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Abstract: The paper at hand deals with the optimization of multisine signals in terms of
effective value for identification of electric drive trains, considering constraints on position,
velocity, acceleration and torque. The advantage of maximizing the effective value while
respecting the constraints rather than minimizing the crest factor of the input signal is
delineated. Results with two algorithms suitable for this optimization task are presented for
different sets of dynamic constraints. It is shown that the proposed modified clipping algorithm
is much faster than the L∞ optimization which is dedicated to simultaneous optimization of
several different signals, while being slightly less performant in terms of effective value.
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1. INTRODUCTION

Optimized multisine signals, also called multi-frequency
excitation (MFE) signals are commonly used for frequency
response function (FRF) measurements because of their
short experimental duration in contrast to stepped sines
and the possibility to specify the exact spectrum as op-
posed to pseudo-random binary sequence signals (PRBS),
random noise and others (Pintelon and Schoukens (2012)).
From the FRF parametric models are identified for control
design, flatness-based feed-forward, fault detection, etc.

In the case of electric drive trains the actuator used for the
excitation is not a dedicated shaker but the driving electric
motor of the plant belonging to the standard equipment. It
is important to consider the constraints of the testbed and
motor in terms of maximal stroke, velocity, acceleration
and torque, while at the same time maximizing the output
power of the actuator in favour of a high signal-to-noise
ratio.

Different criteria for optimizing MFE signals have been
defined, involving the amplitudes, phases or both:

• Minimization of the signal’s crest factor, peak-to-peak
value, maximization of the effective value, aiming at
maximum actuator power and signal-to-noise ratio,
e.g. Van der Ouderaa et al. (1988),
• Uniform coverage of the signal span (Mittelmann

et al. (2007); Ong et al. (2011)),
• Matching of a given probability density function

(PDF) of the signal amplitudes rather than just a
uniform distribution (Myslinski et al. (2006)),

• Matching of a given power spectral density (PSD) and
higher-order extensions (Pedro and Carvalho (2005)),

• Minimization of the parameter uncertainties of a
parametric model or minimization of the maximum
variance of the measured FRF (Schoukens et al.
(1991)).

Optimizations are usually restricted to single signals, or
possibly to input and output of a plant. Optimization
results considering simultaneous constraints on position,
velocity, acceleration and torque have not been reported
yet, although these are natural requirements in the design
of MFE signals for drive train identification applications.

It is the aim of this paper to develop an optimizer for
MFE signals that maximizes the effective value for a given
set of constraints on torque, acceleration, velocity and
position as well as to verify the algorithm on a broad
class of systems. The amplitudes and phases are calculated
based on a priori knowledge available from system design.
The effective value is optimized exclusively, because it
is directly proportional to the power and signal-to-noise
ratio (SNR) (Boyd (1986)). Optimizing one of the other
criteria from above would lead to a reduction of the SNR
compromising experimental time or signal quality. Also,
more model-specific optimizations would require a rela-
tively precise prior knowledge of the parameters (Pintelon
and Schoukens (2012)) and even then the identification
results are not always better than those of flat spectra
(Lichota (2016)). A point of concern is also the time-
efficient calculation because the resulting trajectory is
plant-specific and accordingly it must be recalculated for
each new plant.
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2. RELATED WORKS

In the following some methods for numerically optimiz-
ing MFE signals with focus on their ability to integrate
constraints into the optimization will be reviewed. These
methods can be divided into two categories, firstly general
purpose optimizers that could equivalently be used for
other optimization problems and secondly those dedicated
to the purpose of MFE optimization. The first category
contains e.g. the exhaustive search (Ojarand et al. (2014))
and the optimization with genetic algorithms (Horner and
Beauchamp (1996)). Constraints can usually be integrated
using dedicated interfaces. Unfortunately, these algorithms
are limited to small sets of frequencies due to excessive
calculation times, while for the frequency-domain identi-
fication of multiple mass systems typically 100 to 1000
frequencies are needed.

