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Abstract

We introduce the class of MAT-free hyperplane arrangements which is based
on the Multiple Addition Theorem by Abe, Barakat, Cuntz, Hoge, and Terao. We
also investigate the closely related class of MAT2-free arrangements based on a
recent generalization of the Multiple Addition Theorem by Abe and Terao. We
give classifications of the irreducible complex reflection arrangements which are
MAT-free respectively MAT2-free. Furthermore, we ask some questions concerning
relations to other classes of free arrangements.

Mathematics Subject Classifications: 52C35, 51F15, 20F55, 14N20, 05B35,
32S22

1 Introduction

A hyperplane arrangement A is a finite set of hyperplanes in a finite dimensional vector
space V ∼= K` where K is some field. The intersection lattice L(A) of A encodes its
combinatorial properties. It is a main theme in the study of hyperplane arrangements to
link algebraic properties of A with the combinatorics of L(A).

The algebraic property of freeness of a hyperplane arrangement A was first studied by
Saito [Sai80] and Terao [Ter80a]. In fact, it turns out that freeness of A imposes strong
combinatorial constraints on L(A): by Terao’s Factorization Theorem [OT92, Thm. 4.137]
its characteristic polynomial factors over the integers. Conversely, sufficiently strong con-
ditions on L(A) imply the freeness of A. One of the main tools to derive such conditions
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is Terao’s Addition-Deletion Theorem 8. It motivates the class of inductively free ar-
rangements (see Definition 9). In this class the freeness of A is combinatorial, i.e. it is
completely determined by L(A) (cf. Definition 5). Recently, a remarkable generalization
of the Addition-Deletion theorem was obtained by Abe. His Division Theorem [Abe16,
Thm. 1.1] motivates the class of divisionally free arrangements. In this class freeness is a
combinatorial property too.

Despite having these useful tools at hand, it is still a major open problem, known
as Terao’s Conjecture, whether in general the freeness of A actually depends only on
L(A), provided the field K is fixed (see [Zie90] for a counterexample when one fixes L(A)
but changes the field). We should also mention at this point the very recent results by
Abe further examining Addition-Deletion constructions together with divisional freeness
[Abe18b], [Abe18a].

A variation of the addition part of the Addition-Deletion theorem 8 was obtained by
Abe, Barakat, Cuntz, Hoge, and Terao in [ABC+16]: the Multiple Addition Theorem
12 (MAT for short). Using this theorem, the authors gave a new uniform proof of the
Kostant-Macdonald-Shapiro-Steinberg formula for the exponents of a Weyl group. In the
same way the Addition-Theorem defines the class of inductively free arrangements, it is
now natural to consider the class MF of those free arrangements, called MAT-free, which
can be build inductively using the MAT (Definition 13). It is not hard to see (Lemma
18) that MAT-freeness only depends on L(A). In this paper, we investigate classes of
MAT-free arrangements beyond the classes considered in [ABC+16].

Complex reflection groups (classified by Shephard and Todd [ST54]) play an important
role in the study of hyperplane arrangements: many interesting examples and counterex-
amples are related or derived from the reflection arrangementA(W ) of a complex reflection
group W . It was proven by Terao [Ter80b] that reflection arrangements are always free.
There has been a series of investigations dealing with reflection arrangements and their
connection to the aforementioned combinatorial classes of free arrangements (e.g. [BC12],
[HR15], [Abe16]). Therefore, it is natural to study reflection arrangements in conjunction
with the new class of MAT-free arrangements.

Our main result is the following.

Theorem 1. Except for the arrangement A(G32), an irreducible reflection arrangement is
MAT-free if and only if it is inductively free. The arrangement A(G32) is inductively free
but not MAT-free. Thus every reflection arrangement is MAT-free except the reflection
arrangements of the imprimitive reflection groups G(e, e, `), e > 2, ` > 2 and of the
reflection groups

G24, G27, G29, G31, G32, G33, G34.

A further generalization of the MAT 12 was very recently obtained by Abe and Terao
[AT19]: the Multiple Addition Theorem 2 14 (MAT2 for short). Again, one might con-
sider the inductively defined class of arrangements which can be build from the empty
arrangement using this more general tool, i.e. the class MF′ of MAT2-free arrangements
(Definition 15). By definition, this class contains the class of MAT-free arrangements.
Regarding reflection arrangements we have the following:
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Theorem 2. Let A = A(W ) be an irreducible reflection arrangement. Then A is MAT2-
free if and only if it is MAT-free.

In contrast to (irreducible) reflection arrangements, in general the class of MAT-free
arrangements is properly contained in the class of MAT2-free arrangements (see Proposi-
tion 28).

Based on our classification of MAT-free (MAT2-free) reflection arrangements and other
known examples ([ABC+16], [CRS19]) we arrive at the following question:

Question 3. Is every MAT-free (MAT2-free) arrangement inductively free?

In [CRS19] the authors proved that all ideal subarrangements of a Weyl arrangement
are inductively free by extensive computer calculations. A positive answer to Question 3
would directly imply their result and yield a uniform proof (cf. [CRS19, Rem. 1.5(d)]).

Looking at the class of divisionally free arrangements which properly contains the class
of inductively free arrangements [Abe16, Thm. 4.4] a further natural question is:

Question 4. Is every MAT-free (MAT2-free) arrangement divisionally free?

This article is organized as follows: in Section 2 we briefly recall some notions and
results about hyperplane arrangements and free arrangements used throughout our expo-
sition. In Section 3 we give an alternative characterization of MAT-freeness and two easy
necessary conditions for MAT/MAT2-freeness. Furthermore, we comment on the relation
of the two classes MF and MF′ and on the product construction. Section 4 and Section
5 contain the proofs of Theorem 1 and Theorem 2. In the last Section 6 we comment on
Question 3 and further problems connected with MAT-freeness.

