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Abstract: High-resolution light distributions are lately in demand for vehicle headlamp systems as
an innovative lighting approach. This lighting approach can realize functionalities, such as precise
glare avoidance and on-road projection, which are useful for improving traffic comfort and safety.
For achieving the required high-resolution light distribution, area-based projection technologies,
such as DMD, LCD, and LCoS, are considered to be integrated into such headlamps. These projection
devices demand rectangular illumination areas with specific light distributions to fulfill the
requirements for illumination efficiency and performance in headlamp systems. Lenslet arrays,
based on the principle of Kohler illumination, can effectively homogenize the light and shape it into
rectangular shapes simultaneously. Such components are widely used in projection applications.
However, they also show functional potentialities to be applied in high-resolution headlamps.
This paper explains the design principles and methods of lenslet arrays for beam pre-shaping
in headlamp systems. It validates the homogenization using a self-designed and manufactured
lenslet array in a demonstrator in the first place. Afterward, this paper introduces two new methods
for the centralized beam shaping required by some headlamps. These methods are validated by
optical simulations.

Keywords: high-resolution vehicle headlamps; lenslet array; beam pre-shaping methods

1. Introduction

Vehicle headlamps have been undergoing rapid development by researchers and car
manufacturers in recent years to improve traffic safety and comfort. The new generation of vehicle
headlamp system comes to the high-resolution headlamp, which can provide functionalities, such as
precise glare-free high beam and on-road lighting symbol projection [1,2]. On the one hand, a glare-free
high beam optimizes the illumination condition for drivers by allowing full-time use of the high beam
when driving in the night. At the same time, it can reduce the glaring discomfort by dimming or
shutting down the light in specific areas where other traffic participants are [2,3]. On the other hand,
on-road projection enables lighting information to be displayed on the road, with which drivers can not
only perceive information directly from the road, but also communicate with other road users [2,4,5].

These lighting functionalities require a high-resolution distribution from the headlamp. Because
of this reason, area-based light modulator technologies, for example, LCD (liquid crystal display),
DMD (digital micromirror device), and LCoS (liquid crystal on silicon) are considered to be integrated
into headlamp systems [6-10]. Once these area-based modulator technologies are used, it is essential
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to have a reliable light shaping method to fulfill the relevant requirements for headlamp systems and
achieve a good projection performance simultaneously.

2. Beam Shaping in High-Resolution Headlamp Systems

A modulator-based high-resolution headlamp is composed of the light source, the light modulator,
and corresponding optical elements. The light source varies from halogen bulbs, discharge Xenon
lamps, LEDs, and laser diodes, emitting light with different specifications and distributions. The light
modulators mentioned in Section 1 have rectangular shapes with different aspect ratios. For attaining
a good optical efficiency and make full use of the resolution of a modulator, the emitted light from
any light source should be pre-shaped to illuminate the light modulator’s active area with a small
overfill ratio.

Willeke et al. introduce an LCD headlamp design with RGB (red, green, and blue) laser diodes
as the light source in [8]. The laser beams from all diodes are collected and shaped to illuminate
the entire LCD surface homogeneously. After that, the projection optics project the transmitted light.
Schmidt introduces a concept to supplement a high-resolution module to Mercedes’s multi-beam
headlamp [11]. The high-resolution light distribution is generated by a DMD with LEDs as the light
source. It can realize the near field homogeneous on-road projection, for example, adverse weather
notification. Mercedes has brought this headlamp into the market. The idea of complementing a
high-resolution module with a smaller angular range to an entire illumination range is also discussed
in [12]. An example of this concept is illustrated in Figure 1 from a driver’s sight.

Vertical line
ll/

__— Horizontal line

Road center line ——

General illumination area High-resolution area

Figure 1. Example of the illumination distribution of a high-resolution headlamp, which includes a
general illumination area and a high-resolution area.

