

Detection of gravitational-wave signals from binary neutron star mergers
using machine learning

Marlin B. Schäfer ,1,2 Frank Ohme ,1,2 and Alexander H. Nitz 1,2

1Max-Planck-Institut für Gravitationsphysik, Albert-Einstein-Institut, D-30167 Hannover, Germany
2Leibniz Universität Hannover, D-30167 Hannover, Germany

(Received 26 June 2020; accepted 13 August 2020; published 14 September 2020; corrected 2 October 2020)

As two neutron stars merge, they emit gravitational waves that can potentially be detected by Earth-
bound detectors. Matched-filtering-based algorithms have traditionally been used to extract quiet signals
embedded in noise. We introduce a novel neural-network-based machine learning algorithm that uses time
series strain data from gravitational-wave detectors to detect signals from nonspinning binary neutron star
mergers. For the Advanced LIGO design sensitivity, our network has an average sensitive distance of
130 Mpc at a false-alarm rate of ten per month. Compared to other state-of-the-art machine learning
algorithms, we find an improvement by a factor of 4 in sensitivity to signals with a signal-to-noise ratio
between 8 and 15. However, this approach is not yet competitive with traditional matched-filtering-based
methods. A conservative estimate indicates that our algorithm introduces on average 10.2 s of latency
between signal arrival and generating an alert. We give an exact description of our testing procedure, which
can be applied not only to machine-learning-based algorithms but all other search algorithms as well. We
thereby improve the ability to compare machine learning and classical searches.

DOI: 10.1103/PhysRevD.102.063015

I. INTRODUCTION

The first direct detection of a gravitational-wave (GW)
signal on September 14, 2015 [1] marked the dawn of
gravitational-wave astronomy. During the first two observing
runs, the LIGO and VIRGO Scientific Collaboration found
11 GWs [2] from coalescing compact binary systems. Two
independent reanalyses of the data have discovered a further
set of events, three of which are found to be of astronomical
originwith probabilitypastro > 0.5 byboth studies [3–5]. The
third observing run has identified tens of new GW candidate
events [6] and so far reported four newGWdetections [7–10].
With detector sensitivity improving further for future observ-
ing runs and KAGRA [11,12] joining the detector network,
the rate of detections is expected to grow [13].
The most sensitive low-latency searches are tailored

specifically to signals from coalescing compact binaries
and use a fixed number of precalculated templates [14].
Each template is a unique combination of a waveform

model and source parameters. These searches work by
calculating an inner product between the data and every
template to produce a signal-to-noise ratio (SNR) time

series. This process is known as matched filtering and is
mathematically proven to be optimal for finding signals
submerged in stationary, Gaussian noise [15].
If the SNR of a candidate exceeds a preselected threshold

and the candidate is not excluded due to other factors, such
as poor data quality or an implausible time of arrival
difference between two different detectors, the low-latency
search algorithms return a candidate event [16–19].
The computational cost of a matched-filter search scales

linearly with the number of templates used. This number
will grow with the improving detector sensitivity at low
frequencies [20] of planned updates [13]. If currently
neglected effects such as precession [21–24], higher-order
modes [25–28], or eccentricity [29] are taken into account,
even more templates would be required. More computa-
tionally efficient algorithms would enable searching for
sources which cannot currently be targeted due to a fixed
computational budget.
When detecting GWs from compact binary systems that

contain at least one neutron star, the latency of the detection
pipeline is critical, as these systems may produce electro-
magnetic (EM) signals. To detect these EM counterparts
and maximize observation time, observatories need to be
notified of possible events quickly. The number of false
alarms, on the contrary, should be minimized, as telescope
time is expensive. Current low-latency searches introduce a
latency of Oð10Þ s and operate at a false-alarm rate (FAR)
of one per 2 months [14,16–19]. Any new search needs to
meet or exceed these standards to be considered for
production use.

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI. Open access publication funded by the Max Planck
Society.

PHYSICAL REVIEW D 102, 063015 (2020)

2470-0010=2020=102(6)=063015(14) 063015-1 Published by the American Physical Society

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Institutionelles Repositorium der Leibniz Universität Hannover

https://core.ac.uk/display/395673558?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://orcid.org/0000-0002-6990-0627
https://orcid.org/0000-0003-0493-5607
https://orcid.org/0000-0002-1850-4587
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.102.063015&domain=pdf&date_stamp=2020-10-02
https://doi.org/10.1103/PhysRevD.102.063015
https://doi.org/10.1103/PhysRevD.102.063015
https://doi.org/10.1103/PhysRevD.102.063015
https://doi.org/10.1103/PhysRevD.102.063015
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

Neural network (NN) machine learning algorithms are
an interesting alternative to traditional search algorithms, as
they have shown great improvements in many tasks such as
image recognition [30], sound generation [31], or certain
board and computer games [32,33]. NNs have also already
found some application in the context of GW data analysis
[34–42]. A few notable examples are the classification of
non-Gaussian noise transients [34], the search for continu-
ous GWs [35], and denoising of detector data to recover
injected signals [36]. One key advantage of NNs is their
computational efficiency once trained. Most of the com-
putational cost is shifted to the training stage, resulting in
very quick evaluation. The application of NNs to GW
searches might therefore offer a way to reduce the computa-
tional cost of low-latency searches.
The authors of Refs. [43,44] were the first to directly

apply deep NNs to time series strain data to detect GWs
from binary black hole (BBH) mergers. They tested the
sensitivity of these searches at estimated FARsOð103Þ per
month.1 Both analyses are able to closely reproduce the
performance of a matched-filter search at these FARs at a
fraction of the computational cost. The NNs excel at high
FARs and low SNR. Both networks detected all signals
with a SNR larger than 10 at estimated FARs ofOð104Þ per
month. These results are a promising first step, but the
algorithms would need to be tested at the required FARs of
one per 2 months on real detector data to demonstrate an
improvement over established methods.
Starting from their network, we reshaped the architecture

significantly to optimize it to detect signals from binary
neutron star (BNS) mergers. Our network-based search
estimates the SNR and a quantity we call the p score for the
given input data. The p score is a measure for how likely the
data are to contain a GW signal. It is explicitly not a
probability. The network is trained on simulated data of
nonspinning binary neutron star systems with masses
between 1.2 and 1.6 solar masses, isotropically distributed
over the sky. All noise is stationary and Gaussian and as
such does not contain any transients or other contamina-
tions that are present in real detector data [45–47]. The
previous works [43,44] have used data from a single
detector. To improve the performance of our search, we
expand the algorithm to work with data from two detectors.
Using multiple detectors may also enable real-time esti-
mates of the sky position in the future.
Detecting BNS signals using a NN is inherently more

difficult than finding a BBH signal, as (i) the GWof a BNS
reaches higher frequencies and (ii) spends more time in the
sensitive bands of the detectors. Because of (i), the data
need to be sampled at a high rate. Combined with (ii), this

leads to a massive increase of data that need to be analyzed.
As NNs tend to be difficult to optimize when the input data
have many samples, it is not feasible to naïvely use the full
time series sampled at a single rate as input. To solve this
problem, we sample different parts of the signal at different
rates. Frequencies emitted during the early inspiral are low
and evolve slowly (see Fig. 1). High sample rates are
necessary only during the final few cycles, where frequen-
cies are high and grow rapidly.
The FARs probed by Refs. [43,44] are orders of magni-

tude larger than what is required for low-latency pipelines.
Additionally, these FARs were estimated on a discrete set of
samples which either contain a signal or consist of pure
noise. The waveforms within these samples are always
aligned in a similar way, and no signal is contained only
partially in the analyzed segment. As the authors of Ref. [48]
point out, FARs estimated on a discrete set of samples may
for these reasons not be representative of a realistic search
which has to work with a continuous stream of data.
We propose a standardized way of evaluating NN FARs

and sensitivities. To calculate these metrics, we generate a
long stretch of continuous time series data which contains
many injected GWs that are roughly separated by the
average duration of a BNS signal. Our network is applied to
these data, and points of interest are clustered into events.
All results we provide are derived from an analysis of
≈101 days of simulated continuous data. We test the
network down to FARs of 0.6 per month and find sensitive
distances of 130 Mpc down to FARs of ten per month.
We compare our search to the currently in-use low-latency

detection pipeline PyCBC Live [18] and the results given by
the authors of Ref. [49], who were the first to classify BNS
signals with a machine learning algorithm. We find an

FIG. 1. The top panel shows the strain evolution of an example
GW from a BNS merger in black. The bottom panel shows the
corresponding frequency evolution in black. The colored boxes
represent parts of the signal which we sample at different rates.
The height of these boxes in the bottom panel represents the
Nyquist frequency of the sample rate which is used for each part.
To fully resolve the signal, the black curve must stay inside the
colored boxes of the bottom panel at all times.