2 Hyperplane arrangements and free arrangements

Let A be a hyperplane arrangement in V ∼= K` where K is some field. If A is empty, then
it is denoted by Φ`.

The intersection lattice L(A) of A consists of all intersections of elements of A in-
cluding V as the empty intersection. Indeed, with the partial order by reverse inclusion
L(A) is a geometric lattice [OT92, Lem. 2.3]. The rank rk(A) of A is defined as the
codimension of the intersection of all hyperplanes in A.

If x1, . . . , x` is a basis of V ∗, to explicitly give a hyperplane we use the notation
(a1, . . . , a`)

⊥ := ker(a1x1 + · · ·+ a`x`).

Definition 5. Let C be a class of arrangements and let A ∈ C. If for all arrangements B
with L(B) ∼= L(A), (where A and B do not have to be defined over the same field), we
have B ∈ C, then the class C is called combinatorial.

If C is a combinatorial class of arrangements such that every arrangement in C is free
than A ∈ C is called combinatorially free.
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For X ∈ L(A) the localization AX of A at X is defined by:

AX := {H ∈ A | X ⊆ H},

and the restriction AX of A to X is defined by:

AX := {X ∩H | H ∈ A \ AX}.

Let A1 and A2 be two arrangements in V1 respectively V2. Then their product A1×A2

is defined as the arrangement in V = V1 ⊕ V2 consisting of the following hyperplanes:

A1 ×A2 := {H1 ⊕ V2 | H1 ∈ A1} ∪ {V1 ⊕H2 | H2 ∈ A2}.

We note the following facts about products (cf. [OT92, Ch. 2]):

• |A1 ×A2| = |A1|+ |A2|.

• L(A1 ×A2) = {X1 ⊕X2 | X1 ∈ L(A1) and X2 ∈ L(A2)}.

• (A1 ×A2)
X = AX1

1 ×AX2
2 if X = X1 ⊕X2 with Xi ∈ L(Ai).

Let S = S(V ∗) be the symmetric algebra of the dual space. We fix a basis x1, . . . , x`
for V ∗ and identify S with the polynomial ring K[x1, . . . , x`]. The algebra S is equipped
with the grading by polynomial degree: S =

⊕
p∈Z Sp, where Sp is the set of homogeneous

polynomials of degree p (Sp = {0} for p < 0).
A K-linear map θ : S → S which satisfies θ(fg) = θ(f)g + fθ(g) is called a K-

derivation. Let Der(S) be the S-module of K-derivations of S. It is a free S-module
with basis D1, . . . , D` where Di is the partial derivation ∂/∂xi. We say that θ ∈ Der(S)
is homogeneous of polynomial degree p provided θ =

∑`
i=1 fiDi with fi ∈ Sp for each

1 6 i 6 `. In this case we write pdeg θ = p. We obtain a Z-grading for the S-module
Der(S): Der(S) =

⊕
p∈Z Der(S)p.

Definition 6. For H ∈ A we fix αH ∈ V ∗ with H = ker(αH). The module of A-
derivations is defined by

D(A) := {θ ∈ Der(S) | θ(αH) ∈ αHS for all H ∈ A}.

We say that A is free if the module of A-derivations is a free S-module.

If A is a free arrangement we may choose a homogeneous basis {θ1, . . . , θ`} for D(A).
Then the polynomial degrees of the θi are called the exponents of A and they are uniquely
determined by A, [OT92, Def. 4.25]. We write exp(A) := (pdeg θ1, . . ., pdeg θ`). Note
that the empty arrangement Φ` is free with exp(Φ`) = (0, . . . , 0) ∈ Z`. If d1, . . . , d` ∈ Z
with d1 6 d2 6 · · · 6 d` we write (d1, . . . , d`)6.

The notion of freeness is compatible with products of arrangements:
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Proposition 7 ([OT92, Prop. 4.28]). Let A = A1×A2 be a product of two arrangements.
Then A is free if and only if both A1 and A2 are free. In this case if exp(Ai) = (di1, . . . , d

i
`i

)
for i = 1, 2 then

exp(A) = (d11, . . . , d
1
`1
, d21, . . . , d

2
`2

).

The following theorem provides a useful tool to prove the freeness of arrangements.

Theorem 8 (Addition-Deletion [OT92, Thm. 4.51]). Let A be a hyperplane arrangement
and H0 ∈ A. We call (A,A′ = A \ {H0},A′′ = AH0) a triple of arrangements. Any two
of the following statements imply the third:

1. A is free with exp(A) = (b1, . . . , bl−1, b`),

2. A′ is free with exp(A′) = (b1, . . . , b`−1, b` − 1),

3. A′′ is free with exp(A′′) = (b1, . . . , b`−1).

The preceding theorem motivates the following definition.

Definition 9 ([OT92, Def. 4.53]). The class IF of inductively free arrangements is the
smallest class of arrangements which satisfies

1. the empty arrangement Φ` of rank ` is in IF for ` > 0,

2. if there exists a hyperplane H0 ∈ A such that A′′ ∈ IF, A′ ∈ IF, and exp(A′′) ⊂
exp(A′), then A also belongs to IF.

Here (A,A′,A′′) = (A,A \ {H0},AH0) is a triple as in Theorem 8.

The class IF is easily seen to be combinatorial [CH15, Lem. 2.5].
The following result was a major step in the investigation of freeness properties for

reflection arrangements.

Theorem 10 ([HR15, Thm. 1.1], [BC12, Thm. 5.14]). For W a finite complex reflection
group, the reflection arrangement A(W ) is inductively free if and only if W does not admit
an irreducible factor isomorphic to a monomial group G(r, r, `) for r, ` > 3, G24, G27, G29,
G31, G33, or G34.

Definition 11 (cf. [AT16]). Let A be an arrangement with |A| = n. We say that A has
a free filtration if there are subarrangements

∅ = A0 ( A1 ( · · · ( An−1 ( An = A

such that |Ai| = i and Ai is free for all 1 6 i 6 n.

