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The sensitivity of wide-parameter-space searches for continuous gravitational waves is limited by
computational cost. Recently it was shown that deep neural networks (DNNs) can perform all-sky searches
directly on (single-detector) strain data [C. Dreissigacker et al., Phys. Rev. D 100, 044009 (2019)],
potentially providing a low-computing-cost search method that could lead to a better overall sensitivity.
Here we expand on this study in two respects: (i) using (simulated) strain data from two detectors
simultaneously, and (ii) training for directed (i.e., single sky-position) searches in addition to all-sky
searches. For a data time span of T ¼ 105 s, the all-sky two-detector DNN is about 7% less sensitive
(in amplitude h0) at low frequency (f ¼ 20 Hz), and about 51% less sensitive at high frequency
(f ¼ 1000 Hz) compared to fully-coherent matched-filtering (using WEAVE). In the directed case
the sensitivity gap compared to matched-filtering ranges from about 7%–14% at f ¼ 20 Hz to about
37%–49% at f ¼ 1500 Hz. Furthermore we assess the DNN’s ability to generalize in signal frequency,
spin down and sky-position, and we test its robustness to realistic data conditions, namely gaps in the data
and using real LIGO detector noise. We find that the DNN performance is not adversely affected by gaps in
the test data or by using a relatively undisturbed band of LIGO detector data instead of Gaussian noise.
However, when using a more disturbed LIGO band for the tests, the DNN’s detection performance is
substantially degraded due to the increase in false alarms, as expected.
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I. INTRODUCTION

Observing gravitational waves from compact binary
mergers has become routine [1–5]. The long-lasting but
weak narrow-band signals from spinning non-axisymmetric
neutron stars called continuous gravitational waves (CWs)
however remain elusive at the current sensitivity of the
Advanced LIGO [6] and Virgo [7] detectors. Despite great
improvements in the search methods (see e.g., [8] for a
recent review) and numerous searches conducted on past and
recent detector data (see Refs. [9–11] for reviews), no CW
discovery has been made yet.
The sensitivity of CW searches is typically limited by

the prohibitive computing cost. A CW signal is expected to
last longer than the observation time. Hence, to increase
the signal-to-noise ratio (SNR) of a search, it needs to

integrate over as much data as possible but for a typical
fully coherent matched-filtering search the computing
cost grows as a high power ∼Tn, n ≥ 5 of the time span
of data T. Therefore these statistically almost optimal
searches [12] can only be performed with coherence times
of days to weeks at most.
The main method to circumvent this limitation is to use

semicoherent methods. These consist of using shorter
coherent segments and combining their results incoherently
resulting in an improved sensitivity at fixed computing cost
[13,14]. Nevertheless the currently most sensitive wide
parameter space searches (see e.g., [15–17]) are using
massive amounts of computational resources, either in the
form of local computer clusters or the distributed comput-
ing project Einstein@Home [18].
In this work we study the feasibility of deep neural

networks (DNNs) as an alternative search method. DNNs
have been shown to be able to approximate any Borel-
measurable function [19,20] (see also [21] for a more
general discussion). Therefore they should in principle be
able to approximate gravitational-wave-search methods.
In fact the method of training a DNN, also called deep

learning, has been established to be able to detect gravi-
tational waves directly from strain data [22–28] for signals
frommergers of compact objects. More recently it was used
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for the first time on simulated continuous gravitational
wave signals [29] and it was applied to the related long
transient signals [30]. Furthermore DNNs have been
studied as a follow-up method for CW searches [31,32],
as well as for parameter estimation of searches for compact
binary merger signals [33,34] and for a multitude of other
gravitational-wave-search related applications such as clas-
sifying disturbances (glitches) and searches for unmodeled
burst signals [35–41].
In this work we continue the effort toward building

a competitive neural-network-based search method for
CWs by gradually moving toward more realistic test-
and training scenarios: by simultaneously using data from
two detectors, by including directed search cases, and by
testing the trained DNNs on Gaussian data with gaps and
on real LIGO data with varying degrees of instrumental
disturbances.
The plan of this paper is as follows: in Sec. II we define

the new benchmark cases, we discuss the updated deep-
learning approach in Sec. III, we characterize the perfor-
mance of the DNNs on the benchmarks by testing them
on Gaussian noise in Sec. IV and finally we extend this
characterization to the intricacies of real detector noise in
Sec. V. In Sec. VI we discuss our results.

