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Advective trapping occurs when solute enters low velocity zones in heterogeneous
porous media. Classical local modelling approaches combine the impact of slow
advection and diffusion into a hydrodynamic dispersion coefficient and many temporally
non-local approaches lump these mechanisms into a single memory function. This joint
treatment makes parameterization difficult and thus prediction of large-scale transport a
challenge. Here, we investigate the mechanisms of advective trapping and their impact
on transport in media composed of a high conductivity background and isolated low
permeability inclusions. Breakthrough curves show that effective transport changes from
a streamtube-like behaviour to genuine random trapping as the degree of disorder of the
inclusion arrangement increases. We upscale this behaviour using a Lagrangian view
point, in which idealized solute particles transition over a fixed distance at random
advection times combined with Poissonian advective trapping events. We discuss the
mathematical formulation of the upscaled model in the continuous time random walk
and mobile–immobile mass transfer frameworks, and derive a model for large-scale
solute non-Fickian dispersion. These findings give new insight into transport in highly
heterogeneous media.
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1. Introduction

Predicting flow and transport processes in the subsurface is challenging, as the
heterogeneous subsurface structure is usually not known. Heterogeneity can cause a
broad distribution of transport time scales with short times for advective transport along
fast paths and very long times for diffusive and advective transport in the zones with
very low to zero flow velocity (Berkowitz & Scher 1997; Jardine et al. 1999; Haggerty,
McKenna & Meigs 2000). Depending on the subsurface structure, the full range of time
scales can be important for scalar transport. Although the larger fraction of the mass
might be transported fast, a substantial fraction can experience very large transport times,
which might be crucial for applications such as contaminant remediation or recovery
of substances. The range of transport time scales causes challenges for predictions.
If the subsurface structure is known, numerical solutions of the transport equation in
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the domain can be derived. The computational effort is, however, very high, as the
resolution of all relevant time and spatial scales is required. If the structure is not known,
statistical approaches might be used, which increases the computational burden even
more.

Upscaled transport models are derived in order to allow for efficient predictions,
where the detailed resolution is not required, but the effects of the non-resolved
processes are captured in effective transport mechanisms. The derivation of upscaled
transport equations has been pursued in the frameworks of volume averaging (Brenner
& Edwards 1993; Whitaker 1999), homogenization theory (Hornung 1997) and stochastic
averaging (Neuman 1993; Cushman, Bennethum & Hu 2002), which can yield local
or spatio-temporal non-local upscaled transport equations that typically rely on closure
approximations. Such closure approximations often rely on the assumption of weak
heterogeneity, or on the assumption that average transport is Fickian.

Mobile–immobile mass transfer, matrix diffusion and multi-rate mass transfer (MRMT)
approaches derived for solute transport in highly heterogeneous media conceptualize the
medium as primary continuum and a suite of multiple secondary continua (Haggerty &
Gorelick 1995; Carrera et al. 1998). The fastest domain covers the main transport, while
the mass exchange with the other continua is described as a source term. The source term
is formulated as a convolution of the concentration in the fast domain and a memory
function. The memory function encodes the mass transfer processes between mobile and
immobile domains. An overview of the terminology of mobile–immobile, multirate mass
transfer and in general memory function models can be found in Ginn, Schreyer & Zamani
(2017).

The continuous time random walk (CTRW) approach for transport in highly
heterogeneous media naturally accounts for broad distributions of transport time scales
over characteristic length scales inherent to the medium structure (Berkowitz et al. 2006).
The information about small scale mass transfer and medium structure is contained in
the transition time distribution. The phenomenology of mobile–immobile and CTRW
approaches is similar in that both account for broad distributions of mass transfer time
scales. In fact, the mathematical equivalence between the frameworks has been shown
in the literature (Dentz & Berkowitz 2003; Schumer et al. 2003; Benson & Meerschaert
2009; Comolli et al. 2016; Russian, Dentz & Gouze 2016).

A crucial point for an upscaled model is predictability. A model is useful for applications
if parameters can be identified independently from specific settings. They should either be
predictable from knowledge about material properties and specific transport parameters, or
should be transferable, meaning that if they are fitted from experimental observations, they
should be transferable to other settings. Comparative studies of the predictive capabilities
of different upscaling approaches and large-scale models can be found in Frippiat &
Holeyman (2008), Neuman & Tartakovsky (2008), Fiori et al. (2015), Lu et al. (2018)
and Pedretti & Bianchi (2018).

The parameterization of mobile–immobile models for the case that transport in the
slow domains is dominantly diffusive has been studied in the past. There is a good
understanding of the memory function and how parameters can be estimated based
on diffusion coefficients and the geometry of the heterogeneous medium (or fractured
medium) (Maloszewski & Zuber 1985; Carrera et al. 1998; Gouze et al. 2008; Zhang,
Green & Baeumer 2014). Oftentimes, both slow advection and diffusion are lumped
into empirical memory functions based on parametric models like truncated power laws
(Willmann, Carrera & Sànchez-Vila 2008). It is not clear, however, whether slow advection
can be represented in such a framework, and what the form and parameterization of the
memory function would be.
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In general, both advective transport as well as diffusive transport are relevant for
the scalar transport in the slow zones of a heterogeneous medium. To formulate
mobile–immobile mass transfer models in general requires a method to parameterize the
memory functions for a combination of diffusive and advective transport. As mentioned
above, in the MRMT framework the effects of advection and diffusion have been
accounted for by phenomenological memory functions (Willmann et al. 2008), and
similarly, in the CTRW approach, the combined effect of diffusion and advection on
solute travel times has been quantified by single parametric transition time distributions
(Berkowitz, Scher & Silliman 2000). Volume averaging has been used as a systematic way
to quantify transport and advective–diffusive mass transfer in bimodal media (Chastanet &
Wood 2008; Golfier, Quintard & Wood 2011; Davit et al. 2012), which, however, typically
leads to more or less complex closure problems. Closure approximations can be based
on weak heterogeneity (Golfier et al. 2011), or the introduction of time-dependent mass
transfer coefficients (Chastanet & Wood 2008).

The impact of advective mass transfer between slow and fast medium portions, can
be systematically assessed by studying purely advective transport in highly heterogeneous
media. Thus, in order to investigate the mechanisms of advective trapping in heterogeneous
porous media, we focus here on structures characterized by a background-inclusion
pattern. The simplest model for such a structure is a two-dimensional (2-D) medium with
circular inclusions.

