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Abstract— Physically motivated models of servo control sys-
tems with coupled mechanics are required for control design,
simulation etc. Often, however, the effort of modelling prohibits
these model-based methods in industrial applications. Therefore,
all approaches of automatic modelling / model selection are nat-
urally appealing. In this paper a procedure for model selection
in frequency domain is proposed that minimizes the Kullback-
Leibler distance between model and measurement while con-
sidering only those models that are practically identifiable. It
aims at mechanical models of servo systems including multiple-
mass resonators. Criteria for practical identifiability are derived
locally from the sensitivity matrix which is calculated for
different formulations of the equation error. In experiments with
two industry-like testbeds the methodology proves to reveal the
characteristic mechanical properties of the two setups.

Index Terms— Model Selection; Frequency Domain; Servo
Systems; Practical Identifiability; Sensitivity

I. INTRODUCTION

Physically motivated models, mostly called bright grey-
box models or first-principle models of servo control systems
with coupled mechanics are required for control design [1],
simulation, feed-forward, model-based fault diagnosis [2]
etc. However, the effort of modelling prohibits these model-
based methods in industrial applications. Especially, in the
case of small series products up to individual solutions for
specialized customers there may not always be the time for
thorough model development and validation.

Therefore, all approaches of automatic modelling are nat-
urally appealing. Automatic model selection is also called
model structure identification [3] or structure and parameter
identification. As a first step in this direction one could search
for the model structure that best describes a measured input-
output behaviour in the sense of minimizing the Kullback-
Leibler distance, see [4], while considering criteria of prac-
tical identifiability as described below.

While many previous works on servo system identification
exist, in the sense of identifying the parameters of a given
model, e.g. [5], [6], works on model selection are mainly
restricted to data-driven, static models [7] of other disciplines
such as biology [8] and finance [9]. The difficulty with the

transfer function models used to describe servo systems is
that linearity in the physical parameters is generally not
maintained. Extensions of identifiability tests to nonlinear
models exist [10], [11], but they have rarely been applied
to frequency domain. Frequency domain identification is of
interest, since it allows an intuitive evaluation of transfer
function models and it avoids time domain simulations,
which are time-consuming and less suited for automation be-
cause of frequent instability problems. The presented model
selection strategy that includes practical identifiability into
the model composition decisions is innovative, even if the
frequency domain aspect is left aside. An analysis of practical
identifiability in frequency domain can be found in [12],
where contour lines of the cost function are interpreted.
A limited model selection in the field of dynamic models
for servo control applications is performed in [13], but the
process is not fully automatic and leaves the final decision
for the commissioning engineer.

In this paper an automated model selection strategy is
proposed for dynamic transfer function models with physical
interpretation of the parameters. It optimizes the accuracy
of the model in frequency domain but also ensures prac-
tical identifiability of all parameters, respectively avoids
inclusion of superficial parameters. Three different options
for formulating the cost function are considered together
with the calculation of the sensitivity matrix for practical
identifiability analysis.

The resulting model is optimal for the given excitation,
but the excitation is not optimal for the selected model.
Optimal design of experiments, see for example [14], is seen
as an alternative approach to the problem of unsatisfactory
identifiability. It is not followed here because for the given
nonlinear models the necessity of accurate prior knowledge
about model parameters would be prohibitive [15].

II. MODEL SELECTION AND PRACTICAL
IDENTIFIABILITY

In this section the methodology for optimizing the model
structure is explained along with the set of candidate submod-
els. Finally, criteria for practical identifiability are stated.
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Fig. 1. Class of candidate models

A. Candidate models

Only a limited variety of multiple-mass models is chosen
as candidate models as shown in Fig. 1. In general, the
candidate models are composed of submodels as indicated
by the dashed lines with 0 or more estimation parameters.
Only the purely translational case is shown in the figure
but the purely rotary case would work equivalently. All
models consist of a chain of N elastically coupled masses
m1,m2, · · · ,mN of which the first element is actuated. The
force of the driving motor FM may be subject to input delay
time Tdead. In addition, the torque control dynamics are either
neglected or modelled as a PT1 element. As the number of
masses in the chain varies the spring-damper elements be-
tween adjacent masses will also appear / disappear, but there
is never a spring-damper element in front of the first mass.
In order to incorporate the effect of bearing and guideway
friction dampers between masses and the environment can
be included for each existing mass.

This set of candidate models could be extended easily, e.g.
by springs between distant masses, but including a large set
of candidate models without justification through experience
and prior knowledge could be seen critically as data dredging
/ mining) [4], [16]. What results is a single input single output
(SISO) transfer function model so that in the following only
the SISO case is considered.

