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Abstract—The present paper deals with an online approach
to learn the inverse dynamics of any robot. This is realized by
the use of Gaussian Processes drifting parallel along the system
data. An extension by a database enables the efficient use of
data points from the past. The central component of this work is
the implementation of such a method in a controller in order to
achieve the actual goal: the feedforward control of an industrial
robot by means of machine learning. This is done by splitting the
procedure into two threads running parallel so that the prediction
is decoupled from the computing-intensive training of the models.
Experiments show that the method reduces the tracking errors
more clearly than an elaborately identified rigid body model
including friction. For a defined trajectory, the squared areas
of the tracking errors of all axes are reduced by more than 54%
compared to motion without pre-control. In addition, a highly
dynamic pick-and-place experiment is used to investigate the
possible changes in system dynamics. Compared to an offline
trained model, the approximation error of the proposed online
approach is smaller for the remaining time of the experiment after
an initial phase. Furthermore, this error is smaller throughout
the experiment for online learning with parallel drifting Gaussian
Processes than when using a single one.

Index Terms—online learning, inverse dynamics, feedforward
control, implementation, Gaussian Process

I. INTRODUCTION

A torque pre-control is often used in the drive control of
robots to improve the command input response. From the
desired values in the joint space, i.e. joint angles qd, joint ve-
locities q̇d and joint accelerations q̈d, the required feedforward
torques τFF are determined using the inverse dynamics model.
Since this model is not exact, the actual values q , q̇ and q̈
deviate from the desired values. The difference between these,
the tracking error, has to be compensated by the controller
afterwards. Hence, the quality of the inverse dynamics model
is crucial, since a more accurate model reduces the tracking
error and thus relieves the controller.

Conventional methods for modeling dynamics have the
disadvantage that all system properties, such as friction in the
joints, have to be modeled. In practice, this turns out to be a
complex task and can still be imprecise despite the high mod-
eling effort. In addition, all model parameters are determined
offline and are therefore assumed to be constant. Thus, changes
in the robot structure that occur during operation cannot be
taken into account. For these reasons, a new approach has
been established: the online learning of the inverse dynamics.

Methods in this category model robot dynamics with the aid
of measurement data. Therefore, physical system properties
are automatically taken into account in the model. Online
learning methods also have the property that the model adapts
permanently to new data. When the system dynamics change,
e.g. due to an additional mass at the end effector in a simple
pick-and-place process, the model is gradually updated. Thus,
the changed dynamics are learned after a few control cycles.
In addition, the time-consuming recording and training on a
sufficiently large training data set required for offline learning
is no longer necessary, since the model is determined during
robot operation and continuously adapted to the data.

Due to these positive aspects, a large number of authors have
researched the field of online model learning in recent years in
order to develop algorithms that are real-time capable. Real-
time capability means in this connection that the algorithm has
to reliably provide the feedforward moments τFF for each new
control cycle based on the current model and the desired values
in the joint space. Since typical cycle times of controllers are
in the range of 1 ms - 5 ms, this requirement for real-time
capability proves to be a considerable boundary condition.

A comparison of popular approaches to learning inverse
dynamics has already been made [1]. Gaussian Process Re-
gression (GPR) [2] and ν-Support Vector Regression (ν-SVR)
[3] have a higher accuracy than Locally Weighted Projection
Regression (LWPR) [4]. However, it was found that LWPR is
significantly more computationally efficient than the other two
methods. Hence, this algorithm is suitable for online learning
of inverse dynamics in real-time. The combination of the com-
puting efficiency of LWPR and the accuracy of GPR or ν-SVR
in one approach turned out to be a central goal. In the past, both
local and sparse methods were used to accelerate the process.
Local online SVR was introduced for real-time learning for
low-level robot controls, whereby only local data points near
the operation point are used for training [5]. The performance
was only slightly worse compared to the usual SVR approach,
as the local data points used are much more important for the
learning performance than data points that are far away from
the operation point [6]. Local Gaussian Processes have been
proposed as another local approach to real-time online model
learning [7]. The training data is divided into local regions so
that an individual Gaussian Process (GP) model can be trained
for each region. Thus, the prediction for a query point is made
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by the weighted estimation with nearby local GP models.
In contrast to local containment, the spectrum of the kernel