1We estimate this FAR by multiplying the false-alarm prob-
abilities given in Refs. [43,44] by the respective number of
samples times the duration by which the position of the peak
amplitude is varied within the training data samples.

SCHÄFER, OHME, and NITZ PHYS. REV. D 102, 063015 (2020)

063015-2

improvement in sensitivity of close to 400% for BNS signals
with a SNR in the range of provided training examples
(8 ≤ SNR ≤ 15) over the previous state-of-the-art machine
learning algorithm. This makes our algorithm the best
machine learning algorithm for detecting BNS signals at
low SNRs. We are, however, not yet able to match the
performance of template-based searches. To do so, we need
to either increase the sensitive radius of our search at the
lowest FARs by a factor of 6 or double the sensitive radius
while lowering the FAR by an order of magnitude.
The trained network is public and can be found in the

associated data release [50]. At the same location, we also
provide example code of how to apply it to long stretches of
data and a function that generates injections as they are
used to derive FARs and sensitivities in this work.
The contents of this paper are structured as follows:

Sec. II describes how search algorithms should be evalu-
ated. It gives the general concepts in the first part and
details on how to apply these concepts to NNs in the second
part. Section III explains the multirate sampling and
describes the data used for both training and validation
of the network. The following Sec. IV gives an overview of
the architecture and how this architecture is trained and
tested. We present our results in Sec. V, of which we draw
conclusions in Sec. VI.

II. FALSE-ALARM RATE AND SENSITIVITY OF
GRAVITATIONAL-WAVE SEARCH

ALGORITHMS

There are two important metrics that have been used to
evaluate gravitational-wave searches in the past. These two
are the FAR of the search and the corresponding sensitivity
[51]. In principle, these metrics can directly be applied to
GW searches that utilize NNs. As pointed out by the
authors of Ref. [48], in practice the discrete nature of the
data that are used to train these networks has lead to some
divergence between the terminology used for NN and
traditional search algorithms.

A. Calculation for general search algorithms

The main goal of a search algorithm is to detect GW
signals in real data, where the input is a nearly continuous
strain time series. A search, therefore, must produce a list of
times of candidate events and rank them by a ranking
statistic R. The ranking statistic is a number which
signifies how likely the data are to contain a signal. To
evaluate the performance of an algorithm, it is applied to
mock data containing known injections, i.e., additive GW
signals with known parameters. The events generated from
these data are compared to the list of injections and used to
determine which injected signals were found, which
missed, and which events are false alarms.
Any event that is reported by the search needs to be

assigned a FAR to express the confidence in its detection.
For a given valueR, the FAR is the number of false alarms

with a ranking statistic of at least R per unit time. To
estimate it on mock data, the number of false detections
exceeding a ranking statisticR is divided by the duration of
the analyzed data.
The ability of the search to recover signals is quantified

by the sensitivity which is a function of the FAR lower
bound. It is often given in terms of the fraction of recovered
injections. This fraction, however, strongly depends on
the parameter distribution of the injected signals, as the
amplitude of the signal in the detector depends on the
orientation and location of the source. Thus, the fraction
can be diminished by injecting sources at larger distances
or unfavorable orientations. A more astrophysically moti-
vated measure of sensitivity is the sensitive volume of the
search algorithm. It is an estimate of the volume around
the detector from which GW sources will be detectable.
This volume may be calculated through

VðF Þ ¼
Z

dx dΛϵðF ;x;ΛÞϕðx;ΛÞ; ð1Þ

where ϵðF ;x;ΛÞ is the efficiency of the search pipeline for
signals with FAR F , spatial coordinates x, and injection
parameters Λ. The function ϕðx;ΛÞ is a probability density
function which describes the astrophysical distribution of
signals [51]. When the distribution of injections matches
the expected astrophysical distribution (i.e., uniform in
volume, isotropic in sky location, etc.), Eq. (1) can be
estimated by

VðF Þ ≈ VðdmaxÞ
found injectionsðF Þ

total injections
; ð2Þ

where dmax is the maximal distance of injected signals,
VðdmaxÞ is the volume of a sphere with radius dmax, and the
function # found injectionsðF Þ counts the number of
detected injections with a FAR ≤ F .
We use the function volume_montecarlo of the PyCBC

software library [52] to carry out this estimation.
Current searches notify astronomers of a GWevent when

the event is assigned a FAR of at most one per 2 months
[18]. Any new search should, hence, be tested at least down
to these FARs. To resolve FARs of that scale, at least
2 months of mock data are required.
For our tests we generated 100 files, each containing

roughly 1 day of continuous data. Each file contains
independently drawn data. For easier multiprocessing, each
file is internally split into 22 chunks of duration 4096 s. We
start by generating a list of injection times, requiring that
two injections are separated by 180–220 s. The exact
separation time is chosen uniformly from this interval. To
avoid waveforms that are not completely within one chunk,
we discard any injections that are within the first or final
256 s of each chunk. For every injection time, we generate a
waveform using the inspiral-only waveform model
TaylorF2 [53–55] with a lower frequency cutoff of
25 Hz. Its parameters are drawn from the distribution

DETECTION OF GRAVITATIONAL-WAVE SIGNALS FROM … PHYS. REV. D 102, 063015 (2020)

063015-3

specified in Table I. Finally, the waveform is projected into
the frame of the LIGO-Hanford and LIGO-Livingston
detectors and added into simulated Gaussian noise such that
the peak amplitude is positioned at the injection time. All
noise is generated from the analytic estimate of the power
spectral density (PSD) of the aLIGO final design sensitivity
as provided by the software library LALSuite [56].

B. Calculation for neural network searches

A NN is a general purpose function approximator that
finds a fit for a set of example input-output pairs. This
fitting process is called training, and the example data used
are called the training set. Once trained, the network can be
applied to data that were not covered by the training set and
will evaluate the fit function at this new point. It does so
assuming that the unseen data samples originate from the
same underlying process as the training data samples. The
given output for any unseen data sample is thus an
interpolation or extrapolation of the example outputs from
the training set.
To generate FARs and sensitivities, previous works

[43,44] generated a second set of noise and signal samples
with the same duration and sample rate used in the training
set. They then applied the network to this second set of data
samples and determined FARs by counting how many
noise samples were classified as signals and sensitivities by
counting how many signal samples were classified as such.
There are two main problems with using a discrete set of

data samples to determine FARs and sensitivities. The first
stems from the structure of the data samples themselves. To
make the training process more efficient, it is necessary to
position the peak amplitude of the GW signal within a
narrow band of the data sample. When applied to real data,
this property cannot be ensured, and the assumption of the
data being similar to the training set is not well approxi-
mated. Hence, if a FAR or sensitivity is calculated on a set
where the alignment is guaranteed, it will not necessarily be
representative of the performance on realistic data. The
second problem is the required fixed duration of input data
samples. Usually, a search algorithm is applied to long

stretches of time series data to find potential signals. To
evaluate data of greater duration than the accepted input
size of the network, it is applied multiple times via a sliding
window. At each position, the output will give an estimate
if a signal is present. If this is the case, it is initially not clear
what a true positive is, as the network may predict the
presence of a signal for multiple consecutive positions,
the input window may only partially contain a signal, or the
network may jump between predicting the presence and
absence of a signal for multiple subsequent positions [48].
To generate representative FARs and sensitivities, we

propose to use mock data of much greater duration than the
input duration of the network. The network is then applied
to these data by sliding it across. The step size should at
most be half the size of the interval where peak amplitudes
of the waveforms occur in the training set. This step size
ensures that any waveform is positioned correctly for at
least one position of the network.
If the output of the network is not binary but continuous,

it can be interpreted as a ranking statistic. In this case, a
threshold can be applied to find positions where the
network predicts to have found a signal. Candidate events
are identified in the resulting time series by applying a
threshold and clustering.
Each event is assigned a specific time and ranking

statistic. The resulting list of events is compared to the
list of known injections as described in Sec. II A to
calculate FARs and sensitivities. The specifics of our
analysis and clustering algorithm are described in
Sec. IV C.
As every event needs to be assigned a ranking statistic,

we can calculate the metrics by using only events that
exceed a given threshold. Doing so for many different
values allows us to obtain the FAR as a function of the
ranking statistic threshold and, subsequently, also the
sensitivity as a function of the FAR.
We found that testing our NN on long stretches of data

and applying clustering to obtain a list of events increased
the FAR over FARs measured on a set of discrete samples at
the same detection threshold by at least a factor of 2. To
give comparable statistics, we therefore strongly recom-
mend to test networks in the way described above.