Very recently, Abe [Abe18a] introduced the class AF of additionally free arrangements.
Arrangements in AF are by definition exactly the arrangements admitting a free filtra-
tion. Furthermore, it is a direct consequence of [Abe18a, Thm. 1.4] that the class AF is
combinatorial.
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3 Multiple Addition Theorem

The following theorem presented in [ABC+16] is a variant of the addition part ((2) and
(3) imply (1)) of Theorem 8.

Theorem 12 (Multiple Addition Theorem (MAT)). Let A′ be a free arrangement with
exp(A′) = (d1, . . . , d`)6 and 1 6 p 6 ` the multiplicity of the highest exponent, i.e.,

d`−p < d`−p+1 = · · · = d` =: d.

Let H1, . . . , Hq be hyperplanes with Hi 6∈ A′ for i = 1, . . . , q. Define

A′′j := (A′ ∪ {Hj})Hj = {H ∩Hj | H ∈ A′}, j = 1, . . . , q.

Assume that the following three conditions are satisfied:

(1) X := H1 ∩ · · · ∩Hq is q-codimensional.

(2) X 6⊆
⋃
H∈A′ H.

(3) |A′| − |A′′j | = d for 1 6 j 6 q.

Then q 6 p and A := A′ ∪ {H1, . . . , Hq} is free with exp(A) = (d1, . . . , d`−q, d + 1,
. . . , d+ 1)6.

Note that in contrast to Theorem 8 no freeness condition on the restriction is needed
to conclude the freeness of A in Theorem 12. The MAT motivates the following definition.

Definition 13. The class MF of MAT-free arrangements is the smallest class of arrange-
ments subject to

(i) Φ` belongs to MF, for every ` > 0;

(ii) if A′ ∈ MF with exp(A′) = (d1, . . . , d`)6 and 1 6 p 6 ` the multiplicity of the
highest exponent d = d`, and if H1, . . . , Hq, q 6 p are hyperplanes with Hi 6∈ A′ for
i = 1, . . . , q such that:

(1) X := H1 ∩ · · · ∩Hq is q-codimensional,

(2) X 6⊆
⋃
H∈A′ H,

(3) |A′| − |(A′ ∪ {Hj})Hj | = d, for 1 6 j 6 q,

then A := A′ ∪ {H1, . . . , Hq} also belongs to MF and has exponents exp(A) =
(d1, . . . , d`−q, d+ 1, . . . , d+ 1)6.

Abe and Terao [AT19] proved the following generalization of Theorem 12:
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Theorem 14 (Multiple Addition Theorem 2 (MAT2), [AT19, Thm. 1.4]). Assume that
A′ is a free arrangement with exp(A′) = (d1, d2, . . . , d`)6. Let

t :=

{
min{i | di 6= 0} if A′ 6= Φ`

0 if A′ = Φ`

.

For Hs, . . . , H` /∈ A with s > t, define A′′j := (A′ ∪ {Hj})Hj , A := A′ ∪ {Hs, . . . , H`} and
assume the following conditions:

(1) X :=
⋂`
i=sHi is (`− s+ 1)-codimensional,

(2) X 6⊂
⋃
K∈A′ K, and

(3) |A′| − |A′′j | = dj for j = s, . . . , `.

Then A is free with exponents (d1, d2, . . . , ds−1, ds + 1, . . . , d` + 1)6. Moreover, there is a
basis θ1, θ2, . . . , θs−1, ηs, . . . , η` for D(A′) such that deg θi = di, deg ηj = dj, θi ∈ D(A)
and ηj ∈ D(A \ {Hj}) for all i and j.

This in turn motivates:

Definition 15. The class MF′ of MAT2-free arrangements is the smallest class of ar-
rangements subject to

(i) Φ` belongs to MF′, for every ` > 0;

(ii) if A′ ∈MF′ with exp(A′) = (d1, d2, . . . , d`)6 and if Hs, . . . , H` are hyperplanes with
Hi 6∈ A′ for i = s, . . . , `, where

s >

{
min{i | di 6= 0} if A′ 6= Φ`

0 if A′ = Φ`

,

and with

(1) X := Hs ∩ · · · ∩H` is (`− s+ 1)-codimensional,

(2) X 6⊆
⋃
H∈A′ H,

(3) |A′| − |(A′ ∪ {Hj})Hj | = dj for s 6 j 6 `,

then A := A′ ∪ {Hs, . . . , H`} also belongs to MF′ and has exponents exp(A) =
(d1, . . . , ds−1, ds + 1, . . . , d` + 1)6.

We note the following:

Remark 16. 1. We have MF ⊆MF′.

2. If A is a free arrangement with exp(A) = (0, . . . , 0, 1, . . . , 1, d, . . . , d)6, i.e. A has
only two distinct exponents 6= 0, then it is clear from the definitions that A is
MAT2-free if and only if A is MAT-free.
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Example 17. 1. If rk(A) = 2 then A is MAT-free and therefore MAT2-free too.

2. Every ideal subarrangement of a Weyl arrangement is MAT-free and therefore also
MAT2-free, [ABC+16].

Lemma 18. The classes MF and MF′ are combinatorial.

Proof. The class of all empty arrangements is combinatorial and contained in MF. Let
A ∈ MF (A ∈ MF′). Since conditions (1)–(3) in Definition 13 (respectively Definition
15) only depend on L(A) the claim follows. See also [AT19, Thm. 5.1].

If an arrangement A is MAT-free, the MAT-steps yield a partition of A whose dual
partition gives the exponents of A. Vice versa, the existence of such a partition suffices
for the MAT-freeness of the arrangement:

Lemma 19. Let A be an `-arrangement. Then A is MAT-free if and only if there exists
a partition π = (π1| · · · |πn) of A where for all 0 6 k 6 n− 1,

(1) rk(πk+1) = |πk+1|,

(2) ∩H∈πk+1
H = Xk+1 *

⋃
H′∈Ak

H ′ where Ak =
⋃k
i=1 πi,

(3) |Ak| − |(Ak ∪ {H})H | = k for all H ∈ πk+1.