matrix can be sparsified with sparse methods which was used
in the development of the real-time capable Incremental Sparse
Spectrum GPR algorithm [8]. Besides, it is common with
Sparse Gaussian Process Regression (SGPR) to determine a
small number of data points which are used to approximate the
kernel matrix. SGPR has already been used for online learning
of inverse dynamics in which several Gaussian Processes drift
parallel along the data [9]. Each GP model has a defined size.
Thus, after the startup, the number of data points from the past
in each GP model remains constant. By startup we mean the
filling of the GP models with data points up to the maximum
size. Due to the various sizes, the predictions of the models are
also different. Purely intuitively one would say that a model
with more data points also provides a higher accuracy. This
is not always the case. Depending on the curve section, either
a smaller or a larger model can approximate better [9]. By
appropriate weighting the individual predictions, this variable
accuracy can be taken into account in the final prediction.

In addition to the sparseness property due to the use of
SGPR, this approach is also local in a certain sense because the
GP models only contain a defined number of data points from
the past. The oldest data point is replaced in each step by the
newest point and is therefore no longer used. However, if you
come to an area in which you were in the past, it would make
sense to use this data again. Such a storage of old points in an
online learning procedure has already been presented and it has
been shown that the performance is significantly improved by
a database [10]. A certain number of nearest neighbors from
the newest data point were added to the training set in order
to make use of the existing knowledge in the current region.

The present work deals with the fusion of the latter two
approaches: the extension of the parallel drifting Gaussian
Processes by a database. In section II, the SGPR is presented
and the entire concept of the used procedure for pre-control is
introduced. In addition, it is examined whether the method is
real-time capable. It will become apparent that this is not the
case due to the computing time for one run which takes too
long. How such a procedure can nevertheless be implemented
in robot control is a central component of this paper and is
described in detail in section III. Based on this, in section IV
the developed pre-control is experimentally validated with a
parallel kinematic industrial robot. In section V conclusions
are drawn and a final outlook for future tasks is given.

II. PARALLEL GAUSSIAN PROCESSES FOR ONLINE
LEARNING

In this section, the online learning method is presented. First,
the basics of the SGPR used will be dealt with. Building on
this, the entire concept of the procedure is described with a
subsequent verification of the real-time capability.

A. Sparse Gaussian Process Regression

The inverse dynamics describes the relationship between the
torques and the corresponding joint angles and its derivatives

which has to be learned. Hence, with an independent consid-
eration of the joints j = 1, ..., dim(τ ) the following applies

τj = ID(q, q̇, q̈), (1)

or more generally
f : x 7→ y (2)

with inputs x ∈ Rdim(qT ,q̇T ,q̈T ) and output y ∈ R. The noise
in the system εi ∼ N (0, σ2

noise) is assumed to be Gaussian
with zero-mean and variance σ2

noise, so that finally the relation

yi = fi + εi (3)

applies to a data point i. Here, fi = f(xi) describes the model
to be learned which - with the additive noise component - is
equal to the output variable yi.

For a known training set D = {(xi, yi), i = 1, ..., n} with
n data points, there is a regression problem with the aim to
predict f∗ at a query point x∗. The simpler interpretation of
the model compared to neural networks as well as the deter-
mination of uncertainties in contrast to other kernel machines
are two advantages for a Gaussian Process Regression.

By definition, a GP is a set of random variables fi for
which each finite subset follows a Gaussian distribution.
Since the GPR is a Bayesian approach, we have to define
the prior distribution. We assume zero-mean which seems
plausible because we can normalize the outputs to zero-mean.
In terms of covariance, we define K as the kernel matrix
with the entries Kxx′ = kernel(x,x′) and initially any kernel
function. Further, X = (x1, ...,xn)

T describes the inputs and
y = (y1, ..., yn)

T the related noisy observations. For the sake
of clarity, we will refrain from writing out the conditioning on
the inputs X,x∗ in the following explanations.

Using Bayes’ rule we obtain the joint posterior distribution
by considering the data. After marginalizing out the unwanted
latent function values from the training set, we get the desired
Gaussian predictive distribution [11]. The process of learning
takes place by adapting the hyperparameters {σ2

noise,θ} to the
data set where θ stands for the hyperparameters of the selected
kernel function. This process can be carried out by maximizing
the marginal likelihood p(y). So for each query point x∗, we
can make a prediction for f∗ consisting of mean and variance.
However, the problem is the size of the kernel matrix of the
inputs KXX . Due to the very computational inversion of a
n x n matrix, the training time scales with O(n3) and the
prediction time for a test point with O(n). Many data points
n therefore require a lot of computation. This property is not
acceptable for an online approach in which the models are
continuously adapted to new data.

