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Abstract 

In today’s business environment, the trend towards more product variety and customization is unbroken. Due to this development, the need of 
agile and reconfigurable production systems emerged to cope with various products and product families. To design and optimize production
systems as well as to choose the optimal product matches, product analysis methods are needed. Indeed, most of the known methods aim to 
analyze a product or one product family on the physical level. Different product families, however, may differ largely in terms of the number and 
nature of components. This fact impedes an efficient comparison and choice of appropriate product family combinations for the production
system. A new methodology is proposed to analyze existing products in view of their functional and physical architecture. The aim is to cluster
these products in new assembly oriented product families for the optimization of existing assembly lines and the creation of future reconfigurable 
assembly systems. Based on Datum Flow Chain, the physical structure of the products is analyzed. Functional subassemblies are identified, and 
a functional analysis is performed. Moreover, a hybrid functional and physical architecture graph (HyFPAG) is the output which depicts the 
similarity between product families by providing design support to both, production system planners and product designers. An illustrative
example of a nail-clipper is used to explain the proposed methodology. An industrial case study on two product families of steering columns of 
thyssenkrupp Presta France is then carried out to give a first industrial evaluation of the proposed approach. 
© 2017 The Authors. Published by Elsevier B.V. 
Peer-review under responsibility of the scientific committee of the 28th CIRP Design Conference 2018. 

Keywords: Assembly; Design method; Family identification

1. Introduction 

Due to the fast development in the domain of 
communication and an ongoing trend of digitization and
digitalization, manufacturing enterprises are facing important
challenges in today’s market environments: a continuing
tendency towards reduction of product development times and
shortened product lifecycles. In addition, there is an increasing
demand of customization, being at the same time in a global 
competition with competitors all over the world. This trend, 
which is inducing the development from macro to micro 
markets, results in diminished lot sizes due to augmenting
product varieties (high-volume to low-volume production) [1]. 
To cope with this augmenting variety as well as to be able to
identify possible optimization potentials in the existing
production system, it is important to have a precise knowledge

of the product range and characteristics manufactured and/or 
assembled in this system. In this context, the main challenge in
modelling and analysis is now not only to cope with single 
products, a limited product range or existing product families,
but also to be able to analyze and to compare products to define
new product families. It can be observed that classical existing
product families are regrouped in function of clients or features.
However, assembly oriented product families are hardly to find. 

On the product family level, products differ mainly in two
main characteristics: (i) the number of components and (ii) the
type of components (e.g. mechanical, electrical, electronical). 

Classical methodologies considering mainly single products 
or solitary, already existing product families analyze the
product structure on a physical level (components level) which 
causes difficulties regarding an efficient definition and
comparison of different product families. Addressing this 
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Abstract 

Nowadays, high flexibility and responsiveness towards capacity adjustments are key to successful production planning and control in 
manufacturing. Moreover, many companies – especially job shops – have to deal with short-term re-scheduling. This article presents an approach 
for knowledge-based process planning to enable an economic evaluation of re-scheduling in the manufacturing system. For that purpose, the 
manufacturing costs for each workpiece are calculated based on determined parameter sets and process time under consideration of potential 
capacity adjustments. The knowledge-based process planning is necessary to derive reliable process times for re-scheduling and cost calculating. 
Hence, a pre-study is carried out to define flexible machine learning algorithms for knowledge-based process planning.  
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1. Introduction 

Today's production – especially in job shops – is 
characterized by machine-related planning of process 
parameters, program codes and work schedules. The 
assignment of machines to work steps depends on the 
production time and the process parameters. However, due to 
unexpected disturbances in the operational workflow, it may 
become necessary to re-schedule existing work [1, 2]. To avoid 
economic losses, work steps must be re-scheduled quickly and 
efficiently to find the best alternative to the planned machine. 
Therefore, it is necessary to develop a method that 
automatically re-schedules production orders to possible 
alternative machines. However, it is essential to know the 
respective process times in order to re-schedule the production 
successfully to achieve a robust scheduling, which is a main 
challenge for cyber physical production systems [3]. Moreover, 
despite any changes of machines and process parameters, the 
required workpiece quality must be maintained. For that 
purpose, the proposed approach considers a knowledge-based 

planning of process parameter, which allows calculating 
production times of alternative processes parameter. Since the 
results must be available within a determined period of time, 
knowledge-based process planning should be conducted 
automatically.  