In this case A has exponents exp(A) = (d1, . . . , d`)6 with di = |{k | |πk| > `− i+ 1}|.

Proof. This is immediate from the definition.

Definition 20. If π is a partition as in Lemma 19 then π is called an MAT-partition for
A.

If we have chosen a linear ordering A = {H1, . . . , Hm} of the hyperplanes in A,
to specify the partition π, we give the corresponding ordered set partition of [m] =
{1, . . . ,m}.

Example 21. Supersolvable arrangements, a proper subclass of inductively free arrange-
ments [OT92, Thm. 4.58], are not necessarily MAT2-free: an easy calculation shows that
the arrangement denoted A(10, 1) in [Grü09] is supersolvable but not MAT2-free. In
particular A(10, 1) is neither MAT-free.

Restrictions of MAT2-free (MAT-free) arrangements are not necessarily MAT2-free
(MAT-free):

Example 22. Let A = A(E6) be the Weyl arrangement of the Weyl group of type E6.
Then A is MAT-free by Example 17(2). Let H ∈ A. A simple calculation (with the
computer) shows that AH is not MAT2-free.

We have two simple necessary conditions for MAT-freeness respectively MAT2-free-
ness. The first one is:
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Lemma 23. Let A be a non-empty MAT2-free arrangement with exponents exp(A) =
(d1, . . . , d`)6. Then there is an H ∈ A such that |A|− |AH | = d`. In particular, the same
holds, if A is MAT-free.

Proof. By definition there are Hq, . . . , H` ∈ A, 2 6 q such that A′ := A \ {Hq, . . . , H`}
is MAT2-free. Furthermore by condition (1) the hyperplanes Hq, . . . , H` are linearly
independent. Let H := H`. By condition (2), we have X = ∩`i=qHi * ∪H′∈A′H ′ and thus
|AH | = |(A′ ∪ {H})H |+ `− q. Now

|A′| − |(A′ ∪ {H})H | = d` − 1

by condition (3) and hence

|A| − |AH | = |A′|+ `− q + 1− |(A′ ∪ {H})H | − `+ q = d`.

The second one is:

Lemma 24. Let A be an MAT2-free arrangement. Then A has a free filtration, i.e. A is
additionally free. In particular, the same is true, if A is MAT-free.

Proof. Let A be MAT2-free. Then by definition there are Hq, . . . , H` ∈ A such that A′ :=
A\{Hq, . . . , H`} is MAT2-free and conditions (1)–(3) are satisfied. Set B := {Hq, . . . , H`}.
By [AT19, Cor. 3.2] for all C ⊆ B the arrangement A′ ∪ C is free. Hence by induction A
has a free filtration.

An MAT2-free but not MAT-free arrangement

We now provide an example of an arrangement which is MAT2-free but not MAT-free.

Example 25. Let A be the arrangement defined by

A := {H1, . . . , H10}
:= {(1, 0, 0)⊥, (0, 1, 0)⊥, (0, 0, 1)⊥, (1, 1, 0)⊥, (1, 2, 0)⊥, (0, 1, 1)⊥,

(1, 3, 0)⊥, (1, 1, 1)⊥, (2, 3, 0)⊥, (1, 3, 1)⊥}.

It is not hard to see that A is inductively free (actually supersolvable) with exp(A) =
(1, 4, 5).

Proposition 26. The arrangement A from Example 25 is MAT2-free.

Proof. Let B1 = {H1, H2, H3}, B2 = {H4}, B3 = {H5, H6}, B4 = {H7, H8}, B5 =
{H9, H10}, and Ak = ∪ki=1Bi for 1 6 k 6 5. It is clear that A1 is MAT2-free. A
simple linear algebra computation shows that the addition of Bi+1 to Ai for 1 6 i 6 4
satisfies Condition (1)–(3) of Definition 15. Hence A = A5 is MAT2-free.

Proposition 27. The arrangement A from Example 25 is not MAT-free.
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Proof. Suppose A is MAT-free and π = (π1, . . . , π5) is an MAT-partition. Since exp(A) =
(1, 4, 5) the last block π5 has to be a singleton, i.e. π5 = {H}. By Condition (3) of Lemma
19 we have |AH | = 5 and the only hyperplane with this property is H9 = (2, 3, 0)⊥.
Similarly π4 can only contain one of H3, H6, H8, H10. But looking at their intersections
we see that all of the latter are contained in another hyperplane of A, e.g. H3 ∩H8 ⊆ H4.
This contradicts Condition (2). Hence A is not MAT-free.

As a direct consequence we get:

Proposition 28. We have
MF ( MF′.

Products of MAT-free and MAT2-free arrangements

As for freeness in general (Proposition 7), the product construction is compatible with
the notion of MAT-freeness:

Theorem 29. Let A = A1×A2 be a product of two arrangements. Then A ∈MF if and
only if A1 ∈MF and A2 ∈MF.