This problem can be solved by using a computationally
efficient sparse method. Thereby, the general approach is the
execution of complex arithmetic operations on a set of m data
points which is much smaller than the full set. An overview of
possible sparse approximations has already been given [11].

In this work, we use the Deterministic Training Conditional
Approximation [12]. The likelihood is approximated with

q(y|fm) = N ((K−1mmKmX)Tfm, σ
2
noiseI) (4)
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where fm describes the latent funtion values of the reduced
set and I the identity matrix. The subscript m of the kernel
matrices represents Xm which is the matrix with m inputs.
Thus, the resulting predictive distribution at x∗ consisting of
mean value µ and variance σ2 can be calculated [12].

Since the likelihood approximation also causes an approxi-
mation of the marginal likelihood, the expression

q(y) = N (0,KXmK
−1
mmK

T
Xm + σ2

noiseI) (5)

now has to be maximized in order to optimize the hyperpa-
rameters. Note that in our approach the inducing inputs Xm

are variational which means that they play the role of extra
kernel hyperparameters. Thus, the parameters (Xm,θ, σ

2
noise)

have to be optimized.
In summary, it can be said that with such an approach

only m x m matrices have to be inverted which significantly
reduces the computational effort depending on the number
of inducing inputs m considered. This means that both the
training and the prediction can be executed faster which is
essential for the online learning of inverse dynamics and the
calculation of the required feedforward moments.

B. Concept for Feedforward Control

After the regression method used was introduced, the entire
concept of pre-control can now be presented. This is illustrated
in Fig. 1. As input, there is a new data point {xt, yt} at
the time step t as well as the input variables for the next
time step xt+1. For the latter, the method should approximate
the corresponding output quantities. Within the feedforward
control, the models are updated with the current state of the
robot in order to predict the moments in the next time step by
means of desired joint sizes.

As already described, the first step is to update the nGP

models. You can freely choose how many GP models drift
parallel along the data. Each GP k has the set kD with a
different number of data points. The new point is inserted in
this set. Due to the use of a database DB to store old data
points, the oldest data point of the GP model with the index
kmin is then added to it. This GP contains the fewest points
from the past, so when storing the oldest data point from this
model, it can be ensured that the database can provide all
data points from the past for each GP. Since the size of the
database for an online procedure should be limited due to the
storage space required, it is therefore possible that the database
is completely filled. In this case, the oldest data point should
be deleted from the database to ensure a constant size. Also,
as soon as the respective set kD is completely filled, the oldest
data point is deleted from this GP.

After the storage, the training starts. First, the respective
training set kDTrain is created which consists, on the one hand,
of the data set of the GP. On the other hand, the database can
optionally be used by inserting the knn-next neighbors knnDB
from the inputs in the next time step xt+1 from the database
into the training set. Thus, there are many data points in the
neighborhood of the query point which results in a higher

for k ∈ 0, ..., nGP − 1:
xt, yt → kD
if k=kmin: kxold, kyold → DB

delete kxold, kyold from kD , kD + knnDB → kDTrain

determine scaler kX , kY
posterior kGP with kX kY (kDTrain), optimization
prediction kµ, kσ

2 with kX (xt+1)

µ=
nGP−1∑
k=0

kwkY−1(kµ), σ
2=

nGP−1∑
k=0

kwkσ
2 , kw= 1/kσ

n
GP
−1∑

k=0

1/kσ

if abs(γ)>η: DB=[ ]

ỹt+1=µ

if DB full: delete DBoldest

{xt, yt}, xt+1

Fig. 1. For each incoming data point {xt, yt} the parallel drifting GP models
are updated first and then used to make a prediction of the outputs for the
known input variables in the next time step xt+1.

accuracy of the prediction. With the library scikit-learn [13]
such a search of the nearest neighbors can be performed.