II. COMPARISON TEST BENCHMARKS

We characterize the DNNs as search method on the
following two-detector benchmark searches, each assum-
ing two different timespan baselines of T ¼ 105 s and
T ¼ 106 s: an all-sky search and two directed searches
pointing at the supernova remnants of Cassiopeia A (CasA)
and G347.3-0.5 (G347), respectively. For the coherent
matched-filter comparison we use the WEAVE search code
[42] in the same way as in [29].
We measure the sensitivity of the DNNs and the

matched-filtering searches by determining the detection
probability pdet at a chosen false-alarm level of pfa ¼ 1%
per 50 mHz frequency band. The false-alarm level corre-
sponds to a threshold on the respective detection statistic of
the DNNs and the matched-filtering searches for a signal
population of fixed signal amplitude given in terms of the
sensitivity depth D [8,43], defined as

D≡
ffiffiffiffiffi

Sn
p
h0

; ð1Þ

where Sn is the power spectral density of the noise at
the signal frequency, and h0 is the signal amplitude. In
particular we will use D90% to refer to the 90%-upper limit
depth, corresponding to a signal amplitude h90% where a
search method achieves a detection probability of pdet ¼
90% at a false-alarm threshold of pfa ¼ 1% per 50 mHz
frequency band.
For reasons of speed and simplicity, at this stage of

the project we still use simulated Gaussian noise for the

DNN training and for the matched-filtering comparison.
However, in Sec. V we do show tests of our DNN search
pipeline on data with realistic gaps and also using real
LIGO detector data.
The two-detector benchmarks are similar to the previ-

ously-used single-detector benchmarks of [29], as they
encompass data spans of T ¼ 105 s and T ¼ 106 s, and the
all-sky searches cover the same parameter space as the
previous single-detector all-sky cases (see Table I).
The new directed search benchmarks are derived from the

Einstein@Home multidirected search for CWs in O1 data
(cf. [16]). They cover a frequency range of 20–1500 Hz
and large ranges of first and second-order spin-down,
which are functions of the characteristic age of the targeted
supernova remnant and the frequency (see Table II).
Compared to the original search, however, the total obser-
vation time is substantially reduced to the two benchmark
spans of T ¼ 105 s and T ¼ 106 s.
Similarly to [29], we limit the required matched-filtering

computing cost by only searching a narrow frequency band
of Δf ¼ 50 mHz at a few representative starting frequen-
cies in the range of 20–1500 Hz. The characteristics of the
matched-filtering searches can be found in Table III.

III. DEEP-LEARNING CWs

The approach used here is an evolved version of our
previous deep-learning study in [29]: We train a noise-
versus-signal classifier on strain data from two detectors.
The input is provided as two separate channels per detector,

TABLE I. Definition of all-sky (two-detector) benchmark
searches.

Data span T ¼ 105 s=T ¼ 106 s
Detectors LIGO Hanford (H1) + Livingston (L1)
Noise Stationary white Gaussiana

Sky-region All-sky
Frequency band f ∈ ½20; 1000� Hz
Spin-down range _f ∈ ½−10−10; 0� Hz=s

aExcluding the real-data tests in Sec. V B

TABLE II. Definition of directed benchmark searches, modeled
after [16].

Data span T ¼ 105 s=T ¼ 106 s
Detectors LIGO Hanford (H1) + Livingston (L1)
Noise Stationary white Gaussiana

Sky-position CasA=G347
Frequency band f ∈ ½20; 1500� Hz
Spin-down range −f=τ ≤ _f ≤ 0 Hz=s
Second order
spin-down

0 Hz=s2 ≤ f̈ ≤ 5f=τ2

Characteristic age τ CasA: 330 yrs, G347: 1600 yrs
aExcluding the real-data tests in Sec. V B
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each containing respectively the real and imaginary part of
the Fourier transform of the strain data. This results in four
input channels for our two-detector cases.1

However the networks could easily be trained for data
from more detectors by adding additional channels. As for
matched-filtering the additional data would increase the
computational cost. Due to this straight forward generali-
zation we only consider two-detectors as most matched-
filtering searches at the moment only consider data from the
two most sensitive detectors (e.g., see [8]).
We determine the maximal width in frequency of the

signals in the allowed parameter space of the search and
set the DNN input size to twice this width. This allows
us to slide half overlapping windows over the frequency
band to guarantee any signal is fully contained in at least
one window. This leads to an increase of the DNN input
size with observation time as well as with the number of
detectors.