Proof. Assume Ai is an arrangement in the vector space Vi of dimension `i for i = 1, 2.
We argue by induction on |A|. If |A| = 0, i.e. A1 = Φ`1 , and A2 = Φ`2 then the
statement is clear. Assume A1 is MAT-free with exp(A1) = (d11, . . . , d

1
`1

)6 and A2 is
MAT-free with exp(A1) = (d21, . . . , d

2
`2

)6. Then without loss of generality d := d1`1 > d2`2 .
Let qi be the multiplicity of the exponent d in exp(Ai) for i = 1, 2 (note that q2 = 0
if d > d2`2). Then since Ai is MAT-free there are hyperplanes {H i

1, . . . , H
i
qi
} ⊆ Ai such

that A′i := Ai \ {H i
1, . . . , H

i
qi
} is MAT-free, i.e. they satisfy Conditions (1)–(3) from

Definition 13. Now by the induction hypothesis A′ = A′1 × A′2 is MAT-free and clearly
{H1

1 ⊕ V2, . . . , H1
q1
⊕ V2} ∪ {V1 ⊕H2

1 , . . . , V1 ⊕H2
q2
} satisfy Conditions (1)–(3). Hence A

is MAT-free.
Conversely assume A is MAT-free with exp(A) = (d1, . . . , d`)6. By Proposition 7 both

factors A1 and A2 are free with exp(Ai) = (di1, . . . , d
i
`i

)6 and without loss of generality
d` = d1`1 > d2`2 . Assume further that qi is the multiplicity of d` in exp(Ai) and q is the
multiplicity of d` in exp(A), i.e. q = q1+q2. There are hyperplanes {H1, . . . , Hq} ⊂ A such
that A′ = A\{H1, . . . , Hq} is MAT-free with exp(A′) = (d1, . . . , d`−q, d`−q+1− 1, . . . , d`−
1)6, and Conditions (1)–(3) are satisfied. We may further assume that Hi = H1

i ⊕ V2
for 1 6 i 6 q1 and Hj = V1 ⊕ H2

j−q1 for q1 + 1 6 j 6 q. Let A′i = Ai \ {H i
1, . . . , H

i
qi
}

for i = 1, 2. Note that if d` > d2`2 we have q2 = 0 and A′2 = A2. But at least we have
A′1 ( A1. Then A′ = A′1×A′2, |A′| < |A| and by the induction hypothesis A′1 and A′2 are
MAT-free and Conditions (1) and (2) are clearly satified for A′i and {H i

1, . . . , H
i
qi
}. But

since

d` − 1 = |A′| − |(A′ ∪ {Hi})Hi |
= |A′1|+ |A′2| − (|(A1 ∪ {H1

i })H
1
i |+ |A′2|)

= |A′1| − |(A1 ∪ {H1
i })H

1
i |
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for 1 6 i 6 q1 and

d` − 1 = |A′| − |(A′ ∪ {Hj})Hj |

= |A′1|+ |A′2| − (|(A1 ∪ {H2
j−q1})

H2
j−q1 |+ |A′2|)

= |A′1| − |(A1 ∪ {H2
j−q1})

H2
j−q1 |

for q1 + 1 6 j 6 q2, Condition (3) is also satisfied for A′1 and A′2. Hence both A1 and A2

are MAT-free.

Altenatively, one can prove Theorem 29 by observing that MAT-Partitions for A1 and
A2 are directly obtained from an MAT-Partition for A: take the non-empty factors of
each block in the same order, and vise versa: take the products of the blocks of partitions
for A1 and A2.

Remark 30. Thanks to the preceding theorem, our classification of MAT-free irreducible
reflection arrangements proved in the next 2 sections gives actually a classification of all
MAT-free reflection arrangements: a reflection arrangement A(W ) is MAT-free if and
only if it has no irreducible factor isomorphic to one of the non-MAT-free irreducible
reflection arrangements listed in Theorem 1.

In contrast to MAT-freeness, the weaker notion of MAT2-freeness is not compatible
with products as the following example shows:

Example 31. Let A1 be the MAT2-free but not MAT-free arrangement of Example 25
with exponents exp(A1) = (1, 4, 5). Let ζ = 1

2
(−1 + i

√
3) be a primitive cube root of

unity, and let A2 be the arrangement defined by the following linear forms:

A2 := {H2
1 , . . . , H

2
10}

:= {(1, 0, 0)⊥, (0, 1, 0)⊥, (0, 0, 1)⊥, (1,−ζ, 0)⊥, (1, 0,−ζ)⊥

(1,−ζ2, 0)⊥, (1, 0,−ζ2)⊥, (1,−1, 0)⊥, (1, 0,−1)⊥, (0, 1,−ζ)⊥}.

A linear algebra computation shows that π = (1, 2, 3|4, 5|6, 7|8, 9|10) is an MAT-partition
for A2. In particular A2 is MAT2-free with exp(A2) = (1, 4, 5).

Now by Proposition 7 the product A := A1×A2 is free with exp(A) = (1, 1, 4, 4, 5, 5).
Suppose A is MAT2-free. Then either there are hyperplanes H1 ∈ A1 and H2 ∈ A2 such
that A′ = A′1 × A′2 is MAT2-free with exponents exp(A′) = (1, 1, 4, 4, 4, 4) where A′i =
Ai \ {Hi}. Or there are hyperplanes H1

1 , H
1
2 ∈ A1, H

2
1 , H

2
2 ∈ A2 such that A′ = A′1 ×A′2

is MAT2-free with exponents exp(A′) = (1, 1, 3, 3, 4, 4) where A′i = Ai \ {H i
1, H

i
2}.

In the first case A′ is actually MAT-free by Remark 16. But then by Theorem 29 A′2
is MAT-free and A2 is MAT-free too which is a contradiction.

In the second case H1
1 ⊕ V2, H

1
2 ⊕ V2, V1 ⊕ H2

1 , V1 ⊕ H2
2 satisfy Condition (1)–(3) of

Definition 15. But by Condition (3) we have

|A′1| − |(A′1 ∪ {H1
1})H

1
1 | = 4
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and
|A′1| − |(A′1 ∪ {H1

2})H
1
2 | = 3.

But an easy calculation shows that there are no two hyperplanes in A1 with this property
and which also satisfy Condition (2)–(3). This is a contradiction and hence A = A1×A2

is not MAT2-free.