Due to the considerable differences in magnitude between
the individual quantities, e.g. between joint angles and joint
accelerations, the data must be preprocessed. There, we scale
the inputs as well as the outputs so that they are zero-
mean and have a unit variance. The scikit-learn library can
also be used for this purpose. With this, the scaler kX , kY
are determined with the inputs and outputs of the data set
kD . Then the processed data kX kY (kDTrain) can be used
to determine the posterior kGP whose hyperparameters are
optimized in a next step. With such an optimized model we
can finally perform the desired prediction. Note, that also here
the query point xt+1 must be transformed with the scaler kX .
Accordingly, the output variables, i.e. the expected value kµ
and the corresponding scalar variance kσ

2 , are also scaled.
For the SGPR, we use the library GPy [14]. With this, a
regression with multidimensional outputs is possible, which
is why we also use outputs of the dimension dim(τ ) in the
notation. In detail, an independent treatment of the individual
outputs is carried out here. Therefore, the statistical methods
used correspond to those described in the section II-A.

After this procedure has been performed for all GPs, the
next step is the final approximation ỹt+1 = µ for the unknown
outputs in the next time step. The respective predictions of the
individual models kµ are weighted with kw . Because the ex-
pected values are still scaled, they first have to be transformed
back with the scaler kY . When determining the weighting
factors, we use the reciprocal of the standard deviation. With a
more accurate prediction, the standard deviation is smaller than
with a poor approximation. Consequently, predictions with
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lower standard deviations should be weighted higher resulting
in reciprocal value formation. Similarly, the variance of the
final prediction can be obtained by weighting the variances of
each model. Since these are scaled, the variance of the final
prediction σ2 is also scaled.

In a final step, a possible change in the system dynamics
is taken into account. If the system behavior changes for
unknown reasons, all data points collected so far would no
longer match the system. The added knn nearest neighbors
from the database would belong to an outdated system. For this
reason, the database is completely deleted if the magnitude of
an error measure γ to be defined exceeds a threshold η. Thus, a
change in the system dynamics is assumed if the approximation
is too inaccurate.

C. Verification of Real-Time Capability

After a detailed description of the feedforward concept
based on online learning in the previous section, it is necessary
to answer a central question: Is this procedure real-time
capable? In order to answer this, in the sense of the definition
of real-time capability mentioned above, it must be ensured
whether the method reliably delivers a prediction ỹt+1 for each
control cycle. For a controller, the defined cycle time should
therefore be an upper limit for the computing time required
for a run. For this, we define a typical cycle time of 5 ms.

For verification, experiment data of an industrial robot are
used with dim(qT , q̇T , q̈T ) = 9 and dim(τ ) = 3. In addition,
two GP models drift along the data of size n1 = 40 and n2 =
80, which are extended with additional knn = 20 database
points. The number of inducing inputs for the SGPR is m = 20
and the known RBF kernel is used as kernel function

kernel(x,x′) = σ2
rbfexp(− 1

2l2
||x− x′||2) (6)

with the RBF variance σ2
rbf and the lengthscale l as hyperpa-

rameters. With the inducing inputs Xm and the noise variance
σ2
noise there are finally 183 hyperparameters which have to be

optimized. To ensure convergence, the optimization is carried
out with a maximum of ten iterations in order to keep the
gradients of the parameters satisfactorily low.

The result of the investigation is that the run shown in Fig. 1
takes about 90 ms. To speed up, we change the algorithm so
that in each run only one model is updated. Consequently,
both the creation of the posterior with the new data and the
optimization only have to be performed once per run. These
two steps cost the most time. With a change like this, the
computing time can be halved. However, the required 45 ms
are still significantly above the cycle time which is not accept-
able for an implementation. Therefore, the described procedure
is not real-time capable in its form. Incidentally, even if the
cycle time had been observed, the Python environment used
on a Windows operating system would by definition not be
real-time capable. The adjustments we made to implement the
chosen approach in a robot controller are presented in the
following section.

III. IMPLEMENTATION IN THE ROBOT CONTROLLER

This chapter describes in detail how we proceeded with the
implementation. The main task here is to change the procedure
illustrated in Fig. 1 in such a way that there are torques
for feedforward control in each cycle available. An intuitive
approach would be to accelerate the process so that the time
for one run is less than the defined cycle time of 5 ms. This
could be achieved for example by reducing the number of
inducing inputs m or the number of optimization iterations.
Disadvantage of such changes is the loss of accuracy of all GP
models and, consequently, of all approximations. This is the
reason why we are pursuing a different philosophy: splitting
the procedure into two threads running in parallel. Thereby, we
separate the prediction process from the computing-intensive
training which results in the architecture shown in Fig. 2.

