construct . , first construct any smooth projective variety / of dimension = − 2 with the correct
outer Hodge numbers using Proposition 3.1. Then / is birational to a (possibly singular) hypersurface
/ ′ ⊆ P=−1. Embedded resolution of / ′ ⊆ P=−1 gives a birational map - ′ → - such that the strict
transform of / ′ is smooth, so / ′ has the desired outer Hodge numbers by [3, Theorem 1]. By the
induction hypothesis, we may blow up further to get the inner Hodge numbers we want. Repeating this
construction < − 1 more times, as usual, gives ℎ?,@ (- ′) ≡ ℎ?,@ (-) (mod <).

However, because resolution of singularities is currently unknown in positive characteristic beyond
dimension 3, we have developed the above approach using embedded resolution of surfaces, Maruyama’s
theory of elementary transformations of projective bundles, and the fortuitous fact that the failure of
Hodge symmetry is ‘generated’ by surfaces (see also [5, Theorem 2]).

Remark 4.5. Both the proof of Theorem 2 above (replacing Lemma 4.1 with an easy case of [11,

Lemma 6]) and the alternative argument of Theorem 4.4 using resolution of singularities give new

methods to prove the characteristic zero result [11, Theorem 5].

Conversely, it is possible to adapt the methods of [11, §3] to prove Theorem 2, using the subvarieties

from [11, Lemma 6] as well as projective bundles over the subvarieties from Lemma 4.1, but the analysis

is a bit more intricate.

5. Polynomial relations

Corollary 5.1. There are no polynomial relations among the Hodge numbers of smooth projective :-
varieties of the same dimension besides the ones induced by Serre duality.
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Proof. Using [11, Lemma 8], this follows from Theorem 1 in the same way as [11, Corollary 3], except

that we now consider the Hodge numbers ℎ?,@ with 0 ≤ ? ≤ @ ≤ = and (?, @) ≠ (0, 0), (=, =). �

Corollary 5.2. There are no polynomial relations among the inner Hodge numbers of smooth projective
:-varieties of any fixed birational equivalence class besides the ones induced by Serre duality.

Proof. This follows from Theorem 2 in a similar fashion. �

Appendix. Elementary transformations of vector bundles

We include a quick coordinate-free proof of Maruyama’s theory of elementary transformations of vector

bundles [9, 10]. See Theorem A.5 for the main result and Proposition A.8 for the example we will use.

Setup A.1. Let ( be a scheme and � ⊆ ( a Cartier divisor. We will consider a vector bundle ℰ on (

together with a quotient bundleℰ |� ։ ℱ. Writeℰ′ and ℱ
′ for the kernels ofℰ → ℱ andℰ |� → ℱ,

respectively, so we get a commutative diagram:

0 ℰ
′

ℰ ℱ 0

0 ℱ
′

ℰ
��
�

ℱ 0 .

(A.1)

Write c : - = P( (ℰ) → (, with tautological quotient line bundle c∗ℰ ։ �c (1). The surjectionℰ ։ ℱ

induces a closed immersion 8 : . = P� (ℱ) ↩→ P( (ℰ). Let 5 : -̃ → - be the blowup of - in . with

exceptional divisor � = 5 −1(. ), and set c̃ = c ◦ 5 . The preimage c̃−1 (�) consists of � and -̃� , whose

intersection is the exceptional divisor of -̃� → -� = P� (ℰ |�).

Lemma A.2. Let - , �, and ℰ ։ ℱ be as in Setup A.1. Then . ⊆ - is cut out by the image of the
composite map

(c∗ℰ′) ⊗ �c (−1) → (c∗ℰ) ⊗ �c (−1) ։ �- .

Proof. The map . ↩→ - is given by applying Proj( to the surjection of �(-algebras

Sym∗
�(
ℰ ։ Sym∗

��
ℱ.