A. Finding a network architecture

We started experimenting with the modified 1D-ResNet
architecture from [29] and other 1D-versions of architec-
tures like InceptionResNet-v2 [44] which have proven
successful for image recognition. For various different
architectures we trained a network on a smaller number
of samples for the T ¼ 105 s, f0 ¼ 1000 Hz benchmark
case. We compare the different networks’ performance by
calculating their detection probability on the validation set
described in Sec. III B.
The architecture with the best detection probability in

these experiments is an Inception-ResNet architecture: The
InceptionResNet-v2 architecture was modified to feature
one-dimensional inputs. For the T ¼ 105 s cases this net-
work was further enlarged by increasing the number of
block repetitions by 2, in width by increasing the filter sizes
by 2 as well as the number of filters in every convolutional
layer by a factor of 4. The resulting network needs too
much memory2 for the larger inputs of the T ¼ 106 s cases,

therefore we use the original nonenlarged network for the
T ¼ 106 s benchmark cases.
The DNN input is first normalized by its standard

deviation. The DNN output is created with a global
average pooling layer and a dense layer with two final
neurons and a softmax activation. The two outputs are
encoding the estimated probabilities that the input
contains a signal in noise psignal or pure noise,
pnoise ¼ 1 − psignal, respectively.
The DNN was implemented in TENSORFLOW 2.0 [45]

with its inbuilt Keras API (tf.keras). The CW signal
generation was performed using the PYTHON SWIG-
wrapping [46] of LALSUITE [47].

B. DNN training and validation

We trained a total of 25 networks, one for each case listed
in Table IV and in addition one all-sky and two directed
networks trained for the entire respective search frequency
range of the T ¼ 105 s second searches. As in [29] each of
the networks is trained with a set of synthesized input
vectors, where half contain pure Gaussian noise, and half
contain a signal added to the noise. The training set is built
from 5 000 precomputed signals which are added to 24
dynamically generated noise realizations each. The noise
realizations are also added as pure noise examples giving
240 000 samples in the training set in total.
The number of 5 000 signals was determined as a

compromise between requirements in computing resources
and the diminishing improvements which could be gained
with a bigger training set (cf. [29] for details).
The signals are scaled to an evolving depthDtrainingðepochÞ

which starts low, i.e., with louder signals, and then increases
every five epochs until it reaches the final training depth
Dtraining, according to the following curriculum:

TABLE III. WEAVE coherent matched-filtering search parame-
ters and characteristics.

Search Mismatch Mean SNR loss Templates

All-sky T ¼ 105 s 0.1 4% 7 × 1011

All-sky T ¼ 106 s 0.2 8% 4 × 1014

G347 T ¼ 105 s 0.1 5% 1 × 1010

G347 T ¼ 106 s 0.2 10% 6 × 1012

CasA T ¼ 105 s 0.1 5% 6 × 1010

CasA T ¼ 106 s 0.2 10% 3 × 1013

TABLE IV. Sensitivity depths D90%
MF achieved by the WEAVE

coherent matched-filtering search for the (two-detector) all-sky
(a-s) and directed cases defined in Tables I and II. The all-sky
sensitivity is improved by a factor of approximately

ffiffiffi

2
p

com-
pared to the single-detector values reported in [29], as expected
for coherent matched filtering. As training the CasA case
T ¼ 106 s, f0 ¼ 1500 Hz required more GPU memory than
available to us, we reduced the maximum frequency in the
search to 1000 Hz.

D90%
MF ½Hz−1=2� 20 Hz 100 Hz 200 Hz 500 Hz 1000 Hz

a-s T ¼ 105 s 16.0 15.0 14.5 14.2 13.6
a-s T ¼ 106 s 42.0 40.1 39.4 38.3 35.9

D90%
MF ½Hz−1=2� 20 Hz 500 Hz 1000 Hz 1500 Hz

G347 T ¼ 105 s 18.5 17.1 � � � 16.5
G347 T ¼ 106 s 46.1 43.9 � � � 43.1
CasA T ¼ 105 s 17.5 16.3 � � � 15.7
CasA T ¼ 106 s 46.1 43.8 43.4 � � �

1Note that a neural network with one input dimension and
multiple channels is still commonly referred to as a 1D network.