The paper is divided into two parts. In the first part, a brief 
introduction about the superordinate approach of economical 
re-scheduling of manufacturing orders is given. In the second 
part, a method is introduced and investigated that derives 
process parameters for turning operations based on data 
analysis. Hence, process times as a major input variable for the 
re-scheduling can be calculated. 

1.1. Economical re-scheduling 

The economical re-scheduling approach is based on the 
dynamic bid price algorithm by Denkena et al. [4], who 
considered a relation between cost and capacity. The approach 
of economical re-scheduling can be assigned to different levels 
of the automation pyramid [5], as shown in Fig. 1. 
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The approach links the levels of business (ERP), operations 
and control (MES), process control (SCADA) and the field 
network (machine). At the beginning, work preparation 
deploys a work schedule by defining a workstation/machine, 
equipment and process parameters, e.g. by using Computer 
Aided Manufacturing (CAM). If the production schedule can 
be carried out as planned, it is assumed that by choosing the 
most efficient machine the highest economic benefit will be 
achieved. In case of a machine breakdown or rush orders, the 
production schedule must be changed quickly. Compared to the 
classification of the cyber physical production system 
architecture [6, 7], the approach is based to the cognition level 
by using decision support to select the best alternative. Another 
approach is to use alternative production routes and determine 
the most efficient alternative work schedule for this 
purpose [2]. Other approaches focusing on integrated process 
planning and scheduling [8]. As shown in Fig. 1, the re-
scheduling procedure is triggered by an event, e.g. a machine 
breakdown. The re-scheduling method contains four models: 

• Customer classification model 
• Schedule and capacity model 
• Cost model 
• Knowledge-based process planning 

The customer classification model separates the business 
customers according to their economic importance to the 
company. Feasible production times are calculated from the 
process parameters, which are derived from the knowledge-
based process planning. Within the schedule and capacity 
model, it is checked whether the dates of delivery of all orders 
are in time or not. The cost model uses the re-scheduled work 
schedules to calculate resulting production costs by considering 
capacity adjustments and the approximated production time 
from the knowledge-based process planning. Within the scope 
of a preliminary calculation, the cost price can be determined 
by taking machine hour rates, labor costs and the contract 
penalties for order postponements into account [4]. 

However, each model relies on different data, depending on 
its level within the automation pyramid. A major challenge in 
economic re-scheduling are reliable process data in work 
schedules, primarily the approximated production times. 
Because needed information as process parameter and 
production time vary strongly depending on the machine. The 
method of knowledge-based process planning allows the 
calculation of approximated process times for feasible sets of 
process parameter. This enables economical re-scheduling. 
Transfer times for material, parts and tools are not taken into 
account. 

1.2. Knowledge-based process planning 

Detailed process planning is part of work preparation and 
defines feasible process parameters of process control variables 
(e.g. feed or cutting speed). Despite recent developments in the 
field of machine data acquisition and analysis, detailed process 
planning, especially for turning processes, is often carried out 
manually based on the experience of the machine operator. This 
reduces the flexibility of the production due to the dependence 
on experienced personnel. In addition, the overall process 

knowledge of the company is not fully exploited due to 
different machine operators as well as limited documentation 
of the processes. A knowledge-based planning of process 
parameters could help to overcome these problems and ensure 
the selection of suitable process parameters even when 
production orders are re-scheduled on short notice. In the 
following section, a brief literature review of knowledge-based 
process planning is given. Subsequently, a novel approach is 
presented and evaluated in a case study. 