Into the second category belongs the clipping algorithm,
or time-frequency swapping algorithm (Van der Ouderaa
et al. (1988)) as well as the sparing algorithm (Ojarand
et al. (2014)). The consideration of constraints is not easily
possible. A combination of a general-purpose algorithm
and a dedicated crest factor optimizer is the iterative
optimization of p-Norms based on Polya’s algorithm/L∞-
algorithm as described by Guillaume et al. (1991). It can
optimize system input and output simultaneously, also
with constraints, because it is based on a trust region
interior point method, a general-purpose optimizer, see
e.g. Rivera et al. (2009); Lee et al. (2003). The problem of
this simultaneous specification of magnitudes in frequency-
domain and constraints in time domain is that it may lead
to infeasible solutions.

In the next section two alternative possibilities of achieving
the constrained effective value optimization are explained.
One is based on the L∞ optimization that allows an easy
integration of constraints, the other is an extension of the
clipping algorithm.

3. DESIGN OF MULTISINE EXCITATION SIGNALS

Two different approaches are presented for constrained
MFE phase optimization after the common target has
been formulated. They can equivalently be applied to
translatory and rotary systems.

3.1 Optimization target

Starting with the MFE position signal in discrete-time:

q[n] = cA

Nk∑
k=1

Ak cos (2πfkTsn+ ϕk), (1)

the phases ϕk are to be optimized, along with the scaling
factor cA, while the relative amplitudes Ak and frequencies
fk are fixed. Ts is the sampling time, Nk is the num-
ber of frequency components. The spectrum design will
be explained later. The optimization targets to find an
optimal set of phases ϕk,opt that maximizes the effective
value of the expected torque signal τ [n] while respecting
constraints on position, velocity, acceleration and torque:

ϕk,opt = arg max
ϕk,cA


√√√√ 1

Nn

Nn∑
n=1

τ̈ [n]2

, (2)

subject to

|q[n]| ≤ |q|max, |q̇[n]| ≤ |q̇|max,

|q̈[n]| ≤ |q̈|max, |τ [n]| ≤ τmax ∀n ∈ [1, Nn].

3.2 L∞ optimization

The first approach is explained for a single signal q[n],
firstly, later being extended to constraints on several
signals. The main idea is that for the optimization (2)
it is useful to minimize max{|q[n]|} (only considering the
first constraint). For gradient-based minimization the cost
function

L = eTe, e = (e1, ..., en, ..., eNn)
T

(3)

with en = q[n]p/2 is defined, in which p = 2, 4, 8, ..., pmax is
increased in powers of two and for each step the optimiza-
tion of the cost function is equivalent to minimizing the
p-norm ||q||p with q = (q[1], q[2], ..., q[Nn])T. Initially, cA
is set to 1. For pmax sufficiently large the p-norm converges
to the Chebychev-norm ||q||∞, which is the maximum
absolute value, but rather than optimizing ||q||∞ directly
the cost function L is differentiable and less susceptible to
local minima (Guillaume et al. (1991)).

In our implementation the gradient based optimizer is
the trust region reflective algorithm for which the Jaco-
bian matrix J is calculated analytically (Guillaume et al.
(1991)):

Jnk =
∂en
∂ϕk

= −p
2
q
p
2−1
n cAAk sin (2πfkTsn+ ϕk). (4)

In order to expedite the calculation at the expense of
increased memory consumption, q and J can be rewritten
with an addition theorem 1 :

q[n] = cA

Nk∑
k=1

[Ak cos(2πfkTsn) cos(ϕk)

−Ak sin(2πfkTsn) sin(ϕk)] ,

q = cA (COS · Lcos − SIN · Lsin) ,

(5)

with

Lsin =

 A1 sin(ϕ1)
...

ANk sin(ϕNk)

,Lcos =

 A1 cos(ϕ1)
...

ANk cos(ϕNk)

 (6)

and

SIN =


sin(2πf1Ts · 1) · · · sin(2πfNkTs · 1)
sin(2πf1Ts · 2) · · · sin(2πfNkTs · 2)

...
. . .

...
sin(2πf1Ts ·Nn) · · · sin(2πfNkTs ·Nn)

, (7)

COS =


cos(2πf1Ts · 1) · · · cos(2πfNkTs · 1)
cos(2πf1Ts · 2) · · · cos(2πfNkTs · 2)

...
. . .

...
cos(2πf1Ts ·Nn) · · · cos(2πfNkTs ·Nn)

.
(8)

Similarly, Jnk can be rewritten:

1 This has been inspired by the work of Ong et al. (2011).



Jnk = −p
2
q
p
2−1
n cAAk [sin (2πfkTsn) cos(ϕk)

+ cos (2πfkTsn) sin (ϕk)] ,
(9)

J = −SIN �
[p

2
q

p
2−1 · LT

cos

]
−COS �

[p
2
q

p
2−1 · LT

sin

]
.

