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Abstract 

The achievement of a high level of logistical performance is a primary goal of manufacturing companies. In 

order to remain competitive, companies must constantly improve order processing to ensure short delivery 

times and high delivery reliability. Production planning and control is a core function of manufacturing 

companies and is responsible for routing production orders through the stations involved in order processing 

such as procurement, production and dispatch. Yet managing production efficiently and achieving a high 

logistical performance remains a genuine issue, even with increasingly digitalized and automated processes. 

The concept of the digital twin promises an improved database to enable companies to reach more informed 

decisions. As yet, the potential for utilizing this database has not been thoroughly explored in the context of 

a constant measurement of the backlog and output. In addition, there are various divergent definitions and 

approaches to the application of digital twins. This paper discusses the potentials of the different tasks of 

production control and monitoring in relation to the acquisition of dynamic data in real-time. A method is 

provided that continuously calculates the backlog and output. Furthermore, an example of application is 

presented that shows how this information can be used for production control. Our results indicate that by 

exploiting this information, logistic performance can be improved. 

Keywords 

Production planning & control; Logistical KPIs; Digital twins; Production logistic models 

1. Introduction

Beside production costs and quality, logistical performance such as a short delivery times play a central role 

for companies to compete in today’s economy [1,2]. In an increasingly dynamic and unpredictable market 

environment [3], companies are constantly searching for new approaches regarding digitization trends to 

satisfy customer requirements. The digital twin (DT) is a central concept associated with Industry 4.0 and 

a crucial factor for the digital transformation of factories [4,5]. A DT can be generally described as a digital 

information construct of a real system [4]. As definitions vary, a DT is most often characterized as a 

simulation of a physical product or system, or a model of a system that can be used for subsequent analyses 

[6]. The applications of DTs are studied in different scientific disciplines. In production engineering, the 

approaches have the common goal to improve competitiveness, efficiency and productivity of production 

processes [4]. In this context, various fields of application can be identified, such as the simulation of the 

product itself or production processes, product life cycle management, product development and design as 

well as planning and decision support [4,6,7].  
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With the help of production planning and control (PPC), companies can respond to the turbulent market 

conditions for example maintaining the production supply through specific adjustments in the inventory 

management [8]. Production planning defines individual production processes in terms of schedules, 

capacities and quantities [9]. Production control is responsible for the actual implementation of production 

plans as well as handling unavoidable disturbances in production [10]. Eventually, an efficient and 

accurately structured production control and monitoring system is crucial to successfully execute production 

plans and consequently to meet logistical as well as economical company objectives [11].  

In the field of PPC, several research applications of DTs can be identified such as the simulation of processes 

in order to detect production errors [12], simulation of production lines [13], prediction of throughput times 

[14] and conceptual work on real-time data acquisition capability [15]. In order to take full advantage of the 

potential of DTs in this context, existing models of production logistics (see e.g. [11,16]), which allow the 

simple and accurate description of the logistic behaviour of production systems, could be used to leverage 

the benefits of DTs in terms of a simplified evaluation of data. A potential approach is the measurement of 

output and backlog in real-time. However, adjustments regarding the real-time data acquisition are missing 

in current models. Having filled this gap, production logistic models can help to provide an improved 

information base for deriving decisions, such as capacity management measures.  

The paper is organized as follows: First, we give an overview of the fundamentals of production control & 

monitoring as well as logistic parameters such as backlog. Secondly, we illustrate different concepts of DTs 

and define the data input needed for constant backlog and output tracking. Finally, we present a model 

approach for tracking backlog and output and examine the resulting potential in the area of production 

control and monitoring. 

2. Fundamentals of production control & monitoring 

The ‘Model of Production Control’ developed by Lödding (adapted by [17]) specifies the tasks and 

interdependencies of production control (cf. Figure 1). In addition, a linkage of logistic objectives and the 

different tasks of production control is provided by modelling control and actuating variables. [11]  

 
Figure 1: Model of Production Control [11,17] 