III. DATA PROCESSING

To train and evaluate the network, three disjoint datasets
with known contents are required. One of the three sets is
the training set and used to optimize the parameters of the
network. The network is usually trained on the training set
multiple times, where each complete pass is called an
epoch. After multiple epochs, the network may start to
learn specifics of the provided data samples rather than the
general structure. This behavior is called overfitting and
can be detected by monitoring the performance of the
network on a validation set. Different epochs are rated by
their performance on this second set. Ranking the different

TABLE I. The astrophysically motivated distribution of param-
eters used to generate injections. These are used to estimate the
FAR and sensitivity of the search algorithm specified in this
paper.

Parameter Uniform distribution

Component masses m1; m2 ∈ ð1.2; 1.6ÞM⊙
Spins 0
Coalescence phase Φ0 ∈ ð0; 2πÞ
Polarization Ψ ∈ ð0; 2πÞ
Inclination cos ι ∈ ð−1; 1Þ
Declination sin θ ∈ ð−1; 1Þ
Right ascension φ ∈ ð−π; πÞ
Distance d2 ∈ ð02; 4002Þ Mpc2

SCHÄFER, OHME, and NITZ PHYS. REV. D 102, 063015 (2020)

063015-4

training stages of the network in this way introduces a
selection bias and optimizes the network on the validation
set. To give unbiased results, a testing set is required. This
one should represent the data that the network will be
applied to the closest and should optimally be generated
independently from the training and validation set. To keep
results as unbiased as possible, the testing set should ideally
be analyzed only once. This section describes how an
individual data sample needs to be formatted for our
network and how the training and validation set are
generated. Details on the testing set are described in
Sec. II A.

A. Input data preparation

Previous works [43,44,57] have already successfully
classified whitened time series data for BBH signals with
a simple convolutional neural network. As input, they used
1 s of data sampled at 8192 Hz. For BBH signals, this is a
sensible choice for the duration of analyzed data, as these
signals sweep through the sensitive frequency range of the
detectors inOð1Þ s, and the chosen sample rate is sufficient
to resolve them. Signals from binary neutron star mergers,
on the other hand, spend Oð100Þ s in the sensitive band of
the detectors. Using the usual signal duration as input to the
network would lead to a hundredfold increase of data points
over the BBH case. Training a NN with this many input
samples is infeasible due to memory constraints and
optimization problems.
To reduce the number of input samples, the authors of

Ref. [49] use only the final 10 s of each signal as input. This
enables them to not only differentiate between noise and
BNS signal, but also distinguish GWs from BBH mergers.
They test an architecture, i.e., a network structure, similar
to those of Refs. [43,44] and are able to closely reproduce
their results for BBH data. Their sensitivity to BNS signals
looks very promising, but the search has yet to be tested
at realistic FARs. The short duration of the input in
comparison to the duration a BNS signal spends inside
the sensitive band of the detectors reduces the SNR
contained in the data by about 25% and, thus, limits the
sensitivity of the search.
To retain as much SNR in the data as possible while at

the same time reducing the input size to the network, we
sample 32 s of data containing a potential signal at different
rates. During the early inspiral, frequencies are low and the
frequency evolution is slow. This allows us to sample a long
stretch in the beginning at a low rate. The first 16 s are
sampled at 128 Hz, the following 8 s are sampled at 256 Hz,
and so on. The pattern continues until the final second,
which is sampled at 4096 Hz but split into two parts of
equal length. We ensure that no two sections overlap to
reduce redundant information. This method of resampling
generates seven parts containing 2048 samples each and
ensures that for every part of the signal a sufficient sample
rate is used. The number of samples is reduced by a

factor of 9 (see Fig. 1) and about 98% of the SNR is
retained.2

Rather than resampling the data directly, we first whiten
it using the analytic model aLIGOZeroDetHighPower for
the aLIGO design sensitivity PSD as provided by the
software library LALSuite [56]. Whitening of data is a
procedure where every frequency bin is reweighted by the
average power of the background noise in this bin. It
ensures that power in any frequency bin in excess of unity
is an indication for the presence of a signal. For computa-
tional efficiency during training, noise and signal samples
are whitened individually. Since the whitening procedure is
a linear operation, whitening the sum is equivalent to
whitening both parts individually. Both parts are combined
at run time on the first layer of the NN. The reason to store
them separately is an increase in the effective number of
samples which can be achieved by mixing and matching
different signals and noise samples. It also helps to improve
the efficiency of training by using the same signal template
submerged in different realizations of noise.
When evaluating real samples,we cannot trivially separate

the signal from the background and, thus, cannotwhiten each
part individually. Instead, we whiten the total signal by the
same analytic model of the PSD used for the training and
validation data. Thewhitened data are resampled and used as
the signal input. As the signal input already contains the total
signal including noise and the network sees only the sum of
both inputs, the noise input is set to zero.

B. Generating training and validation set

All signals for the training and validation set are
generated using the inspiral-only waveform model
TaylorF2 from the software library LALSuite [56] with
all parameters but the distance drawn from the distribution
given in Table I. The luminosity distance d is set indirectly
by uniformly drawing a target network SNR from the
interval [8, 15]. The waveform is first computed at a
fiducial distance of 1 Mpc with a low-frequency cutoff of
20 Hz. Then the waveform is projected onto the two
detectors Hanford and Livingston [59] and cropped to a
length of 96 s. During this step, we shift the waveform such
that the peak amplitude occurs within the final 4.25–4.75 s3

2Notice that this way of sampling the data differs from our
previous work [58] in that we dropped the lowest sample rate. We
found that for some signals a sample rate of 64 Hz for the first
32 s of a 64-s signal was not sufficient to resolve the highest
frequencies during that stage of the binary evolution and
introduced unwanted artifacts. We also sampled the PSD used
for whitening the data too coarsely in our previous work [58], and
signals were more difficult to find as a result.

3Altering the time of the peak amplitude of the waveform
during training allows the network to be less sensitive to the exact
position of the waveform within the input window. This enables
us to slide the network across long stretches of input data with a
larger step size. For this study, we chose to use an interval of 0.5 s.
It may be possible to optimize this choice, but we have not done
so here.

DETECTION OF GRAVITATIONAL-WAVE SIGNALS FROM … PHYS. REV. D 102, 063015 (2020)

063015-5

of the 96-s data segment. The exact position within this
interval is drawn uniformly. Next, we calculate the
network SNR by taking the root of the sum of the
squares of the inner product of the waveforms with them-
selves [59], weighing each frequency by the analytic PSD
aLIGOZeroDetHighPower of Ref. [56]. The waveforms are
finally scaled by multiplying with the target network SNR
and dividing by the network SNR at distance 1 Mpc.
Afterward, the data are whitened, the initial and final 4 s
are discarded to avoid filter wraparound errors, and the last
32 s of the remaining segment are resampled as described in
Sec. III A. Noise samples are simulated from the analytic
PSDused above,whitened, and resampled.As such, all noise
is stationary and Gaussian.
The training set contains 25 000 different GW signals

and 80 000 instances of noise. When training the network,
we preselect 800 000 unique combinations of signal and
noise at random and shuffle them with all 80 000 noise
samples to obtain 880 000 training samples with a 10∶1
split between signals and noise. To compensate for this
inequality, we apply sample weights of 1=10 to all signal
samples during training. Sample weights modify the loss by
reweighting contributions from the according sample.
The validation set contains 1500 different GW signals

and 8000 instances of noise. We again generate 24 000
unique combinations of signalþ noise and shuffle them
with the 8000 noise samples. This results in a validation
set that contains 32 000 samples with a 3∶1 split for
signal: noise.