Besides the homogeneous distribution, there are designs to realize a central hotspot in the
illumination pattern. The advantage of this inhomogeneous illumination concerning regulations and
system efficiency is discussed in [13,14]. For the inhomogeneous illumination pattern, Giinther et al.
present an approach that uses an ellipsoid reflector with illumination optics to realize the non-uniform
distribution pattern on the DMD surface. Bhakta et al. achieve a similar inhomogeneous pattern using
all transparent optics with a white LED [15,16]. Wolf and Pfullmann introduce another optical concept
of a DMD-based high-resolution headlamp, in which the DMD chip is homogeneously illuminated,
but a pincushion distortion projection lens set is used after the DMD chip to centralize the majority of
light in the front center [2,17].

In the above discussed optical concepts of headlamp systems, the light modulators are illuminated
by the incident light from the light source either uniformly or non-uniformly. Beam pre-shaping
methods before the modulator are requisite in order to achieve the designs of different headlamp
systems. It is also necessary to make a good optical efficiency and the lighting performance of the
high-resolution headlamps’ functionalities with the pre-shaping methods.



Appl. Sci. 2020, 10, 4569 30f13

3. Lenslet Array Homogenizer

LAs (lenslet arrays) are widely used as beam homogenizers in projection applications. The LA
homogenizer is based on Kohler illumination principle but is more practical to achieve the homogenous
distribution for area-based light modulators. However, an LA can be used not only for light
homogenization, but also for customized inhomogeneous beam shaping. This chapter introduces
the basic principle of the LA homogenizer. The inhomogeneous beam shaping methods introduced in
Section 5 are based on this basic principle.

3.1. Kohler Illumination

Kohler illumination is at earliest used in modern microscopy systems. It can transfer the
inhomogeneous light distribution from the light source (a coiled tungsten filament, for instance)
in a microscope to a homogeneous illumination pattern on the specimen. Figure 2 shows the principle
and a simplified structure of Kohler illumination [18]. It can be seen from the figure that each field of
the filament is collimated by the collimation lens and then imaged at a fictitious focal plane in the first
place. An aperture is inserted to control the beam size. After the focal plane, a relay lens parallelizes
the light from each field to illuminate the whole specimen range. Thus, the entire specimen area is also
a superposition range of light from every field of the light source. By doing this, a uniform illumination
pattern at the target position can be achieved. Kohler illumination is also used in projection systems to
project a film onto a screen homogeneously [19].

Filament Collimator  Aperture Focal lens Focal plane Relaylens  Specimen

Figure 2. Typical Kohler illumination principle in microscopy systems,it provides a homogeneous
illumination pattern for the specimen by imaging the filament.

3.2. Lenslet Array Homogenization

Although Koéhler illumination can effectively provide the homogeneous illumination pattern,
it cannot deform the light from any light source into a rectangular shape to match the dimension of
the modulator without an aperture. Due to this reason, a basic Kéhler illumination structure results
in either a waste of light (with an aperture or a more massive illumination range than the modulator
surface without an aperture) or partial use of the modulator’s resolution (a smaller illumination range
than the modulator surface). Therefore, another method for simultaneously shaping and homogenizing
light is needed.

For this purpose, LAs, which are based on Kohler illumination principle, can be applied in such
headlamp systems. An LA homogenizer is constituted of a LA with a conventional lens [20]. The LA
has multiple lenslets with identical dimensions, so that it firstly separates the incident light into
beamlets and focus each beamlet on a focal plane. After that, the conventional lens located at the
distance of its focal length with respect to the focal plane acts as the relay lens, as in Kohler illumination
systems to collimate each beamlet and converge all parallel beam bundles in the homogenization plane.
This homogenization plane is namely the display surface of the light modulator, and it is situated at
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the focal plane of the relay lens on the opposite side to the LA. Thus, each lenslet with the relay lens
is working as an independent Kohler illumination system. A one-dimensional illustration of an LA
homogenizer with the interplay of the geometry relationships is shown in Figure 3.
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Figure 3. Working principle illustration of a lenslet array (LA) homogenizer, the LA is composed of
three lenslets.