2The largest GPU used (NVIDIA Quadro GV100) has 32 GB
of GPU memory.
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DtrainingðepochÞ ¼
Dtraining

γðepoch mod 5Þ ; ð2Þ

where γðnÞ ¼ ð1.75; 1.5; 1.25; 1; 1; 1;…Þ, i.e., the signals
get weaker until, after 15 epochs, the sensitivity depth reaches
Dtraining, which is chosen as the semianalytic estimate for the
WEAVE-sensitivity depthD90%

MF , using the method of Ref. [8].
At the time of training the final measured WEAVE matched-
filtering sensitivity depths of Table. IVwere not yet available,
which iswhywe used the faster (but less accurate) sensitivity-
estimation instead.
This type of curriculum learning [48] is necessary to

teach the network to find the weak signals at the final depth.
Without it the network seemed unable to pick up the weak
signals at the beginning and therefore was unable to learn at
all. This is probably a consequence of the vastly increased
number of parameters in the network compared to the
network used in [29].
The DNNs were trained with a categorical cross entropy

loss and the Adadelta optimizer [49]. They were each
trained for 10 days on NVIDIA GPUs (RTX2060,70,
80(Ti), GV100, GTX 1660(Ti)) contained in the ATLAS
computing cluster. By that time all the networks were fully
trained, i.e., they did not show any significant improvement
over the last couple of epochs.
During training we perform a validation step every

five epochs where the detection probability is calculated
on 20 000 independently-generated samples: 10 000 pure
noise samples and 10 000 samples containing signals in
Gaussian noise of the fixed depth Dtraining.
In order to avoid a numerical overflow in the final softmax

activation layer, we do not use the estimated softmax
probabilities as a detection statistic. Instead we directly
use the final linear network output which corresponds to
psignal (i.e., the respective input to the final softmax
activation) as a detection statistic. The detection probability
is calculated in the usual way as the fraction of signal cases
where this statistic crosses over the pfa ¼ 1% threshold.

IV. CHARACTERIZING DNN PERFORMANCE
ON GAUSSIAN NOISE

As the networks’ parameters have been optimized for the
training set and the network architecture (or hyperpara-
meters) was optimized for the validation set, we need to
evaluate the network’s performance on an independent test
set to fully characterize its performance as a CW detection
method. This test set consists of noise and signals with
randomly drawn parameters from a distribution isotropic in
the sky and uniform in the other parameters. It is generated
on-the-fly using the LALSUITE software library [46,47].

A. Detection probabilities at fixed false alarm

The results in the following are presented in two
ways:

(1) the detection probability pDNN
det obtained at false

alarm pfa ¼ 1% per 50 mHz frequency band for a
signal population of fixed depth D90%

MF , for which the
coherent WEAVE matched-filtering search achieves
pdet ¼ 90%.

(2) The “upper-limit” depth D90%
DNN for the network,

where it achieves a detection probability of pDNN
det ¼

90% at pfa ¼ 1% per 50 mHz frequency band.
The measured DNN sensitivity on the all-sky search

benchmarks is given in Tables V and VI. Similar to the
previous single-detector results in [29], for T ¼ 105 s at
low frequencies the DNN achieves a performance close
to matched filtering, while it increasingly falls behind for
higher frequencies. However, for the T ¼ 106 s cases the
new network does not perform well and quickly drops to
low sensitivity at increasing frequency.
The measured DNN sensitivity for the directed search

benchmarks is also given in Tables V and VI. The results
are similar in nature to the all-sky search results. For the
T ¼ 105 s searches for both targets the DNN gets relatively
close to the matched-filtering performance, while for the
T ¼ 106 s searches they rapidly lose sensitivity when
going to higher frequencies.
Note that in the T ¼ 106 s searches our new network

seems to perform worse and fall off more rapidly compared
to the previous benchmark results in [29]. This loss in
performance at T ¼ 106 s can be traced back to two
reasons: First, the new network architecture was optimized
only for the T ¼ 105 s searches, and second we only
trained a single network instance instead of picking the
best from an ensemble of 100 networks, as was done in
[29], due to the increased hardware requirements of the new
network architecture.

TABLE V. Network sensitivity depths DDNN
90% for the (two-

detector) all-sky (a-s) and directed search cases. The correspond-
ing matched-filtering sensitivity depths are given in Table IV. As
training the CasA case T ¼ 106 s, f0 ¼ 1500 Hz required more
GPU memory than available to us, we reduced the maximum
frequency in the search to 1000 Hz.