Production planning defines the production orders to be processed by scheduling planned start and finish 

dates using detailed scheduling [17]. Hence, it defines the planned input and the planned output of production 

as well as the planned sequence in which the orders are to be processed. Production control is responsible 

for the operative implementation and realisation of the production schedules. It comprises order release, 

capacity control and sequencing [11]. Starting from the production plan, order release controls the dispatch 

of orders to production. Consequently, it determines the actual input of the production. Capacity control 
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defines the actual output of production as it determines in the short term about the actual use of capacities, 

such as working time and the assignment of employees with multiple qualifications to machines [11]. An 

important procedure is backlog control. The backlog is shown by a comparison of actual output with the 

planning targets (planned output) of a capacity unit. A comparison of the actual input and output results in 

the Work-in-Process (WIP). Sequencing determines the actual sequence in which jobs are processed. By 

comparing the actual and planned sequence, it is possible to assess the schedule reliability. [11]  

Production monitoring or controlling is a cross-sectional task of PPC that is also called PPC-Monitoring. 

PPC-Monitoring aims to measure the logistical performance of production processes, identifies deviations 

from plan and provides solutions. Data basis for the PPC-Monitoring is plan data as well as production 

feedback data. [11] 

According to Wiendahl, there are four logistic objectives in production: WIP, throughput time, utilization 

and schedule reliability (cf. Figure 1). [10] The objectives can subdivided in targets of logistical costs (WIP 

& utilization) as well as performance (schedule reliability & throughput time) [10]. Order throughput time 

defines the time between order release and the end of a processed order. The end of a current operation and 

the end of the previous operation defines the throughput time of a single work process. Schedule reliability 

is defined as the percentage of production orders closed within a predefined tolerance. [11] Typically, short 

throughput times combined with high schedule reliability are targeted [16]. The WIP describes the quantity 

of material or orders that is tied up in the individual stages of production through released orders. WIP affects 

the costs of a company in the form of capital commitment. [11] Utilisation describes the ratio of average and 

maximum possible performance of a work system [16] and is traditionally maximized, especially when 

expensive equipment is involved. However, too high utilization can lead to increased WIP and throughput 

time [11]. As Schmidt and Schäfers state, the objectives have contradictory dependencies, so that a parallel 

optimization is not feasible. Companies must therefore consciously consider positioning their production 

activities in areas of tension that arise from opposing logistic objectives. [18] Models of production logistics 

like the Logistic Operation Curves by Nyhuis are able to provide decision support [16]. Production logistic 

models are generally used to understand the prevailing situation and the dynamic behaviour of a system, to 

discover the root causes of problems and their effects, or to determine an information base for the derivation 

of measures [16]. 

3. Digital twins 

3.1 Basic principles of digital twins  

The first and widely accepted concept and definition of DTs was provided by Glaessgen and Stargel from 

NASA. This approach involved monitoring aircrafts by combining system status monitoring with sensor 

data, maintenance histories and other fleet data in order to assess the current status but also allow forecasts 

about the technical condition of the vehicle.[19] Glaessegen and Stargel, with additions by Tao et al., provide 

the following basic definition of DTs: “A digital twin is an integrated multi-physics, multi-scale, 

probabilistic simulation of a complex product and uses the best available physical models, sensor updates, 

etc., to mirror the life of its corresponding twin” [19,20].  

The concept of using a comprehensive digital image of a system or product to run simulations in real-time 

was adapted and transferred to a wide range of research areas. In a comprehensive review, Negri et al. show 

that divergent approaches and understandings of DTs in the field of manufacturing systems exist. According 

to their findings, a DT mostly represents a simulation of a product/ system or a model of a system, that can 

be used for different types of simulations. [6] As the definitions and applications of DTs differ through 

disciplines, the concept of DTs can also vary in terms of the level of data integration. Referring to this, 

Kritzinger et al. (see [4]) distinguish between the terms digital twin (DT), digital shadows (DS) and digital 
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models (DM). The authors state, a DT includes automatic data flow from the digital object to the real object 

and vice versa. Whereas DS include only a semi-automatic flow (physical to digital object) and DM comprise 

solely a manual data flow [4]. The mentioned relationships are illustrated in figure 2. 

 

Figure 2: Concept of the DTs in terms of the data flow (based on [4]) 

Possible uses along the smart manufacturing environment can be divided in three areas: (1) support of 

condition analyses and maintenance such as monitoring cracks in the physical twin, (2) an accurately digital 

image of the physical twin e.g. along the product lifecycle or in the production process as well as observing 

time behaviour and (3) DTs providing decision support through extensive analyses of product or production 

systems [6].  

