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Gravitational waves provide a window to probe general relativity (GR) under extreme conditions. The
recent observations of GW190412 and GW190814 are unique high-mass-ratio mergers that enable the
observation of gravitational-wave harmonics beyond the dominant (£, m) = (2,2) mode. Using these
events, we search for physics beyond GR by allowing the source parameters measured from the
subdominant harmonics to deviate from that of the dominant mode. All results are consistent with
GR. We constrain the chirp mass as measured by the (£, m) = (3,3) mode to be within 073% of the
dominant mode when we allow both the masses and spins of the subdominant modes to deviate. If we allow
only the mass parameters to deviate, we constrain the chirp mass of the (3,3) mode to be within +1% of the

expected value from GR.

DOI: 10.1103/PhysRevD.102.124070

I. INTRODUCTION

Advanced LIGO [1] and Virgo [2] have detected more
than a dozen binary black hole mergers to date [3-9], with
dozens of additional candidates reported during the recently
concluded third observing run [10]. The most recent two
binary black hole detections, GW190412 [11] and
GW190814 [12] were found to have unusually asymmetric
masses, with mass ratio ~3 and 9, respectively. High-mass-
ratio mergers such as these provide new insights into binary
black hole formation channels [13-18]. GW190814, in
particular, has sparked considerable interest. Its lighter
component object—which had a mass of ~2.6 Mg—is
within the hypothesized lower “mass gap” [12,19-22],
challenging existing formation models [23-32].

In addition to providing insights into stellar evolution,
the direct detection of binary black holes with gravitational
waves has provided new opportunities to test general
relativity (GR) in the strong-field regime [33-47]. One
of the most exciting (and elusive) possibilities in this new
era is a test of the no-hair theorem [48-56]. The no-hair
theorem states that all stationary black holes are entirely
characterized by three externally observable parameters:
the object’s mass, spin, and charge [57,58]. This is reduced
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to just mass and spin for astrophysical black holes, as it is
difficult for them to accumulate any appreciable charge.
A compact object that requires more than two parameters to
characterize it is therefore not a black hole as described
by GR.

Although the no-hair theorem is a statement about
stationary black holes, a perturbed black hole will radiate
gravitational waves, thereby asymptoting to a Kerr space-
time. For small perturbations, the emitted gravitational
wave is a superposition of quasinormal modes (QNM)
[59-62]. As a consequence of the no-hair theorem, the
frequency and damping times of these modes are uniquely
defined by the black hole’s mass and spin. This suggests a
test [54]: infer the mass and spin from each mode
separately, then compare the estimates. A discrepancy
would imply a violation of the no-hair theorem. Several
studies have investigated applying this test (known as black
hole spectroscopy) to the final black hole that is formed
after a binary black hole merger [53,54,63-68].

Performing black hole spectroscopy on a binary merger
remnant is challenging. The post-merger waveform damps
away quickly [in O(ms) for stellar-mass black holes], and
the amplitudes of the subdominant modes are (at best)
<30% of the dominant mode [69]. The signal-to-noise ratio
(SNR) of the pertinent signal is therefore relatively small.
Furthermore, when the postmerger perturbation is suffi-
ciently small such that linear-perturbation theory can be
applied is a matter of debate. Many studies have found that it
is necessary to wait at least 10M after the merger if
only fundamental modes are used in the waveform model
[33,70-72]. However, it has been shown that the signal
immediately after merger can be modeled as a superposition
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of QNMs if overtones of the dominant mode are included
[67,70,73,74]. This substantially increases the SNR avail-
able for spectroscopy, but introduces additional technical
and conceptual issues that are still being resolved
[49,52,75-78]. Even so, the best constraint to date from
that approach (obtained on the frequency of the loudest
overtone) is only ~ 4 40% of the expected GR value (90%
credible interval) [51].

Here we take a different tack: we perform binary black
hole spectroscopy. We use the entire observable signal to
search for hints of non-GR degrees of freedom, which we
generically refer to as “hair.” The gravitational wave emitted
throughout the inspiral and merger of a binary black hole
system can be decomposed into a superposition of spin-
weighted spherical harmonics. Assuming circular orbits and
vacuum spacetime, all of these harmonics should be depen-
dent on just eight “intrinsic” parameters—the two compo-
nents’ masses and the magnitude and relative orientation of
their spins. This is because the initial black holes are very
nearly Kerr when far apart. Therefore, as with traditional
black hole spectroscopy, we can construct a test of the no-hair
theorem by independently measuring the intrinsic parame-
ters from each gravitational-wave harmonic. If the param-
eters do not agree across harmonics, then this suggests the
presence of hair in the system, a potential violation of GR.