D90%
DNN½Hz−1=2� 20 Hz 100 Hz 200 Hz 500 Hz 1000 Hz

a-s T ¼ 105 s 14.9 13.2 12.4 10.6 a9.0
a-s T ¼ 106 s 29.6 17.5 13.9 9.7 7.9

D90%
DNN½Hz−1=2� 20 Hz 500 Hz 1000 Hz 1500 Hz

G347 T ¼ 105 s 16.3 13.6 � � � 11.1
G347 T ¼ 106 s 33.9 11.7 � � � 1.3
CasA T ¼ 105 s 16.4 13.4 � � � 11.5
CasA T ¼ 106 s 28.1 0.0b 1.4 � � �

aThe given result is from a network trained on the whole
frequency range, the specialized network performed worse,
having a sensitivity depth of 7.9 Hz−1=2 (see Fig. 1).

bThe network did not reach 90% detection probability even at
the lowest depth tested D90% ¼ 0.1 Hz−1=2
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B. Generalization

One of most promising features of the DNN benchmarks
results found in [29] was the surprising capability of the
DNN to generalize to signal parameters it was not trained
for. We confirm this feature for the new DNN used for the
T ¼ 105 s all-sky searches in this work for frequency,
signal strength, spin-downs and sky position. For the
T ¼ 105 s directed search benchmarks introduced in this
work, we also find a remarkable capability to generalize
despite being less general than the all-sky DNNs. Given the
rather poor DNN performance on the T ¼ 106 s cases,
discussed in Sec. IVA, we do not include those in the
generalization tests shown here.

1. Frequency

To avoid large computational cost for the training, we
want to use as few networks as possible, optimally even a
single one, to cover the search band with a reasonable
sensitivity. Therefore we want to compare how a network
trained over the full frequency band compares to “special-
ized” narrow-band networks trained on 50 mHz bands,
when tested over the full frequency range.
The results of these tests for the all-sky two detector

T ¼ 105 s search can be found in Fig. 1. We find that the
“specialized” networks trained for small frequency bands
generalize well to lower frequency and slightly worse but
still quite well to higher frequencies, confirming the
findings in the single-detector case in [29]. However, the
network trained over the full frequency range shows
promise as it seems to fall only marginally behind the
specialized networks for most frequencies—even beating

some of the specialized the networks at their training
frequencies.
In the case of directed-search DNNs shown in Fig. 2,

we see much narrower generalization around the trained
frequencies of the “specialized” networks compared to the
all-sky cases. The better generalization of the all-sky
networks is likely due to the (known) near-degeneracy
between frequency and sky position for short observation
times. The networks trained over the full frequency in the
directed cases significantly fall behind the specialized
networks at their respective frequencies, contrary to our
finding in the all-sky case. This is also likely connected to
the mentioned near-degeneracy, as in the directed case,
increasing the frequency range forces the network to learn
many new signal shapes, while in the all-sky case the new
signal shapes where already covered via signals from
different sky-positions.

2. Signal strength

To fully characterize a search method it is important
to look at the detection efficiency curve, i.e., the detection
probability for different signal strengths, shown in Fig. 3.
This is especially interesting given that we use a single
(final) depth Dtraining for training (cf. Sec. III B). The
observed efficiency curves are very similar across the
different searches, hence we only show two representative

FIG. 1. Detection probability pdet versus injection frequency f
for the all-sky networks trained at five different frequencies and
for a network trained with signals drawn from the full frequency
range (solid black line). The dashed vertical lines mark the
respective training frequencies for the five “specialized” net-
works. The solid red horizontal line represents the coherent
matched-filtering detection performance. The shaded areas
around each curve show the 95% error regions. The analogous
single-detector result is found in Fig. 6(a) of [29].

TABLE VI. Network detection probabilities pDNN
det with 95%

error region for the (two-detector) all-sky (a-s) cases and directed
cases for signals at the matched-filtering sensitivity depths D90%

MF

given in Table IV. As training the CasA case T ¼ 106 s, f0 ¼
1500 Hz required more GPU memory than available to us, we
reduced the maximum frequency in the search to 1000 Hz.