Accordingly, the developed program PGPOL (Parallel Gaus-
sian Processes for Online Learning) consists of two threads,
the model update and the prediction. Since PGPOL runs
on a Windows operating system, communication with the
Programmable Logic Controller (PLC) for pre-control must
take place. This exchange is realized by an UDP-IP connection
whereby each thread uses a different port.

Starting with the model update: analogous to Fig. 1, this
thread receives a current data point consisting of actual joint
sizes xt−5 and actual moments yt−5 of the robot as input.
Due to the bus runtime, this data point effectively belongs to
the time step t− 5. With this, all parallel drifting GP models
can be updated according to the known scheme. When using
the database, the knn-next neighbors knnDB of desired joint
sizes in two time steps xd,t+2 are additionally inserted into the
respective training set. When updating only one GP per run
as described above, this process takes 45 ms, with the sizes
specified in section II-C including the UDP-IP communication.

Parallel to this, a permanent prediction loop is executed.
This thread receives the error measure

γ = nmset−5 − nmset−6 (7)

which is the change of the normalized mean squared error
averaged over all joint axes j

nmset =

dim(τ )∑

j=1

nmset,j

dim(τ )
. (8)

The used normalized mean squared error from axis j at time
step t is calculated by

nmset,j =

1
t

t∑
i=1

(yi,j − ỹi,j)
2

var(yj)
. (9)

In the numerator, there is the mean squared error between the
actual moment of the respective axis yi,j and the corresponding
approximated moment ỹi,j along the entire time steps i=1,...,t.
This is normalized by the variance of the actual moments yj
of the axis j up to the time step t. The calculation takes place
incrementally on the PLC at each time step. Note that due to
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if k=kmin: kxold, kyold → DB
if DB full: delete DBoldest

{xt−5, yt−5}, xd,t+2

for k ∈ 0, ..., nGP − 1:
xt−5, yt−5 → kD

delete kxold, kyold from kD , kD + knnDB → kDTrain

determine scaler kX , kY
posterior kGP with kX kY (kDTrain), optimization

µ=
nGP−1∑
k=0

kwkY−1(kµ) and σ2=
nGP−1∑
k=0

kwkσ
2

if abs(γ)>η: flag=True

ỹt+2=µ

prediction kµ, kσ
2 with kX (xd,t+2)

for k ∈ 0, ..., nGP − 1:

xd,t+2, γ

PGPOL

PLC

model update prediction

ỹt+1

if flag=True: DB=[ ] and flag=False

with kw= 1/kσ
n
GP
−1∑

k=0

1/kσ

Fig. 2. The implementation of the approach presented is done by splitting the procedure into two threads. Parallel to the computation-intensive model update
runs the prediction, for which the current GP models are used. An Internet Protocol enables data exchange between the program and the controller.

the already mentioned offset by the bus runtime, the defined
measure γ describes the error change between the steps t− 5
and t−6. At the beginning of each prediction run, the program
first checks whether this error amount exceeds a threshold η. If
this is the case, a change in the system dynamics is assumed.
A flag is used to clear the database in the model update thread.

In addition, this thread includes prediction, which has al-
ready been explained in section II-B. Since our architecture
is chosen in such a way that both sending and receiving take
place at the beginning of each run, the calculation has to be
time-shifted. This means that the moments approximated to
the time step t are sent to the PLC in the following time step.
Consequently, a prediction with the desired joint sizes xd,t+2

must be performed so that the approximation ỹt+2 can be
saved. In the following time step, this vector can then be sent
to the PLC. Hence, the controller has effectively approximated
moments for the step t+ 1. These can then be pre-controlled
in the correct time, i.e. in the next time step.

Finally, it must be noted that the required joint sizes xd,t+2

are not available on the controller due to the software. Only
the desired sizes for the next time step are calculated. In order
to solve this problem, we have decided on a simple linear
extrapolation which approximates the required joint sizes with
existing desired values at time step t and t+ 1.

By splitting the approach, it is now possible that updated
feedforward moments are theoretically available in each time
step. This can be realized because the cycle time of the
prediction thread including communication is on average less
than the specified cycle time of 5 ms. Be aware that due to the
non real-time environment, it is still possible that this limit may
be exceeded. If there are therefore no feedforward moments,
the previous values are then pre-controlled again.