We apply this test to GW190412 and GW190814. Due to
its low mass, uncertainty exists as to whether the lighter
object in GW190814 is a neutron star or a black hole [12].
Here, we assume it is a black hole. This is reasonable given
that observations of the binary neutron star merger
GW170817 disfavor neutron-star equations of state that
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support masses 2.3 Mg, [79,80]. With SNRs of 3.5 and 7,
respectively, in their (£, m) = (3, 3) mode, GW 190412 and
GW190814 are the only two detections to date that have a
measurable subdominant mode. Figure 1 shows the data
surrounding both of these mergers.

Islam et al. [68] and Dhanpal et al. [81] proposed a similar
test as what we preform here. The authors of those
publications investigated allowing the chirp mass and mass
ratio to vary from the # = 2 mode, using common deviation
parameters for all subdominant harmonics. They applied
that test to a set of simulated signals from numerical
relativity, finding that the chirp mass deviation of the sub-
dominant modes could be constrained to less than a percent
at signal-to-noise ratio 25. Our test here differs in that we
allow both spins and masses to vary independently for every
harmonic that we consider, along with the phase. We make
these choices because our aim is to perform an agnostic test
on the initial black holes, similar to what is done on the final
remnant in traditional black hole spectroscopy. However, we
also perform a more constrained test in which only the
masses and phase of the sub-dominant modes are varied,
keeping the spins fixed to their GR values. This is more
similar to the test proposed in Refs. [68,81]. As discussed
below, we obtain constraints that are consistent with what
those publications found using simulated GR signals.

II. BINARY BLACK HOLE SPECTROSCOPY

The full gravitational wave as seen by an external
observer at distance D; from the source can be decomposed
into a spin-weighted spherical harmonic basis,
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FIG. 1.

Time-frequency plot of the coherently-summed data around GW190412 (top) and GW190814 (bottom). The unaltered data

(left) is shown along with the residuals after subtracting only the (¢, m) = (2,2) mode (center) or the full signal model (right) at the
maximum-likelihood parameters. Faint visual evidence of the (£, m) = (3, 3) mode is apparent for GW 190814, which has SNR ~ 7 and
roughly parallels the clear (2,2) mode, but at 1.5x higher frequency.
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Here, h(y ) is the “plus” and “cross” polarization of the
gravitational wave, the inclination z is the angle between the
line-of-sight of the observer and the z-axis of the center-of-
mass frame of the source, and ¢ is the azimuthal angle of
the observer with respect to this frame. The source frame is
oriented such that the z-axis is aligned with the orbital
angular momentum at some fiducial reference time (here,
chosen as the time that the frequency of the dominant-mode
is 20 Hz); ¢.. is the phase of the gravitational wave at that
time.

The set @ represents all of the intrinsic parameters
describing the source binary. Unless the binary was formed
by a recent dynamical capture, the orbit circularizes before
it enters the sensitive frequency band of the LIGO and
Virgo instruments [82]. Therefore, assuming circular orbits,
a binary black hole is uniquely defined by eight parameters:
the two component masses m ;) and the magnitude and
orientation of each object’s spin )?(]’2) at a reference epoch.

To perform spectroscopy on the full waveform, we allow
the intrinsic parameters and the phase of the subdominant
modes to deviate from the dominant, (£, m) = (2,2) mode.
In other words, we replace ® and ¢, in Eq. (1) with @,
and ¢, z,,,, respectively. We examine two cases. In the first,
we allow all intrinsic parameters (masses and spins) of the
subdominant modes to independently diverge from the

dominant mode. In the second scenario we only allow the
mass parameters to differ. In both cases we allow ¢,. to vary.