pDNN
det ½%� 20 Hz 100 Hz 200 Hz 500 Hz 1000 Hz

a-s T ¼ 105 s 84.4þ4.0
−2.3 79.5þ3.3

−3.5 78.1þ3.3
−2.9 70.4þ3.3

−3.4
a
59:1þ4.4

−3.7

a-s T ¼ 106 s 60.5þ3.7
−3.1 24.5þ3.1

−3.1 11.2þ3.1
−2.4 3.3þ2.4

−1.3 0.7þ0.7
−0.8

pDNN
det ½%� 20 Hz 500 Hz 1000 Hz 1500 Hz

G347 T ¼ 105 s 79.6þ3.1
−3.1 71.8þ5.1

−7.7 � � � 64.2þ3.6
−3.6

G347 T ¼ 106 s 71.2þ3.1
−3.0 2.6þ2.1

−1.2 � � � 0.4þ1.1
−0.6

CasA T ¼ 105 s 86.4þ3.3
−5.5 75.2þ3.1

−4.4 � � � 65.5þ3.4
−3.6

CasA T ¼ 106 s 54.6þ3.3
−3.7 0.6þ0.6

−0.7 0.7þ1.0
−0.7 � � �

aThe given result is from a network trained on the whole
frequency range, the specialized network performed worse,
reaching a detection probability of 47.9þ4.0

−3.8% (see Fig. 1).
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examples, the directed CasA search at T¼105 s, f0¼20Hz,
and an all-sky search at T ¼ 105 s, f0 ¼ 1000 Hz.
In general the DNNs show qualitatively similar effi-

ciency curves as matched-filter searches. We notice espe-
cially that the curves become almost indistinguishable
for the low frequency cases while for higher frequency
the DNNs relations seems to be shifted toward their overall
lower sensitivity.

3. Spin-downs

Another important aspect we want to consider is the
detectability of signals with first and second order spin-
downs outside of the training range, shown in Figs. 4 and 5,
respectively.
For the all-sky searches we observe a similar behavior

(not shown) in _f to the results reported in Fig. 7 of [29]
for the single-detector benchmarks: a plateau of nearly

(a) (b)

FIG. 2. Detection probability pdet versus injection frequency f for networks trained at three different frequencies for the CasA and the
G347 target, respectively, and for a network trained with signals drawn from the full frequency range (solid black line). The dashed
vertical lines mark the respective training frequencies for the three networks. The solid red horizontal line represents the coherent
matched-filtering detection performance. The shaded areas around each curve show the 95% error regions.

(a) (b)

FIG. 3. Detection probability pdet versus injection depth D for networks trained on the respective matched-filtering depth D90%
MF

(indicated by the vertical solid line with the diamond at 90%). The second vertical line which crosses the DNN curve at 90% gives the
sensitivity depth for the DNN at 90% detection probability. The shaded region around the DNN curve is the 95% error region. The
respective errors for the matched-filtering results are smaller than the thickness of the curve.
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constant detection probability by far exceeding the training
region. For the directed searches, however, we see a
different behavior in _f, shown in Fig. 4: the DNNs plateau
of nearly-constant detection probability falls off starting

from the maximum absolute spin-down value of the train-
ing set. The generalization is not completely symmetric,
though, and extends to larger negative than positive spin-
downs. This might be an effect of the purely positive

(a) (b)

FIG. 4. Detection probability pdet versus injected spin-down _f for networks trained at different frequencies. The x-axis is plotted as a
symmetric logarithm, i.e., logarithmic for the larger negative values, linear for j _fj < −10−10 Hz=s and logarithmic for the larger positive
values. The vertical dashed lines mark the minimal spin-down _f used in the training set. Its absolute value increases with frequency. The
maximal used spin-down for all cases is 0 Hz=s (dotted line). The shaded areas around each curve show the 95% error regions.

(a) (b)

FIG. 5. Detection probability pdet versus injected second order spin-down f̈ for networks trained at different frequencies. The x-axis is
plotted as a symmetric logarithm, i.e., logarithmic for the larger negative values, linear for jf̈j < −10−20 Hz=s and logarithmic for the
larger positive values. The vertical dashed lines mark the maximal second order spin-down f̈ used in the training set, which increases
with frequency. The minimal used second order spin-down for all cases is 0 Hz=s2 (dotted line). The shaded areas around each curve
show the 95% error regions.
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second-order spin-down breaking the degeneracy. The
strong generalization beyond trained spin-downs of the
all-sky DNNs might be due to the (known) near-degeneracy
between spin-down and sky position for short observation
times compared to a year.
The generalization results on the second-order spin-

down of the directed searches in Fig. 5 show a qualita-
tively similar behavior to the first-order spin-down: a
plateau of nearly-constant detection probability and a drop
starting at about jf̈j≳ 10−14 Hz=s2, approaching zero near
jf̈j≳ 10−11 Hz=s2. Contrary to the first-order spin-down
results, however, the drop happens many orders of magni-
tude beyond the trained range of f̈ ≲ 10−17 Hz=s2. This is
not surprising, given that a second-order spin-down of
this order would only change the signal phase by about
10−2 rad over the short timespan of T ¼ 105 s and is
therefore still effectively negligible.