IV. THE SEARCH ALGORITHM

A. Neural network architecture

When working with neural networks, the details of the
implementation of the machine learning algorithm are
mostly defined by the architecture of the network. There
is no known optimal procedure for designing a network that
works well for a given problem.
The architecture presented in this paper is highly

optimized for the problem of detecting BNS signals and
relies on the input data format described in Sec. III A. Some
of the main improvements over a standard convolutional
architecture will be more general and may be of use for
different data formats and similar problems.
We started our research by adjusting the architecture

given in Refs. [43,44] for data sampled at multiple rates, by
using one channel for every sample rate and detector
combination. In convolutional networks, channels re-
present different features of the data and are correlated
by the convolutional filters. With this as a starting point, we
made iterative improvements. The three changes that had
the greatest positive effect were the replacement of con-
volutional layers by inception modules [60], the use of a
temporal convolutional network (TCN) as a signal ampli-
fier [36,61,62], and using different stacks of inception
modules for each sample rate. A detailed description of

the evolution of the network can be found in Ref. [58].
The architecture presented here differs from an earlier
iteration presented in Ref. [58] only by removing the lowest
sample rate as input and adjusting the structure accordingly.
For computational efficiency, we provide the noise and

signal time series not as a sum but as separate inputs to the
network. They are combined on the first layer of each
parallel stack of layers (see Fig. 2). This sum is passed to a
TCN, which tries to recover the pure signal. The denoised
data are added back onto the input of the TCN to amplify
potential signals. The amplified data are preprocessed by
convolutional layers before two inception modules with
very small kernel sizes are applied. Afterward, two adjacent
stacks are concatenated and used as input to further
inception modules. The process is repeated until only a
single stack is left. This stack is reduced down to the
desired output format by applying dense layers. A high-
level overview of the architecture can be found in Fig. 2.
Inception modules are the main building block of the

network. Their use was motivated by recent developments
for image recognition tasks [30,60].
The main advantage of inception modules over convolu-

tional layers is the reduced number of parameters. In
convolutional layers, often many weights are close to zero
after training. Ideally, sparse operations would be used in
such cases. Sparse operations are, however, not computa-
tionally efficient. The idea of inception modules is to
combine many small, dense filters in parallel to form an
effective large, sparse filter. This approach allows for the
use of efficient dense operations while reducing the number
of trainable parameters at the same time [60].
The final outputs of our network are one scalar for the

SNR estimate and a tuple of length 2 estimating the p score.
The p score is a measure for how confident the network is
that the data contain a GW and the content of the
corresponding tuple is ðp score; 1 − p scoreÞ for technical
reasons. For the training and validation set, signal samples
are labeled with a p score of 1, and noise samples are
labeled with a p score of 0. The network output, on the
other hand, is not binary but continuous. We thus interpret
both the SNR and the p-score output as ranking statistics.
Alongside the two outputs described above, the network

is equipped with 13 further auxiliary outputs. The purpose
of these outputs is to prevent vanishing gradients [60] or
provide the intermediate layers with more information on
their purpose. The auxiliary outputs thus improve the
training efficiency of the network. Seven of the auxiliary
outputs are the outputs of the TCNs. They are trained using
the pure signals as the target. We found that the network is
significantly more sensitive if it cannot decide how to use
the parameters of the TCNs freely but is forced to learn to
recover the GW. Five of the remaining six outputs are taken
after all but the final concatenation layer. They receive the
injected SNR as the target. Since the output of the
concatenation layers is not a scalar, we use a few pooling

SCHÄFER, OHME, and NITZ PHYS. REV. D 102, 063015 (2020)

063015-6

FIG. 2. A high-level overview of the architecture presented in this work. Details on every block can be found in Ref. [58]. The network
takes signal and noise inputs 1–7, where each number corresponds to a different part of the resampled raw data described in Sec. III A. It
outputs an estimate of the SNR contained in the input and a p score, which rates how likely the data are to contain a BNS signal. All
auxiliary outputs that are used only for training are not shown. The network adds the noise and signal input for every resampled part
individually, and the remaining layers operate only on this sum. The output of this addition is amplified by a TCN and processed by an
inception network. Afterward, the outputs of two inception networks from adjacent sample rates are concatenated and further analyzed
by another inception network. The parallel inception networks are concatenated until only a single one remains. A few final dense layers,
which are summarized as the postprocessing block, are applied to reduce the output shape to the desired dimensions of the SNR estimate
and p score. The preprocessing block is inspired by Ref. [60] and contains a small convolutional network.

DETECTION OF GRAVITATIONAL-WAVE SIGNALS FROM … PHYS. REV. D 102, 063015 (2020)

063015-7

and dimensional reduction layers [58,63] to reduce the

output shape. The final auxiliary output is taken after the
first two inception modules of the lowest sample rate and
treated in the same way as the auxiliary outputs after the
concatenation layers. The network is trained as a complete
unit, and the loss takes into account all 15 outputs.
The complexity of this architecture comes at the cost of

memory size and speed. The model has 2.5 million train-
able parameters. The computational cost is a problem when
optimizing the architecture, as it is costly to compare two
different designs. We therefore suspect that the details of
this architecture can be further optimized.

B. Training

The network requires 17 GB of memory to be trained
with a minibatch size of 32. We used an NVIDIA V-100
GPU with 32 GB of video memory for training. On this
hardware, each training epoch plus the subsequent vali-
dation step takes roughly 5 h to complete. Because of time
constraints and instabilities during training, the network is
trained for 24 epochs only. The instabilities are discussed
below and manifest as a sudden drop of the sensitivity
during training.
The total loss of the network is the weighted sum of the

individual losses for each of the outputs discussed in
Ref. IVA. All auxiliary outputs are assigned a mean
squared error as the individual loss and given a weight
of 0.1. The same loss function is used for the SNR output,
but it receives a weight of 1. Finally, the p-score output uses
the categorical cross entropy and a weight of 0.5. The total
loss is thus given by

Lðytrue; ypredÞ ¼ MSEðSNRtarget; SNRpredÞ

þ 1

2
σðp scoretarget; p scorepredÞ

þ 1

10

X13
i¼1

MSEðyi;target; yi;predÞ; ð3Þ

where MSEðx; yÞ ≔ ðx − yÞ2 is the mean squared error,
σðx; yÞ ≔ −

P
2
i¼1 xi logðyiÞ is the categorical cross

entropy, a subscript “target” indicates the known target
values, a subscript “pred” indicates the network output, and
the yi are the auxiliary outputs. The different weights are
used to inform the optimization algorithm on the impor-
tance of each individual output. The auxiliary outputs are
used only during training and discarded during inference.
Their value is unimportant as long as using them improves
the performance of the SNR and p-score output. We use the
default implementation of the “Adam” optimizer from the
machine learning library Keras [64] to train the entire
network using the total loss. Altering the initial learning
rate in either direction reduced the sensitivity of the
network.

During training, we monitor an estimate of the sensitivity
of our network. To do so, we calculate the true positive rate
on the validation set, by choosing the maximum predicted
SNR and p-score value of all noise samples from the
validation set as a threshold. All signals that are estimated
with a ranking statistic higher than these thresholds are
counted as detected. The number of detected signals is then
divided by the total number of signal samples to get a true
positive rate. We rank the epochs based on this estimate of
the sensitivity and thoroughly test the best one.
We found that the network experienced strong over-

fitting. While the training loss fell by 25% from the initial
to the last epoch, the validation loss doubled. If the loss and
the sensitivity were strongly correlated, it would be
expected that the sensitivity drops with an increasing
validation loss. We find the opposite and reach the highest
true-positive rate of 16.5% on epoch 21. At this point, the
validation loss grew by 75% over the initial epoch. The loss
in use is, therefore, at best loosely correlated with the
sensitivity. Designing a loss function that is better suited to
the problem might improve the search further. The strong
overfitting also indicates the possibility to simplify the
architecture significantly without a strong loss of sensitivity
or improving the performance of the current architecture by
increasing the size of the training set significantly.
When training networks that predict if a GW signal is

present in some time series data, we found that after some
number of epochs the sensitivity estimate drops to zero for
both the SNR and the p-score output. Initially, it often
recovers on the next epoch, but drops become more
frequent. After some point, the network does not seem
to recover at all and the estimated sensitivity stays at zero.
This behavior is caused by noise samples that are estimated
with very high confidence to contain a GW. These are
sometimes appointed physically nonsensical SNR values.
The number of these misclassified noise samples is low,
and, thus, the impact on the total loss is negligible.
Furthermore, the values that are given for these noise
samples grow over time, which is the reason why the drop
occurs only after training for a while. In principle, these
outliers may be vetoed by their SNR value at the cost of
some sensitivity at low FARs. We disfavor this approach, as
it introduces artificial constraints on the search algorithm. It
is currently unknown what causes the predicted values of
the ranking statistics to grow or how the issue can be
resolved. To avoid problems, we stop training before the
sensitivity estimate stays at zero for many consecutive
epochs.
Previous works [43,49] have reported that a training

strategy known as curriculum learning improved the
performance of their networks. During curriculum learning,
the network is trained on high SNR examples in the
beginning, with training samples getting more difficult to
differentiate from noise during later epochs. We tested this
approach during early stages of our research and could not

SCHÄFER, OHME, and NITZ PHYS. REV. D 102, 063015 (2020)

063015-8

find a significant impact on the performance of our net-
works at the time. We, therefore, did not pursue the strategy
during later stages of our project. However, we do suspect
that curriculum learning might help to mediate the defi-
ciencies of our network for loud signals.