4 MAT-free imprimitive reflection groups

Definition 32 ([OT92, §6.4]). Let x1, . . . , x` be a basis of V ∗. Let ζ = exp(2πi
r

) (r ∈ N)
be a primitive r-th root of unity. Define the linear forms αij(ζ

k) ∈ V ∗ by

αij(ζ
k) = xi − ζkxj

and the hyperplanes
Hij(ζ

k) = ker(αij(ζ
k)).

for 1 6 i, j 6 ` and 1 6 k 6 r. Then the reflection arrangement of the imprimitive
complex reflection group G(r, 1, `) can be defined by:

A(G(r, 1, `)) = {ker(xi) | 1 6 i 6 `}∪̇{Hij(ζ
k) | 1 6 i < j 6 `, 1 6 k 6 r}.

Proposition 33. Let A = A(G(r, 1, `)). Let

π11 := {ker(xi) | 1 6 i 6 `},

and
πij := {H(i−1)k(ζ

j) | i 6 k 6 `},
for 2 6 i 6 `, 1 6 j 6 r. Then

π = (πij) 16i6`,
16j6mi

, mi =

{
1 for i = 1

r for 2 6 i 6 `

= (π11|π21| · · · |π2r| · · · |π`r)

is an MAT-partition of A. In particular A ∈MF with exponents

exp(A) = (1, r + 1, 2r + 1, . . . , (l − 1)r + 1).

Proof. We verify Conditions (1)–(3) from Lemma 19 in turn.
Let

Aij := (
⋃

16a6i−1,
16b6ma

πab) ∪ (
⋃

16b6j

πib)

and
A′ij := (

⋃
16a6i−1,
16b6ma

πab) ∪ (
⋃

16b6j−1

πib).
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For π11 we clearly have |π11| = rk(π11) = `. Similarly for 2 6 i 6 `, 1 6 j 6 r we have
|πij| = rk(πij) = `− i+ 1 since all the defining linear forms α(i−1)k(ζ

j) (i 6 k 6 `) for the
hyperplanes in πij are linearly independent. Thus Condition (1) holds.

Furthermore, the forms {αac(ζb)}∪̇{α(i−1)k(ζ
j) | i 6 k 6 `} are linearly independent

for all 1 6 a 6 i − 1, 1 6 b 6 j − 1, and a + 1 6 c 6 `, i.e. ∩H∈πijH =: Xij * H for all
H ∈ A′ij. Hence Condition (2) is also satisfied.

To verify Condition (3) let H = H(i−1)k(ζ
j) ∈ πij for a fixed 1 6 k 6 r. We show

|A′ij| − (j + (i− 2)r) = |(A′ij)H |.

Let H ′a := H(i−1)k(ζ
a) ∈ A′ij, 1 6 a 6 j − 1. Then

B := (A′ij)H∩H′a = {ker(xi−1), ker(xk)}∪̇{H ′b | 1 6 b 6 j − 1},

and rk(B) = 2. So all H ′ ∈ B give the same intersection with H and |B| = j + 1. For
H ′ = Ha(i−1)(ζ

b) ∈ A′ij with a 6 i− 2, and 1 6 b 6 r we have

C := (A′ij)H∩H′ = {H ′, Hak(ζ
(j + b))},

|C| = 2 and there are exactly (i − 2)r such H ′. All other H ′′ ∈ A′ij intersect H simply.
Hence

|(A′ij)H)| = |A′ij| − (|B| − 1)− (i− 2)r(|C| − 1)

= |A′ij| − j − (i− 2)r,

or |A′ij| − |(A′ij)H)| =
∑i−1

a=1mi + (j − 1). This finishes the proof.

Proposition 34. Let A = A(G(r, r, `)) (r, ` > 3). Then A is not MAT2-free. In partic-
ular A is not MAT-free.

Proof. By [OT92, Prop. 6.85] the arrangement A is free with exp(A) = (d1, . . . , d`) =
(1, r+1, 2r+1, . . . , (`−2)r+1, (`−1)(r−1)). In particular we have (`−1)(r−1) = d` and

|A| = `(`−1)
2

r. But for all H ∈ A by [OT92, Prop. 6.82, 6.85] we have |AH | = (`−1)(`−2)
2

r+1.
Hence |A|− |AH | = (`− 1)r− 1 6= d` and by Lemma 23 the arrangement A is not MAT2-
free.

Theorem 35. Let A = A(W ) be the reflection arrangement of the imprimitive complex
reflection group W = G(r, e, `) (r, ` > 3). Then A is MAT-free if and only if it is MAT2-
free if and only if e 6= r.

Proof. Since A = A(G(r, 1, `)) if and only if r 6= e, this is Proposition 33 and Proposi-
tion 34.
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5 MAT-free exceptional complex reflection groups

To prove the MAT-freeness of one of the following reflection arrangements, we explicitly
give a realization by linear forms.

First note that if W is an exceptional Weyl group, or a group of rank 6 2, then by
Example 17 A(W ) is MAT-free.

Proposition 36. Let A be the reflection arrangement of the reflection group H3 (G23).
Then A is MAT-free. In particular A is MAT2-free.

Proof. Let τ = 1+
√
5

2
be the golden ratio and τ ′ = 1/τ its reciprocal. The arrangement A

can be defined by the following linear forms:

A = {H1, . . . , H15}
= {(1, 0, 0)⊥, (0, 1, 0)⊥, (0, 0, 1)⊥, (1, τ, τ ′)⊥, (τ ′, 1, τ)⊥, (τ, τ ′, 1)⊥,

(1,−τ, τ ′)⊥, (τ ′, 1,−τ)⊥, (−τ, τ ′, 1)⊥, (1, τ,−τ ′)⊥, (−τ ′, 1, τ)⊥,

(τ,−τ ′, 1)⊥, (1,−τ,−τ ′)⊥, (−τ ′, 1,−τ)⊥, (−τ,−τ ′, 1)⊥}.