Eames & Bush (1999) studied the advective transport in a background-inclusion
field with a bimodal conductivity distribution. These authors consider regular, as well
as random structures of the inclusions. It is demonstrated in their paper that the
macrodispersion coefficient that is derived for transport in such media diverges for the
case that the inclusions are permeable in the limit of an inclusion/matrix permeability
ratio to zero. If, on the other hand, the transport coefficient is calculated for the case
that inclusions are impermeable, a finite macrodispersion coefficient is obtained. This
observation indicates that the concept of hydrodynamic dispersion is not adequate to
describe transport in the case of very low permeability ratios.

Rubin (1995) develops perturbation theory expressions for time-dependent dispersion
coefficients in bimodal media. Dagan, Fiori & Janković (2003) and Fiori & Dagan (2003)
study time-dependent apparent dispersion in a similar bimodal set-up to Eames & Bush
(1999) using a Lagrangian approach combined with a self-consistent effective medium
approximation. Fiori, Jankovic & Dagan (2006), Fiori et al. (2007) and Tyukhova et al.
(2016) study transport in composite media characterized by Gaussian and non-Gaussian
distributions of the logarithm of hydraulic conductivity. Fiori et al. (2006) and Fiori
et al. (2007) derive semi-analytical expressions for particle travel times in order to
map the conductivity distribution on solute breakthrough curves. Tyukhova et al. (2016)
use a kinematic relationship to relate the advection time over a single inclusion to its
conductivity as the basis for CTRW model to predict solute breakthrough curves. While
these approaches provide the methodology to construct upscaled expressions for solute
breakthrough curves, they do not provide evolution equations for the average solute
concentrations.

Silliman & Simpson (1987), Murphy et al. (1997) and Levy & Berkowitz (2003)
observed non-Fickian behaviours for the breakthrough in tank experiment characterized by
low conductivity inclusions embedded in a sandy matrix. Berkowitz et al. (2000) modelled
the tailing behaviours observed in these experiments using a CTRW approach, whose
parameters were estimated from the observed breakthrough curves. Ginn et al. (2001) use
a stochastic–convective streamtube approach to model aerobic biodegradation in a column
experiment with bimodal medium structure. Zinn et al. (2004) carried out experiments
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in tank experiments with bimodal medium structure and derived an upscaled model to
describe the observed breakthrough curves. For the advectively dominated transport in
background and inclusions, the authors use a streamtube model, for diffusion-dominated
transport in the inclusion, a matrix diffusion model. As shown in our paper, in the case
of randomly distributed inclusions, the streamtube model breaks down for large-scale
advective transport because individual streamlines sample a random number of inclusions
that can be characterized by a Poisson distribution.

In this paper we derive an upscaled model for advective transport in a bimodal
2-D medium with randomly placed circular inclusions. The methodology is based on
a Lagrangian approach that allows us to identify and quantify the stochastic rules of
advective particle motion in disordered media. Similar approaches have been used in
previous works for the analysis and upscaling of pore-scale transport (Morales et al.
2017; Puyguiraud, Gouze & Dentz 2019) and for transport in multi-Gaussian hydraulic
conductivity fields (Hakoun, Comolli & Dentz 2019) and fractured media (Hyman et al.
2019). Here, we use a Lagrangian approach to gain understanding of the stochastic
principles of transport in random composite media through the analysis of advective
trapping events in low conductivity inclusions, and the distribution of flow speeds
sampled between them. This analysis facilitates the formulation of upscaled transport
as a multi-trapping model. This is considered a first step towards a mobile–immobile
mass transfer model of transport in highly heterogeneous media that includes advection
and diffusion in the whole domain and that allows for parameter predictions based on a
given structure. In § 2 we introduce the flow and transport model used. In § 3 we discuss
the transport behaviour of three types of media: a single inclusion, a periodic packing
of inclusions and a random packing of inclusions. In § 4 we present the upscaled model
derived for the random packing and we give some conclusions in § 5.

2. Flow and transport model

We consider flow and transport in a 2-D medium characterized by a binary distribution
of hydraulic permeabilities, where the material with high permeability Km is connected
(background material or matrix), while the material with low permeability Ki is
disconnected (inclusions). For simplicity we assume that the inclusions have a circular
shape of radius r0 and can be regularly or randomly arranged (see figure 1).

Packings are characterized by the domain size Lx × Ly , inclusion radius and covered
volume fraction. In regular packings the inclusions needed to cover the desired area are
placed in a uniform equispaced grid inside the domain (figure 1a). Random packings are
generated by drawing the centres coordinates from a uniform distribution and discarding
inclusions that overlap previously existing ones. The algorithm stops when the desired
volume fraction is covered. This method generates arrangements with an exponential
distribution of distances between inclusions (figure 1b).

2.1. Flow
We consider steady state flow through the medium described by the Darcy equation

q(x) = −K(x)∇h(x), (2.1)

where K(x) is the hydraulic conductivity, h is the piezometric head and q is Darcy
velocity. Both medium and fluid are assumed to be incompressible, which implies that
∇ · q(x) = 0. A constant flow rate q0 is imposed on the left domain boundary and constant
head on the right one so that the mean flow direction is along the x axis.
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(a)

(b)

FIGURE 1. Flow and transport domain and streamlines of the Darcy flow q(x) for (a) regular
and (b) random packing considering no flow boundary conditions at the top and bottom
boundaries. Streamlines that cross at least one inclusion are green. Red streamlines do not
go through any inclusion. In the regular media streamlines either cross all the inclusions in
the horizontal or none of them. In the random media almost all streamlines cross at least one
inclusion.

2.1.1. Flow distribution
We discuss briefly here the flow distribution between the matrix and the inclusions

which will give us some information with which to analyse the transport in the following
sections.

For a single inclusion embedded in an infinite matrix, flow inside the inclusion
is uniform and aligned with the mean flow direction. The ratio between undisturbed
background flow velocity and the flow velocity in the inclusion is given by (Wheatcraft &
Winterberg 1985)

qin

q0
= 2κ

1 + κ
, (2.2)

where κ = Ki/Km is the conductivity ratio.
For the composite media under consideration here, flow inside the inclusions is in

general not perfectly uniform and is not aligned with the mean flow direction as shown
in figure 1. To estimate the background flow velocity for small conductivity ratio under
consideration, flow through the inclusions may be disregarded compared to the flow
through the matrix. Thus, we can approximate the average flow velocity in the background

qm = q0

1 − χ
, (2.3)

where χ denotes the volume fraction of the inclusions.