(10)

� stands for the Hadamard product (entrywise product)
and the exponentiation is meant entrywise. The expres-
sions COS and SIN are calculated only once prior to
the optimization of the first p-norm. Thus, during the
optimization the effort for calculating q is reduced from
Nn · Nk to 2 · Nk sine or cosine evaluations. The same
holds for J.

To comply with the optimization target different signals
and their constraints must be related. The underlying
plant model for dimensioning is merely the overall inertia
Jtot, which can be identified upfront with simple experi-
ments. A more complex model would require prior knowl-
edge that is usually not available before the identification.
With |q̈′|max = min (|q̈|max, |τ |max/Jtot) the expression q
is replaced by (

q̈T

|q̈′|max
,

q̇T

|q̇|max
,

qT

|q|max

)T

. (11)

The time derivatives are calculated from 1 after inserting
t for Tsn:

q̇[n] = cA

Nk∑
k=1

2πAkfk cos (2πfkTsn+ ϕk + π/2), (12)

q̈[n] = cA

Nk∑
k=1

4π2Akf
2
k cos (2πfkTsn+ ϕk + π). (13)

In agreement with (11), J is also extended.

To prevent underflow or overflow, it is necessary to redefine
the scaling factor cA after each optimization in a certain
norm. Here, it is set to the reciprocate value of the
Chebychev norm || · ||∞ of (11). This also ensures that
in the final signal the most restrictive constraint is just
reached.

With this formulation relevant/active constraints are ex-
tracted natively, while loose constraints are ignored. The
higher p, the more distinct is the dominance of the most
restrictive constraint.

3.3 Modified clipping algorithm

In order to solve the same problem with the clipping
algorithm a modification is necessary to optimize several
signals (position, velocity, acceleration) simultaneously,
as shown in Fig. 1, termed modified clipping algorithm
(MCA).

In step 1 Newman phases are chosen as initial phases
because they perform well for cosine based multisines
(Boyd (1986)):

ϕk =
π(k − 1)2

Nk
. (14)

cA is set to 1. Steps 2 to 5 are necessary to allow for several
signals to be optimized simultaneously. In step 2 the

Start with Newman
phases,

Common scaling of the amplitudes

Which constraint is violated
most at any point in time?

Clipping of
pos.-signal vel.-signals

Clipping of Clipping of
acc.-signals

Position Velocity Acceleration

1

2

3a 3b 3c

4

Calculation of
effective value

5

End

Fig. 1. Schematic of MCA

three signals are generated utilizing the addition theorem,
e.g. the position signal according to equation (5). Then
the signal x with the largest quantity max(|x|)/|x|max is
selected. x stands for q, q̇ or q̈, respectively and |x|max

stands for predefined constraints |q|max, |q̇|max or |q̈|max.
Only this one signal is clipped by cutting off the peaks that
exceed CF ·max(|x|) with CF being the clipping factor. It
is predefined somewhere in the range 0.5...1.0. 2 A Fourier
series is calculated for the resulting signal,

Xk =
1

Nn

∑
n=<Nn>

(
x[n] · e−i

2π
Nn

nu
)
, (15)

and the MFE phases ϕk are replaced by the phases of Xk,
albeit with a shift depending on the signal type to revert
the shifts in (1), (12), (13):

ϕk =

{ 6 Xk for position
6 Xk − π/2 for velocity
6 Xk − π for acceleration

. (16)

In step 4 the scaling factor cA is recalculated so that the
most restrictive constraint is just reached. In the 5th step
the effective value is calculated. If Nk < Nn, it is faster
to calculate it in frequency-domain, rather than in time-
domain (Van der Ouderaa et al. (1988)):

xEff = cA

√√√√ Nk∑
k=1

A2
k

2
. (17)

The phase vector with highest xEff ever achieved is stored
as the result. This is necessary because the effective value
is not generally monotonous. After kmax iterations the loop
is terminated.