Regarding PPC, DTs can be used in a wide range of applications. In literature, it is generally possible to 

distinguish between concepts for embedding DTs into production systems/ PPC or case studies in which 

application examples are presented and in each of these, different key areas of the PPC are highlighted. On 

the conceptual level, Schuh et al. refer to DTs as a complete, comprehensive representation of the production 

system, hardly feasible e.g. due to heterogeneous data sources. Thus, the concept of the digital shadow is 

presented, which envisions considering only a subset of the data, namely those necessary to clarify the issue 

at hand. [21] Uhlemann et al. demonstrate the potential of real-time data acquisition and subsequent 

processing in a DT-supported production environment. For this purpose a concept of a learning factory is 

developed [5]. Denkena et al. present an approach on how to generate a DT efficiently by using scans and 

object recognition as well as company-specific data with focus on creating a simulation model. [22] In 

another conceptual integration, Yang et al. discuss a simulation approach in which a PPC system is set up in 

a way that production processes are visualized, key performance indicators are compared and PPC 

parameters are optimized to react on several uncertainties like quality issues [23]. Boschert et. al present a 

concept based on linking different DTs (e.g. of the production system, product in use or system in use) to a 

value network. For example, a DT during the operational phase enables fault identification by linking 

physics-based simulation with live data [24].  

At a more detailed and specific level, procedural approaches and case studies can be found. Korth et al. 

developed an integration of a discrete event simulation into a digital twin architecture for real-time 

simulation (e.g., prediction of order times or production disruptions) for decision support [13]. Vachálek et 

al. are modifying production parameters in order to monitor the behaviour of the production system and 

optimize the production plan [25]. In addition, Sun et al. use a DT of an assembly line to predict and optimize 

throughput times [14]. Reviewing the given literature on DTs in the field of PPC, it is apparent that mainly 

conceptual (technical) concepts and procedural approaches are discussed. Model-based decision support 

systems for the simplified evaluation of data as well as illustration could not be identified.  

To conclude, a DT represents in the following a real-time simulation of the production process or of the 

processed product itself (see e.g. [12]). We assume that data such as progress and quality can be continuously 

retrieved from running processes, so that (model-based) analyses for PPC purposes do not depend solely on 

discrete feedback data. 
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3.2 Digital twin integration into the PPC control loop 

The PPC control loop illustrates the control task that manufacturing companies have to address with regard 

to the achievement of logistical goals. Based on a company's strategic objectives and customer requirements 

(target), the control loop systematizes the planning of production plans (plan) and the control of processes 

during production. Furthermore, the control loop includes the recording of production data within the scope 

of the operating and machine data logging (actual). [9] Compliance with the target and planned values is to 

be continuously checked by monitoring through a comparison with the recorded actual data. Identified 

deviations must be analysed, measures proposed, implemented and monitored. Possible measures are the 

adjustment of the objectives, a change of the PPC parameters such as WIP level or a reconfiguration of the 

PPC procedures, an adjustment of the production structure as well as the organization or short-term measures 

(production control). [16,9]  

 

Figure 3: Integration of DTs in the PPC-Control Loop (based on [9]) throughput element (based on [18]) 

To generate production feedback data (actual data), it is necessary to assess the temporal sequence of 

production processes. This can be done by collecting discrete time stamps. Figure 3 also displays (upper 

right corner) the throughput element of a production unit (e.g. of a single operation). The throughput element 

contains the components of the throughput time: inter-operation time (idle-time post- & pre-processing, 

transport) and operation time (set-up & processing). [17] Collecting time stamps at the marked feedback 

points (1-6) allows the discrete assessment of the components of throughput time and, taking into account 

planning data, the tracking of logistic objectives (cf. chapter 2). For instance, if a production system is 

designed to measure only point 4 and 6, it is not possible to measure set up time or transport time. However, 

it is important to state, that the acquisition of each feedback point generates expenditure and must therefore 

be carefully evaluated [17]. It can be stated, though, that the collection of a large database increases the 

transparency of production [17].  