4. Sky position

Another interesting question is the sensitivity as a
function of the sky-position of the signal. For this we
measure and plot the DNN detection probability as a
function of the sky-position of the signal injections, shown
in Fig. 6.
Here we use signals injected at fixed SNR (ρ ¼ 8.94)

instead of the fixed-depth D injections used in other tests.
By fixing the signal SNR, we can probe the intrinsic sky-
position sensitivity of the trained network independently of
the detector antenna-patterns while for signals at fixed
depth the SNR varies with sky position.
For the directed searches in Fig. 6(a)–6(d)we see a clear

preference for the trained sky-position, while sensitivity
localization improves with frequency. This is qualitatively
similar to how matched filtering behaves, but with a wider
sensitive sky region around the targeted sky-position.

(a) (b)

(c) (d)

(e) (f)

FIG. 6. Detection probability pdet as a function of the sky-position of injected signals in equatorial coordinates (Hammer projection).
The detection probability is measured at fixed SNR ρ ¼ 8.94. In (a)–(d) the respective sky position of CasA or G347 is marked by a
white plus.
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For matched filtering we estimate the sensitive region
to be of order ∼1 rad at f ¼ 20 Hz and ∼10−2 rad
at f ¼ 1500 Hz.
For the all-sky DNNs we see a preference for signals

coming from the equatorial poles (latitude �π=2) instead,
shown in Figs. 6(e)–6(f). In the f ¼ 20 Hz case this effect
is relatively small (with a difference of only ∼5% in
detection probability), and much more pronounced at
f ¼ 1000 Hz, where we see some additional structure
in right ascension.
We suspect that the observed preference for signals

coming from the poles is likely due to their smaller
Doppler-broadening compared to signals from the equator,
which makes them more concentrated in the frequency
domain and therefore easier to “see” for the network. This
is also consistent with the DNN detection probability
decreasing with increasing signal frequency and increasing
observation time, which both result in signals getting more
spread out in frequency due to the increase in Doppler
broadening.

V. TESTING NETWORK PERFORMANCE
ON REAL DATA

In order to conduct a search for CWs with a DNN, the
network has to be able to handle real detector data, which
differs in three aspects from the simulated Gaussian data
used so far in this study:
(1) potentially different noise levels between detectors
(2) typically noncontiguous data, i.e., gaps in the data

due to real gravitational-wave detectors not being in
lock continuously

(3) non-Gaussian disturbances in the data, in particular
near-monochromatic lines that can mimic CWs

and trigger false alarms (e.g., see [50] for more
discussion).

Here we assess the impact of these effects on the detection
performance of a DNN trained on ideal simulated
Gaussian noise without gaps. In order to separate the
different effects, we first test the DNN on simulated
Gaussian noise with realistic data gaps, and then with real
detector noise, both from a “quiet” undisturbed band and
from a disturbed band. The next natural step would be to
train networks directly on real detector noise, however this
is beyond the scope of this work.
The detector data used is from the LIGO O1 observing

run, which can be retrieved from the Gravitational Wave
Open Science Center (GWOSC) [51].

A. Gaussian noise with data gaps

In order to generate data with realistic gaps we randomly
select start-times from the LIGO O1 run and retrieve the
corresponding gap profile over T ¼ 105 s. We then gen-
erate Gaussian white noise and signals with the same gaps,
and we calculate the duty factor of this gap profile as
Tdata
2T ≤ 1, where Tdata is the amount of data from both
detectors.
In Fig. 7 we show the results of detection probability as a

function of duty factor for two test cases, namely the all-sky
benchmarks for T ¼ 105 s, f0 ¼ 20 Hz and T ¼ 105 s,
f0 ¼ 200 Hz. In both cases we see that the DNN’s detection
probability (crossmarkers) shows a similar drop in detection
probability with decreasing duty factor as matched-filtering
does (solid line). This indicates that the loss in detection
probability stems purely from the intrinsic lowered signal
SNR (due to the reduced amount of data), despite the
network being trained on fully contiguous data only.