On the left side of the focal plane in Figure 3, D represents the width of the incident beam in
this dimension, d represents the dimension of each lenslet, and f; is the focal length of each lenslet.
The interplay of these parameters is:

tana =

d
— 1
2, M
On the right side of the focal plane, the focal length can be determined once the dimension of the

display surface of a modulator H is known. It can be calculated by:

- H
T 2-tana

f2 )

For different lighting modulators, there are different requirements on the incident angles 8 on the
modulator surface. An appropriate incident angle helps the modulator to have a good efficiency and
modulating performance [21,22]. Once this incident angle is pre-defined, assuming 7 is the minimum
number of lenslets to cover the incident beam, the focal length on the modulator side can be calculated,

as below: ( 1) xd
n—1)x
f?sziz_mn[3 ®)

For a rectangular lighting modulator that is two-dimensional, fs, fos and f3s in both dimensions
of the homogenizer are identical, and other geometric quantities of both dimensions can be calculated
using Formulas (1)—(3). Therefore, it can be seen that each lenslet on the LA has the same aspect ratio
as the modulator’s display surface.

In conclusion, the homogenizer divides the incident beam into multiple sub-beamlets with a
specific aspect ratio in the first place. It superposes all of the beamlets on to the modulator with a
series of defined geometric quantities. By doing so, both particular beam shaping and homogenization
of the incident light can be realized. According to geometric optics, the more lenslets that are covered
by the incident light bundle, the more homogeneous the superposition pattern will be.

3.3. The Use of the Second LA

A parallel incident beam is required before the LA to guarantee the desired overlay range, as can
be seen from the LA homogenizer’s introduced working principle. However, in actual applications,
most light sources cannot be well collimated due to their Etendues [23]. As a result, not all beamlets
divided by the LA are superposed within the designed range, but overfill it. This leads to a waste of
optical energy in the system. To solve this, a second LA can be applied.
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The second array is completely the same as the first, but set oppositely to it at the focal plane of
the first LA. Thus, the deviation of the beamlets caused by the initial divergent angle can be revised, so
that all beams can be superposed to the same area by the relay lens. Figure 4 shows an illustration of
this revision while using a single lenslet from each LA.

Figure 4. Expanation how the second LA revise the initial divergent angle from the light source, d, «
and f; are the same as in Figure 3.

Figure 4 illustrates a limitation of applying the second LA . When the incident beam divergence is
larger than o, this beamlet is no longer focused on the relevant lenslet on the second LA. This situation
is detrimental to the beam homogenization. Since the optical system in Figure 4 is approximately a
paraxial system, ABCD matrix can be applied to figure out this limitation. The ABCD matrix for the o

calculation is shown below:
1 0
N e P @
0 1 Tfl 1 (2

Therefore, when the light emitted from the light source cannot be ideally collimated, an additional
LA can complement the homogenization performace. Moreover, in some cases where f; is not too
long, merging the two LAs into one optical element with the thickness of f; and curvatures on both
sides is practical.

D NI

4. Validation of Homogenization Principle

A high-resolution luminaire demonstrator is initially set up and presented in this chapter to verify
the design approach of the homogenizer for headlamp systems. This demonstrator uses a twisted
nematic LCoS as the light modulator and three RGB laser diodes as the light source to realize the white
illumination light.

4.1. Simulation

The optical components used in the demonstrator are designed and simulated in Zemax
Opticstudio. The laser beams from the RGB laser diodes are firstly collimated, and the beam diameters
are expanded to approximately 20 mm. After that, a dichroic prism combines these RGB beams into
one white beam. Therefore, this combined incident beam has a quasi-gaussian distribution. It is
simulated in Zemax as Gaussian beams with the beam size 6.5 mm at 1/¢? intensity and the divergency
of 3° on both horizontal and vertical axes. The light source is set to 20 mm before the LA. Table 1 lists
the parameters of the used LCoS.

Table 1. Parameter list of the iquid crystal on silicon (LCoS), which is used as the lighting modulator in
the demonstrator.