The use of DTs in production provide the capability to simulate and analyse the production system, as well 

as its logistical features, and allows a detailed visualization of the manufacturing process from individual 

components to the entire assembly (see e.g. [4]). The potential influence of the generated information was 

added in this representation of the control loop, which simply involves a direct connection of production to 

feedback collection. We propose that information of the simulation, such as the actual production progress 

of a single production process, the actual output or certain product characteristics, is extractable and usable 

for the PPC continuously. Most common data acquisition methods in terms of recording production feedback 

data are able to collect timestamps at certain feedback points. The granularity is reflected in the frequency 

of feedback. Partial feedbacks, e.g. from individual assemblies within processing, are possible to increase 

accuracy. Besides recording data manually, barcodes and QR-Codes are the most used technologies [26]. 

Considering the use of DTs in production, continuous data, e.g. from process simulations, can be acquired 

in real-time in addition to the usual discrete data acquisition methods and enrich the available information 
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in the PPC. By using real-time data, decisions can be made more promptly, for example, in order to apply 

capacity management measures more efficiently. Production logistic models can help to provide an 

information basis for these decisions. However, an adaptation to continuous data is missing, which will be 

presented in the following. 

4. Exploring the potential of digital twins for manufacturing control & monitoring 

Evaluation of the potential data provided by the application of DTs allows existing logistical description 

models to be extended. As outlined above, we presume that by continuously simulating the production 

process, it is possible to continuously record the output, deviations from the planned process and product 

characteristics. Following considerations are based on the representation of the backlog in the throughput 

diagram (see [11]). In general, throughput diagrams can be used to describe dynamic system behaviour (see 

e.g. [16]). In order to depict the backlog, lateness and output rate of a system, it is necessary to model the 

actual and planned output [11].  

4.1 Model for constant tracking of backlog and output 

The output respectively progress of an ongoing operation can be measured in work completed (in hours) 

[16]. As in figure 3 illustrated, there are two time stamps to assess the temporal sequence of the operation 

time. The start of set up and the end of an operation can be captured. Often the actual operating time differs 

from planning data and thus backlog occurs. This may be caused by a lower mean output rate (e.g. due to 

machine failures) or faulty scheduling [27] and results in the planned output not being achieved. The standard 

measurement accuracy consists of measuring the end respectively the start of processing and comparing the 

actual processing time (operation time) with the planning data. However, the resulting backlog or lateness 

can only systematically be registered at the end of processing (time stamp 6). By implementing DTs, a 

simulation of the production process is created, which could allow a sharper level of detail to be captured 

and significant backlogs or lateness could be detected while processing. This concept is visualized in Figure 

4. It illustrates a progress (planned, actual) of work completed of a single operation over time (in shop 

calendar days [SCD]). In this figure, it has been assumed for simplification purposes that no backlog existed 

at the beginning of the assessment period. 

  

Figure 4: Degree of progress in the operation flow with reduced output rate 

The illustration contains three curves that show the output of a production unit as a function of time in shop 

calendar days. The planned output OUTPlan in hours describes the planned course of processing. It reaches 

the work content needed for finishing the processing at the planned completion date. The gradient of the line 

shows the planned mean output rate ROUTPlan. Further, the illustration shows the actual output OUTActual 
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that could be obtained from the DT. ROUTActual can be determined by taking the gradient of OUTActual,mean 

(mean actual output) into account. It can be seen (exemplary), that ROUTActual is lower as planned. This 

implies that less work was completed in the same time than planned. This results in the backlog of a single 

operation BLOP, which can be derived from the vertical distance from the OUTActual and OUTPlan. BLOP can 

be calculated at any time by 

OUTPlan (t) - OUTActual (t) = BLOP(t)                   (1) 

Similarly, the current lateness of processing through backlog LBacklog can be assessed at any time by the 

horizontal distance between OUTPlan and OUTActual. LBacklog at completion date of a specific operation can be 

calculated taking into account the planned and actual completion time. In case of discrepancies in the 

process, discrete data acquisition methods would assess the backlog at the actual completion date. In case of 

very long processing times significant backlogs would possibly be detected late. This can lead to further 

logistical difficulties in the production system.  

4.2  Derivation of potentials 

Based on the model presented, measures can be derived to ensure logistical efficiency. In the following, 

potentials are identified for the tasks presented in chapter 2.  