2. State of the art of knowledge-based process planning 

Detailed process planning is the last step in work preparation 
before the start of production and followed by production 
control [9]. Since the choice of process parameters depends 
strongly on machine tool characteristics, re-scheduling requires 
a revision of the selected process parameters [2]. For the 
subsequent data analysis, the use of machine learning methods 
is investigated in addition to existing planning methods. An 
approach considering data mining can be found at Große 
Böckmann et al. [10]. Especially for knowledge-based detailed 
planning of the turning process, the most frequently used 
variables are the basic cutting parameters feed (f), cutting speed 
(vc) and depth of cut (ap). In many cases, the predicted target 
value is the surface roughness (Rz). Davim uses a feedforward 
artificial neural network to predict the surface roughness 
depending on the cutting parameters [11]. Asiltürk considered 
surface roughness, but applies an artificial neural network with 
backpropagation and multiple regression [12]. Kant correlates 
the surface roughness with the tool wear to assume energy 
consumption in turning, by using grey relational analyses [13]. 
Moreover, grey relational analysis was also applied to the 
turning process in order to optimize process parameters with 
regard to the targeted surface roughness. Further, the response 
surface method has also attracted attention for the turning 
process [14]. In addition, the selection of the optimum tool 
geometry with the variables cutting edge rounding, setting 
angle and angle of chamfer was tested using the response 
surface method [15]. Gupta is taking more target variables into 
account (surface roughness, tool wear and cutting force) by 
using a response surface methodology compared with a particle 
swarm optimization [16]. Furthermore, Senthilkumar predicts 
the expected wear of the tool depending on the cutting 

Fig. 1: Approach of economical re-scheduling in production control under 
consideration of resource utilization and machine tool capabilities. 
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parameters feed, cutting speed and cutting depth and workpiece 
material to optimize the parameter sets by a non-dominated 
sorting genetic algorithm [17]. Besides, the gradient boosted 
trees have been already applied for allocation problems [18], 
but not for detailed process planning.  

In summary, many approaches aim at a better determination 
of the parameters of the process control variables. The most 
addressed process variables are surface roughness and tool 
wear. The basic idea of these approaches is a largely automated 
use of experience knowledge to predict several target values 
within a company. However, the existing approaches are 
limited with respect to the database or the analyzed process 
variables. For example, only an optimized selection of the tool 
takes place or the required basis of recorded data is too low. 
Within the approaches in the literature, commonly a 
mathematical description of the behavior of one process output 
variable (e.g. tool wear) is given. Some approaches take 
parameter optimization into account [14 - 17]. Certainly, no 
parameter sets are predicted for a defined surface roughness. 
The approaches lack a superordinate approach, which 
combines detailed process planning and production control.  

3. Approach of knowledge-based process planning 

Knowledge-based process planning requires data along the 
digital backbone of the enterprise. As depicted in Fig. 2, several 
data sources are necessary. Data to be entered manually, such 
as the measured surface roughness or the target roughness from 
a technical drawing must be processed via applications. This 
allows the respective information to be transferred to an SQL 
database. Based on Fig. 3, the approach performs three main 
functions:  

1. Updating the tool database 
2. Determining reliable data for process planning for 

explicit orders  
3. Enrichment of the database with the measured 

roughness in order to make better prediction for the 
second function 

With respect to the knowledge discovery in databases 
process [19], the task of process planning can be divided into 
three sections: data selection, target parameter optimization 
and target parameter recommendation. As shown in Fig. 3, 

each section includes different data sets, filters and 
calculations. 

3.1. Selection 

In the first section, the job data is analyzed to identify 
whether an identical workpiece has been machined in the past. 
This contains workpiece geometry and material, as well as 
information concerning the requirements. The first step is to 
check whether the available historical information already 
contain data points that correspond to the order workpiece 
(with regard to geometry and material) and meet the placed 
requirements (with regard to surface roughness). In this case, 
repetition planning occurs. Otherwise, a rule-based data 
collection takes place to select data points suitable for 
similarity planning. Subsequently, it is checked whether 
sufficient data points are available for a similarity planning. If 
there is not a sufficient number of data points, a manual re-
planning takes place. However, this case is not the subject of 
this paper. If sufficient data points are available, similarity 
planning takes place in the form of manipulated variable 
optimization. 