Resolution Active Area Aspect Ratio  Aperture Ratio Reflectance = Waveband

1280 x 768  12.29 x 7.37 mm 5:3 89% 66% 420-700 nm
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In order to have a good illumination and projection performance from the LCoS, the incident
angle on the LCoS surface is intentionally designed to less than 10° on each direction according to [21].
The principle and geometrical relationships explained in Section 3 are used as the design approach for
this demonstrator. The material of the optical components in the simulation model is uncoated PMMA
(Polymethyl methacrylate). The clear aperture of each LA is 30 x 30 mm?, on which 60 single-side
lenslets are arranged side by side. The simulation model is shown in Figure 5. This figure also shows
the light distributions of the incident beam and the detector surface, acting as the LCoS display surface.
The combined circular incident beam is shaped into a rectangular shape with the same dimension as
the active area of the modulator. The quasi-Gaussian distribution of the incident beam is transformed
into a homogeneous distribution eventually. Besides, the incident angles on both horizontal and
vertical directions are proven to be less than 10°. Since the requirements on both homogeneity and
image sharpness for headlamp systems are not as high as for video projectors, this angle can be slightly
larger to have a shorter optical length [10].

According to the simulation result, the optical efficiency of this homogenizer composed of two
LAs and a relay lens is 74.59%. This efficiency represents the part of the light collected within the
target illumination area. This collection efficiency goes slightly upward as the initial beam divergency
decreases, reaching 76.24% when the initial incident beam is ideally collimated. Once the second LA is
removed, the collection efficiencies drop to 46.95% and 69.73% in both cases. Therefore, the second LA
makes a considerable contribution to the collection efficiency when the beam from the light source

is divergent.

LAl LA2 Relay lens Detector

Relative intensity
Relative intensity

Light source distribution Detector surface distribution

Figure 5. Simulation model of a LA homogenizer with the distibutions of the radiation intensity of the

incident light and the target plane.

4.2. Prototype Demonstration

A desktop prototype is set up to investigate the performance of the homogenizer. Three RGB laser
diodes (450 nm, 520 nm, 638 nm) are used as the light source with respective collimators and beam
expanders for rough pre-shaping, as mentioned in Section 4.1. A dichroic prism is used afterward
for the beam combination. Once the laser beams are combined into one joint beam, it goes into the
homogenizer. Both the beam expander and the homogenizer components used in the demonstrator
are manufactured by an IMES five-Axis milling machine and made of PMMA. After the homogenizer
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locates the twisted nematic LCoS detailed in Table 1 with a PBS (Polarizing Beam Splitter), which is
commonly used in display applications with the LCoS. Finally, a projection lens group projects the
light from the LCoS to a measurement screen. Figure 6 shows the demonstrator setup schematic and
the manufactured LA.

Red Laser diode .
Homogenizer
Collimators & Expanders o ____

Projection
lenses

h| |
Green Laser diode \ * \L ' PBS
""""""" I
T~

LAs Relay lens

LCoS

Blue Laser diode = Dichroic prism

(a) (b)

Figure 6. Demonstrator setup and manufactured LA. (a) Demonstrator schematic for the performance
investigation; (b) The manufactured LA.

For the evaluation of the homogeneity, the ANSI uniformity standard for evaluating projectors
is applied. The whole illumination area is divided into nine parts on average. The center point of
each part is the measuring point in terms of the illuminance. In addition, four more measuring points
on the corner are taken into account. They are defined as 10% of the distance from the corner to the
center point of the entire illumination area. The sampled measuring points are shown in Figure 7.
The homogeneity is defined by Ur+ and Ur—, which are the maximum deviation from the average
measurements [24]. Ur+ and Ur— can be calculated while using following equations [24,25]:

Maximum |E;|._
Ur4 = [ 1]1_10,11,12,13 1
Average [Ei]izl,z,...,9

) x 100% (5)

Ur— — (annum [Eilizi011,1213

1] x 100% (6)
Average [Ei]i:1,2,...,9 )

where Maximum|[E;|;—10 11,12,13 and Minimum|[E;];_10,11 12,13 mean the maximum and the minimum
illuminance values among points 10-13, respectively. Average[E;|;—12 o means the average
illuminance value among points 1-9.

A lux meter measures the illuminance of these thirteen points, and these values are used to
calculate the homogeneity deviations. Besides the illuminance measurement, an LMK color five CCD
camera collects the luminance information of the entire illumination area as a reference, so that human
eyes can directly observe the illumination result. The measuring setup is also presented in Figure 7.