With this linear ordering of the hyperplanes the partition

π = (13, 14, 15|10, 12|5, 6|4, 11|8, 9|7|3|2|1)

satisfies Conditions (1)–(3) of Lemma 19 as one can verify by an easy linear algebra
computation. Hence π is an MAT-partition and A is MAT-free.

Proposition 37. Let A be the reflection arrangement of the complex reflection group G24.
Then A is not MAT2-free. In particular A is not MAT-free.

Proof. The arrangement A is free with exp(A) = (1, 9, 11) and |A| − |AH | = 13 for all
H ∈ A by [OT92, Tab. C.5]. Hence by Lemma 23 A is not MAT2-free.

Proposition 38. Let A be the reflection arrangement of the complex reflection group G25.
Then A is MAT-free. In particular A is MAT2-free.

Proof. Let ζ = 1
2
(−1 + i

√
3) be a primitive cube root of unity. The reflecting hyperplanes

of A can be defined by the following linear forms (cf. [LT09, Ch. 8, 5.3]):

A = {H1, . . . , H12}
= {(1, 0, 0)⊥, (0, 1, 0)⊥, (0, 0, 1)⊥, (1, 1, 1)⊥, (1, 1, ζ)⊥, (1, 1, ζ2)⊥,

(1, ζ, 1)⊥, (1, ζ, ζ)⊥, (1, ζ, ζ2)⊥, (1, ζ2, 1)⊥, (1, ζ2, ζ)⊥, (1, ζ2, ζ2)⊥}.

With this linear ordering of the hyperplanes the partition

π = (7, 4, 3|8, 5|9, 6|2, 1|10|11|12)

satisfies the three conditions of Lemma 19 as one can easily verify by a linear algebra
computation. Hence π is an MAT-partition and A is MAT-free.
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Proposition 39. Let A be the reflection arrangement of the complex reflection group G26.
Then A is MAT-free. In particular A is MAT2-free.

Proof. Let ζ = 1
2
(−1+ i

√
3) be a primitive cube root of unity. The reflection arrangement

A is the union of the reflecting hyperplanes of A(G25) and A(G(3, 3, 3)) (cf. [LT09, Ch. 8,
5.5]). In particular the hyperplanes contained in A can be defined by the following linear
forms:

A = {H1, . . . , H21}
= {(1, 0, 0)⊥, (0, 1, 0)⊥, (0, 0, 1)⊥, (1, 1, 1)⊥, (1, 1, ζ)⊥, (1, 1, ζ2)⊥,

(1, ζ, 1)⊥, (1, ζ, ζ)⊥, (1, ζ, ζ2)⊥, (1, ζ2, 1)⊥, (1, ζ2, ζ)⊥, (1, ζ2, ζ2)⊥,

(1,−ζ, 0)⊥, (1,−ζ2, 0)⊥, (1,−1, 0)⊥, (1, 0,−ζ)⊥, (1, 0,−ζ2)⊥,
(1, 0,−1)⊥, (0, 1,−ζ)⊥, (0, 1,−ζ2)⊥, (0, 1,−1)⊥}.

With this linear ordering of the hyperplanes the partition

π = (12, 19, 20|16, 18|13, 15|17, 21|10, 14|6, 11|8, 9|7|5|4|3|2|1)

satisfies the three conditions of Lemma 19 as one can verify by a standard linear algebra
computation. Hence π is an MAT-partition and A is MAT-free.

Proposition 40. Let A be the reflection arrangement of the complex reflection group G27.
Then A is not MAT2-free. In particular A is not MAT-free.

Proof. The arrangement A is free with exp(A) = (1, 19, 25) and |A| − |AH | = 29 for all
H ∈ A by [OT92, Tab. C.8]. Hence by Lemma 23 A is not MAT2-free.

Proposition 41. Let A be the reflection arrangement of the reflection group H4 (G30).
Then A is MAT-free. In particular A is MAT2-free.

Proof. Let τ = 1+
√
5

2
be the golden ratio and τ ′ = 1/τ its reciprocal. The arrangement A

can be defined by the following linear forms:

A = {H1, . . . , H60}
= {(1, 0, 0, 0)⊥, (0, 1, 0, 0)⊥, (0, 0, 1, 0)⊥, (0, 0, 0, 1)⊥, (1, τ, τ ′, 0)⊥,

(1, 0, τ, τ ′)⊥, (1, τ ′, 0, τ)⊥, (τ, 1, 0, τ ′)⊥, (τ ′, 1, τ, 0)⊥, (0, 1, τ ′, τ)⊥,

(τ, τ ′, 1, 0)⊥, (0, τ, 1, τ ′)⊥, (τ ′, 0, 1, τ)⊥, (τ, 0, τ ′, 1)⊥, (τ ′, τ, 0, 1)⊥,

(0, τ ′, τ, 1)⊥, (−1, τ, τ ′, 0)⊥, (1,−τ, τ ′, 0)⊥, (1, τ,−τ ′, 0)⊥, (−1, 0, τ, τ ′)⊥,

(1, 0,−τ, τ ′)⊥, (1, 0, τ,−τ ′)⊥, (−1, τ ′, 0, τ)⊥, (1,−τ ′, 0, τ)⊥, (1, τ ′, 0,−τ)⊥,

(−τ, 1, 0, τ ′)⊥, (τ,−1, 0, τ ′)⊥, (τ, 1, 0,−τ ′)⊥, (−τ ′, 1, τ, 0)⊥, (τ ′,−1, τ, 0)⊥,

(τ ′, 1,−τ, 0)⊥, (0,−1, τ ′, τ)⊥, (0, 1,−τ ′, τ)⊥, (0, 1, τ ′,−τ)⊥, (−τ, τ ′, 1, 0)⊥,

(τ,−τ ′, 1, 0)⊥, (τ, τ ′,−1, 0)⊥, (0,−τ, 1, τ ′)⊥, (0, τ,−1, τ ′)⊥, (0, τ, 1,−τ ′)⊥,
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(−τ ′, 0, 1, τ)⊥, (τ ′, 0,−1, τ)⊥, (τ ′, 0, 1,−τ)⊥, (−τ, 0, τ ′, 1)⊥, (τ, 0,−τ ′, 1)⊥,

