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Abstract— Physically motivated models of electromechanical
motion systems enable model-based control theory and facilitate
system interpretation. Unfortunately, the effort of modelling
restricts the usage of model-based methods in many applica-
tions. Some approaches to automatically generate models from
measurements choose the best model based on minimizing the
residual. These model selection attempts are limited due to
ambiguities in reconstructing the internal structure from the
input-output behaviour because usually motion systems have
only one actuator and one sensor. Often, it is unknown if the
resulting model is unique or if other models with different
structure would fit equally well. The set of candidate models
should be designed to contain only distinguishable models but
ambiguities are often unknown to the experimenter. In this
paper distinguishability is investigated systematically for a class
of multiple mass models representing servo positioning systems.
In the analysis a new criterion for indistinguishability is used.
The benefit of additional, structural sensors on distinguishabil-
ity of models is demonstrated which suggests to mount them
temporarily for the commissioning phase in order to facilitate
the model selection. It turns out that the best results can be
achieved if synergies among sensor signals are utilized.

I. INTRODUCTION

Several applications in the context of servo control systems
require bright-grey box models with physically motivated
inner structure, for example control design, feed-forward,
Kalman filtering and model-based fault diagnosis.

Because modelling is time-consuming and requires consid-
erable expert knowledge and expertise, model-based methods
are not omnipresent in industry, especially in products of
automation facilities, e.g. stacker cranes and positioning
systems, because these products are built only in small
quantities. Therefore, automatic model selection by identi-
fying several models and choosing the one with the best
fit, possibly in combination with other criteria, would be
highly desirable. Such methods are called model selection
or structure and parameter identification and have been
described in several publications, e.g. [1], [2], [3].

Unfortunately, model selection for bright-grey box models
by means of minimizing the residual is limited due to
indistinguishability of structures. Different models show the
exactly same input-output behaviour if the parameters are
chosen suitably. No experiments exist that would lead to
different residuals [4]. Ignoring this problem would lead
to false interpretation, inappropriate feed-forward, erroneous
diagnostics about elastic components, etc.
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Indistinguishability can mostly be recognized from similar
residuals for a given excitation [1], [5] after the identifi-
cation has been carried out. A different approach is the
a priori analysis of the symbolic expressions in order to
prove (in)distinguishability deterministically. The latter has
the advantage that identification runs of indistinguishable
models can be avoided, false conclusions due to local minima
can be prevented and a statement independent of the model
parameters and excitation can be made. Therefore, only the
latter is followed here.

Two models M(p0) and M̂(p̂0) with parameter values
p0 ∈ Ω and p̂0 ∈ Ω̂ are said to be structurally indistin-
guishable if for almost every p0 ∈ Ω there is at least one
parameterization p̂0 ∈ Ω̂ that leads to the same output for all
admissible inputs and vice versa [6]. For notational simplicity
systems, which are not structurally indistinguishable, are
called distinguishable in this paper. More nuanced definitions
of indistinguishability and equivalence exist and can be found
in e.g. [6], [7], [8], [4], [9], [10], [11].

For the analysis of linear state space models it is common
to determine a minimal representation of the system called
the exhaustive summary [7] or the structural invariant vector
/ moment invariants [6] and to investigate this set of equa-
tions for equivalent parameterizations [12], [13]. Possible
minimal representations are the coefficients of the transfer
function in normalized form (Laplace transform approach /
transfer function approach) [14] and the Markov parameters
[11]. Rather than solving for explicit expressions for the
unknown parameters necessary or sufficient conditions for
the existence of solutions can be tested [15], [16], [17],
[18]. A different approach is to investigate the existence of a
similarity transformation between the two state space models
[19], but this approach is not followed here because the
calculation effort has been found to be huge for the models
of interest.

Existing works on this topic are mainly limited to compart-
mental models in biomedicine [4], [16], [13], [20], [17], [21]
and often the question cannot be answered because none of
the necessary or sufficient criteria is applicable. In this paper
the aim is to investigate distinguishability of multiple mass
models for servo systems in view of automated model se-
lection. A new sufficient criterion is proposed. Furthermore,
it is of interest if additional position/velocity/acceleration
sensors can recover distinguishability when it is not given
by the series sensors. These additional sensors could be
mounted temporarily along the structure during the process
of commissioning with little installation effort, at least in the
case of acceleromenters. Finally, the existence of ambiguities
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is explained from a machine dynamics point of view.