C. Testing on binary neutron star injections

To evaluate the sensitivity of the network, we use the test
data described in Sec. II A. It contains 8 794 112 s ≈
101 days of data split into 100 files. With this dataset,
FARs down to≈0.3 false alarms per month can be resolved.
To analyze continuous stretches of data, we use a sliding

window of duration 72 s with a step size of 0.25 s. We
chose the step size based on the training set in which the
exact position of the peak amplitude was varied by�0.25 s
around a central position.
The content of every window is whitened by the analytic

model PSD of the advanced LIGO detectors as provided
by the software library LALSuite [56]. To avoid filter-
wraparound errors, the initial and final 4 s are discarded.
The final 32 s of the remaining data are resampled and
formatted as described in Sec. III A.
To assign the correct times to each window, the align-

ment of the waveforms in the training set needs to be
considered. The central position for the peak amplitude in
the training set is set to 0.5 s from the end. If the merger
time is defined as the time of the peak amplitude of the
waveform, it will on average be positioned 31.5 s from the
first sample of the 32-s input window. Considering the 36 s
that are discarded at the beginning of each window, the first
position of a GW merger we are sensitive to is located at
67.5 s from the start of each continuous segment. The
reported sample times are, therefore,

tðnÞ ¼ tstart þ 67.5 sþ ðn − 1Þ · 0.25 s; ð4Þ

where tðnÞ is the time of the nth sample and tstart is the
starting time of the analyzed data segment.
By applying our network in this way, we obtain two time

series. One estimates the SNR at each window position,
while the other gives a p score at every step. We apply a
fixed threshold of SNR 4 and p score 0.1 to the respective
time series. Every position that exceeds the corresponding
threshold is marked. All marked positions are then clus-
tered by assuming that two marked positions are generated
by the same underlying process if they are within 1 s of
each other. The clusters are expanded until there are no
marked positions within 1 s of the boundaries of the cluster.
Each cluster is an event and assigned the time and value of
the maximum SNR or p score, respectively, inside this
cluster. An event is said to be a true positive if an injection
was placed within �3 s of the reported time. The times
used for clustering and accepting a signal as a true positive
were empirically found to work well on a different dataset
and are arbitrary choices.

V. RESULTS

A. False-alarm rate and sensitivity

The analysis of the BNS test data described in Sec. IV C
returns a list of events. Each event is assigned a ranking
statistic. We obtain the FAR as a function of the ranking
statistics SNR and p score (Fig. 3) by considering only
those events that exceed the given threshold. Subsequently,
we can generate the sensitivity as a function of the FAR
(Fig. 4). We choose a range of SNR 4–20 and p score 0.1–1
to generate these plots.
We find that the SNR estimate is able to resolve FARs

down to 0.6 per month, whereas the p-score output is able
to resolve FARs down to 12 per month. Both curves drop
steeply with the corresponding ranking statistic until they
reach a FAR of Oð10Þ. At this point, both curves level off
significantly. Our previous work [58] was able to resolve
FARs down to ≈ 30 per month and was tested on a set of
roughly half the duration used in this paper. We also
observed a change in gradient of the FAR in Ref. [58]
although at smaller ranking statistics. For the SNR output,
this change lined up well with the lower limit of the SNR

FIG. 3. The estimated FAR as a function of the threshold value
used for either output. The top panel shows the FAR of the SNR
output. The red line in this plot points out the lowest SNR of
training samples. In our previous work [58], we found a change in
gradient at this position. For the current search, this change
appears at a higher SNR. The bottom panel shows the FAR of the
p-score output. It is logarithmic and is scaled to give a sense for
the distance to p score ¼ 1.

DETECTION OF GRAVITATIONAL-WAVE SIGNALS FROM … PHYS. REV. D 102, 063015 (2020)

063015-9

contained in the training samples. This may be a hint that
the network presented in Ref. [58] successfully learned the
lower bound on the SNR in the training set.
For high FARs, both outputs show equivalent sensitiv-

ities. At low FARs, on the other hand, the SNR output is
more sensitive and has non-negligible sensitivities down to
a FAR of ten per month, where it reaches a sensitive radius
of ≈130 Mpc. The sensitivity of the p-score output
becomes negligible around a FAR of 20 per month and
also reaches a sensitive radius of ≈130 Mpc.
In our previous work [58], we observed the opposite

behavior with regards to which of the two outputs is more
sensitive at low FARs. We do not know what causes either
output to perform better than the other.
We can also observe a change in gradient in the

sensitivity curves shown in Fig. 4. The locations where
the sensitivity starts to suddenly drop steeply line up with
the point where the FAR levels off observed in Fig. 3. At
FARs below this point, the sensitivity becomes negligible
quickly.

B. Comparison to PyCBC Live

We compare our search to PyCBC Live [65], which is a
low-latency analysis and has been used in the second and
third observing runs [2,7,8,14]. The green curve in Fig. 4 is
estimated from Fig. 1 in Ref. [65] on our test set by
assuming that all injections with optimal SNR > R are
found and all others are missed. Here, R is the network
SNR reweighted by signal consistency tests corresponding
to a given FAR. At a FAR of 0.5 per month, the PyCBC

Live search has a sensitive radius of ≈245 Mpc. At a
comparable FAR of 0.6 per month, our search reaches 1=6
the sensitive radius. At a FAR of ten per month, where our
search is still marginally sensitive, the radius increases to
≈130 Mpc, which is still about half the radius of the
reference value from the PyCBC Live search. To reach this
reference value, we would need to operate at a FAR
of ≈35000 per month.
To compare the computational cost of our search to that

of PyCBC Live [18], we analyze the resources both
algorithms require to evaluate incoming data in real time.
One pass of our network on the correctly whitened,
resampled, and formatted data takes 206 ms on an
Intel i7-6600U dual-core, four-thread laptop processor.
Neglecting the cost of preprocessing the raw input data,
our search would be able to produce estimates of the SNR
and p score slightly faster than real time with the above-
mentioned resources, as each step processes a time span of
250 ms. We can estimate the number of CPU cores PyCBC
Live would require to run a search for BNS signals of the
distribution our network was trained on by counting the
number of templates the corresponding filter bank would
use. To produce a nonspinning filter bank with component
masses between 1.2 and 1.6 solar masses at 3.5 PN order,
we use the pycbc_geom_nonspinbank program from the
PyCBC software library [52]. The minimum match is set to
0.965. With these settings, the bank contains 1960 tem-
plates per detector. The PyCBC Live search is able to
evaluate 6300 templates per core in real time [18]. The
required 3920 templates for a two-detector search could
therefore be evaluated on a single core in real time.
At a FAR of ten per month, our search introduces an

average latency of 10.2 s for true positives. This value is
calculated by taking the difference between the latest
position in any cluster at the given FAR that belongs to
a real injection and the reported time of the corresponding
event. To ensure that the cluster is complete, we add 1 s on
top of that latency and another 0.206 s to ensure the
network has finished its calculations. We then average over
all clusters evaluated that way. Our search algorithm has not
yet been optimized for low-latency analysis, and we assume
that the latency can be reduced by about an order of
magnitude by choosing a different clustering algorithm
without a large impact on the sensitivity. The reported
latency does not take into account any time lost due to
whitening, resampling, or formatting of the raw input data.
PyCBC Live for comparison operates at an average latency
of 16 s. This latency can be reduced to 10 s at the cost of
doubling the required computational resources [18].

C. Comparison to another machine learning algorithm

The authors of Ref. [49] were the first to search for BNS
signals using a machine learning algorithm. They used a
convolutional network very similar in structure to those
found in Refs. [43,44] to analyze 10 s of data sampled

FIG. 4. The sensitive distance as a function of the FAR. The
blue curve shows the sensitive distance when the SNR is used to
classify events. The yellow curve shows the sensitive distance
when the p score is used. The green curve is generated from the
data found in Ref. [65] by counting all signals at a higher
injection SNR than the corresponding FAR. We are able to
resolve a small overlap region between the two different searches
but find that the sensitivity of our search drops close to zero for
FARs below ten per month. At high FARs, both outputs of our
network perform equally well; for low FARs the SNR shows
superior performance.