As a past processing step for both algorithms the MFE
phases are shifted in order to reduce the transient of the
following identification experiment by matching position,
velocity and acceleration. While any position can be a valid
initial position, the initial velocity and acceleration should
be as small as possible. This is achieved by searching for

2 Experiments with a per-sample-selection of the signal to clip
showed inferior results in most cases.



all time instances with zero crossings in the velocity and
then choosing the one with minimum acceleration.

3.4 Magnitude spectrum design

Although the magnitudes Ak could be designed arbitrarily,
for the following investigations they are defined in agree-
ment with the constraints as a function of the frequency. A
constant torque spectrum over all frequencies would lead
to low magnitudes at high frequencies given the constraints
on position and velocity. Here the relative magnitudes
are defined such that all constraints were just reached
if each spectral line was applied on its own. Depending
on the frequency at least one of the constraints is always
active. Frequencies at which two constraints are active
simultaneously are called corner frequencies. They will be
used later to compare the algorithms for different relations
of constraints. The position-velocity corner frequency it
given by

|q|max = Ak,C1 and |q̇|max = 2πfk,C1Ak,C1

⇔ fk,C1 =
|q̇|max

2π |q|max

.
(18)

Equivalently for velocity-acceleration:

fk,C2 =
|q̈|max

2π |q̇|max

, (19)

and position-acceleration:

fk,C3 =

√
|q̈|max

4π2 |q|max

. (20)

The behaviour of the optimizers is analysed with respect
to these corner frequencies next.

4. RESULTS

In this section the performance of the two algorithms
is compared with the ordinary clipping algorithm that
considers only the input signal during the optimization,
called standard clipping algorithm as a baseline. In Fig. 1
all the steps still apply, except that in step 2 only the
acceleration signal is calculated and clipped in step 3a.

The optimized multisine signals are generated for

f1, f2, ..., f200 = 0.5 Hz, 1 Hz, ..., 100 Hz (21)

with a sampling frequency of 1000 Hz, which is 10 times
more than the highest payload frequency 3 . The clipping
algorithms are run for 400 iterations with CF increasing
linearly from 0.5 to 1.0, while the L∞ optimization is
performed for p = 2, 4, ..., 512 and at each step a maximum
of 400 iterations of the gradient based optimizer are
allowed, although often the solution is found earlier.

The three algorithms are compared for different corner
frequencies in Fig. 2 to 4. The corner frequency effects
the magnitude calculation according to section 3.4 as
well as the optimization. Although it is possible that all
three constraints (position, velocity and acceleration) each
determine the amplitudes in a certain frequency range so

3 In Guillaume et al. (1991) and Ong et al. (2011) two different
formulas are given for the maximally expectable overshoot in terms
of the ratio sampling frequency vs. max. payload frequency. It seems
that 10 is a good compromise.

Fig. 2. Effective value and crest factor against corner
frequency position-velocity

Fig. 3. Effective value and crest factor against corner
frequency velocity-acceleration

that two corner frequencies lie in the valid frequency range
(0.5 Hz...100 Hz), only the case of one corner frequency at
a time is considered. The third constraint, not involved in
the experiment is set to a high value which is never reached
by the multisine signal.

The figures show the effective value against the frequency,
which is the primary optimization target, but also the crest
factor for comparison:

Cr =
||q||∞
qEff

. (22)

As a result of the comparison it can be seen that the
standard clipping creates signals with a lower effective
value in almost all situations although the crest factor is
constantly good (1.4...1.5). This is because it optimizes
the acceleration signal exclusively, although depending on
the corner frequency a different constraint may be more
critical. In Fig. 3 and 4 the same effective value is reached



Fig. 4. Effective value and crest factor against corner
frequency position-acceleration

at the lowest corner frequency as with the MCA. The
reason is that at this point the velocity constraint has no
effect and only the acceleration constraint is restrictive. In
Fig. 2 the standard clipping is always inferior, because
for no corner frequency the acceleration constraint is
restrictive. The fact that in most situations a better
effective value is achieved with the MCA than with the
standard clipping shows the superiority of the MCA. In
the multiple constraints case optimizing the crest factor of
the input alone is questionable. Rather, the effective value
should be optimized.

Regarding the performance of the L∞ algorithm, it can
be seen that it is always even better than the MCA,
both in effective value and in crest factor. This can be
explained by the generally better solutions achieved with
L∞ (Schoukens et al. (1991)). Also, the simultaneous op-
timization of several signals is readily possible in contrast
to the MCA, where no per-sample-selection of the most
critical signal is realized.