IV. EXPERIMENTAL VALIDATION

In order to validate the proposed approach for pre-control,
experiments are carried out on a parallel kinematic robot. In
detail, it is an industrial Codian D4-1100 delta robot designed

for highly dynamic pick-and-place applications and controlled
by a standard industrial PLC.

A. Movement along a Trajectory

To investigate the database approach and generally the use
of parallel drifting GP models, a defined trajectory with the
robot is driven in a first experiment. This consists of a square
with a subsequent circle and is illustrated in Fig. 3a). The
experiment is performed for different constellations of the GP
models. Furthermore, an offline identified rigid body model of
the delta robot including both the motor inertia and friction is
used for feedforward control as comparison. The tracking error
is examined more closely as a performance criterion, since the
main goal of feedforward control is to reduce this error. The
calculation of the squared error area of the joint j

Aj =

∫ τ+T

τ

e2j dt (10)

is useful here where the tracking error of the respective axis
ej is squared and integrated over a defined duration T . Due
to discrete values, numerical integration is necessary, whereby
the trapezoidal rule is used as the quadrature formula.

Furthermore, it must be noted that the tracking error curve
behaves aperiodically mainly with pre-control by PGPOL. The
reason for this is the continuous adaptation of the models to
new data. Even if this non-periodic behavior only occurs to a
small extent, it should nevertheless be taken into account in
the evaluation. Because of this, the integration is not performed
over the required time for one drive of the selected trajectory,
but over a much longer range T = 40s. During this time, the
trajectory is carried out by the robot sufficiently often so that
the aperiodicity of the tracking error in the error area is also
taken into account. By summation over all joints j the total
squared error area results in

Atotal =

dim(τ )∑

j=1

Aj. (11)
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Fig. 3. Delta robot in top view with three different trajectories (orange): a) Movement along square with following circle b) Movement with many pick-and-place
points (orange points) c) Movement with few pick-and-place points

Table I
TOTAL SQUARED AREA OF TRACKING ERRORS: EXPERIMENT I

approach to feedforward control Atotal in deg2ms

without feedforward 426.2

offline identified model 213.7

n1 = 60, knn = 0 → knn = 20 204.9 → 203.4

n1 = 120, knn = 0 → knn = 20 204.5 → 198.9

n1 = 480, knn = 0 → knn = 20 194.8 → 199.2

n1 = 60, n2 = 120, knn = 0 → knn = 20 203.9 → 197.5

n1 = 60, n2 = 480, knn = 0 → knn = 20 195.7 → 194.6

The results of the experiment are shown in Table I. First,
compared to operation without any feedforward, the squared
error area can be approximately halved by using the offline
identified rigid body model for pre-control. The alternative
approach, i.e. online learning of inverse dynamics using GPR,
performs even better in any constellation. Thereby, it is no-
ticeable that all the error areas are very similar in magnitude.

The best result can be obtained with the parallel approach
with models of size n1 = 60 respectively n2 = 480 and
knn = 20 additional database points. To illustrate the quality
of this constellation and, thus, the applied feedforward control,
the actual moments are compared with the pre-controlled
torques in Fig. 4, exemplary shown for joint 3. Here, an excerpt
of the entire experiment is considered in which the whole
trajectory was once run through. It is noticeable that in the
smoother regions, the predictions are very close to the actual
values. By contrast, at the peaks in particular there are large
deviations. The main reason for this is that the RBF kernel
used is primarily suitable for smooth functions. The learning
of rough regions which are present at the peaks is therefore
not ideal with this kernel function.

With one exception, the use of the database results in an
improvement because the error area will be reduced further.
A clear increase of performance by using several parallel
drifting Gaussian Processes, however, is not obvious by this
experiment, since the error area for the best approach with
a single GP is only minimally larger as the area of the best
parallel constellation. It should be mentioned that these results

refer only to the trajectory with defined speed settings. Thus,
parallel drifting GPs can be useful for other movements.

For the following experiment, we therefore keep the parallel
approach which performed best in this experiment. This con-
stellation has reduced the total squared area of the tracking
errors by more than 54%. Compared to the identified rigid
body model, this is a clear improvement. At this point, it
should be mentioned that the presented approach can be
used in any serial or parallel kinematic robot. An elaborately
generated robot model is put in the shade, at least in our
experiment. In comparison, the constellation with a single GP
of the size n1 = 480 without using the database is additionally
examined, since this enabled a similar performance. This mode
is referred to as SGPOL (Single Gaussian Process for Online
Learning) and the parallel mode is referred to as PGPOL.