The quotient of Sym∗
�(
ℰ by the ideal generated by ℰ

′(−1) ⊆ Sym∗
�(
ℰ is Sym∗

�(
ℱ, which coincides

with Sym∗
��

ℱ in all positive degrees since ℱ is supported on �. The result follows since a morphism

of graded algebras that is eventually an isomorphism induces an isomorphism on Proj. �

Corollary A.3. Let - , �, and ℰ ։ ℱ be as in Setup A.1, and let @ : ) → ( be a morphism of
schemes. Then morphisms ) → -̃ of (-schemes correspond to pairs (ℒ, q) of a line bundle ℒ

on ) and a surjection q : @∗ℰ ։ ℒ, up to isomorphism under @∗ℰ, such that the image of the
composite map

@∗ℰ′ → @∗ℰ ։ℒ

is an invertible subsheaf of ℒ.
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Proof. This follows from the universal properties of projective bundles and blowups. �

The basic duality of the situation is captured by the following lemma:

Lemma A.4. Let (, �, and ℰ ։ ℱ be as in Setup A.1. Then ℰ
′ (respectively, ℱ′) is locally free on (

(respectively, �), and ℰ
′
։ ℱ

′ is another instance of Setup A.1. Applying this operation twice gives
ℰ(−�) ։ ℱ(−�).

Proof. Since ℱ is a quotient bundle ofℰ |� , it is clear that ℱ′ is locally free on �. Moreover, since ℱ

has �>A dimension 1 on (, we see thatℰ′ is a vector bundle. Applying the snake lemma to (A.1) shows

that the kernel ofℰ′ → ℱ
′ isℰ(−�). Applying �>A

�(

∗ (−,��) to the first row of (A.1) gives the exact

sequence

0 → ℱ(−�) →ℰ
′
��
�
→ℰ

��
�
→ ℱ → 0,

which shows that the kernel of ℰ
′ |� → ℱ

′ is ℱ(−�). We omit the verification that the map

ℰ(−�) ։ ℱ(−�) is obtained from the original one by twisting with �( (−�). �

In analogy with the notation of Setup A.1, write c′ : - ′ = P( (ℰ
′) → (, with closed subscheme

. ′ = P� (ℱ′) and blowup 5 ′ : -̃ ′ → - ′ in . ′ with exceptional divisor � ′ = 5 ′−1 (. ′). Finally, write

- (−�) = P( (ℰ(−�)), with closed subscheme . (−�) = P� (ℱ(−�)) and blowup -̃ (−�) → - (−�)

in . (−�). The natural isomorphisms - (−�) � - and . (−�) � . lift to a natural isomorphism

-̃ (−�) � -̃ , described in terms of Corollary A.3 by (ℒ, q) ↦→ (ℒ(�), q(�)).

The duality of Lemma A.4 directly implies the main theorem of elementary transformations of vector

bundles [9, Theorem 1.1, Theorem 1.3]:

Theorem A.5 (Maruyama). Let - , �, and ℰ ։ ℱ be as in Setup A.1. Then there is a natural
isomorphism of (-schemes -̃

∼
→ -̃ ′.

Proof. For an (-scheme / , write ℎ/ for the functor Hom( (−, /). We will use the description of

Corollary A.3 to show that ℎ-̃ and ℎ-̃ ′ are naturally isomorphic, which implies the result by the Yoneda

lemma. Let @ : ) → ( be a morphism of schemes. Given (ℒ, q) ∈ ℎ-̃ ()), define (ℒ′, q′) ∈ ℎ-̃ ′ ()) as

the image

q′ : @∗ℰ′
։ℒ

′ ↩→ ℒ,

noting that ℒ′ is invertible by Corollary A.3. This gives a map ℎ-̃ → ℎ-̃ ′ , and switching the roles of

ℰ and ℰ
′ using Lemma A.4 and the natural isomorphism -̃ (−�) � -̃ gives the opposite map. The

composition takes (ℒ, q) to (ℒ(−�), q(−�)), hence, under the identification -̃ (−�) � -̃ gives the

identity map. The other composition follows dually. �

This gives the geometric definition of elementary transformations:

Definition A.6. Let ( be a smooth variety, and let ℰ and ℰ
′ be vector bundles of the same rank on (.

We say that there exists an elementary transformation between - = P( (ℰ) and - ′ = P( (ℰ
′) if there

exists a smooth divisor � ⊆ (, a line bundle ℒ on (, and a quotient bundle ℰ |� ։ ℱ on � such that

the kernel ofℰ ։ ℱ isℰ′ ⊗ ℒ. In this case, Theorem A.5 gives a diagram

-̃

- - ′

5 5 ′

where 5 and 5 ′ are blowups in the smooth centres . ⊆ - and . ′ ⊆ - ′, respectively.