The approximate calculation times of our Matlab imple-
mentation have been captured on a 3.4 GHz Skylake CPU
with one core in use and DDR4 Ram as follows, standard
clipping: 3.4 s, MCA: 4.4 s, L∞: 7:30 min. Although further
performance improvements may be possible, it can be
seen that L∞ is distinctly slower than the other two and
MCA tends to be a bit slower than standard clipping. So,
although L∞ performs slightly better in effective value, its
considerably longer calculation time may be prohibitive in
some applications, while the MCA is still competitive.

Fig. 5 deals with the path selection in Fig. 1, step 3 for the
MCA. Depending on the corner frequency the signal with
lower derivative order is selected in a certain percentage
of the iterations, e.g. position, while in all other iterations
the signal with the higher derivative order is selected and
clipped, e.g. velocity. The figure shows for each of the three
different corner frequencies how often the signal with lower
derivative order is selected.

Fig. 5. Step 3 in Fig. 1: Number of iterations in which the
signal of lower derivative is clipped, normalized to the
overall number of iterations.

Fig. 6. Experimental testbed

It can be seen that at the margins (0.5 Hz, 100 Hz) this
percentage is either 0 % or 100 %, meaning that a further
extension of the considered corner frequencies would be
pointless. Also, the amplitude spectrum would not change
beyond these frequencies. Strictly speaking, this does not
hold equally for the L∞ optimization which always consid-
ers all three signals, but because of the high exponentiation
signals with lower amplitudes have a minor effect, too.

5. EXPERIMENTAL VALIDATION

A linear belt drive, see Fig. 6, with the following properties
serves as a validation testbed: maximum targeted motor
torque 1 Nm and linear velocity 0.05 m/s, belt pulley
radius: 0.0159 m, direct drive. The equivalent moment of
inertia of motor and linear gantry has been identified to be
0.00516 kgm2. According to (19) the velocity-acceleration
corner frequency can be calculated for this testbed:

|q̇|max =
0.05 m/s

0.0159 m
and |q̈|max =

1 Nm

0.00516 kgm2

⇒ fk,C1 =
|q̈|max

2π |q̇|max

= 9.81 Hz.

(23)

The other two corner frequencies are irrelevant, because
the position stroke is large. In three separate experiments
the different excitation signals from the above methods
are applied to the testbed, each with a duration of 22 s
and a frequency range of 0.5 Hz, 1 Hz, ..., 100 Hz. 22 s is the
minimum duration that allows to extract 11 periods of
the base frequency later. The following effective values are
achieved, standard clipping: 0.632 Nm, MCA: 0.692 Nm,
L∞: 0.723 Nm. Cascaded torque, velocity and position



Fig. 7. Standard deviations σ(jω) of the FRF estimates
from three excitation signals and the amplitude of the
mean FRF from the measurement with the standard
clipping signal

control is used for the closed-loop identification with
reference position, velocity and torque defined by the MFE
signal.

From M + 1 consecutive periods of the torque-velocity
measurement mean and standard deviation of the FRF
are calculated (Schoukens et al. (2009)):

Ĝuy =
Ŷ

Û
=

1
M

∑M+1
m=2 Y

[m]

1
M

∑M+1
m=2 U

[m]
, (24)

σ̂2
G ≈

|Ĝ|√
M
·

√
σ̂2
y

|Ŷ |2
+

σ̂2
u

|Û |2
− 2Re

(
σ̂2
uy

Ŷ Û

)
. (25)

Index k indicating frequency dependencies has been ne-
glected for notational simplicity. U [m] and Y [m] are the
DFT spectra of the m-th period of the torque, resp. veloc-
ity signal. The first period (2 s) is discarded to allow for
settling, M = 10. σ̂2

u and σ̂2
y are the empirical variances,

σ̂2
uy is the empirical covariance of torque and velocity:

σ̂2
u =

1

M − 1

M+1∑
m=2

∣∣∣U [m] − Û
∣∣∣2 , (26)

equally for Y , and

σ̂2
uy =

1

M − 1

M+1∑
m=2

[(
Y [m] − Ŷ

)(
U [m] − Û

)]2

. (27)

The amplitude of Ĝuy and the standard deviation σ̂2
uy for

each method are shown in Fig. 7. Apparently, the one-mass
model with parameter Jtot was not an accurate model, as
can be seen from the antiresonance-resonance behaviour
and the zero slope at low velocities.