II. DISTINGUISHABILITY ANALYSIS

In this section the methodology of distinguishability is ex-
plained starting with a definition of the structural invariants.

A. STRUCTURAL INVARIANTS

Starting point is the linear state space form:

ẋ = ASx + BSu, y = CSx + DSu. (1)

Vector u ∈ RNu is the input, x ∈ RNS are the states
and y ∈ RNy are the outputs. AS, BS, CS and DS are
analytic functions in the parameters p ∈ RNp . It is assumed
that the initial conditions are zero so that models cannot be
discriminated from these and they cannot disguise differences
between the models. For distinguishability analysis based on
the transfer function coefficients the transfer function matrix
is calculated (I is the unity matrix):

G(s) = CS(Is−AS)−1BS + DS. (2)

The jl-th element has the general form:

Gjl(s) =
b0 + b1s

1 + · · ·+ bn−1s
n−1

a0 + a1s1 + · · ·+ am−1sm−1 + sm
. (3)

The coefficients are analytic functions of the model parame-
ters p. They depict a possible set of moment invariants Φ if
one of the coefficients is fixed, for example the denominator
coefficient corresponding to the highest power of s [16]. The
constant coefficient can optionally be included in the set of
moment invariants but usually it is not.

An alternative set of moment invariants can be obtained
from the Markov parameters of the dynamic system. The
transfer function is expanded as a complex power series in
s with infinite length [6]:

G(s) = G0 + G1s
−1 + G2s

−2 + . . . . (4)

The set of {Gi} , i = 0, 1, 2, . . . can be referred to the step
response h(t), resp. to the impulse response of the system
g(t) and its time derivatives [22]:

G0 = h(t)|t=0+ ,Gi =
di−1

dti−1
g(t)

∣∣∣∣
t=0+

, i = 1, 2, . . . . (5)

Accordingly, they can be calculated from model (1):

G0 = DS, Gi = CSA
i−1
S BS, i = 1, 2, . . . , (6)

leading to analytic functions in the parameters [22].
{Gi} , i = 1, 2, 3 . . . are called the Markov parameters.

For distinguishability analysis two models of the form
(1) are considered with matrices A1,B1,C1,D1, resp.
A2,B2,C2,D2 and state counts NS1, resp. NS2. The num-
bers of inputs and outputs are identical whereas the number
of states are not necessarily identical. Although the series
of Markov parameters is infinite, it is sufficient to consider
the first NS1 + NS2 Markov parameters only plus the terms
DS1, DS2 without loss of information. This can be shown
with the Cayley Hamilton theorem [11].

B. Special considerations for MIMO systems

In the case of several sensors the transition from SISO
models to models with at least several outputs is of particular
interest. One possibility of dealing with this is to analyse all
SISO transfer functions separately and then to take the best
result as the final result. This procedure will likely show the
benefit of additional sensors but only in a trivial way. It is
called SISO approach in the following. We are interested in
situations where the result of several cooperating sensors is
better than the result of the most suitable sensor evaluated
in solitude. In order to investigate this the MIMO transfer
function must be evaluated as a whole and the same for the
Markov parameters, called MIMO approach.

When the scalar transfer function becomes a matrix,
the number of coefficients increases and the computational
complexity grows overproportionally for Cond. 5 and 6 in
the MIMO case. It is therefore important to evaluate only
as many moment invariants as necessary. For the transfer
function coefficients it is known that the denominator is
the same for all input-outputs pairs and consequently the
denominator coefficients do not have to be evaluated several
times, so the number of moment invariants increases less
than proportionally with the product of inputs and outputs
[18].