2.2. Transport
We consider purely advective transport, which is governed by the following Liouville
equation for the concentration c(x, t):

∂c(x, t)
∂t

+ v(x) · ∇c(x, t) = 0, (2.4)
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907 A36-6 J. J. Hidalgo, I. Neuweiler and M. Dentz

where v(x) = q(x)/φ. For simplicity, porosity φ is assumed to be constant in this work.
Note that this is generally not true, particularly for geological media. However, porosity
in different materials varies typically between 0.05 and 0.4, and this variation is much
lower than that of hydraulic conductivity, which may vary over several orders or magnitude
between different materials (Bear 1972). Solute is initially uniformly distributed along a
line c(x, t = 0) = c0δ(x).

The transport problem is solved in a Lagrangian framework. The equation of motion for
the position x(t; a) of a fluid particle is

dx(t; a)
dt

= v[x(t; a)], (2.5)

with x(t = 0; a) = a. The distribution of initial positions is ρ(a) = δ(a1). In the following
transport will be analysed in terms of the arrival time distribution of particles at increasing
distances from the inlet.

For a medium with impermeable inclusions, macrotransport can be described by the
advection dispersion equation (ADE)

∂ c̄(x, t)
∂t

+ va
∂ c̄(x, t)
∂x

− Da
∂ c̄(x, t)
∂x2

= 0, (2.6)

where va is the apparent velocity and the dispersion coefficient Da. For the condition of a
low density of inclusions, i.e. χ � 1, Eames & Bush (1999) report

Da = 0.74χv0r0 (2.7)

for impermeable inclusions and

Da = 8
3πκ

χv0r0 (2.8)

in the limit of κ → 0.
The distribution of arrival times at a position xc for an instantaneous injection into the

flux at x = 0 is given by Ogata & Banks (1961) and Kreft & Zuber (1978) as

f (t, xc) = xc exp
[−(xc − vat)2/4Dat

]
√

4Dat3
. (2.9)

For the complementary cumulative arrival time distribution, we obtain accordingly

F(t, xc) =
∫ ∞

t
dt′ f (t′, xc) = 1 − 1

2

[
erfc

(
xc − vat√

4Dat

)
+ exp

(
xcva

Da

)
erfc

(
xc + vat√

4Dat

)]
.

(2.10)

We use these solutions in the following as references for the observed arrival time
distributions. Furthermore, we estimate the apparent velocity va and apparent dispersion
coefficient Da from the mean mb and variance σ 2

b of the breakthrough time by using the
Fickian relations

va = xc

mb
, Da = v3

aσ
2
b

2xc
. (2.11a,b)
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α

r0

b

h

li

�c

FIGURE 2. Sketch of the set-up for a unit cell of size 	c containing an inclusion of radius r0.
Only particles in the segment b enter the inclusion.

2.3. Numerical model
The rectangular domain of size Lx × Ly is discretized using square cells of sideΔ = r0/30.
This discretization ensures that the circular shape of the inclusions is well reproduced. To
avoid boundary effects the horizontal dimension is extended a buffer length �4r0� equally
distributed between the left and right boundaries.

Steady state flow (2.1) is solved using a two-point flux finite volume scheme. Uniform
velocity v0 is prescribed on the left boundary and head on the right boundary. The top and
bottom boundaries are periodic. Velocity is calculated on the cell sides.

The advection equation (2.4) is integrated using the semi-analytical method of Pollock
(1988). At the beginning of the simulation Np = 106 particles are uniformly distributed
along the left boundary. The buffer between the boundary and the first inclusions ensures
that flow is uniform and the streamlines parallel at the inlet. Therefore the uniform
distribution of particles is equivalent to a flux-weighted injection. The simulation runs
until all particles leave the domain. Streamlines and equivalently particle trajectories are
illustrated in figure 1.

Results are reported in dimensionless units. We chose as characteristic length the side of
the unit cell 	c of a regular arrangement with inclusions of radius r0 that covers a volume
fraction χ (figure 2). That is, 	c = r0

√
π/χ . The characteristic time is τc = 	c/v0 so that

a dimensionless time of one is required to traverse the unit cell at the prescribed velocity.
The time needed to travel through the buffer area is subtracted from the results.

3. Transport behaviour

We study the transport behaviour in media with random arrangements of inclusions.
Transport is characterized by the travel time of the particles in terms of the breakthrough
curve or equivalently by the complementary cumulative breakthrough curve at control
planes. We will also analyse the trapping events distribution (i.e. the number of inclusions
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907 A36-8 J. J. Hidalgo, I. Neuweiler and M. Dentz

that a particle is transported through before arriving at the control plane), and the velocity
distribution inside the inclusions. The velocity in the background material does not vary
much. However, the tortuosity of the flow paths leads to an enhanced spreading of the
particles as discussed for macrodispersion.

3.1. Single inclusion
We consider first the case of a medium in which there is only one inclusion of low
permeability (see figure 2). We analyse the residence time of the particles within the
inclusion and the relation with the breakthrough curve.

3.1.1. Residence times
The residence time distribution in a single inclusion in an infinite domain is obtained

by purely geometrical considerations as follows. The flow field within an isolated single
inclusion is constant. Since the streamlines inside the inclusion are parallel, the particles
that go through it are uniformly distributed over the vertical diameter. This means that the
vertical particle position is uniformly distributed in [−r0, r0]. The position h of a particle
on the vertical diameter of the inclusion is h = r0 sinα. Therefore, we obtain the angle α
at which the particle entered the inclusion as

α(h/r0) = arcsin (h/r0). (3.1)

From this we obtain the angular distribution that corresponds to the uniform particle
distribution as

pα(α) = cosα. (3.2)

The length of the circle segment traversed by the particle li is given by s(α) = 2r0 cosα,
whose distribution pli(li) is obtained from pα(α) as

pli(li) = pα[arccos (li/2r0)]
1

dli(α)/dα

∣∣∣∣
α=arccos (li/2r0)

. (3.3)

Thus,

pli(li) = li

r0

1√
1 − (li/2r0)2

, (3.4)

and the distribution of transition times t = li/vin is given by

ψ(t) = t
τ 2

in

1√
1 − (t/τin)2

, (3.5)

where we defined τin = 2r0/vin is the maximum advection time across the inclusion. The
comparison between (3.5) and residence times obtained numerically is shown in figure 3.