SCHÄFER, OHME, and NITZ PHYS. REV. D 102, 063015 (2020)

063015-10

at 4 kHz. This setup allowed them to differentiate the three
classes: “pure noise,” “BBH signal,” and “BNS signal.”
They found that their algorithm is able to distinguish the
three classes and is as sensitive to BBH signals as the
previous comparable search algorithms [43,44]. The sen-
sitivity to BNS signals is below that of BBH signals for all
signal strengths and false-alarm probabilities tested.
During the preparation of this paper, the original preprint

[66] was rewritten and published. In that version, the
sensitivity to BNS signals was found to be on par with
the sensitivity to BBH signals. However, all results were
given in terms of peak signal-to-noise ratio (pSNR) instead
of optimal or matched-filter SNR. The new version
removes this hurdle and gives results in terms of optimal
SNR. We therefore comment on both versions.
To convert between pSNR and matched-filter SNR, the

authors of Ref. [66] quote a factor of 13, which was derived
on BBH data. We calculated this factor on BNS data
and find a conversion of optimal SNR ≈matched-filter
SNR ≈ 41.2 · pSNR. Furthermore, they used data from a
single detector. Signals detected at SNR ρ gain on average a
factor of

ffiffiffi
2

p
when a network of two detectors is used. Our

results are compared to the findings of Ref. [66] by using the
conversion optimal SNR ¼ 41.2 ·

ffiffiffi
2

p
· pSNR.

The comparison between our work and the results given
in Ref. [49] still takes the scaling factor of

ffiffiffi
2

p
into account

to compensate for the two-detector setup.
Figure 5 compares the true positive rates of the search

algorithm presented here to the one found in Refs. [49,66]
at a fixed FAR of 8500 per month.4 We compute it by fixing
the detection threshold to the corresponding values of
SNR ≈ 6.53 and p score ≈ 0.185. The injections are then
binned by their SNR, and for each bin the fraction of
detected over total injections is calculated. We find that our
search does not generalize well to very strong signals. The
loudest missed signal at this FAR was injected with a SNR
of 46.65 which means that our search reaches 100%
sensitivity only above SNR 46.65. The search described
in Ref. [66] is more sensitive to signals above SNR 25 and
saturates already around SNR 35. The algorithm described
in Ref. [49] saturates even earlier at SNR 25. For current
detectors, on the other hand, most signals are expected to be
measured with a low SNR [59]. Within the SNR range
covered by the training set (marked gray in Fig. 5), our
search is almost 10 times as sensitive when compared to
Ref. [66] and still about 4 times as sensitive when compared
to Ref. [49].

As the authors of Ref. [49] successfully applied cur-
riculum learning, wewould expect an increase in sensitivity
at high SNRs if the range in our training set were expanded
to include high SNR signals.
The plot also shows the true positive rate of our network

at a FAR of ten per month, where, within the SNR range of
the training set, the SNR output roughly matches the true
positive rate of the algorithm proposed in Ref. [66] at an 85
times higher FAR. The network proposed in Ref. [49] is
more sensitive to signals with SNR > 8 when compared to
our network operating at a FAR of ten per month. One can
also observe that at a FAR of ten per month the p-score
output is significantly worst over the entire range of
injected signals.
Figure 6 shows the recovered SNR against the injected

SNR at a fixed FAR of ten per month. For any missed
injection, we give the value of the estimated SNR time
series that is closest to the injection time. The strongest
missed injection at this FAR has a SNR of 50.83. We find
that the injected SNR is recovered with a mean squared
error of ≈181. Our search is therefore able to distinguish
signals from the background, but the estimation of the SNR
is uninformative. At this FAR, there are no injections that
are detected only in the p-score output. The plot can
visually be split into three vertical zones. The lowest zone
(red) contains all missed injections. They are recovered

FIG. 5. To compare our search to the work of Ref. [49], we plot
their true positive rate at a fixed FAR of 8500 per month in yellow
and our true positive rate at the same FAR in green and
red. On the x axis, we track the injected optimal network
SNR. The blue curve shows the data from Ref. [66], where
the results were given in terms of pSNR. We use the conversion
SNR ¼ 41.2 ·

ffiffiffi
2

p
· pSNR. To obtain these curves, we bin the

injected signals by their optimal injection SNR and a bin size of 4.
For high SNRs, some bins are empty. Empty bins are interpolated
linearly from the remaining data. The area marked gray highlights
the region covered by the training set. We find that our search
performs better for low SNRs but is less sensitive for strong
signals. We also show the true positive rate of our search at a FAR
of 10 in purple and brown. Within the training range, we find that
our search closely matches the true positive rate of Ref. [66] at a
higher FAR.

4In Ref. [49], no FAR is stated explicitly. All results are given
in terms of a false-alarm probability. We estimate the FAR from
this probability by dividing with the step size used to slide the
network across long stretches of data. We then rescale it to false
alarms per month. The step size was estimated to be 0.3 s to
match the interval duration within which the peak amplitude for
BNS signals is varied.

DETECTION OF GRAVITATIONAL-WAVE SIGNALS FROM … PHYS. REV. D 102, 063015 (2020)

063015-11

with a SNR below the threshold for the SNR output. If the
p-score output was independent of the SNR output, we
would expect to find a few blue triangles in this region. The
second zone (green) contains injections that are recovered
only in the SNR output. The clear separation to the third
zone (black) indicates that the p-score output operates very
similarly to the SNR output and assigns a value based on
the internal SNR estimate. The louder the injected signals
are, the more likely the network is to detect it in both
outputs.

D. Binary black hole injections

Realistic continuous data will not only contain signals
from BNS mergers but also prominently signals from BBH
events. It is therefore interesting to test the response of the
NN to these kinds of signals.
To do so, we generate a mock dataset containing BBH

injections. We use the process described in Sec. II A but
adjust the parameter ranges to represent a distribution for
BBH signals. The masses are uniformly distributed in the
range from 10 to 30 solar masses, the maximal distance is
increased to 4000 Mpc to adjust for the louder signals, and
the waveform model is changed to SEOBNRv4_opt. As
signals from BBHs are within the sensitive band of the
detectors for a shorter duration, the average signal sepa-
ration can be reduced to 20 s with a variance of �2 s. The

duration of the sections in the beginning and end of each
chunk that do not contain any injections is reduced to 16 s.
As we want only to make a qualitative statement about

the sensitivity of our analysis to BBH signals, we generated
and evaluated 40960 s ≈ 11 h of mock data, containing
2147 injected signals. The data are processed in the same
way as the data containing BNS injections.
For this test set, we find that our network has negligible

sensitivity to BBH mergers. The BBH waveforms, which
are short compared to BNS signals, are consistently
classified as noise.

VI. CONCLUSIONS

We presented a new machine-learning-based search
pipeline for BNS signals. To allow our network to effi-
ciently process up to 32 s of data, we introduced multirate
sampling, a technique that samples different parts of a GW
signal at different sample rates.
Our search improves upon the sensitivity of other

machine-learning-based algorithms at low FARs and for
signals with a low SNR. For signals with a SNR contained
within the SNR boundaries of our training set, we find an
improvement of 400% over previous machine-learning-
based searches [49].
We probed, for the first time, the sensitivity of a

machine-learning-based algorithm at FARs down to
0.5 per month. This enabled a direct comparison to the
template-based low-latency search PyCBC Live [18]. We
found that our machine-learning-based algorithm is com-
putationally more expensive than using PyCBC Live with a
template bank equivalent to our training set. At the same
time, the sensitive radius of our search algorithm is lower
by a factor of 6. We, therefore, conclude that machine-
learning-based search algorithms are not yet sufficiently
sensitive or efficient to match the algorithms currently
in use.
We do, however, find an improvement in the latency

when compared to traditional searches. PyCBC Live
introduces on average a latency of 16 s between signal
arrival and generating an alert. Avery conservative estimate
of the latency introduced by our search finds 10.2 s. This
value is limited not by the computational cost of applying
the network but by processing the data it outputs. Choosing
a different algorithm to do so is straightforward and might
improve the latency by roughly an order of magnitude. The
latency of PyCBC Live can be reduced to a similar duration
by increasing the computational cost of the analysis. There
are also other search algorithms targeted specifically at low-
latency detection of candidate events which are already able
to achieve latencies ofOð1Þ s [19]. The computational cost
of all of these searches scales with the size of the template
bank used. NNs, on the other hand, have often proven to
adapt well to a large variety of features in the input space.
It is therefore not unreasonable to believe that machine
learning search algorithms may be able to provide

FIG. 6. The plot shows the estimated SNR against the optimal
injected SNR of the test set. There are a few injections with
SNR > 70which are not shown here, but all of them are detected.
The red cross corresponds to injections that the search did not
recover in either of the two outputs at a fixed FAR of ten per
month. Injections that are found in the p score output but not in
the SNR output would be shown as blue triangles, but no
injections of this type exist. Green squares show injections that
are found only in the SNR output. Black hexagons represent
injections that were found in both outputs. A clear vertical
separation can be seen in this figure. We suspect that the network
learns an estimate of the SNR internally and maps only the p
score to this internal representation. Otherwise, borders would
not be so sharp, and some blue triangles should be seen in the
red area.