To construct elementary transformations, we will use the following Bertini smoothness theorem for

general sections of a very ample vector bundle.

terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/fms.2020.48
Downloaded from https://www.cambridge.org/core. Technische Informationsbibliothek (TIB Hannover), on 09 Mar 2021 at 07:53:51, subject to the Cambridge Core

https://www.cambridge.org/core/terms
https://doi.org/10.1017/fms.2020.48
https://www.cambridge.org/core


12 Remy van Dobben de Bruyn and Matthias Paulsen

Theorem A.7 (Kleiman). Let - be a smooth projective variety of dimension = over a field : , let ℰ be
a globally generated vector bundle of rank A , and let ℒ be a very ample line bundle. Then for a general
section f ∈ Γ(-,ℰ ⊗ ℒ), the zero locus / (f) ⊆ - is smooth of codimension A (and nonempty if and
only if A ≤ =).

As usual, general means that the conclusion holds on a dense Zariski open in the space of sections

ofℰ ⊗ ℒ. In particular, there exists a :-point when : is infinite.

Proof. See [7, Corollary 3.6 and Remark 3.2(iii)]. �

This gives the following variant of [9, Theorem 1.12]:

Proposition A.8. Let ( be a smooth projective variety of dimension ≤ 2 over an infinite field : , and let
ℰ and ℰ

′ be vector bundles on ( of the same rank A . Then there exists an elementary transformation
between - = P( (ℰ) and - ′ = P( (ℰ

′). Moreover, if /1, . . . , /< ⊆ - are smooth subvarieties, we may
assume that . ∩ /8 is smooth for all 8.

Maruyama’s version deals with the case that ℰ′ is a trivial bundle, and does not have the final

statement. Note that the final statement is not symmetric inℰ andℰ′, and we will apply the result when

ℰ is trivial (which is dual to Maruyama’s version). Maruyama’s result extends to threefolds, which we

will not pursue here.

Proof (Proposition A.8). Let ℒ be a very ample line bundle on (. Up to twisting ℰ
′ by a power of ℒ

and replacing ℒ by a power, we may assume that (ℰ′)∨ ⊗ℒ
−1 is globally generated and c∗ℒ ⊗�c (1)

is very ample. By Theorem A.7, there exists a regular section f of c∗ (ℰ′)∨ ⊗�c (1) such that. = / (f)

and the . ∩ /8 are smooth.

For each B ∈ (, the intersection. ∩ -B is given by a section of�c (1)
A and hence is a linear subspace.

Since dim ( ≤ 2, we have dim. = (dim ( + A − 1) − A ≤ 1. If . contains a vertical line ℓ ⊆ -B for some

B ∈ (, then ℓ is a component of . , and the normal bundle

ℓ/- =

(
c∗ (ℰ′)∨ ⊗ �c (1)

)���
ℓ
= �ℓ (1)

A

has a trivial quotient -B/- |ℓ = �
2
ℓ
, which is impossible. Thus, if � ⊆ ( is the scheme-theoretic image

of . in (, then � is reduced and all fibres of . → � have length 1, so . → � is an isomorphism.

Hence . corresponds to a section � → P� (ℰ |�), i.e. a 1-dimensional quotient ℰ |� ։ ℱ. Since f is

a regular section, the Koszul complex

0 →  A → . . . →  1 →  0 → �. → 0 (A.2)

is exact, where  8 = c
∗
(∧8

ℰ
′
)
⊗ �c (−8). The projection formula gives

'c∗
(
 8 ⊗ �c (1)

)
=
∧8

ℰ
′ ⊗ 'c∗

(
�c (−8 + 1)

)
.

Since c : - → ( is a PA−1-bundle, we have 'c∗
(
�c (−8 + 1)

)
= 0 for 1 < 8 ≤ A and '1c∗�- = 0.

Therefore, twisting (A.2) by �c (1) and pushing forward to ( gives a short exact sequence

0 → c∗
(
 1 ⊗ �c (1)

)
→ c∗

(
�c (1)

)
→ c∗

(
�c (1)

��
.

)
→ 0.

Since  1 ⊗ �c (1) = c
∗
ℰ

′, this sequence reads

0 →ℰ
′ →ℰ → ℱ → 0,

so Theorem A.5 gives the desired elementary transformation. �
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