From Fig. 7 a clear difference in the noise level obtained
from the three methods cannot be seen. Experiments with
higher torque and velocity ratings at the same testbed
(10 Nm) showed a higher, not lower standard deviation.
This indicates non-repeatability in the system, which
affects the measurement more than the sensor noise or
stated differently the sensors are of very high quality.

To investigate the effect of increased sensor noise due to
lower sensor quality, longer cables, imperfect shielding and

Fig. 8. Signal to noise ratio of the velocity measurement
for different levels of additive white sensor noise

Fig. 9. Signal to noise ratio of the torque measurement for
different levels of additive white sensor noise

so on the SNR ratios of the measured torque and velocity
are determined for different levels of subsequently additive,
random Gaussian sensor noise: From the 10 measurements
the standard deviation is calculated separately for each
time step and then averaged over all time samples. This
calculation is done for the original measurements as well as
for the measurement signals with added noise of increasing
power, see Fig. 8, 9.

In Fig. 8 the SNRs at 0 added Gaussian noise show a
relation of the three methods that is not expected from
the effective values of the excitation signals. As a possible
explanation, the SNR is high and the sensor noise con-
tributes only marginally to inter-measurement variations,
while other, non-reproducible effects overwhelm. However,
with increased additive noise the relations of SNRs for the
three methods converge to the pattern of L∞ being best,
followed shortly by MCA and finally standard clipping.

For the torque measurement in Fig. 9 a similar effect
as in Fig. 8 can be observed, except that the initial
relation of the SNRs already corresponds to the effective
values. Repeating this experiment at different excitation
amplitudes has shown that the initial SNR is highly
unrepeatable for torque and velocity while always the same
pattern at high noise levels is found. This tendency cannot
be seen so clearly in the standard deviation of the FRFs
for additive noise, equation (25), not shown here.

6. DISCUSSION

The proposed concept of system-specific corner freqencies
allows an efficient optimization and a transfer of the
results to other testbeds. It must, however, be admitted



that in many cases the corner frequencies are below
the lowest excitation frequency so that the simultaneous
consideration of different constraints leads to the same
results as with the standard clipping. This is expectable if
the position stroke is very long and the maximal velocity
is high. In this case considering the additional constraints
will raise the calculation time, while having no other
effect, except that the trajectory can be driven with more
confidence.

It was shown in experiments that the SNR is clearly
dependent on the effective value of the excitation only if
the sensor noise is high and thus dominates the SNR. This
result was obtained only by adding random noise to the
measurement; the original measurements did not show a
clear quality dependency on the effective value. It seems
that the quest for optimized crest factor or effective value
is of minor practical importance, at least if the sensors are
good, as previously observed by Sanchez et al. (2011). The
direct-drive testbed under study is equipped with a motor
with 13.7 Nm torque rating, but even at 1 Nm maximum
torque the FRF can be measured well. It is to be expected
that for other setups with gear and high friction a high
effective value of the excitation could be more important.

7. CONCLUSION

In this work the problem of multisine optimization sub-
ject to diverse constraints was considered and applied to
excitation of electric drive trains. At the outset the state
of the art was reviewed with the result that the clipping
algorithm has only been applied to single signals, while
the L∞ algorithm allows to incorporate such constraints
naturally.

A promising realization of the clipping algorithm was pro-
posed in this work for the integration of constraints, called
MCA, and compared with the L∞ algorithm, which is
formulated in a way that it considers the same constraints.
For the comparison crest factors and effective values were
reported in terms of corner frequencies that describe a
given set of constraints in a unified way.

It was found that the effective value should be the criterion
to optimize in multiple constraint situations, not the crest
factor of the input signal, as customary in industry. This
difference is most important if the maximum velocity
or the maximum stroke of movement are small. The
L∞ showed a slightly better effective value than the
MCA throughout. In regard to calculation time the MCA
is approximately a hundred times faster than the L∞
algorithm.

Experiments on an industry-like testbed were performed
to investigate the practical relevance of the comparison.
Here, a significant reduction in the signal-to-noise ratio
of the identified frequency response function could not be
exposed, but the results indicate that setups with lower
sensor quality would very well benefit from high effective
values.
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