3.2. Optimization  

The section of optimization includes process modelling to 
estimate the result of the machining process in terms of quality 
using tool data, material data and limiting conditions, e.g. 
machine capabilities. The process model is developed by a 
machine learning algorithm combined with a metaheuristic, to 
derive several sets of optimized process parameters. The 
optimization of the target variable value starts with the 
determination of the number of cuts. For this purpose, historical 
data is filtered according to workpieces whose depth of the 
feature (distance between raw material and final shape) is at 
least as high as the depth of the feature to be produced from the 
order data. The number of cuts of the workpiece from the 
historical information is then determined as the number of cuts 
which has delivered the best target values. Next, the historical 
data is transformed and the initialization of the starting point of 
the metaheuristics (e.g. different combinations of process 
control parameter). This is done by generating parameter 
combinations by a particle swam optimization within defined 
limits, which are determined by the limiting conditions of the 
manufacturing process and the machine capabilities. In 
addition, with regard to the recommendation of a feasible tool, 
it is ensured that every available tool geometry is taken into 
account in the metaheuristic. This is achieved by including all 
available tool geometries in the tool database. When optimizing 
the process parameters, it is initially assumed that the tools are 
not subject to wear.  

The process parameters generated by the particle swarm 
optimization are used as input variables for the process model 
to predict the target values (e.g. a specific surface roughness). 
The particle swarm optimization interacts with the accuracy of 
the predicted target value by the process model. In order to 
define several parameter sets close to the target value, the 
movement of the particle swarm is supported by the best 
position in the target area (highest accuracy of the predicted 
target value by the process model). For prediction, feasible 

Fig. 2: Data stream of knowledge-based process planning. 
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regression models have to be found to predict target values 
depending on the input, i.e. the focus of this paper. In addition, 
information from a material database and a tool database are 
used to consider further input variables. From the material 
database, characteristic values (e.g. material hardness) are 
extracted to inform the materials available in the historical 
information and the order data of the new production order. The 
tool database contains information on the tools used in previous 
production orders and on the tools available for the future 
production order (e.g. geometry, wear). After the prediction of 
the target values by the process model, it is checked whether 
the theoretically-determined target values have reached 
previously defined exit conditions. If this is not the case, the 
process control parameters are updated by the metaheuristic 
procedure. This update of the process control parameters takes 
place again within the defined limits, which were already used 
during the initialization of the start parameter. If the exit 
conditions are reached, the optimum process control 
parameters are available, provided that the tool used shows no 
wear. As a result, tool geometries and associated process 
control parameter can theoretically be used to achieve a 
specific target value.  

3.3. Recommendation 

The optimization is followed by a recommendation of a 
feasible parameter set by filtering, because different parameter 

set combinations can create the same surface roughness. A 
recommendation of the tool is made by considering the tool-
life in combination with the expected production time to avoid 
additional set up time. First, the list of feasible parameter sets 
is filtered according to whether the requirements formulated in 
the order data for the target variables can be met (e.g. maximal 
cutting speed). The final surface roughness is then determined 
based on the previously learned machine learning algorithm in 
the optimization section. If tools are directly assigned, their 
tool-life is taken into account. Afterwards, it is filtered again 
whether the requirements formulated in the order data for the 
target values can be met, since taking wear of the chosen tools 
into account can have a negative influence on the target values. 
Finally, a list of alternatives of different tools and associated 
process control parameters to meet the required target value can 
be achieved (e.g. surface roughness Rz = 0.7 µm). 

Moreover, by using the Taylor relationship combined with 
the determined process parameter, the expected tool life 
reduction (th/Lt) is calculated. Compared with the tool 
replacement costs (Ct) of tool k, the cost for the use of the tool 
adds up. Furthermore, by taking the machine hour rate (CMhr) 
of machine j multiplied by the process main time (th) of 
parameter set (i) into account, the total cost for production 
(Ctotal) of a set of parameter can be calculated, as shown in Eq. 
1. Thus, a feasible set of parameters with minimal costs is 
recommended.  

𝐶𝐶𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡(𝑖𝑖) =  𝑡𝑡𝑚𝑚(𝑖𝑖) ∙ (𝐶𝐶𝑀𝑀ℎ𝑟𝑟(𝑗𝑗) + 1
𝐿𝐿𝑡𝑡(𝑘𝑘) ∙ 𝐶𝐶𝑡𝑡(𝑘𝑘)) (1) 

From the alternatives, the one that meets a certain criterion 
is selected (e.g. minimal total costs or minimal production time 
on equal costs). Finally, the tool database is updated in order to 
account for the changes in the tool life selected for the new 
production order and the process main time is calculated. In the 
last step, the specific, optimal process control parameter are 
output. 