3.1.2. Fraction of particles traversing the inclusion
The fraction of particles entering over a length 	c that traverses through the inclusion

is obtained from flux conservation. The size b of the streamtube in the matrix passing
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2

FIGURE 3. Comparison between the simulated (dots) and analytical (solid line) residence time
distribution of particles travelling through a single inclusion (3.5) (χ = 0.01 and κ = 0.1).

through the inclusion is obtained from

2r0vin = bvm. (3.6)

Thus, the flux proportion that goes through the inclusion can be written as

a0 = b
	c

= 2r0vin

	cvm
= 4r0

	c

κ

1 + κ
, (3.7)

where we used expression (2.2).

3.1.3. Breakthrough curves
The breakthrough and the complementary cumulative breakthrough curves for the single

inclusion are shown in figure 4. The first arrival occurs at t = 1, which corresponds to the
time needed to go through the unit cell. Part of the streamlines are bent by the presence of
the low permeability inclusion causing the peak to widen. The rest of the curve reflects the
effect of the low permeability inclusion with a breakthrough curve (figure 4b) that follows
the above calculated residence time distribution.

Transport through a single inclusion can be conceptualized as a streamtube model with
two types streamtubes. In one of them, a percentage of particles a0 (3.7) is transported
through the inclusion, while in the other one particles are transported only through
the matrix. This conceptual model can be extended to regular packings whose unit
cell contains only one inclusion. In this case particles will either travel through all the
inclusions in the streamtube or none of them (see figure 1). The travel times inside of each
streamtube are distributed due to the tortuosity of the streamlines. For regular packings
the streamlines differ from the single inclusion case because of the finite size of the unit
cell, which enforces a straight streamline at its boundary.

Based on the conceptual model of two streamtubes and considering that the inclusions
are much less permeable than the background, the breakthrough curve is characterized
by two distinct pulses caused by transport in the streamtubes without and with inclusions
(figure 4). Note that the transition is continuous, as the outermost streamlines of the two
streamtubes coincide.
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FIGURE 4. Breakthrough curve (a) and complementary cumulative breakthrough curve (b) for
a system containing one inclusion (χ = 0.01, κ = 0.1) measured at a distance 	c from the inlet.
The curves show an early arrival of particles that only travel through the matrix and a long tail
formed by the particles traversing the inclusion at different heights.

For short media, the periodic medium could be a useful approximation to predict
breakthrough curves. Zinn et al. (2004) carried out experiments of solute transport in
two-dimensional glass bead packs, where circular inclusions were randomly placed into a
less permeable background. They used the streamtube approach to predict breakthrough
curves for the advective dominated case. As the approximate solution is based on one
single inclusion, periodicity is inherently assumed. In the measured breakthrough curves,
the double breakthrough behaviour is very clear and it could be demonstrated that their
streamtube approach worked well to reproduce the breakthrough curves (see also next
subsection).

3.2. Random packings
We consider now random packings of inclusions generated as explained in § 2. First
we consider media of different sizes (3 ≤ Lx/	c ≤ 500; 1 ≤ Ly/	c ≤ 105) and covered
volume fraction (0.1 ≤ χ ≤ 0.55) in which we study the velocity distribution in the
matrix and inclusions, the trapping events experienced by particles and the trapping time
distribution.

Then we study the behaviour of breakthrough curves. First we explore further the
streamtube model using the geometry of Zinn et al. (2004). Next we consider two
scenarios, a long medium (387	c × 3.8	c) in which transport is analysed as the distance
from the inlet increases, and a wide medium (84	c × 28	c) in which the effect of the length
of the line along which solute is injected is studied.

3.2.1. Velocity distribution
The velocity inside isolated regularly arranged inclusions is approximately constant

under low density of inclusions conditions, this means for χ � 1. For increasing χ in
random packing this is in general not the case and flow velocities vary inside the inclusions
and between inclusions. We characterize the inclusions by their mean velocities, and
study their distributions pv(v) as a function of volume fraction χ . Figure 5 shows the
distributions of inclusion velocities for different volume fractions and inclusion sizes. We
observe that the distribution of mean velocities can be well approximated by a log-normal
distribution. Consistent with (2.2) and (2.3), the mean velocity of the distribution is
independent of the inclusion size and depends only on the volume fraction χ for
constant κ . The distribution becomes narrower with decreasing χ . In fact, in the limit
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FIGURE 5. Mean velocity distribution inside the inclusions (symbols) for a media with varying
volume fraction and inclusions’ size with constant κ = 0.01. The solid lines show the fit to a
log-normal distribution to the all the data with same χ . The base case geometry is Lx = 49.7	c,
Ly = 2.5	c and χ = 0.1. The rest of the cases have the same domain proportions.
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FIGURE 6. Mean velocity in the matrix versus volume fraction occupied by the inclusions. The
solid line corresponds to the solution (2.3) for isolated inclusions. Dot colours correspond to the
medium length.

of low density of inclusions, pv(v) should converge to the Delta distribution pv(v) =
δ(v − vin), where vin is the constant velocity in a single isolated inclusion.

The velocity in the matrix (figure 6) is inversely proportional to the covered area ratio
χ and follows the relation (2.3) until a high volume fraction is covered, reaching the
percolation threshold, and the hypothesis that flow through the inclusions is negligible
compared to the flow through the matrix is no longer valid.

3.2.2. Trapping events
The number of trapping events experienced by a particle in random media is not binary

distributed as in the regular ones. As the inclusions are randomly distributed in space, the
distance between them is approximately an exponential distribution, or in other words, the
number of inclusions that may be encountered within a given distance follows a Poisson
process (Feller 1968). In fact, we find that the statistics of the number ntr of trapping events
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FIGURE 7. Distribution of number of trapping events (symbols) at different distances xc from
the inlet for an arrangement of inclusions (Lx = 387	c, Ly = 3.87	c, κ = 0.01, χ = 0.3; same
as in figure 11). The solid lines are the fit to a Poisson distribution.

within a travel distance 	 can be described by the Poisson distribution

p(ntr, 	) = e−k	 (k	)ntr

ntr!
. (3.8)

An example of the trapping events distributions is shown in figure 7. It can be seen that
the distribution of trapping events evolves as the particles sample the medium. At short
distance from the inlet the distribution is narrow suggesting that for a small medium the
streamtube approximation could be sufficient to explain transport. As the distance from the
inlet increases, the distribution widens and the probability of not being trapped decreases.
At a sufficient travel distance all particles experience at least one trapping event and the
distribution converges to a Poisson distribution.