B. Pick-and-Place Experiment

After we described the performance of our approach for the
trajectory in the previous experiment, we will now investigate
a possible change of the system dynamics. Thereby, we put
the robot in a pick-and-place movement for which the parallel
kinematic machine used is typically applied in practice. We
simulate a change in system dynamics by increasing the speed
of the end effector during operation. As a result, the joint
moments are lifted to a different level. An additional mass at

Fig. 4. Excerpt of the torque curve of axis 3 for the pre-control experiment
with the best GP constellation: actual moments vs. feedforward moments
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Table II
TOTAL SQUARED AREA OF TRACKING ERRORS: EXPERIMENT II

approach to feedforward control Atotal in deg2ms

without feedforward 646.1

offline GP 320.9

PGPOL 322.9

SGPOL 311.7

the end effector would produce a similar effect. Therefore, we
can use this to highlight the behavior to system changes.

As a comparison to the two described modes, i.e. SGPOL
and PGPOL, we use an offline trained GP model. Hence, the
first step is to learn the inverse dynamics offline with sufficient
data. For this, we use as a training data set the trajectory shown
in Fig. 3b) consisting of twelve pick-and-place points which
are arranged in a star shape. At each of these points, the end
effector moves along the vertical axis which is characteristic
of a pick-and-place movement. The training takes place via
SGPR on 15,000 data points and with 1,500 inducing inputs.
The model of such a constellation needs on average 2 ms for
a prediction of all three torsion moments. Consequently, with
additional communication time of approx. 2 ms, the required
run time is smaller than the cycle time. Since we increase the
speed in the actual experiment this also has to be done during
the generation of the training data. Thus, when the training
trajectory is carried out, the speed is increased further up to
a defined maximum. It should already be mentioned here that
at this maximum speed, there is a highly dynamic movement.

The test trajectory should be different so that we can
check how the offline model approximates for unknown data
areas. Eventually, such an offline trained GP model should be
universal and not only explicit for the training data. Hence,
we use a test trajectory consisting of six pick-and-place points
illustrated in Fig. 3c), whereby each is at a different position
than the twelve points of the training movement.

When carrying out the experiment, three different speeds are
set one after the other: 33%, 66% and 100% of the maximum
speed. At each speed, the entire trajectory is driven five times.
Thus, the test movement is performed a total of 15 times per
experiment. As a performance criterion, the total squared area
of the tracking errors is calculated again. Table II contains
these for the mentioned feedforward approaches in comparison
to carrying out the experiment without any pre-control. At first,
it can be seen that the error area is more than halved by each
pre-control approach. There, the largest reduction is achieved
by using a single GP. The parallel learning reduces the error
area slightly less, similar to using the offline trained GP model,
whereas the latter approach is partly enhanced.

In order to clarify why the use of parallel drifting GPs
reduces the tracking errors less, the approximation error will
be investigated in more detail. We determine the course of
the average normalized mean squared error nmset (8) as a
function of time. The resulting curves for the three pre-
control experiments are presented in Fig. 5. Basically, it is

recognizable that at the beginning of each experiment, the
error is very large. With the online approaches, this makes
sense because depending on the constellation, the procedure
takes a certain amount of time to learn the inverse dynamics.
For the offline trained GP model, however, this behavior also
exists although the model is already at the beginning of the
experiment completely determined and no longer adapts to
the data in the course of the experiment. The reason for this
process is the fact that the end effector is in a rest position
before starting the movement. This state was not learned with
the offline trained GP. Consequently, the error is on a higher
level which is balanced after a short time.

Further, it is noticeable that the approximation error in-
creases with rising speed ( 1©→ 2© and 2©→ 3©). This can be
justified by the fact that at low speeds, the torques are clearly
smoother compared to highly dynamic motion. With the RBF
kernel, such a smooth behavior can be learned enhanced in
contrast to the fast pick-and-place process. Furthermore, with
slow movements, the joint sizes also have a smoother course.
Our applied linear extrapolation to determine the required de-
sired joint sizes therefore generates a smaller error in this area
than with faster movements. Accordingly, in highly dynamic
processes, the moments are predicted for approximated desired
values which deviate more clearly from the exact desired
values. This also increases the approximation error.