4. Experiments and results 

In order to maintain and react to different or insufficient data 
sets, highly flexible regression models are required. The 
regression models should keep the influence of data set sizes 
on target value low. Therefore, they must be highly flexible 
with respect to the size of the input variables. The recorded 
historical data (e.g. workpiece geometry) differ depending on 
the sequence of ordered products. So far, this only works with 
large manual intervention in data mining. Hence, an 
experimental pre-study is conducted to identify the most 
feasible machine learning algorithm to predict the parameter 
set to achieve the target value. The experimental data set 
includes 124 data rows from longitudinal outside turning of 
unalloyed steel C22 (1.0402). The process is carried out on a 
Gildemeister CNC universal lathe CTX 420. In the 
experimental study, the input variables are modified discretely 
in a predefined experimental design. The cutting speed is set on 
60, 120, and 180 m/min, the cutting depth on 0.1, 0.15 and 
0.2 mm and the feed between on 0.05, 0.1 and 0.2 mm. 
Additionally, four different tools (indexable insert with 
variation tool angles α/γ of 35°/35°, 75°/45°, 75°/75° and 
45°/75°) are used. The tool replacement costs are assumed 

Fig. 3: Flow chart of knowledge-based process planning. 
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equivalent. Besides the cutting speed (vc), the feed (f) and tool, 
the depth of cut (ap), the obtained surface roughness (Rz), the 
tool-life and the number of cuts are recorded. Surface 
roughness is measured on an alicona InfinitFocus G5 optical 
measurement system. The algorithms are reviewed in the open 
source environment of RapidMiner Version 9.0.003 [20].  

4.1. Modelling of surface roughness 

In the literature, linear regression (LinReg), neural networks 
(NN), and support vector machine (SVM) are most common 
for predicting process parameters in turning. Despite promising 
results in other fields [17], gradient boosted trees (GBT) have 
not been applied for turning operations, yet. Thus, GBT have 
been included in this study as well. The GBT is specified by a 
number of 1000 trees, a maximum depth of 9 and a learning 
rate of 0.001. A 4-2-1 NN trained by 1000 cycles, a momentum 
of 0.91 and a learning rate of 0.008 is used. The SVM is 
characterized by max. 100,000 iterations, a trade-off variable 
(C) of 0.2 and convergence epsilon of 0.001. The evaluation is 
made concerning the mean-absolute-relative-error (MARE) of 
a leave-one-out cross-validation (LOOC). The optimization of 
the hyper-parameters was systematically carried out by 
monitoring the function. A statement about an optimum is only 
possible in the range of the varied hyper-parameter. In the 
optimization section, the need for a feasible and robust machine 
learning algorithm to predict the surface roughness (Rz) from 
cutting speed (vc), feed (f) and depth of cut (ap) is crucial. The 
results, shown in Fig. 4 and Tab. 1 differ in MARE; GBT at 
0.65, the NN at 0.6153, SVM 0.4004 and LinReg at 0.5982. 
Consequently, this specific SVM is an appropriate algorithm to 
predict surface roughness. However, it is not possible to make 
an explicit and generally valid statement about the suitability 
of the algorithms, because of the small database and the 
relativized generalization. This has to be investigated in further 
research. 

4.2. Parameter selection 

Next, a set of process parameter for a surface roughness of 
Rz = 0.7 µm is carried out. In this case, the particle swarm 
optimization was characterized by 30 iterations, about 2000 
particle (500 per tool), an inertia of movement (w) of 0.5, a 
cognitive weighting factor (c1) with 0.7 and social weighting 
factor (c2) of 0.7, which adds up to 60,000 results in varying 
parameter sets. The SVM provides 57 parameter sets with a 

target roughness of 0.7 µm. Depending on the equipped tools 
and tool-life filter (in this case, all 4 tools are set up and no tool 
wear is regarded) no further parameter sets can be filtered out. 
As known in literature, cutting speed (vc) and the feed (f) have 
a significant influence on the tool wear and thus, on the tool-
life. This is because, in some cases, it is worthwhile to take 
higher costs instead of longer production time in consequence 
of penalties due to delayed orders. This conflict between costs 
(represented by tool wear) and time (represented by cutting 
speed) has to be taken into account in the superordinate 
approach of economical re-scheduling. As an example, 
maximal feed strategy leads to a shorter production time. 
Hence, to aim a surface roughness Rz = 0.7 µm, a parameter 
set of cutting speed vc = 180 m/min, feed f = 0.1419 mm and 
the depth of cut ap = 0.1280 mm with tool 3 (75°/45°) is 
recommended at constant cost of tools and a non-observance of 
wear.  