For the Markov parameter approach the question arises
if additional system outputs allow to reduce the number
of Markov parameters to evaluate. One possibility can be
derived from the ”generalized” Cayley Hamilton theorem,
which is explained in the context of model predictive control
in [23]: Starting point is the so called interaction matrix M
defined by the equation

Aq
S + MOq = 0. (7)

Oq =

 CSA
0
S

...
CSA

q−1
S

 (8)

is the observability matrix and q ∈ N > 0 needs to be chosen
sufficiently high so that the observability matrix has full
column rank and M can be determined. One possible choice
is M = −Aq

SO
+
q , where + denotes the pseudoinverse. Next,

the NS × qNy matrix M is partitioned into q sub-matrices
of size NS × Ny: M = [M1,M2, · · · ,Mq] and a matrix
Λi = MiCS is defined, i = 1, 2, ...q. Inserting this into (7)
leads to a ”generalized” Cayley Hamilton theorem

Aq
S + ΛqA

q−1
S + · · ·+ Λ2AS + Λ1 = 0, (9)

in which the scalar coefficients of the standard Cayley
Hamilton theorem are replaced by matrices.

For the purpose of our derivation it is useful to define
matrix Γi = CSMi and to multiply (7) from the left by CS

and from the right by BS:

CSA
q
SBS + ΓqCSA

q−1
S BS + . . .

+Γ2CSASBS + Γ1CSBS = 0.
(10)



This equation will be used to limit the number of Markov pa-
rameters to evaluate for the investigation of distinguishability
in the following. It is remarkable that the order q can be less
than NS, as for the standard Cayley Hamilton theorem, if the
system has appropriate observability properties, see above.

For the derivation of distinguishability conditions an aug-
mented system is defined as the output difference of the two
systems to compare [11]:

ẋa = Aaxa + Bau, y = Caxa + Dau (11)

with

xa =

[
x1

x2

]
,Aa =

[
AS1 0
0 AS2

]
,Ba =

[
BS1

BS2

]
,

Ca =
[
CS1 −CS2

]
, Da = DS1 −DS2.

The quest for indistinguishable models has turned into a
search for zero Markov parameters of the augmented system.
From (10) it follows for the augmented system that all
higher-order Markov parameters are zero if the first q − 1
Markov parameters are zero because the former can be
written as linear combinations of the latter. I.e. for check-
ing distinguishability it is sufficient to check if the first
q − 1 Markov parameters and the feed-through part of the
augmented system are zero. Regarding the size of q: From
counting the number of rows and columns in Oq the quantity
q can be low, as long as qNy ≥ NS1 + NS2 is satisfied, but
it depends on the observability properties of the augmented
system. In conclusion, the number of Markov parameters can
be reduced for an observable system with several outputs
compared to a system with only one output.

The problem is that the augmented system is often not
observable. For example, if the two systems are in fact
indistinguishable, they will most likely have identical poles.
Checking observability is difficult because the augmented
system contains variables from both systems and a proce-
dure similar to [19] would be required. Therefore, only the
standard Cayley Hamilton theorem can be used instead of
(9) which leads to the rule q ≥ NS1 + NS2. Then, the
number of structural invariants increases proportionally with
the product of inputs and outputs. Often, only the first few
Markov parameters, less than required by this rule, can be
calculated due to computational complexity. The implications
of this limitation will become clear in the following.

C. Necessary and sufficient criteria for structural indistin-
guishability

The following criteria for indistinguishability based on
the moment invariants help to determine if a solution exists
without attempting to explicitly solve for the unknowns.
Unless otherwise noted they can be applied to both trans-
fer function coefficients and Markov parameters. Cond. 1
to 5 are necessary for indistinguishability, i.e. whenever
one of them is violated, distinguishability is proved and
the remaining conditions can be skipped. They should be
evaluated in the given order because the conditions are
sorted in increasing computational complexity and because

dependencies exist:
• Cond. 1: The same number of moment invariants NMI

exist (only transfer function coefficients).
• Cond. 2: The same number of coefficients exist in

numerator n and denominator m in both models (only
transfer function coefficients).

• Cond. 3: Both sets of moment invariants have the same
symbolic form. The symbolic form is a representation of
the moment invariants with zeros for constant elements
and ones for non-constant (depending on p, resp. p̂)
elements [24].

• Cond. 4: The symbolic rank NR of the Jacobian matrix
J of the moment invariants with respect to the parame-
ters is the same for both models [16], [25].

• Cond. 5: For both models the same linear dependencies
among moment invariants exist [16]. These are deter-
mined by creating all possible combinations of NR rows

of J , leading to as many as
(

NMI

NR

)
submatrices. The

row indices of those submatrices with full row rank in
symbolic form are noted and must be identical for the
compared systems. Constant moment invariants should
be excluded to reduce calculation time. An efficient
implementation based on submatrices can be found in
[18].