Capacity control is critical for ensuring a high level of schedule reliability [11]. Backlog control is part of 

the task capacity control. The underlying principle of backlog control is to adjust capacities at the short term 

so that production reaches the planned output despite disruptions. Key aspects of backlog control are the 

measurement of backlog and the selection of measures for capacity adjustment.[11] The aim of backlog 

control is to eliminate backlogs and thus schedule deviations as quickly as possible in order to meet the 

deadlines of external or internal customers [28]. The utilization of DTs could enable production controllers 

to measure the backlog more accurately and in shorter time spans (in comparison with discrete methods). 

An earlier identification allows a prompt initiation of measures and thus an earlier reduction of the backlog. 

By initiating measures more promptly, very high backlogs can be potentially avoided. This issue is addressed 

in the example of application in chapter 5. It must be noted though, that in case of inaccurate estimated 

working contents or a strongly volatile output rate, the evaluation of BLOP can lead to uncertainties, as a high 

backlog could occur only partially in the process.  

Order release describes the task in production control that determines the point in time from which 

production may process an order. There are different trigger logics for the release of production orders, 

namely periodic and event-orientated. In case of an event-orientated logic, production orders are released 

when a specific event appears such as falling below a certain WIP level. [11] An improved overview of the 

production processes by DTs can enable order release to make more informed decisions. For example, if a 

significant deviation between planned and actual progress in a work system is detected, the order release can 

react by releasing orders later. Thus high queuing times can be avoided. Methods for order release such as 

the “Load oriented order release” [11] could be applied more efficiently. 

In the context of PPC-Monitoring, the utilization of DTs can improve the quality of production feedback 

data by enabling, as shown, automated and more detailed data collection. In PPC-Monitoring, it is crucial 

not only to measure logistic objectives such as poor schedule reliability, but also to identify underlying 

causes such as high backlogs at specific workstations or an unpunctual order release [27]. The model 

presented could facilitate an up-to-the-minute overview of operations, as well as the display of lateness and 

backlogs. For PPC-Monitoring, this essentially provides an information advantage with regard to the 

management of these disruptions, as necessary measures can be adopted earlier. By also retrieving product 

characteristics, production errors such as geometrical deviations could be detected earlier in the process (e.g. 

[12]). For production technicians, this implies the possibility to influence the accuracy of the production 
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process (see also [12]). For production control and monitoring, it offers an information advantage in order 

to systematically counteract production errors. If, for example, it is known within the process that a certain 

quality level is not reached, appropriate reworking measures can be scheduled in earlier.  

Furthermore, based on insights gained in monitoring, information could be mirrored to other parts of the 

PPC, such as order management or procurement. Possible applications in order management are the dynamic 

calculation of delivery times, dynamic pricing or a more efficient management of supply processes (see 

[29]). 

5. Example of application – Potentials of digital twins in the optoelectronic production  

The potentials described above are now illustrated with reference to a production system for manufacturing 

optoelectronic components. Manufacturing optoelectronic components is a highly complex multi-step 

process often requiring extensive manual labour and operational effort. The major trends in the production 

of optoelectronic systems include the functional integration and miniaturization. In addition to the generally 

high customer requirements in terms of on-time delivery, manufactures in that specific industry need to 

develop new processes in order to meet the market expectations. Production technologies such as adaptive 

polishing [30] and two-photon polymerization [31] need to be integrated in process chains so that high 

volumes can be produced in an advanced level of precision (sub-wavelength range). This leads to the point, 

that manufactures in the optoelectronic industry have to deal with high level of uncertainty regards their 

capacities due to e.g. changeable production parameters, high quality requirements, rework and ultimately a 

high range of process times [30]. As mentioned earlier, in case of long processing times significant backlogs 

can be detected late by using discrete measurement methods. Positive mean backlogs directly result into 

schedule deviation [32,27]. In the following it is presented how DTs can help to improve the efficiency of 

the implementation of production control measures in a production system for optoelectronic components 

by being able to display delays in the process early. It is postulated that the production process is simulated 

and the data needed for the proposed model is available.  