The trapping rate k, that is the number of trapping events per travelled distance, that
characterizes the Poisson distribution depends on the geometry of the arrangement. To
assess this dependence we performed a series of simulations varying the medium geometry
(radius, length, width and area covered by the inclusions). The average distance between
the inclusions d was computed with the following algorithm. First, we take the lines
between all pairs of inclusions’ centres that do not intersect another inclusion. Then,
for every pair of lines that intersect, the shortest one is kept. Finally, the average length
of the remaining lines is calculated. As shown in figure 8 the trapping rate is inversely
proportional to the average distance between the inclusion d, expressed in terms of the
unit cell size 	c.

3.2.3. Distribution of trapping times
The trapping time distribution is obtained numerically from the residence time

distribution in a single inclusion (3.5). The distribution of trapping times in the following
is denoted by ψf (t). It can be constructed from the distribution ψ(t|v) of trapping times
for a given inclusion velocity, and the distribution pv(v) of velocities as

ψf (t) =
∫ ∞

0
dv pv(v)ψ(t|v). (3.9)
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FIGURE 8. Trapping frequency (parameter in Poisson distribution) versus mean distance
between inclusions. Point colour is the covered volume fraction χ .
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FIGURE 9. Comparison between the theoretical trapping times distribution given by (3.9) (black
line) and the numerical results for media with Ly = 3.87	c, κ = 0.01, χ = 0.3 and different
lengths (symbols).

Figure 9 compares the distribution of trapping times obtained from the direct numerical
simulations and the model (3.9).

3.2.4. Breakthrough curves
We consider first a medium based on the inclusions geometry of Zinn et al. (2004).

This medium has χ = 0.37, Lx = 10.8	c and Ly = 5.4	c. We consider an intermediate
permeability ratio scenario with κ = 0.01. The breakthrough curve (figure 10) is affected
by the random arrangement of inclusions. However, we can distinguish the contribution of
particles that experience different numbers of trapping events. Given the small size of the
domain and the low number of inclusions, particles experience only a few trapping events
and most of them travel through the domain without entering any inclusion. Based on
this phenomenology, Zinn et al. (2004) used a streamtube approach in order to model the
breakthrough curves observed in their experiment. Their approach identified a streamtube
passing only through the matrix and a second streamtube that passes through a constant
number of inclusions. This approach is not valid in a large medium characterized by a
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FIGURE 10. Breakthrough curve (a) and complementary cumulative breakthrough curve for a
random medium with a geometry as in Zinn et al. (2004) (Lx = 10.8	c, Ly = 5.4	c, κ = 0.01
and χ = 0.37). The dashed lines correspond to the analytical solution (2.10) where Da and va
are obtained from the mean and variance of the breakthrough time.

xc 10 50 100 200 300 387
va 1 1 1 0.98 0.96 0.96
Da 2.59 3.48 3.87 4.42 2.86 3.28

TABLE 1. Values of velocity va and dispersion coefficient Da are determined from the mean
and variance of the corresponding breakthrough times. For comparison the values predicted by
Eames & Bush (1999) are Da = 0.0686 for impermeable inclusions and Da = 7.87 for κ � 1.

random arrangement of inclusions because streamlines may pass through random numbers
of inclusions, as discussed below.

Next we consider a long and narrow medium (387	c × 3.8	c), where particles can travel
through a larger number of inclusions. As shown in figure 11 the shape of the breakthrough
curves depends on the travelled distance, that is, the amount of medium heterogeneity
sampled. The curves become smoother as the distance from the inlet increases. For
short distances (figure 11a,d) the first part of the curve is dominated by the dispersion
caused between the streamlines along the fast paths and the tail of the curve by the
streamlines going through the inclusions as in the case of the geometry of Zinn et al.
(2004). For a sufficiently long distance from the inlet (figure 11b,c,e, f ), the shapes of
the breakthrough curves suggest that the peak and tail behaviour can be modelled by
an effective hydrodynamic dispersion coefficient. The parameters of the apparent centre
of mass velocity and dispersion coefficients are obtained from the breakthrough data
according to (2.11a,b). Their values are given in table 1.

The average velocity fluctuates little, and is close or equal to the velocity set by the
flow boundary condition. The dispersion coefficient is variable and evolves with distance
from the inlet plane. The corresponding Fickian solutions (2.9) and (2.10) provide good
descriptions of the breakthrough curves at large distances (xc > 300	c, figure 11c, f ) from
the inlet plane. However, the dispersion coefficients differ from the ones obtained by
Eames & Bush (1999) for impermeable inclusions (2.7), Da = 0.069, and in the limit
κ → 0 (2.8), Da = 7.87. As pointed out by Eames & Bush (1999), their expressions are
valid in the low density of inclusions limit of χ � 1, which is not the case for the volume
fractions under consideration here. The fact that the inclusion velocities are distributed, as
discussed in § 3.2.1, is a manifestation of the interaction between inclusions, this means,
they cannot be considered isolated.
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FIGURE 11. Breakthrough curves (a–c) and complementary cumulative breakthrough curves
(d–f ) at different distances from the inlet for a random arrangement of inclusions (Lx = 387	c,
Ly = 3.87	c, κ = 0.01, χ = 0.3). The dashed lines correspond to the analytical solution (2.10)
where Da and va are given in table 1. Note that the cases xc = 	c, 5	c are not modelled.

In summary, while the Fickian solution fits the peaks and part of the tails at intermediate
and large distances from the inlet plane (xc > 50	c), it fails to reproduce the sharp cutoffs
at early and late times, and completely fails to reproduce the breakthrough curves at short
distances (xc < 10	c). Furthermore, the apparent dispersion coefficients fitted to the data
evolve with distance from the inlet plane, which cannot be accommodated by a standard
Fickian model based on constant transport parameters.