(τ, 0, τ ′,−1)⊥, (−τ ′, τ, 0, 1)⊥, (τ ′,−τ, 0, 1)⊥, (τ ′, τ, 0,−1)⊥, (0,−τ ′, τ, 1)⊥,

(0, τ ′,−τ, 1)⊥, (0, τ ′, τ,−1)⊥, (1, 1, 1, 1)⊥, (−1, 1, 1, 1)⊥, (1,−1, 1, 1)⊥,

(1, 1,−1, 1)⊥, (1, 1, 1,−1)⊥, (−1,−1, 1, 1)⊥, (−1, 1,−1, 1)⊥, (−1, 1, 1,−1)⊥}.

With this linear ordering of the hyperplanes the partition

π = ( 31, 43, 48, 54|29, 38, 51|23, 34, 58|18, 20, 25|17, 59, 60

|21, 47, 52|39, 41, 44|26, 32, 49|30, 35, 40|2, 3, 42|33, 46, 50

|4, 37|27, 57|19, 24|55, 56|10, 22|12, 45|16, 28|15, 36

|53|14|13|11|9|8|7|6|5|1)

satisfies Conditions (1)–(3) of Lemma 19 as one can verify with a linear algebra computa-
tion. Hence π is an MAT-partition and A is MAT-free. In particular A is MAT2-free.

We recall the following result about free filtration subarrangements of A(G31):

Proposition 42 ([Müc17, Pro. 3.8]). Let A := A(G31) be the reflection arrangement
of the finite complex reflection group G31. Let Ã be a minimal (w.r.t. the number of
hyperplanes) free filtration subarrangement. Then Ã ∼= A(G29).

Corollary 43. Let A be the reflection arrangement of one of the complex reflection groups
G29 or G31. Then A has no free filtration.

Proposition 44. Let A be the reflection arrangement of one of the complex reflection
groups G29 or G31. Then A is not MAT2-free. In particular A is not MAT-free.

Proof. By Corollary 43 both arrangements have no free filtration and hence are not MAT2-
free by Lemma 24.

Proposition 45. Let A be the reflection arrangement of the complex reflection group G32.
Then A is not MAT-free and also not MAT2-free.

Proof. Up to symmetry of the intersection lattice there are exactly 9 different choices of
a basis, where a basis is a subarrangement B ⊆ A with |B| = r(B) = r(A) = 4. Suppose
that A is MAT-free. Then the first block in an MAT-partition for A has to be one of
these bases. But a computer calculation shows that non of these bases may be extended
to an MAT-partition for A. Hence A is not MAT-free. A similar but more cumbersome
calculation shows that A is also not MAT2-free.

Proposition 46. Let A be the reflection arrangement of one of the complex reflection
group G33 or G34. Then A is not MAT2-free. In particular A is not MAT-free.

Proof. First, let A = A(G33). Then exp(A) = (1, 7, 9, 13, 15) by [OT92, Tab. C.14]. But
|A| − |AH | = 17 for all H ∈ A also by [OT92, Tab. C.14]. So A is not MAT2-free by
Lemma 23.

Similarly A = A(G34) is free with exp(A) = (1, 13, 19, 25, 31, 37) by [OT92, Tab. C.17]
and |A| − |AH | = 41 for all H ∈ A. Hence A is not MAT2-free by Lemma 23.

Comparing with Theorem 10 finishes the proofs of Theorem 1 and Theorem 2.
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6 Further remarks on MAT-freeness

In their very recent note [HR19] Hoge and Röhrle confirmed a conjecture by Abe [Abe18a]
by providing two examples B, D of arrangements, related to the exceptional reflection
arrangement A(E7), which are additionally free but not divisionally free and in particular
also not inductively free. The arrangements have exponents exp(B) = (1, 5, 5, 5, 5, 5, 5)
and exp(D) = (1, 5, 5, 5, 5). Since both arrangements have only 2 different exponents
by Remark 16 they are MAT-free if and only if they are MAT2-free. Now a computer
calculation shows that both arrangements are not MAT-free and hence also not MAT2-
free. In particular they provide no negative answer to Question 3 and Question 4.

Several computer experiments suggest that similar to the poset obtained from the
positive roots of a Weyl group giving rise to an MAT-partition (cf. Example 17) MAT-
free arrangements might in general satisfy a certain poset structure:

Problem 47. Can MAT-freeness be characterized by the existence of a partial order on
the hyperplanes, generalizing the classical partial order on the positive roots of a Weyl
group?

Recall that by Example 22 the restriction AH is in general not MAT-free (MAT2-free)
if the arrangement A is MAT-free (MAT2-free). But regarding localizations there is the
following:

Problem 48. Is AX MAT-free (MAT2-free) for all X ∈ L(A) provided A is MAT-free
(MAT2-free)?

Last but not least, related to the previous problem, our investigated examples suggest
the following:

Problem 49. Suppose A′ and A = A′ ∪ {H} are free arrangements such that exp(A′) =
(d1, . . . , d`)6 and exp(A) = (d1, . . . , d`−1, d`+1)6. Let X ∈ L(A) with X ⊆ H. By [OT92,
Thm. 4.37] both localizations A′X and AX are free. If exp(A′X) = (c1, . . . , cr)6 is it true
that exp(A) = (c1, . . . , cr−1, cr + 1)6, i.e. if we only increase the highest exponent is the
same true for all localizations?

Note that the answer is yes if we only look at localizations of rank 6 2. Our proceed-
ing investigation of Problem 47 suggests that this should be true at least for MAT-free
arrangements. Furthermore, a positive answer to Problem 49 would imply (with a bit
more work) a positive answer to Problem 48.
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