A closer look at the courses reveals that after a certain initial
phase, the approximation error for the rest of the experiment is
smaller with PGPOL feedforward than with the offline trained
GP. In addition, throughout the experiment the approximation
error of the parallel approach is lower than when using a single
GP. If one only considered these time histories, one would
assume that PGPOL would best reduce the tracking error due
to the prediction accuracy. Table II says the opposite.

For clarification, we consider the squared error areas in
sections. Since the speed in area 1© is very low, the tracking
errors are also low. In this section, the error areas of all three
pre-control approaches are similar in amount. Consequently,
a consideration of the remaining areas is expedient. It is
noticeable that, depending on the area, either the offline

Fig. 5. Course of the approximation error for the pick-and-place experiment
with feedforward by the offline GP, PGPOL and SGPOL. The three differently
grayed sections represent the three respective speed settings.
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approach or the online procedures have a smaller error area
and are therefore better. In 2©, the offline GP performs better
than the online approaches. This behavior can be explained
by the fact that with such a doubling of speed, the online
approaches need time to adapt to the new dynamics. This is
also substantiated by Fig. 5 because at the beginning of the
region 2©, the approximation error for the online procedures
grows strongly. For longer drives in this area, it could be
assumed that the online approaches would result in a more
significant reduction of tracking errors than the offline GP
due to the better prediction accuracy. In the area of maximum
speed, the online approaches perform better. The speed change
from 2© to 3© is therefore not as significant as before. Hence,
the online approaches can adapt faster.

Further, it is observed that the SGPOL mode reduces the
tracking errors more than the use of parallel drifting GPs.
This can also be justified by the adaptation to new data. Since
the latter method consists of two models and only one GP is
updated in each run of the model update thread, this approach
takes longer to adapt. However, this is not visible in Fig. 5
because PGPOL performs better than SGPOL during the whole
experiment. A pure consideration of the approximation error
therefore does not necessarily provide information about the
performance. Consequently, the tracking error reduction should
also be investigated since this is the main task of pre-control.

V. CONCLUSIONS

This paper describes an approach for online learning using
parallel drifting Gaussian Processes and a database extension.
A central component is the implementation of such an ap-
proach in the robot controller in order to realize a feedforward
control with the permanently adapted inverse dynamics.

Experiments show that any GP constellations perform better
in terms of tracking error reduction than an identified physical
model. In addition, it can be seen that using the database as
a rule leads to an increase in the performance. Pick-and-place
experiments with simulated dynamic changes show that paral-
lel drifting GPs are advantageous regarding the approximation
error. When considering the tracking error reduction, however,
a single Gaussian Process in our investigations performs better.
In general, the results give the impression that the presented
use of several Gaussian Processes is not necessary and that a
single GP provides comparable accuracy.

Despite all the positive results, new tasks arise from this
work. It was found that in smoother regions, due to the
property of the RBF kernel, the approximation is more accurate
than in rough regions. Accordingly, a deeper investigation
should be carried out with regard to the kernel choice. The
architecture-related linear extrapolation of the desired values
is also a source of errors. For the industrial application of such
an approach, it is also desirable to ensure real-time capability
so that current pre-control torques are reliably available in
every cycle. Executing the process directly on the controller
would represent the best solution as this eliminates the UDP-
IP communication. The time required for this would be saved.
In addition, the linear extrapolation required in our case would

then no longer be necessary, since only desired values are
required for the next time step which are provided by the
software of the controller used.

Besides the method presented here, a task-specific approach
would also be expedient. Depending on the task, specific
models are trained. In relation to a pick-and-place robot, one
could define one task as a motion with mass at the end effector
and a second as a motion without mass. Data from sensors
could thus provide information about which case is present
and the respective Gaussian Process or the respective parallel
drifting Gaussian Processes could be used. The chosen GP
constellation would therefore not have to adapt to the new
dynamics repeatedly after placing or picking up the mass,
instead there would be a change in the model or models which
is/are already trained for the respective case.

It is also possible to mix a model-based approach with
the online learning method. If an identified inverse dynamics
model of the robot is available, this existing knowledge could
be used. The error of the identified model could be continu-
ously learned online and additionally pre-controlled. A model
identified offline can thus be improved by machine learning
techniques.
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