Tab. 1: Results of comparison on C22 data set. 

Machine learning algorithm GBT NN SVM LinReg 

MARE 0,6500 0,6153 0,4004 0,5982 

Std. deviation 0,5516 0,5893 0,3535 0,5587 

Confidence interval 95% 0,9029 0,8963 0,9378 0,9017 

4.3. Performance analysis with reduced training data 

In order to create a basic understanding of how much input 
is required for the algorithms to work, the influence of the size 
of the historical data set used on the predictive performance of 
the machine learning algorithm (to predict surface roughness) 
is investigated. To consider this issue, the data sets are reduced 
systematically, using clustering (k-Means with 100 
optimization steps) and outlier cleaning. The aim is to divide 
the data points into a suitable number of clusters. To determine 
the optimal number of clusters, they are varied and evaluated 
by the silhouette coefficient [21]. Once the optimal number of 
clusters is determined, the data set is gradually reduced in size 
by filtering out a certain number of data points in each step. For 
each point within the cluster, the average distance to its 10 
nearest neighbors is determined. The point with the largest 
average distance (euclidian distance) to its neighbors is filtered 
out. Each step in which the data set is reduced is followed by a 
prediction of the target values. In detail, the optimal number of 
clusters was determined (result: k = 7 is optimal number of 
clusters, silhouette coefficient of data sets is 0.445). Further, 
the set is reduced in size (delete 1 outlier from each cluster) and 
a LOOC is performed and repeated several times. The results 
of the considered algorithms are placed in Fig. 4 and Tab. 1. 
The performance is specified as a MARE. The performance of 
the algorithms is widely spread. The data set in Fig. 4 shows a 
consist graph among the size reduction. SVM performs the 
best, in comparison to the other algorithms. Considering the 
95% confidence interval, the SVM shows the best performance 
even with the reduction of input. 

In summary, a prediction of feasible parameters for 
longitudinal turning can be made using a particle swarm 
optimization combined with a support vector machine. The 
silhouette coefficient might be a necessary condition to 

Fig. 4: Comparison of algorithm on C22 data set. 



 Berend Denkena  et al. / Procedia CIRP 81 (2019) 980–985 985
6 Berend Denkena et al. / Procedia CIRP 00 (2019) 000–000 

evaluate the quality of clusters, yet it is not possible to take 
conclusions from the coefficient on feasible algorithms to 
predict process parameters in turning. 

5.  Conclusion 

As shown in this paper, there is a need for a knowledge- 
based process planning in turning operations to derive reliable 
process times for re-scheduling. The knowledge-based process 
planning represents an approach that can fit the requirements 
from different levels of enterprise organizations and include 
process planning in a superordinate approach. In this paper, a 
set of parameters are predicted to meet a defined surface 
roughness by using a particle swarm optimization and a 
specific support vector machine. Hence, the studied algorithms 
can provide reliable process parameter. However, the results of 
the process modeling algorithms differ, depending on the 
database size. Therefore, no general statement on the suitability 
of the individual algorithms can be made. A better comparison 
requires a larger database of parameters, which is considered 
for future research. In addition, a solution is needed to provide 
algorithms, which are able to transfer knowledge from known 
materials to new materials. The research of the influence of 
insufficient data sets on flexible regression models needs to be 
focused. The function of data acquisition in industrial use is not 
considered in most approaches. In contrast, to use the 
approaches in industrial environment, data acquisition has to be 
taken more practically into account. Therefore, the approach 
has to be implemented in an executable application, the 
planning logic in re-scheduling has to be investigated and the 
superordinate approach evaluated. 
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Nomenclature 

CAM        Computer aided manufacturing 
ERP          Enterprise resource planning 
GBT         Gradient boosted trees  
LinReg     Linear regression 
LOOC      Leave-one-out-cross-validation 
MARE     Mean-absolute-relative-error 
MES        Manufacturing execution system 
NN           Neural network 
SCADA   Supervisory control and data acquisition 

SQL         Structured query language 
SVM        Support vector machine 
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