We expect any deviations from GR, if present, to be
small. Since a binary’s chirp mass M = (m;m,)3>/
(m; + mz)]/ > is more accurately measured than the indi-
vidual component masses, we parametrize the subdominant
masses in terms of fractional deviations from the dominant-
mode chirp mass M,, and symmetric mass ratio 7,, =
My 29Ny 00/ (M) 25 + My 0)?. Specifically, we define

My = My (14 6My,y,),
Nem = Mo (1 4 ngy).

and allow My, and é1., to vary uniformly between
40.5. The spins are varied independently for each mode,
using the same prior (uniform in magnitude and isotropic in
direction) as the dominant mode spins. We then report
the absolute difference from the dominant mode for each
component,

AYik.tm =Xikem —Xik22»

where i = 1, 2 and k = x, y, z. The absolute difference in
the modes’ phase A, s, = Gepm — ¢Peoo is varied uni-
formly between +z. We use standard astrophysical priors
for the remaining parameters: uniform distributions are
used for comoving volume, coalescence time, phase,
and the source-frame component masses mj'5; isotropic
distributions are used for sky location, inclination, and
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FIG. 2. Marginal posterior distributions of the (£, m)

Ax1z,33 A)(1x,33 Ale,33 A)(2z,33 A)(zx,33 A)(2y,33 D, 33/m

= (3, 3) deviation parameters for GW190412 (top) and GW 190814 (bottom).

Blue regions/lines are from the analysis in which we allow both the masses and spins to deviate. Orange lines show the same result when
the sub-dominant mode spins are fixed to the dominant-mode value. Horizontal hashes indicate the median (center) and 90% credible
regions. Gray lines show the marginalized prior distributions. Since the prior distributions on the Ay ,, are dependent on the dominant-
mode spins y;, we show spin priors conditioned on the y;; 5, posteriors.
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To model the gravitational-wave signal, we use the
recently developed IMRPhenomXPHM waveform [83].
This model includes the effects of both orbital precession
and subdominant modes on the gravitational waveform,
and has been tested against numerical relativity simula-
tions. The (£, m) = (3,3) mode was the only measurable
subdominant mode in both GW190412 and GW190814.
Based on the estimated parameters, the next most signifi-
cant subdominant mode in these events should be the
(Z,m) = (2,1) mode, although we expect its signal-to-
noise ratio to be too small to provide any meaningful
constraints. All other modes are too weak to measure. We
therefore model the signals using the sum of the (2,2), (3,3),
and (as a sanity check) (2,1) modes. We neglect all other
modes in our analysis. To sample the parameter space, we
use the open-source PyCBC Inference toolkit [84,85] with
the parallel tempered emcee-based sampler [86,87].

III. RESULTS

Constraints on the deviations of the (Z,m) = (3,3)
mode for each event are shown in Fig. 2. We report
marginalized posterior distributions on the fractional differ-
ence in chirp mass 6 M3; and symmetric mass ratio oys;
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FIG. 3. Marginal posterior distributions on the source-frame
component masses my", of GW190814, as measured by the
dominant [(#,m) = (2,2)] and (3,3) modes. The contours show
the 50% (solid) and 90% (dashed) credible regions. Lines of
constant chirp mass M and symmetric mass ratio # are indicated
by the gray dotted lines, with the darker lines indicating the
maximum likelihood value of the (2,2) mode. Black lines show
the posterior on the masses as measured by the (2,2) mode, blue
lines show the (3,3) mode when spins are allowed to deviate
along with the masses and phase; orange lines show the (3,3)
mode when only the masses and phase are allowed to deviate.

from the (2,2) mode, along with the absolute differences in
the six spin components and the reference phase ¢..
All parameters are consistent with the GR values: a zero
deviation is within the 90% credible interval of every
parameter.

We obtain the strongest constraints from GW190814,
with its 5 M5 being the best constrained parameter overall.
We also obtain nontrivial constraints on that event’s d7s3.
Using the posterior on 6 M53 and 6133, we reconstruct the
masses of the source-frame masses as measured by the (3,3)
mode. The resulting posterior is shown in Fig. 3. Consistent
with GR, the posteriors are centered on the values measured
by the dominant mode.

All other parameters, including all deviations on the (2,1)
mode (not shown) yield negligible constraints. This is
consistent with expectations from GR. The individual
component spins are not well measured for either event,
and the signal-to-noise ratio of the (2,1) mode for both
events is expected to be too small to provide meaningful
constraints. That we do not observe any constraints on
these parameters lends credibility to the constraints that we
do measure from the (3,3) mode, and reinforces the GR
nature of these events.