As stated, capacity control is crucial to achieve a high schedule reliability. Short-term capacity measures are, 

for example, the use of overtime respectively the reduction or an internal exchange of workers [11]. The 

connection between the response time and minimum installation times of capacity measures can be 

visualized with the help of the capacity envelope curves (see [28]). The envelopes reflect the capability of a 

production system to respond to capacity changes. [28] 

 

Figure 5: Capacity envelope curves (based on [28]) 

5 10

5

4

3

2

1

0

-1

-2

-3

-4

-5

6

7

8

Capcity envelope curve

DCAP :  Additional/reduced capacity amount [h/SCD]

SCD :  Shop calender day

RT :  Response Time [SCD]

C
h

a
n

g
e
 i
n

 c
a
p

c
it

y
[h

/S
C

D
]

Response Time 

15

Response Time [SCD]

Additional capacity [h]

Reduced capacity [h]

DCAP

5 10

5

4

3

2

1

0

6

7

8

C
h

a
n

g
e
 i
n

 c
a
p

c
it

y
[h

/S
C

D
]

Time [SCD]

DCAP 

required

Identification of additionally 

required capacities with DT 

Identification of additionally 

required capacities without DT 

Efficiency gain 

Reaction Period 



 9 

 

The left part of figure 5 shows the general capability of the production system (e.g. two-photon 

polymerization) to react on changes in capacity requirements. The area above the x-axis represents the 

additional capacity that can be provided and the area below the x-axis represents the capability to reduce 

capacity [28]. In this example, the installation of additional capacity of 4 hour per SCD (∆CAP), will require 

5 days from the time of initiation. This can be described as the (technical) response time, e.g. to organize 

extra shifts.  

DTs enable an insight view of production processes and a more granular picture of the current output of 

production systems. As illustrated in chapter 4, by utilizing this data with the help of production logistic 

models, backlogs could be detected significantly earlier. Thus, an additional data basis can be created so that 

capacity control measures can be initiated promptly. This is shown in figure 5 on the right hand side. Again, 

in this example the (technical) response time of installing an additonal capacity of 4 hours per SCD is 5 SCD. 

As previously pointed out, there is a risk that backlogs may be detected late among processes with long 

processing times. Utilizing DTs can help to reduce the reaction period of capacity measures. The reaction 

period of enabling a measure consists of the response time plus the time that elapses before a capacity 

requirement is identified. In the example on the right side of figure 5, a capacity requirement of 4 hours per 

SCD arises at 0 SCD. The (technical) response time is 5 SCD. With the help of DTs, the capacity requirement 

can be identified 2 SCD earlier. The reaction period when a DT is utilized is thus 6 SCD, and 8 SCD without 

DT. Since measures can be initiated earlier, capacities are available sooner. As a result, capacity control can 

be carried out more efficiently and logistical benefits can be gained by reducing the reaction period. Since 

the primary goal of backlog control is to quickly reduce backlogs, and thus schedule deviations [28], the 

utilization of DTs could be an effective way to achieve this. 

6. Conclusion 

This paper deals with the potential of DTs for production control & monitoring. Firstly, an overview of the 

fundamentals of production control & monitoring is given. Secondly, we illustrate different concepts of DTs. 

Finally, a model for the constant tracking and output is presented, potential use cases are discussed and its 

relevance in production control and monitoring is demonstrated in an example of application. Data generated 

by DTs essentially provide an information advantage, as both quality and progress data can be continuously 

retrieved and complement discrete data. Our findings indicate that DTs in production can contribute to 

organize production control and monitoring tasks more efficiently.  

The implementation and the creation of DTs is a complex task due to for instance issues of heterogeneous 

data sources (see [33]) . Despite technical challenges, certain conditions must be imposed if such use of DTs 

in production control is to be effective. For instance, recording the continuous temporal sequence of a 

production process is only useful if the output rate is volatile and therefore planning data is inaccurate. The 

same applies to quality data: the acquisition of quality data in the process is all the more valuable if there are 

strong qualitative deviations, if rework is often necessary or if further processing is quality-dependent. A 

potential application area is the production of optoelectronic systems, on which adaptive models and process 

simulations are currently being researched. The resulting data could be linked to the PPC. 

In conclusion, it is important to note that future research should further focus on how this additional 

information can be used to improve production control and monitoring. The application of production 

logistics models can facilitate the use of real-time data. However, the application of continuous data in 

production logistics models needs to be further explored, and the presented approach is only a first step. It 

is necessary to evaluate identified potentials on the basis of simulation with experimental or industrial data. 

Furthermore, it should be investigated how this database respectively the developed model can be used for 

other PPC tasks, also with regard to automation, e.g. by investigating adaptive production control. 
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