SCHÄFER, OHME, and NITZ PHYS. REV. D 102, 063015 (2020)

063015-12

low-latency detections at constant or only slightly increased
computational cost when the parameter space is enlarged.
We think that this is a strong motivation to further pursue a
machine-learning-based search algorithm.
To help compare different search algorithms, we pro-

posed a standardized test procedure that can be applied to
neural networks as well. We want to stress the importance
of providing FARs and sensitivities for machine-learning-
based searches which are derived on as realistic a dataset as
possible.
Future works might try to reduce the complexity of the

network proposed here to minimize the computational cost
and make machine-learning-based searches a viable alter-
native. Reducing the complexity of the network may also
help to improve the sensitivity of the search. Previous
works [57] have shown that a network which works well

with simulated noise adapts well to real detector noise if
retrained. The algorithm at hand should thus also be
extended to be trained and tested on real detector noise.
It would further be of interest to test if a computationally
less expensive network could be used at a high FAR to be
followed up by a matched-filter search with a heavily
reduced template bank.

ACKNOWLEDGMENTS

We thank Tobias Blenke, Christoph Dreißigacker, and
Tobias Florin for their comments and suggestions. We
acknowledge the Max Planck Gesellschaft and the Atlas
cluster computing team at Albert-Einstein Institut (AEI)
Hannover for support. F. O. was supported by the Max
Planck Society’s Independent Research Group Program.

[1] B. P. Abbott et al. (LIGO Scientific and Virgo Collabora-
tions), Phys. Rev. Lett. 116, 061102 (2016).

[2] B. P. Abbott et al. (LIGO Scientific and Virgo Collabora-
tions), Phys. Rev. X 9, 031040 (2019).

[3] T. Venumadhav, B. Zackay, J. Roulet, L. Dai, and M.
Zaldarriaga, Phys. Rev. D 101, 083030 (2020).

[4] A. H. Nitz, T. Dent, G. S. Davies, S. Kumar, C. D. Capano,
I. Harry, S. Mazzon, L. Nuttall, A. Lundgren, and M. Tápai,
Astrophys. J. 891, 123 (2020).

[5] A. H. Nitz, C. Capano, A. B. Nielsen, S. Reyes, R. White,
D. A.Brown, andB.Krishnan,Astrophys. J. 872, 195 (2019).

[6] LIGO Scientific and Virgo Collaborations, Gracedb—
Gravitational-wave candidate event database.

[7] LIGOScientific andVirgoCollaborations, arXiv:2004.08342.
[8] B. P. Abbott, R. Abbott, T. D. Abbott, S. Abraham, F.

Acernese, K. Ackley, C. Adams, R. X. Adhikari, V. B.
Adya, C. Affeldt et al., Astrophys. J. 892, L3 (2020).

[9] R. Abbott et al., Astrophys. J. 896, L44 (2020).
[10] R. Abbott et al. (LIGO Scientific and Virgo Collaborations),

Phys. Rev. Lett. 125, 101102 (2020).
[11] Y. Aso, Y. Michimura, K. Somiya, M. Ando, O. Miyakawa,

T. Sekiguchi, D. Tatsumi, and H. Yamamoto (KAGRA
Collaboration), Phys. Rev. D 88, 043007 (2013).

[12] T. Akutsu et al., arXiv:2005.05574.
[13] B. P. Abbott et al. (LIGO Scientific, Virgo Collaboration,

and KAGRA Collaboration), Living Rev. Relativity 21, 3
(2018).

[14] LIGO Scientific and Virgo Collaborations, Online pipelines
(2018), https://emfollow.docs.ligo.org/userguide/analysis/
searches.html.

[15] M. Maggiore, Gravitational Waves (Oxford University
Press, Oxford, 2008).

[16] S. Sachdev et al., arXiv:1901.08580.
[17] T. Adams, D. Buskulic, V. Germain, G. M. Guidi, F. Marion,

M. Montani, B. Mours, F. Piergiovanni, and G. Wang,
Classical Quantum Gravity 33, 175012 (2016).

[18] A. H. Nitz, T. Dal Canton, D. Davis, and S. Reyes, Phys.
Rev. D 98, 024050 (2018).

[19] S. Hooper, S. K. Chung, J. Luan, D. Blair, Y. Chen, and L.
Wen, Phys. Rev. D 86, 024012 (2012).

[20] T. D. Canton and I. W. Harry, arXiv:1705.01845.
[21] I. Harry, S. Privitera, A. Bohé, and A. Buonanno, Phys. Rev.

D 94, 024012 (2016).
[22] M. Hannam, P. Schmidt, A. Bohé, L. Haegel, S. Husa, F.

Ohme, G. Pratten, and M. Pürrer, Phys. Rev. Lett. 113,
151101 (2014).

[23] S. Khan, K. Chatziioannou, M. Hannam, and F. Ohme,
Phys. Rev. D 100, 024059 (2019).

[24] Y. Pan, A. Buonanno, A. Taracchini, L. E. Kidder, A. H.
Mroué, H. P. Pfeiffer, M. A. Scheel, and B. Szilágyi, Phys.
Rev. D 89, 084006 (2014).

[25] I. Harry, J. C. Bustillo, and A. Nitz, Phys. Rev. D 97, 023004
(2018).

[26] L. London, S. Khan, E. Fauchon-Jones, C. García, M.
Hannam, S. Husa, X. Jiménez-Forteza, C. Kalaghatgi, F.
Ohme, and F. Pannarale, Phys. Rev. Lett. 120, 161102
(2018).

[27] S. Khan, F. Ohme, K. Chatziioannou, and M. Hannam,
Phys. Rev. D 101, 024056 (2020).

[28] R. Cotesta, A. Buonanno, A. Bohé, A. Taracchini, I. Hinder,
and S. Ossokine, Phys. Rev. D 98, 084028 (2018).

[29] A. H. Nitz, A. Lenon, and D. A. Brown, Astrophys. J. 890, 1
(2020).

[30] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S.
Ma, Z. Huang, A. Karpathy, A. Khosla, M. Bernstein,
A. C. Berg, and L. Fei-Fei, Int. J. Comput. Vis. 115, 211
(2015).

[31] A. v. d. Oord, S. Dieleman, H. Zen, K. Simonyan, O.
Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K.
Kavukcuoglu, arXiv:1609.03499.

[32] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre,
G. Van Den Driessche, J. Schrittwieser, I. Antonoglou,

DETECTION OF GRAVITATIONAL-WAVE SIGNALS FROM … PHYS. REV. D 102, 063015 (2020)

063015-13

https://doi.org/10.1103/PhysRevLett.116.061102
https://doi.org/10.1103/PhysRevX.9.031040
https://doi.org/10.1103/PhysRevD.101.083030
https://doi.org/10.3847/1538-4357/ab733f
https://doi.org/10.3847/1538-4357/ab0108
https://arXiv.org/abs/2004.08342
https://doi.org/10.3847/2041-8213/ab75f5
https://doi.org/10.3847/2041-8213/ab960f
https://doi.org/10.1103/PhysRevLett.125.101102
https://doi.org/10.1103/PhysRevD.88.043007
https://arXiv.org/abs/2005.05574
https://doi.org/10.1007/s41114-018-0012-9
https://doi.org/10.1007/s41114-018-0012-9
https://emfollow.docs.ligo.org/userguide/analysis/searches.html
https://emfollow.docs.ligo.org/userguide/analysis/searches.html
https://emfollow.docs.ligo.org/userguide/analysis/searches.html
https://emfollow.docs.ligo.org/userguide/analysis/searches.html
https://emfollow.docs.ligo.org/userguide/analysis/searches.html
https://emfollow.docs.ligo.org/userguide/analysis/searches.html
https://arXiv.org/abs/1901.08580
https://doi.org/10.1088/0264-9381/33/17/175012
https://doi.org/10.1103/PhysRevD.98.024050
https://doi.org/10.1103/PhysRevD.98.024050
https://doi.org/10.1103/PhysRevD.86.024012
https://arXiv.org/abs/1705.01845
https://doi.org/10.1103/PhysRevD.94.024012
https://doi.org/10.1103/PhysRevD.94.024012
https://doi.org/10.1103/PhysRevLett.113.151101
https://doi.org/10.1103/PhysRevLett.113.151101
https://doi.org/10.1103/PhysRevD.100.024059
https://doi.org/10.1103/PhysRevD.89.084006
https://doi.org/10.1103/PhysRevD.89.084006
https://doi.org/10.1103/PhysRevD.97.023004
https://doi.org/10.1103/PhysRevD.97.023004
https://doi.org/10.1103/PhysRevLett.120.161102
https://doi.org/10.1103/PhysRevLett.120.161102
https://doi.org/10.1103/PhysRevD.101.024056
https://doi.org/10.1103/PhysRevD.98.084028
https://doi.org/10.3847/1538-4357/ab6611
https://doi.org/10.3847/1538-4357/ab6611
https://doi.org/10.1007/s11263-015-0816-y
https://doi.org/10.1007/s11263-015-0816-y
https://arXiv.org/abs/1609.03499