Our results are also consistent with predictions from
Islam et al. [68]. The constraints obtained from our analysis
of GW190814, in which we only allow the masses and
phase of the subdominant modes to deviate, are the most
directly comparable results to that study. The width of our
90% credible interval on 6.M3; is approximately an order
of magnitude larger than what Islam ef al. obtained using a
nonspinning simulated GR signal. A wider uncertainty is
expected due to the additional degrees of freedom in our
analysis: we have allowed the parameters of each mode to
vary independently, we have not assumed that GW190814
is nonspinning, and we have allowed the phase of each
mode to vary in addition to the masses.
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FIG. 4. Combined marginal posterior distributions of 6M3;3
and 6133 from GW190412 and GW190814. Purple regions/lines
are from the analysis in which we allow both the masses and spins
to deviate. Red lines show the same result when we fix the
subdominant mode spins to the dominant-mode value. Horizontal
hashes indicate the median (center) and 90% credible regions.
Gray lines show the prior distribution.
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TABLE I. Median and 90% credible intervals on deviations of
the (£, m) = (3,3) chirp mass 6M33 and symmetric-mass ratio
ons3. These are the best-constrained deviation parameters in our
analysis; other parameters are weakly constrained. We performed
two analyses—one in which the masses, orbital phase, and spins
of the subdominant modes are allowed to deviate from the
dominant mode (“all”) and one in which only the masses and
phase are allowed to deviate (“masses’’). Constraints on the mass
parameters are combined between the two events (“Combined”).

Event Analysis OMs; (%) o33 (%)
GW190412 All —313 -2
Masses 0/, 215
GW190814 All 012 —415%
Masses -0.2798 -17
Combined All Of35 _33?
Masses —-0.270% -1

Under the assumption that the mass deviation parame-
ters, 6 M35 and 6133, are common between GW190412 and
GW190814, we resample their likelihoods using a kernel
density estimate and obtain the joint constraints shown in
Fig. 4. A full summary of our analyses’ marginalized
constraints are shown in Table 1.

IV. DISCUSSION

We performed binary black hole spectroscopy on
GW190814 and GW190412 to look for physics beyond
general relativity. We obtained nontrivial constraints on the
chirp mass and symmetric mass ratio. Consistent with GR,
we find that the chirp mass as measured by the (£, m) =
(3,3) mode and the dominant mode agree with each other
to percent-level accuracy. We also combined results
between GW190814 and GW190412 to further constrain
deviations from GR. These results can be combined with
future detections to obtain yet tighter constraints. Over the
next few years, as the LIGO and Virgo detectors reach
design sensitivity, we expect the rate of mergers to increase
by a factor of 5-10 [88]. This should improve the limits
observed here by a factor of ~2-3, or more, if even larger
mass-ratio mergers are observed.

To date, the best constraint from traditional black
hole spectroscopy has been on the QNM frequency of
an overtone of the (¢, m) = (2,2) mode. That constraint,
|6f| < 40%, was obtained from an analysis of GW 150914
[51]. Our constraint on the fractional deviation of the (3,3)
chirp mass is at least an order of magnitude smaller. This is
because more signal-to-noise ratio is available in the full
waveform.

Is binary black hole spectroscopy a test of the no-hair
theorem? Yes, or at least as much as traditional black hole
spectroscopy can be said to be a test of the no-hair theorem.
The primary difference is binary black hole spectroscopy

probes “long-range” hair—i.e., interactions that occur on
an orbital length scale—whereas black hole spectroscopy is
sensitive to near-horizon effects on the scale of the remnant.
Binary black hole spectroscopy is therefore a compliment
to traditional black hole spectroscopy.

One complication of binary black hole spectroscopy is
that the initial objects are never exactly Kerr. However, the
final black hole is never truly a Kerr black hole either, only
approximately so; it exists in a universe containing other
matter. In that sense, neither traditional black hole spec-
troscopy nor binary black hole spectroscopy can be said to
be tests of the no-hair theorem, since no astrophysical black
hole exists in a purely stationary spacetime. Both are null
tests. A null result, as we obtained here, means that the
objects in the binary are consistent with Kerr black holes,
which satisfy the no-hair theorem.

Even if a nonzero deviation parameter is detected by
one of these tests in a future observation, it would not
necessarily mean that GR is violated. Any number of
more mundane effects—modeling uncertainties, wrong
assumptions, even unexpected noise features in the detec-
tor data—may offer an explanation. For these reasons,
both traditional and binary black hole spectroscopy are
perhaps better described as “toupee tests” rather then no-
hair theorem tests. They may detect hair, but whether that
indicates a violation of GR (real hair) or other systematics
(fake hair) would require further study. Our hope, both
with binary and traditional black hole spectroscopy, is
that these tests may one day detect hair that cannot be
explained by more mundane effects upon further inves-
tigation. Such a discovery could point the way to new
physics.

We make available the full posterior samples from our
analyses along with the configuration files necessary to
reproduce our results at [89].
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