In order to study the impact of the width of the initial particle distribution on
heterogeneity sampling we performed another series of simulations in a wide medium
(84	c × 28	c) in which we considered injection lines of increasing length (from 0.28	c
to the whole width of the medium; centred at Ly/2) and computed the breakthrough
curves at different distances from the inlet. The breakthrough curves (figure 12) show
that injection lines of small length (figure 12a,b with injection lines of length 0.28	c
and 1	c, respectively) do not sample enough of the medium variability even at the
maximum travelled distance simulated. The curves have distinct peaks/bumps, whose
number increases with the distance as the number of trapping events experienced by the
particles grows. This behaviour is similar to the streamtube behaviour observed for the
long medium (figure 11) and in the geometry of Zinn et al. (2004) (figure 10). For injection
lines of length above 5	C (figure 12c,d), the medium properties are better sampled and
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FIGURE 12. Breakthrough curves at different distances from the inlet for injection lines of
increasing length ((a,d) 0.28	c, (b,e) 5	c and (c, f ) 28	c) for a medium with Lx = 84	c, Ly =
28	c, κ = 0.01 and χ = 0.2).

the shape of the curves are more similar between injections. The shape and number of
peaks/bumps is less dependent on the travelled distance and only the tail of the curve
changes. Note that the medium is not long enough to observe the asymptotic behaviour of
figure 11(d).

4. Upscaled transport model

We derive an upscaled model for transport through random packings. Unlike regular
packings, in which streamtubes traverse either the same number of inclusions or none
of them, in random packings streamtubes can sample a random number of inclusions.
This means, one cannot distinguish only two kinds of streamtubes, but one has a set of
streamtubes, each of which is characterized by different random numbers of inclusions.
The analysis of § 3.2 has shown that the number of trapping events, this means, the number
of inclusions a particle crosses along a trajectory, can be represented by the Poisson
distribution (3.8) characterized by the trapping rate k.

Based on these observations, we can now quantify the upscaled particle motion using a
CTRW framework (Berkowitz et al. 2006; Noetinger et al. 2016). To this end, we consider
advective–dispersive particle transitions in the mobile matrix

dx(s) = vm ds +
√

2Dm ds ξ(s), (4.1a)
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where s denotes the mobile time spend outside the inclusions, vm is the mean velocity
in the matrix, Dm is the longitudinal dispersion coefficient, ξ(s) is a Gaussian white
noise characterized by zero mean and unit variance. In the model, vm can be estimated
from the covered area χ (figure 6) and Dm is taken equal to the dispersion coefficient for
impermeable inclusions (2.7). During the mobile time s particles encounter ns inclusions,
where ns is distributed according to (3.8). The clock time t(s) after the mobile time s has
passed is given by

t(s) = s +
ns∑

i=1

τi, (4.1b)

where ns is Poisson distributed with mean value 〈ns〉 = kvms. The trapping times τi are
defined by (see appendix A)

τi = 	i

vi
− 	i

vm
, (4.1c)

where the distance 	i is the secant of the circular inclusion at the height where the particle
enters the inclusion (figure 2). It is distributed according to (3.4). The velocity vi in the
inclusion is assumed to be constant and lognormally distributed (see § 3.2.1 and figure 5).
The trapping time denotes the time a particle spends in the inclusion minus the time it
would take to traverse the inclusion with the mean velocity vm. Thus, it quantifies the net
impact of the inclusion. The medium is considered ergodic if each particle samples the
same distribution ψf (t) of trapping times as it moves through the medium. This property
is clearly not fulfilled for a periodic medium and depends on the medium and injection
line length in random media. According to the above, the clock time t(s) is a compound
Poisson process (Feller 1968; Margolin, Dentz & Berkowitz 2003; Benson & Meerschaert
2009; Comolli et al. 2016). Thus, its distribution ψ(t) can be written in Laplace space as
(see also appendix A)

ψ∗(λ|s) = exp
(−λs − ksvm

[
1 − ψ∗

f (λ)
])
, (4.1d)

where Laplace transformed quantities are marked by an asterisk, and λ denotes the Laplace
variable. Equations (4.1a)–(4.1d) constitute and upscaled CTRW model combined with a
multi-trapping approach. In the following, we discuss the equivalent formulation in terms
of a time non-local partial differential equation that describes advective mobile–immobile
mass transfer.

In appendix A, we derive for the mobile, this means non-trapped, solute concentration
cm(x, t) the governing equation

∂cm(x, t)
∂t

+ ∂

∂t

∫ t

0
dt′ ϕ(t − t′)γ cm(x, t′)+ vm

∂cm(x, t)
∂x

− Dm
∂2cm(x, t)
∂x2

= 0, (4.2a)

where the trapping rate is given by γ = kvm. The memory function ϕ(t) is given explicitly
in terms of the advective trapping time distribution ψf (t) as

ϕ(t) =
∫ ∞

t
dt′ ψf (t′). (4.2b)

The trapping time distribution ψf (t), defined in (3.9), is determined by the inclusion size
and flow velocities within the inclusions. This means, it is fully quantified in terms of
the microscopic advective trapping mechanisms. The memory function (4.2b) denotes
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the probability that the trapping time is larger than the time t. Thus, we can define the
immobile concentration cim(x, t) as

cim(x, t) =
∫ t

0
dt′ ϕ(t − t′)γ cm(x, t′). (4.2c)

This equation reads as follows. The immobile concentration is equal to the probability that
a particle gets trapped in the immobile region at any time t′ < t times the probability that
the trapping time is smaller than t − t′. Note that in the special case of a single advection
time scale τa, this means for ψf (t) = δ(t − τa), the memory function (4.2b) reduces to a
step function as considered in Ginn et al. (2017).

The upscaled model defined by (4.2a)–(4.2c) is equal in form to memory function
formulations of (multirate) mobile–immobile mass transfer (Haggerty & Gorelick 1995;
Carrera et al. 1998; Dentz & Berkowitz 2003; Schumer et al. 2003; Ginn et al. 2017), and
defines the immobile concentration in terms of the memory function ϕ(t) as expressed by
(4.2c). The memory function here quantifies advective mass transfer between high and low
conductivity regions, and is fully defined in terms of the advective trapping mechanisms,
inclusion size and velocity distribution. The formulation (4.2a)–(4.2c) of the upscaled
model in terms of the non-local partial differential equation can be considered as an
advective mobile–immobile mass transfer model.

Before we apply this model to the data of the direct numerical simulations, some
comments on its assumptions are in order. The basis of the model is the assumption of
ergodicity of the underlying disorder in the following sense. First, the CTRW samples the
number ns of trapping events from a Poisson distribution. This implies that the inclusion
pattern is random and fluctuates on a characteristic length scale. All particles sample
from the same Poisson distribution, this means all particles must have access to the same
statistics as they move through the medium, which means that the spatial pattern needs
to be stationary. The same holds for the distribution of trapping times, which are sampled
as independent identically distributed random variables. In the following, we analyse the
breakthrough curves in the light of these remarks.