(a) (b)

FIG. 7. Duty factor vs detection probability of an all-sky DNN in Gaussian and real noise. The solid red curve with its shaded region
represents the behaviour of matched filtering on Gaussian noise, the blue crosses represent the DNN’s performance on Gaussian noise
and the yellow circles represent the DNN’s performance on real LIGO O1 detector noise. The error bars indicate the 95% confidence
interval.
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B. Performance on real detector data

For this test we use real strain data from the LIGO O1
observing run, with gating and cleaning applied for a recent
Einstein@Home3 search [16].
For a time-span of T ¼ 105 s with randomly selected

start-time during O1, we draw 1000 random 50 mHz-
frequency bands from within a 5 Hz band around the test
frequency. Using these data samples we determine the
detection probability in the usual way: apply the DNN to
the data samples (assumed to be pure noise) to determine
the detection threshold at pfa ¼ 1%, then repeat the
procedure with added signals of depth D90%

MF in order to
determine the detection probability (i.e., the fraction of
signal samples where the DNN prediction exceeds the
threshold).
We found that performing an additional prenormaliza-

tion of the data by the individual detector noise floors
improves the DNN detection performance in the presence
of differing noise floors between the two detectors.
The results of the real-data tests are shown in Fig. 7

(filled circles), plotted again as a function of duty factor.
For the frequency band at f ¼ 200 Hz in Fig. 7 there are
many data points basically matching the Gaussian-noise
performance, while for others there is a substantial loss in
detection probability. This loss can be traced to the
presence of “line” disturbances in the data as the disturbed
bands create a longer-tailed distribution of DNN detection
statistic values for noise inputs. This is illustrated in Fig. 8

for one example. In the low-frequency f ¼ 20 Hz case in
Fig. 7(a) we see a significant overall drop in detection
probability, due to a large number of lines and other
disturbances we observed in this frequency band.

VI. DISCUSSION

In this work we demonstrated that the already-
established ability of a deep neural network to search
for continuous gravitational waves in the data of a single
detector can be extended to two-detector searches. While
the larger size of the input data increases the challenge for
the DNN the results for short data spans remain reasonably
competitive with matched filtering.
On the other hand our architecture searches did not yet

yield a reasonably competitive neural network for the
longer T ¼ 106 s data span. Therefore we mostly focused
on characterizing the performance of the T ¼ 105 s net-
works for now.
Also note that compared to state-of-the-art CW searches

the DNN sensitivity achieved here is not yet competitive.
For example all-sky searches roughly achieve a sensitivity
depth of 30–50 Hz−1=2 (e.g., see [8]) while directed
searches go up to 54–83 Hz−1=2 [16].
As was shown in [29] the computing cost of a neural

network search is dominated by the training time and the
time of a matched-filtering follow-up.4 This implies that
multiple reuses of a trained DNN do not significantly
increase the overall computing cost. Training, executing
and following-up the T ¼ 105 s search, using the networks
presented in this paper, is roughly two times faster than the
respective matched-filtering search.
Furthermore we studied the features of a DNN search

directed at a specific sky-position. These directed searches
show comparable performance to the all-sky searches at
T ¼ 105 s with respect to the respective matched filter
sensitivities, but show less generalization in frequency and
first-order spin-down.
A common trend observed here, consistent with the

previous study [29], is that the network performance seems
to degrade when signals are spread over a wider frequency
band, i.e., for higher frequencies, sky positions with more
Doppler spreading, and for longer time spans. This shows
that the networks still have difficulties learning this aspect
of input signals.
We have further shown that DNNs seem relatively

robust toward data gaps that differ from the training set,
and we found that the impact of unequal detector noise
floors can be alleviated by per-detector data normalization.
Furthermore, as expected, we find that the performance on
real detector noise is significantly reduced in the presence
of non-Gaussian disturbances, i.e., “lines”.

FIG. 8. Histogram of the distribution of DNN detection statistic
values (predictions) for 1000 real-noise input samples. The two
distributions correspond to two different start-times, with similar
duty factors ∼82% and for the same 5 Hz band around 200 Hz. In
one case (blue) a disturbance in the data results in a long tail of
higher statistic values, which leads to a higher detection threshold
at fixed false-alarm, thereby reducing detection probability
compared to the undisturbed case (orange).

3https://einsteinathome.org

4The matched-filtering follow-up is currently necessary for a
fair comparison as otherwise a matched-filtering search would
deliver far more information about candidates than the DNN.
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We can identify the following remaining steps toward a
competitive and practical DNN search method:
(1) Train the networks on real detector data in order to

“learn” to classify disturbances as noise.
(2) Further optimize network architecture to further

close the gap to matched filtering under data ideal
conditions.

(3) Design a “semicoherent”-type search method by
combining the DNN predictions from short time
spans (such as T ¼ 105 s).
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