The Ur+ and Ur— values according to Equations (5) and (6) are calculated from the measured
illuminance data by the lux meter, which are +5.76 %/—6.51 %. This result is fully acceptable for
illumination from practical experiences, and human eyes can hardly perceive the inhomogeneity. Thus,
using LAs as the homogenizer for high-resolution headlamp systems is promising. The measured
luminance image from the luminous camera and the photographed projection picture is shown
in Figure 8 as a reference. Because of the coherence laser light sources, the illumination on the
measuring surface shows an apparent speckle pattern, which also affects the whole homogeneity.
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When directly using laser beams as the light source in headlamp systems, a further investigation of
whether the laser speckle impacts the illumination performance should be made. When necessary,
additional optics or vibrators can be considered as complementary elements to the LAs to cope with
the speckle pattern [26,27]. Besides the laser speckle, the projection homogeneity is affected by the
aperture ratio of the LCoS as well. An LCoS has inter-pixel dead zones, although its aperture ratio is
relatively high. These dead zones result in magnifying the intensity of the diffraction orders, leading to
inhomogeneous patterns of the projection [28]. This phenomenon is chiefly apparent when the incident
light is composed of monochromatic wavelengths.

12m

LMK Color
0.5m

Demonstrator

(a) (b)

Figure 7. Homogeneity measuring illustration. (a) The 13 measuring points defined by ANSI [24,29];
(b) The measuring setup.

(b)

Figure 8. Projection and measuring results of the investigation setup. (a) The measured luminance

image from the LMK Color 5; (b) The real projection photo.

5. Concepts for Inhomogeneous Beam Shaping

Some vehicle headlamps generate inhomogeneous illumination patterns, as introduced in
Section 2. Once the LA homogenizer principle is explained and validated, special inhomogenizers for
high-resolution headlamps can be achieved by making modifications on the homogenization principle.
This chapter introduces two methods to accomplish these inhomogeneous lighting distributions with
central hotspots.

5.1. Modification on Focal Length

An LA homogenizer requires the same aperture dimension and focal length of all lenslets.
By differentiating these identical aspects, inhomogeneous illumination patterns can be generated.
One possibility is to lengthen the focal lengths of individual lenslet, so that more centralized
illumination areas can be generated [14]. Figure 9 illustrates a simple principle of such an optic.
d, f1, fo, and f3 have the same meanings as those in Formula (3), f{ denotes the lengthened focal length
of the central lenslet, which intends to create the hotspot; /3’ denotes the maximum incident angle
of the centralized beamlet on the display surface (the red line to the display surface in the figure),
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which is not important in this discussion; and, H " denotes the centralized distribution hotspot area
resulted from the focal length changing.

LA Relay lens
o T | Display surface
\\\\\\\\ 5
N || — et e ] I

/i /2 /3

Figure 9. Principle of a focal length changed LA inhomogenizer [14].

The hotspot area dimension in this illustration can be customized according to the ABCD matrix

shown in Formula (7):
Zl_11 5 1011 Ait+h 1 01| -4
LIRS R R | 1 B

A validation of this hot spot generation method is accomplished by optical simulation. The optical
system is modified from the one presented in Section 4. The simulation model with its result is shown
in Figure 10 [14]. Both of the optical components in the simulation model are made of PMMA. The
system exhibits an optical efficiency of 78.2% (with uncoated surfaces). The distribution that is shown
in Figure 10b is quantified to a real headlamp’s level, and it is compared with the regulation later.

Relay lens

Vertical coordinate in mm

-3.69
-6.14 -492 -369 -246 -1,23 0 123 246 3.69 492 6.14
Horizontal coordinate in mm

(a) (b)

Figure 10. Simulation model and its result for the hotspot generation based on the modification of focal
length. (a) Simulation model; (b) Detector view located at the modulator plane [14].

5.2. Modification on Lenslet Dimension

Another method to create the required illumination hotspot besides lengthening the focal length
is through the modification on the lenslet dimension. The focal lengths of individual lenslets stay
the same. When the dimension of a lenslet decreases, it results in a centralized distribution area,
as illustrated in Figure 11.