For two models that satisfy the above necessary con-
ditions, the following sufficient conditions for structural
indistinguishability can be checked.

• Cond. 6: The moment invariants are identical in sym-
bolic form after renaming / permutation of the variables.

• Cond. 7: The two models have as many determinable
parameters as non-constant moment invariants and the
constant moment invariants are identical across the two
models. The number of determinable parameters equals
NR [24].

Strictly speaking, these sufficient conditions do not consider
the exact domain of the parameters. It is expectable that
certain models result as equivalent but the corresponding
solutions for the parameters are inadmissible. Examples are
non-negative parameters or prior knowledge on possible
parameter ranges.

Cond. 6 tests if a mapping between the variables exists so
that by renaming the variables of system 1 in Φ1 the exact
moment invariants of system 2 Φ2 are obtained and vice
versa. A nontrivial case where this can be utilized is when
systems are identical except for mirroring. The objective is
to find a square permutation matrix P so that p1 = Pp2.
It has exactly one 1 in each row and column and otherwise
zeros. Trying all possible combinations would lead to Np!
comparisons, Np being the number of parameters in both
systems. However, often it is possible to reduce the effort by
utilizing that some of the moment invariants contain only a
subset of the variables. This allows to fix certain entries of the
permutation matrix upfront. The procedure for determining
the permutation matrix is therefore divided into two steps.

First step: The first step is defined in Algorithm 1.
The priliminary permutation matrix P

′
is initialized with



all unknown and a parameter ordering is defined for both
systems arbitrarily, for example lexicographic. In a loop over
all moment invariants an occupancy matrix Q is calculated.
It will contain entries from the set (−1, 0, 1) after line
6. In line 7 the information encoded in the existence and
nonexistence of variables in the current tuple of moment
invariants is incorporated into P

′
. At the end of the loop all

pairs of moment invariants have been considered, resulting
mostly in a reduced number of unknowns in P

′
. If at this

point the permutation matrix contains rows or columns with
zeros only, it can be concluded that the systems cannot be
converted into each other by renaming and permuting the
variables but they are not necessarily distinguishable.

Algorithm 1 First step in determining the permutation matrix
for Cond. 6

1: Initialize P
′

as all unknown.
2: Define a parameter ordering arbitrarily for both systems,

for example lexicographical.
3: for k := 1, 2, ..., Np do
4: Q := 0Np×Np

5: Increment all elements of the rows in Q correspond-
ing to the parameters that exist in Φ1 {k} by one.

6: Decrement all elements of the columns in Q corre-
sponding to the parameters that exist in Φ2 {k}.

7: Set all elements in P
′

to zero if the corresponding
element in Q is different from 0.

8: end for
9: if P

′
contains zero rows or columns then

10: Terminate, the criterion cannot be applied.
11: end if

As an example from the investigations in Sec. IV the
following structural invariants are given:

Φ1 = (m1m2m3)
−1

[c12c23, 0,m3c12 + m1c23, 0,

m1m3, (m1 + m2 + m3) c12c23, 0, (m1 + m2)m3c12

+ (m2 + m3)m1c23, 0, 1, c12c23, 0,m1c23] ,

Φ2 = (m1m2m3)
−1

[c12c23, 0,m3c12 + m1c23, 0,m1m3,

(m1 + m2 + m3) c12c23, 0, (m1 + m2)m3c12+

(m2 + m3)m1c23, 0, 1, c12c23, 0,m3c12] .

They are identical except for the last element. Most of
the moment invariants contain all parameters, except for
number 5 and 13. For an ordering of the parameters
{m1,m2,m3, c12, c23} in both systems the corresponding
occupancy matrix for the thirteenth element is

Q =


−1 −1 0 −1 0
0 0 1 0 1
0 0 1 0 1
−1 −1 0 −1 0
0 0 1 0 1

. (12)

At the end of the first step the following preliminary permu-

tation matrix results:

P
′

=


0 0 un 0 un
0 un 0 0 0

un 0 0 un 0
0 0 un 0 un

un 0 0 un 0

. (13)

’un’ stands for unknown. Some of the rows and columns
contain more than one un so that there are 4 possible
permutations left.