Figure 13 compares the results for the breakthrough curves of the direct numerical
simulations to the prediction of the CTRW for a narrow medium of Ly = 3.8	c at
different distances from the inlet. This medium has in average 2.5 inclusions per vertical
cross-section. For this case, we do not expect that the upscaled model provides a good
prediction at short distances because the ergodicity conditions discussed above do not
apply. All the particles in the direct numerical simulation initially experience the same
or similar disorder, this means they are not independent statistically. In fact, transport
can be interpreted as occurring in streamtubes as discussed above. Only with distance
from the inlet, particles start sampling the medium structure and heterogeneity. This
means in terms of the number of times particles pass an inclusion, and the trapping times
experienced. Remarkably, sampling is sufficiently efficient due to the random nature of
the medium that the upscaled CTRW model reproduces the primary peak of first arrival
and secondary peaks that correspond to different numbers of trapping events. This means,
particles sample along single streamlines a representative part of the medium statistics.

The breakthrough curves shown in figure 14 are measured in a medium whose lateral
extension comprises 28	c, this means, the particles injected over the medium cross-section
sample from the start a representative part of the medium heterogeneity, both in terms
of the spatial structure and in terms of the trapping time statistics. Thus, the upscaled
CTRW model predicts the direct simulation data already at short distances from the inlet.
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FIGURE 13. Comparison of the breakthrough curves (a–c) and complementary cumulative
breakthrough curves (d–f ) of the CTRW model (4.1) (solid lines) to the numerical simulations
(dots) for a random arrangement of inclusions with Lx = 387	c, Ly = 3.8	c, κ = 0.01 and
χ = 0.3. The curves are measures at increasing distance from the inlet. The CTRW models
uses the parameters (velocity in the matrix, mean number of trapping events) measured at the
outlet. The mean number of trapping events is rescaled for the intermediate distances.

0 20 40 60 80 100 120 140 160 180 200
t

10�c

28�c
56�c
84�c

0 20 40 60 80 100 120 140 160 180 200
t

10–6

10–5

10–4

10–3

10–2

10–1

100

10–5

10–4

10–3

10–2

10–1

100
xc
2�c

f (t) F(t)

(a) (b)

FIGURE 14. Comparison of the breakthrough curves (a) and complementary cumulative
breakthrough curves (b) of the CTRW model (4.1) (solid lines) to the numerical simulations
(dots) for a random arrangement of inclusions with Lx = 84	c, Ly = 28	c, κ = 0.01 and χ = 0.2
for an injection line of size equal to the domain height. The curves are measured at different
distances from the inlet.
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It provides good predictions for the first arrival, and also, as in figure 13 for the secondary
peaks.

5. Conclusions

We studied in this paper the advective transport of solutes in an idealized heterogeneous
porous medium consisting of a homogeneous background material with low permeability
circular inclusions. In such media the distribution of flow, and solute if injected uniformly,
between the matrix and the low permeability inclusions is given by the permeability ratio
provided that the inclusion density is not very high. While velocity in the matrix depends
on fraction of the area covered by the inclusions, the mean velocity in the inclusions
follows a log-normal distribution.

Transport is characterized by breakthrough curves whose shape evolves as the medium is
sampled. At short distance from the injection inlet, or when the injection length is smaller
than the domain, the breakthrough curve has a wavy shape that reflects the trapping of
particles at the inclusions. This curve can be interpreted as transport through streamtubes
with different velocities. As the distance, or injection length, grows, the properties of the
medium are better sampled and the curve becomes smoother. Particles arrive gradually
at the control plane, which reflects the tortuosity of the streamlines that go through the
matrix. The better sampling of the velocity distribution in the inclusions makes the tail of
the curve also smoother. These features are common to the behaviour of the ADE (2.6).
However, the shape of the curves cannot be predicted with a macrodispersion coefficient.
The ADE overestimates concentration at early times and underestimates it at late times.
Unrealistic values of the dispersion coefficient are obtained from the variance of the
breakthrough times (see table 1). This is particularly accentuated when the medium is
undersampled.

The problem with the representation of variable travel times as macrodispersion can be
illustrated with the results of Eames & Bush (1999). In their analysis, the macrodispersion
coefficient derived for a finite permeability ratio κ diverges in the limit κ → 0. However,
if the inclusions are impermeable from the beginning, the macrodispersion coefficient is
finite. The latter captures the effect of tortuous streamlines in the background material. If
inclusions are considered permeable and κ is very high, the macrodispersion coefficient
also captures the trapping in the inclusions. As long as the inclusions are permeable, there
is a probability that solute gets into an inclusion. If inside the inclusion, solute is slowed
down, which leads to a tailing of the breakthrough curve. The lower the permeability ratio,
the stronger the tailing due to the longer delay time. Therefore, in the limit of a ratio of
zero, the tail gets infinitely long. The effect that the probability to get into an inclusion also
goes to zero does not counteract the infinitely long trapping time. As the macrodispersion
coefficient is obtained from the total solute distribution in the domain, a retention in an
inclusion for infinite time leads to a diverging macrodispersion coefficient. In case that the
inclusions are impermeable from the beginning, there is no transport through inclusions
that could cause tailing. Therefore, the macrodispersion coefficient is finite. The behaviour
is inherent to assuming an advection dispersion equation for the upscaled model.

We developed an upscaled transport model using a Lagrangian framework. The main
assumption of the model is that the medium structure is ergodic. Therefore the model
performance improves, as the particles sample a larger part of the medium heterogeneity.
This is the case either when the particles travel a long distance from the inlet or when the
injection length is long, so that the medium properties are explored even at short distance
from the inlet.
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The CTRW model developed has solid predictability capabilities because it is
parameterized by measurable medium properties. The CTRW model is parameterized by
the trapping rate, which we observed can be characterized by a Poisson distribution whose
trapping rate (number of trapping events per distance) is inversely proportional to the mean
separation between inclusions, the velocity in the matrix, which is well approximated by a
function of the area covered by the inclusions (figure 6), and the velocity distribution inside
the inclusions. The mean velocity inside the inclusions follows a log-normal distribution,
which needs further investigation. So does the Poisson distribution of trapping events,
which constitutes an important part of the upscaled model with possible applications to
more general scenarios. Furthermore, we assumed constant porosity and considered a 2-D
scenario. We anticipate that for 3-D geometries and variable porosity, the trapping rate and
velocity distribution may change, and that otherwise the derived model remains valid.