V. Panneershelvam, M. Lanctot et al., Nature (London) 529,
484 (2016).

[33] Openai five (2018).
[34] S. Bahaadini, V. Noroozi, N. Rohani, S. Coughlin, M.

Zevin, J. Smith, V. Kalogera, and A. Katsaggelos,
Information Sciences (NY) 444, 172 (2018).

[35] C. Dreissigacker, R. Sharma, C. Messenger, R. Zhao, and R.
Prix, Phys. Rev. D 100, 044009 (2019).

[36] W. Wei and E. A. Huerta, Phys. Lett. B 800, 135081 (2020).
[37] E. Cuoco et al., arXiv:2005.03745.
[38] S. R. Green, C. Simpson, and J. Gair, arXiv:2002.07656.
[39] H. Gabbard, C. Messenger, I. S. Heng, F. Tonolini, and R.

Murray-Smith, arXiv:1909.06296.
[40] J. P. Marulanda, C. Santa, and A. E. Romano, arXiv:

2004.01050.
[41] M. L. Chan, I. K. Siong Heng,, and C. Messenger, arXiv:

1912.13517
[42] A. Iess, E. Cuoco, F. Morawski, and J. Powell, Mach. Learn.

Sci. Technol. 1, 025014 (2020).
[43] D. George and E. A. Huerta, Phys. Rev. D 97, 044039

(2018).
[44] H. Gabbard, M. Williams, F. Hayes, and C. Messenger,

Phys. Rev. Lett. 120, 141103 (2018).
[45] B. P. Abbott et al., Classical Quantum Gravity 33, 134001

(2016).
[46] L. K. Nuttall, Phil. Trans R. Soc. A 376, 20170286

(2018).
[47] M. Cabero, A. Lundgren, A. H. Nitz, T. Dent, D. Barker, E.

Goetz, J. S. Kissel, L. K. Nuttall, P. Schale, R. Schofield,
and D. Davis, Classical Quantum Gravity 36, 155010
(2019).

[48] T. D. Gebhard, N. Kilbertus, I. Harry, and B. Schölkopf,
Phys. Rev. D 100, 063015 (2019).

[49] P. G. Krastev, Phys. Lett. B 803, 135330 (2020).
[50] M. B. Schäfer, F. Ohme, and A. H. Nitz, Data release:

Detection of gravitational-wave signals from binary neutron

star mergers using machine learning, https://github.com/
gwastro/bns-machine-learning-search (2020).

[51] S. A. Usman et al., Classical Quantum Gravity 33, 215004
(2016).

[52] A. Nitz et al., gwastro/pycbc: Pycbc release v1.13.5 (2019),
http://dx.doi.org/10.5281/zenodo.2581446.

[53] S. Droz, D. J. Knapp, E. Poisson, and B. J. Owen, Phys.
Rev. D 59, 124016 (1999).

[54] L. Blanchet, Living Rev. Relativity 5, 3 (2002).
[55] G. Faye, S. Marsat, L. Blanchet, and B. R. Iyer, Classical

Quantum Gravity 29, 175004 (2012).
[56] Ligo Scientific Collaboration, LIGO Algorithm Library—

LALSuite, free software (GPL), (2018).
[57] D. George and E. Huerta, Phys. Lett. B 778, 64 (2018).
[58] M. B. Schäfer, Analysis of gravitational-wave signals from

binary neutron star mergers using machine learning (2019),
http://dx.doi.org/10.15488/7467.

[59] B. F. Schutz, Classical Quantum Gravity 28, 125023 (2011).
[60] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D.

Anguelov, D. Erhan, V. Vanhoucke, and A. Rabinovich,
in The IEEE Conference on Computer Vision and Pattern
Recognition (CVPR) (2015).

[61] S. Bai, J. Z. Kolter, and V. Koltun, arXiv:1803.01271.
[62] A. Schmitt, K. Fu, S. Fan, and Y. Luo, in Proceedings of the

2nd International Conference on Computer Science and
Software Engineering, CSSE 2019 (ACM, New York,
2019), pp. 73–78.

[63] M. Lin, Q. Chen, and S. Yan, arXiv:1312.4400.
[64] F. Chollet et al., Keras, https://keras.io (2019).
[65] A. H. Nitz, T. Dent, T. D. Canton, S. Fairhurst, and D. A.

Brown, Astrophys. J. 849, 118 (2017).
[66] P. G. Krastev, arXiv:1908.03151v1.

Correction: The license statement contained an error and has
been fixed.

SCHÄFER, OHME, and NITZ PHYS. REV. D 102, 063015 (2020)

063015-14

https://doi.org/10.1038/nature16961
https://doi.org/10.1038/nature16961
https://doi.org/10.1016/j.ins.2018.02.068
https://doi.org/10.1103/PhysRevD.100.044009
https://doi.org/10.1016/j.physletb.2019.135081
https://arXiv.org/abs/2005.03745
https://arXiv.org/abs/2002.07656
https://arXiv.org/abs/1909.06296
https://arXiv.org/abs/2004.01050
https://arXiv.org/abs/2004.01050
https://arXiv.org/abs/1912.13517
https://arXiv.org/abs/1912.13517
https://doi.org/10.1088/2632-2153/ab7d31
https://doi.org/10.1088/2632-2153/ab7d31
https://doi.org/10.1103/PhysRevD.97.044039
https://doi.org/10.1103/PhysRevD.97.044039
https://doi.org/10.1103/PhysRevLett.120.141103
https://doi.org/10.1088/0264-9381/33/13/134001
https://doi.org/10.1088/0264-9381/33/13/134001
https://doi.org/10.1098/rsta.2017.0286
https://doi.org/10.1098/rsta.2017.0286
https://doi.org/10.1088/1361-6382/ab2e14
https://doi.org/10.1088/1361-6382/ab2e14
https://doi.org/10.1103/PhysRevD.100.063015
https://doi.org/10.1016/j.physletb.2020.135330
https://github.com/gwastro/bns-machine-learning-search
https://github.com/gwastro/bns-machine-learning-search
https://github.com/gwastro/bns-machine-learning-search
https://doi.org/10.1088/0264-9381/33/21/215004
https://doi.org/10.1088/0264-9381/33/21/215004
http://dx.doi.org/10.5281/zenodo.2581446
http://dx.doi.org/10.5281/zenodo.2581446
http://dx.doi.org/10.5281/zenodo.2581446
http://dx.doi.org/10.5281/zenodo.2581446
http://dx.doi.org/10.5281/zenodo.2581446
https://doi.org/10.1103/PhysRevD.59.124016
https://doi.org/10.1103/PhysRevD.59.124016
https://doi.org/10.12942/lrr-2002-3
https://doi.org/10.1088/0264-9381/29/17/175004
https://doi.org/10.1088/0264-9381/29/17/175004
https://doi.org/10.1016/j.physletb.2017.12.053
http://dx.doi.org/10.15488/7467
http://dx.doi.org/10.15488/7467
http://dx.doi.org/10.15488/7467
http://dx.doi.org/10.15488/7467
https://doi.org/10.1088/0264-9381/28/12/125023
https://arXiv.org/abs/1803.01271
https://arXiv.org/abs/1312.4400
https://keras.io
https://keras.io
https://doi.org/10.3847/1538-4357/aa8f50
https://arXiv.org/abs/1908.03151v1