Second step: The remaining possible combinations are
iterated through and tested for equality of the moment
invariants following Algorithm 2. c1 counts the number of
possible permutations, while c3 indicates the current row in
P . Nun stands for the number of unknowns in the current
row and bc means rounding off to full integers. In lines 3 to
6 the current permutation is established in P , which is then
tested for validity in lines 7 to 9. The termination criterion
in lines 10 to 12 applies if all combinations have been tested
without success. In this case no statement can be made by
Cond. 6.

Algorithm 2 Second step in determining the permutation
matrix for Cond. 6

1: for c1 := 1, 2, ... do
2: c2 := c1,P := P

′

3: for c3 := 1, 2, ..., Np do
4: i := (c2%Nun) + 1, c2 := bc2/Nunc
5: Set the i-th u in the row c3 of P to 1 and all

other elements in the same row or column to 0.
6: end for
7: if Φ1(Pp2) = Φ2(p2) then
8: Terminate, the systems are identical.
9: end if

10: if c2 6= 0 then
11: Terminate, this criterion cannot be applied.
12: end if
13: end for

In the example the following permutation matrix results:

P =


0 0 1 0 0
0 1 0 0 0
1 0 0 0 0
0 0 0 0 1
0 0 0 1 0

. (14)

It indicates that the two systems are identical after parameters
m1 and m3, resp. c12 and c23 have been permuted.

III. APPLICATION TO MOTION CONTROL
SYSTEMS

A. Systems with one sensor

In this section a class of multiple mass models with one
sensor and one actuator is defined. It serves as a basis for
the comparison with multiple sensor configurations.

For a general spring-mass-damper model with NB masses
the state space form can be obtained from the mass matrix



M , the damping matrix D and the stiffness matrix C:

A
′

S =

(
0NB×NB INB×NB

−M−1C −M−1D

)
, (15)

B
′

S =

(
0NB×NB

M−1

)
, (16)

C
′

S =

(
I2NB×2NB(

0NB×NB
INB×NB

)
AS

)
, (17)

D
′

S =

(
02NB×NB(

0NB×NB
INB×NB

)
BS

)
. (18)

The actuator location as well as sensor type (position,
velocity, acceleration) and location are defined by input and
output multiplication matrices to select the desired entry.

For a given number of masses a variety of different models
can be created depending on the position of actuator and
sensor, see example in Fig. 1. These placement decisions
are equivalent to the question at which positions in the
structure elasticities and masses must be considered to give
a suitable model. In addition, the position of the gap can be
varied, which is the position between two masses without a
connection by springs. This gap is known as the slideway in
electric drives. In the example it is located between the first
and second mass.

Fig. 1: Example of multipe mass model with NB = 3,
ngap = 1, nact+ = 3, nact− = 0, nmeas+ = 2, nmeas− = 1

In [26] the resulting combinatorics are delineated for the
case of linear chains without loops or branches. Here, only
the models with three masses and one sensor are shown in
Tab. I. This primary sensor should be distinguished from the
extra commissioning sensors that can be installed at arbitrary
positions. The translational case is shown but the rotary
case looks equivalent. Sec. IV focusses on these 3-mass
models because more complex systems are of little practical
relevance and for smaller systems the findings would mostly
be trivial. Nevertheless, the methods can also be applied to
other systems.

B. Integration of extra sensors

The application of additional sensors could just lead to an
even more complex problem with more unknowns if it was
assumed that no knowledge about the position of the sensors
was available. On the other hand it is precondition that the
assignment of structural elements to masses is not known a
priori, so it cannot be assumed that extra sensors are located
at known positions of the multiple mass models.

The following three questions depict thought experiments
that are believed to require a reasonable amount of prior
knowledge:

TABLE I: Complete set of 3-mass models to be considered.
Collocated systems are marked by an asterisk *.

ID Sketch

A1*

A2

A3

A4*

A5

B1*

B2

C1*

C2

C3*

C4

I Can indistinguishability problems be remedied by extra
sensors at the left and / or right force application point?

II Can indistinguishability problems be remedied by an
extra sensor at an unknown location on one of the given
masses?

III With a known model, is it possible to determine the
mass on which an extra sensor is located?