The upscaled model was also formulated in an equivalent mobile–immobile memory
function model. The memory function is determined by the trapping time distribution and
for the same reasons as outlined above for the CTRW model, predictable from information
about parameters and structure of the porous medium. The memory function in our
setting describes tailing of breakthrough curves due to advective transport through circular
inclusions with low permeability. To generalize it towards media with inclusions with a
distribution of permeability values or sizes, is straight forward, if appropriate models for
the velocity distribution inside of the inclusions can be formulated.

Purely advective transport was here considered as a limiting case for advective–diffusive
transport. The other limiting case, purely diffusive transport inside of inclusions, has been
studied and mobile–immobile models are well established for it. In a next step it would be
necessary to consider the combined effect of advective and diffusive transport inside of
inclusions, and to derive predictive mobile–immobile memory function models based on
the models for pure advection and for pure diffusion.
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Appendix A. Upscaling

We note that the number nL of inclusions within a distance L between inlet and outlet is
a Poissonian random variable. We set the average time spent mobile equal to

s = L
vm
. (A 1)
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Thus we can set L = vms and ns ≡ nL. Accordingly, we set the immobile time τim(s) after
the mobile time s has passed equal to

τim(s) =
ns∑

i=1

(
	i

vi
− 	i

vm

)
, (A 2)

where the distance 	i travelled across an inclusion are distributed according to (3.4). The
inclusion velocity vin is lognormally distributed, see § 3.2.1. The second term under the
sum compensates for the fact that the average mobile time accounts for the full distance
L and not only for the distance L −∑ns

i=1 	i a particle moves in the matrix. With this
reasoning, we obtain expression (4.1b) for the clock time t(s).

Next we consider expression (4.1d) for the Laplace transform of the distribution ψ(t|s)
of clock time t(s). It can be written as

ψ(t|s) =
〈
δ

(
t − s −

ns∑
i=1

τi

)〉
, (A 3)

which we can expand as

ψ(t|s) =
∞∑

n=0

〈
δ

(
t − s −

n∑
i=1

τi

)
δn,ns

〉
=

∞∑
n=0

〈
δ

(
t − s −

n∑
i=1

τi

)〉
pn(s), (A 4)

where pn(s) is the Poisson distribution

pn(s) = (kvms)n exp(−kvms)
n!

. (A 5)

The Laplace transform of (A 4) is

ψ∗(λ|s) = exp (−λs)
∞∑

n=0

〈
exp

(
−λ

n∑
i=1

τi

)〉
pn(s), (A 6)

which can be written as

ψ∗(λ|	c) = exp (−λs)
∞∑

n=0

ψ∗
f (λ)

npn(s) (A 7)

because the τi are independent identically distributed random numbers. Inserting now
expression (A 5) for the Poisson distribution gives

ψ∗(λ|s) = exp (−λs)
∞∑

n=0

ψ∗
f (λ)

n (kvms)n exp(−kvms)
n!

. (A 8)

The exponential sum can be evaluated explicitly and thus

ψ∗(λ|s) = exp(−λs − kvms[1 − ψ∗
f (λ)]). (A 9)

The concentration distribution in the CTRW framework can be written as

c(x, t) = 〈δ[t − t(s)]〉 =
∫ ∞

0
ds c0(x, s)h(s, t), (A 10)
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where we defined

c0(x, s)〈= δ[x − x(s)]〉, h(x, s) = 〈δ[s − s(t)]〉. (A 11a,b)

The distribution c0(x, s) satisfies the advection–dispersion equation

∂c0(x, s)
∂s

+ vm
∂c0(x, s)
∂x

− Dm
∂2c0(x, s)
∂x2

= 0. (A 12)

The distribution h(s, t) of the renewal process s(t) = max(s|t(s) ≤ t) satisfies∫ s

0
ds h(s, t) =

∫ ∞

t
dt′ ψ(t′|s). (A 13)

Thus, the concentration c(x, t) can be written as

c(x, t) =
∫ ∞

0
ds c0(x, s)

∂

∂s

∫ ∞

t
dt′ ψ(t′|s). (A 14)

This equation can be written in Laplace space as

c∗(x, λ) =
∫ ∞

0
ds c0(x, s)

∂

∂s
1 − ψ∗(λ|s)

λ
. (A 15)

Inserting expression (A 9) for ψ∗(λ|s) gives

c∗(x, λ) = {
λ+ kvm[1 − ψ∗

f (λ)]
} ∫ ∞

0
ds c0(x, s)ψ∗(λ|s). (A 16)

On the other hand, integration of (A 15) by parts gives

λc∗(x, λ) = −
∫ ∞

0
ds
∂c0(x, s)
∂s

[1 − ψ∗(λ|s)] = δ(x)+
∫ ∞

0
ds
∂c0(x, s)
∂s

ψ∗(λ|s),
(A 17)

where c0(x, s = 0) = δ(x). Equation (A 12) implies that the right side can be written as

λc∗(x, λ) = δ(x)+
[
+vm

∂

∂x
− Dm

∂2

∂x2

] ∫ ∞

0
ds c0(x, s)ψ∗(λ|s). (A 18)

Using now expression (A 16) on the right side of this expression in order to eliminate
c0(x, s) in favour of c∗(x, λ) gives

λc∗(x, λ) = δ(x)+
[
+vm

∂

∂x
− Dm

∂2

∂x2

]
c∗(x, λ)

λ− kvm[1 − ψ∗
f (λ)]

. (A 19)

We define now the mobile concentration c∗
m(x, λ) as

c∗
m(x, λ) = c∗(x, λ)

λ+ kvm[1 − ψ∗
f (λ)]

. (A 20)

Thus, we obtain for the mobile concentration c∗
m(x, s) the governing equation

λc∗
m(x, λ)+ λϕ∗(λ)c∗

m(x, λ) = δ(x)+
[
+vm

∂

∂x
− Dm

∂2

∂x2

]
c∗

m(x, λ), (A 21)
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where we defined the memory function

ϕ∗(λ) = kvm
1 − ψ∗

f (λ)

λ
. (A 22)

Furthermore, we can now define the immobile concentration c∗
im(x, λ) as

c∗
im(x, λ) = kvm[1 − ψ∗

f (λ)]c
∗
m(x, λ). (A 23)

The inverse Laplace transform of this expression is given by (4.2b).
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