In this figure, d’ is the modified lenslet aperture dimension, which leads to a smaller image of
itself with the size of H' on the display surface. The inhomogeneous distribution pattern is therefore
generated. This smaller lenslet dimension also leads to a smaller incident angle &’ on the virtual focal
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plane. Thus, the geometry relationships of the modified and the resulted parameters can be confirmed

while using Formulas (8) and (9).
/

tana’ = 75 8)
f= 2- tIe_aI;l o ©)
LA Focal plane Relgy lens
Display surface

[

A @)

/3

Figure 11. Principle of a aperture size changed LA inhomogenizer.

A simulation model modified from that in Section 4 is also used for the validation of this method.
The inner lenslets are half the size of the outer lenslets. The simulated system and its result are shown
in Figure 12. The optical efficiency, according to the simulation, is 75.0% with PMMA components.

Vertical coordinate in mm
o

-3.69 &=
-6.14 -492 -3.69 -246 -1,23 0 123 246 369 492 6.14
Horizontal coordinate in mm

(a) (b)

Figure 12. Simulation model and its result for the hotspot generation based on the modification of
lenslet dimension. (a) Simulation model; (b) Detector view located at the modulator plane.

Figure 13 shows acomparison of the simulation results with the high beam requirement.
The dotted curve in the figure shows the requirement in terms of the minimum illuminance in a
headlamp’s FoV (field of view). The illuminance distribution of a headlamp must not be below this
curve in the FoV. Both of the resulted distributions in Sections 5.1 and 5.2 are further shaped by a
projection lens to achieve an FoV of £15° in the horizontal direction and £+5° in the vertical direction.
The simulation results are quantified to the same level of the regulation, and the comparison result
is as illustrated. According to the comparison, the two hotspot generation methods can fulfill the
requirements in the regulation for headlamp systems.

Both of the methods described in Sections 5.1 and 5.2 are on the base of the fundamental
principle of the LA homogenizer. By modifying this basic principle, centralized illumination
hotspots can be customized. Depending on the specific design requirement of a high-resoultion
headlamp, optional methods for homogeneous or inhomogeneous lighting distribution can be
correspondingly applied.
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A twisted nematic LCoS is selected as an example because of its potentiality in headlamp
applications. First, an LCoS has high aperture ratios and reflectances, which are beneficial for the
optical efficiency and the thermal management in high power systems, i.e., headlamp systems in the
context [30]. Next, the pursuit of efficiency and compaction of a headlamp suggests the appliance
of laser diodes as the light source [4]. A laser diode emits linearly polarized light, which fits the
working mechanism of the LCoS well. The collaborative work of laser diodes and LCoS modulators
can improve energy efficiency and contrast performance in a headlamp. Nevertheless, except for
the LCoS, the two proposed methods for the central hot spot generation can be applied for other
area-based modulators, e.g., DMDs and LCDs, in high-resolution headlamp systems.
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Figure 13. A comparison of the quantified distributions with the requirements for headlamp high

beams in [31].

6. Conclusions

This paper introduces methods for the realization of different illumination patterns of area-based
high-resolution headlamp systems while using LA optical elements. It explains the motivation of
high-resolution headlamps in the first place, followed by the state of the art of lighting distributions
of such systems. LAs are introduced as the beam pre-shaping optics in order to achieve different
illumination patterns. The first use of LAs is to realize homogeneous lighting distributions for
diverse target areas. The basic working principle and design methods of such LA homogenizers are
introduced in this paper, with the validation using simulation and measuring results according to
ANSI standards. Based on the homogenization working principle, two innovative approaches of using
modified LAs as inhomogenizers for high-resolution headlamps are subsequently introduced. Each of
the approaches can generate an inhomogeneous illumination pattern with a central hotspot. Thus,
the ability and potentiality of LAs for various application scenarios for upcoming vehicle headlamps
are comprehensively presented.
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ANSI American national standards institute
DMD Digital micromirror device

FoV Field of View

LA Lenslet array

LCD Liquid crystal display

LCoS Liquid crystal on silicon

LED Light-emitting diode

PBS Polarizing beam splitter

PMMA  Polymethyl methacrylate
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