Fig. 2: Distinguishability analysis with primary sensor only.
Left: damping neglected, right: damping included. Black:
indistinguishable systems, grey: distinguishability question
cannot be answered by the criteria from Sec. II-C

The first question is relevant because it should be possible
to recognize where the main force and reaction force of
the actuator are applied and to position up to two sensors
at these places. The second question does not require any
knowledge about the positioning of the sensor, except that
the system actually behaves like a multiple mass resonator of
given dimension and that the sensor is placed on one of its
masses. The third question questions if the unknown sensor
position can be determined from the measured time signals.

IV. RESULTS

Distinguishability is analysed for the eleven models from
Tab. I by means of the necessary and sufficient conditions
from Sec. II-C applied to the transfer function coefficients
and the Markov parameters. All sensors are assumed to mea-
sure accelerations. For velocity and position sensors, similar
results would be obtained, except that the Markov parameters
were shifted. For arbitrary combinations of different sensor
types the computational effort would be different.

In Fig. 2 the distinguishability result is given with primary
sensor only. Black lines represent pairs of indistinguishable
systems while grey lines indicate problems where none of the
above criteria could make the decision. In the inset on the left
damping is neglected, while on the right a viscous damper
is assumed to be connected in parallel to the displayed
spring. The reason why here and in the following damping
is neglected in chosen experiments is that differences caused
by damping only are likely to be small and not practically
helpful to distinguish systems, especially since the viscous
damping model is an idealisation. For the undamped case
the first 8 Markov parameters have been evaluated and in the
damped case the first 7 Markov parameters. Higher numbers
of Markov parameters up to NS1 +NS2 = 12 would lead to
a higher computational cost while for lower numbers more
grey lines would appear.

It can be seen that many of the systems are distinguishable,
but especially in the case without damping the collocated sys-
tems are not distinguishable. This is a problem because collo-
cated systems are most relevant in practice. From a machine

dynamics perspective this phenomenon can be explained by
the fact that collocated 3-mass systems always show an
antiresonance-resonance-antiresonance-resonance behaviour
if no pole-zero cancellation occurs [27]. The exact frequen-
cies of the resonances and antiresonances and the cross-over
frequency can be adjusted by the five system parameters
(3 masses and 2 spring constants). It is therefore plausible
that the collocated systems without damping cannot be
distinguished.

The damped systems tend to be more distinguishable. It
is often not possible to come to a conclusion as Cond. 7 is
not applicable in the case with damping. This is because
the number of non-constant transfer function coefficients
(7 . . . 9, 7 only for model A3) is almost always larger
than the number of model parameters (7). The number of
non-constant transfer function coefficients is 3 . . . 5 without
damping and thus more likely to be equal to the number
of model parameters (5). At this point the utility of the
Markov parameter approach becomes evident: Distinctions
A1 vs. A4, A4 vs. B1, A4 vs. C1, and A4 vs. C3 could only
be made by the Markov parameters as structural invariants,
Cond. 5, while the transfer function coefficients would leave
unknowns here.

The reason why systems A2 and A5 are indistinguishable
even when damping is considered is that A2 can be con-
verted into A5 by mirroring about mass 2 and subsequently
exchanging actors and sensors. Mirroring only permutes the
parameter names but does not otherwise change the transfer
function. Exchanging the sensors and actuators has no effect
on the transfer function because the transfer function matrix
from forces to mass positions is symmetric [27]. In this case
Cond. 6 can be utilized, see example in Sec. II-C and in the
damped case it is even the only criterion suitable to prove
indistinguishability.

The result for question I from Sec. III-B is shown in
Fig. 3 and 4 for the SISO and MIMO approach. In general,
the distinguishability clearly improves leading even to the
situation that all systems are distinguishable. Furthermore it
can be seen that evaluating several signals simultaneously in
the MIMO case allows to distinguish more systems. Without
damping A2 vs. A5 cannot be distinguished in SISO because
the primary sensor cannot distinguish, see above and the
extra sensor at the force application point would need to
distinguish A1 and A4, which is also known to be impossible.
However, if both sensors are evaluated together, the simple
rule of mirroring and transposition does not work for the
extra sensor, so the systems become distinguishable.

The result for question II is shown in Fig. 5 for the
case with damping and with 6 Markov parameters. Without
damping the figure for SISO looks as in Fig. 3, left and
for MIMO it is identical to Fig. 3, left, except that A1
vs. A4 is unknown. The results show that distinguishability
improves even if the sensor location is not known. In this
case considering the MIMO transfer functions causes the
problem that more often no decision can be made due to
the higher number of moment invariants to evaluate. This
leads not only to longer calculation times but also makes



Fig. 3: Result for question I without damping, sensors on
both force application points, if there are two. Left: SISO,
Right: MIMO

Fig. 4: Result for question I with damping. Left: SISO, Right:
MIMO

Cond. 7 not applicable in many cases.
The result of question III is given in Tab. II. The result is

the same with and without damping. For the eleven systems
to investigate it is indicated by black crosses at which sensor
position it must be expected that the correct mass cannot
be determined from the sensor signal. It can be seen that
for system A4 the sensor positions on masses 1 and 3 can
never be distinguished and that for A5 this problem can
be remedied by utilizing both sensors together. The reason
is that systems A4 and A5 are symmetric, except for the
primary measurement at system A5. Only in the MIMO
case the signal of the sensor with unknown position can
be compared with the signal of the known, primary sensor.
For general parameterizations without identical poles etc. the
correct mass will result from this comparison.

V. DISCUSSION

In this contribution distinguishability of multiple mass
models representing electric drives with coupled mechanics
has been analysed with focus on the utility of supplementary
commissioning sensors.

The results suggest that under certain conditions, see
above, (almost) all uncertainty about the model structure can
be overcome and it seems that the appropriate model can be
selected for any mechanical system by identifying several
models and choosing the one with lowest residual. The model

Fig. 5: Result for question II with damping. Left: SISO,
Right: MIMO

TABLE II: Result for the third question with and also without
damping.

SISO MIMO
mass 1 2 3 1 2 3
A1
A2
A3
A4 × × × ×
A5 × ×
B1
B2
C1
C2
C3
C4

selection procedure is not limited to 3-mass systems but
could simultaneously determine the optimal model complex-
ity by including information criteria, cross validation, etc.
[28]. However, the most important premise should not be
disregarded: The system to be investigated must resemble at
least one of the candidate models. Reasons why this might
not be the case are nonlinearity, such as friction, backlash,
and hysteresis, unmodelled dynamics, elastic bending modes
rather than discrete masses, position dependencies. For the
placement of sensors on the different masses it is essential
that these masses can be assigned a certain component of
the system.

Furthermore, the situation becomes more complex if the
variety of model structures is extended. Obvious extensions
would be combined rotatory and translational systems or
systems with branching, as for example storage and retrieval
systems with more than one slideway. Clearly, the set of
candidate models would quickly become so large that a pre-
selection based on prior knowledge would become necessary.
The automatized model selection would only depict one step
in the whole procedure and should be preceded by an analysis
of some candidate models with the distinguishability criteria
from above.

Finally, it shall be noted that structurally distinguishable



pairs of models can be hard to distinguish in a given
experiment. Especially if the excitation is unsuitable, the dif-
ference in the measurements assigned to different underlying
structures of systems can be zero or at least less than the
sensor noise. In this case a chance of false identification
remains, even for structurally distinguishable models.

VI. CONCLUSION
Distinguishability of state space models was investigated

for a class of multiple mass systems that represent electrome-
chanical motion control units. Special focus was laid on the
use of extra sensors, such as IMUs, that could be mounted at
different positions temporarily during the commissioning to
aid the model selection. The analysis was limited to a special
class of 3-mass systems but could equally well be extended
to models with different structure.

It was found that the extra sensors can resolve the indis-
tinguishability problem in many cases, especially when they
coincide with the force application points, but also when
they are mounted at arbitrary, unknown positions along the
structure. It is even possible to determine the position of a
sensor from its time-series measurements in almost all cases.

Evaluating several sensors simultaneously leads to better
results than combining the results obtained from several sen-
sors evaluated in solitude. This demonstrates the effective-
ness of temporary commissioning sensors due to synergies
among different sources of information.

The proposed sufficient criterion for indistinguishability
of models was shown to prove indistinguishability in a few
cases where other criteria could not be applied.

Sometimes, systems can only be distinguished if damping
is considered and the resulting differences are small. Espe-
cially in those cases practical applicability of the methods
should be investigated in further works.
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