B. Model selection

In the process of model selection an exhaustive search over
all combinations of submodels is carried out. More elegant
procedures such as genetic programming [17] are avoided
here in order to reduce the complexity and the effect of
coincidence. For each model the parameters are optimized
by matching the calculated and measured frequency response
in an equation error formulation. The exact cost function is
given in the next section. Then, the best model is chosen
based on its merit as explained next.

Depending on the intended purpose of a model different
ways to determine its merit can be defined. Reasonable

criteria are the minimization of the Kullback-Leibler distance
to the ’true model’ by means of the Akaike information
criterion or cross validation, a test for whiteness of the
residuals, for cross-correlation between the inputs and the
residuals, a χ2 significance test of the cost function and others
[15]. However, the problem with all these approaches is that
they are based on the stochastic nature of measurements
and they seek for the true model. If the repeatability is
high, which can always be achieved by averaging several
measurements under similar conditions [16], very complex
models would result with possibly superfluous parameters.
Since physical interpretability of model parameters is the
prerequisite of this paper, it is reasonable to check practical
identifiability of all model parameters. Practical identifiability
means that all model parameters can be identified accurately
from experimental data with real sparce, noisy data for a
given excitation [18]. Criteria for checking practical iden-
tifiability are given below. Only models with all parameters
practically identifiable are kept in the set of candidate models,
see next sections. Among the models that fulfill these criteria
the one with the best fit on an independent test data set is
chosen. The separation into training and test data ensures
minimization of the Kullback-Leibler distance [19].

C. Sensitivity calculation

The notion of practical identifiability comes from the
parameter-linear model

Slinp = y (1)

with sensitivity matrix Slin ∈ RNy×Np , parameter vector p ∈
RNp×1, and system outputs y ∈ RNy×1. In the least-squares
sense the cost function Jlin = (Slinp−ym)T(Slinp−ym) is
minimized in order to determine optimal parameters, where
ym. In the study of practical identifiability the sensitivity
matrix Slin is checked for (multi-)collinearity and sensitivity
of the parameters as explained later. In the nonlinear case the
model can be written as a nonlinear function with multiple
outputs g : RNp → RNy and the parameters p as inputs:

y = g(p). (2)

The cost function J ∈ R is of the form:

J = (y − ym)TW (y − ym) = ||Λ(y − ym)||22 . (3)

W ∈ RNy×Ny is a weighting matrix, often chosen as the
inverse covariance matrix of the measurements assuming zero
mean, Gaussian noise. This gives the maximum likelihood
estimator. The decomposition ΛTΛ = W exists if W
is positive definite [15]. Motivated by the Taylor series
expansion [10]:

g(p) = g(p0) +
∂g(p)

∂pT

∣∣∣∣
p=p0

(p − p0) + · · · (4)



a substitute for the Slin of the linear case can be found:

Snl = Λ
∂g(p)

∂pT

∣∣∣∣
p=p0

. (5)

The weighting Λ should be considered in the analysis of
practical identifiability in agreement with the penalty function
(3) as the weights also influence the result. Snl ∈ RNy×Ny

characterizes the effect of changing a parameter locally on
the output.

In frequency domain identification the observations and
the noise are complex, which gives several options to formu-
late the penalty function. In the sequel, different cases are
considered together with the implications for calculating the
appropriate sensitivity matrix.

Case 1: The cost function is the distance in the complex
plane between model G(p) ∈ RNf×1 and measurement
GM ∈ RNf×1 for each of the Nf frequency components [15],
[20]. This can be written in complex notation:

J = (G(p)−GM)
H
W (G(p)−GM), (6)

with W ∈ RNy×Ny or in real notation:

J =

∣∣∣∣∣∣∣∣Λr/i

[
Re {G(p)−GM}
Im {G(p)−GM}

]∣∣∣∣∣∣∣∣2
2

. (7)

Λr/i ∈ R2Nf×2Nf can be defined by the square root of the
inverse sample covariance matrix of the real measurement
vector or if not available e.g. as the unity matrix. Assuming
that real and imaginary part at each spectral line of the
observation are uncorrelated having equal variances, matrix
Λr/i has the form(

Λr 0
0 Λi

)
with Λr = Λi ∈ RNf×Nf (8)

and matrix W is given by 2ΛT
r Λr due to variance summation

of uncorrelated variables [15].
The latter cost function formulation is favoured here

because the resulting sensitivity matrix S1 ∈ R2Nf×Np is
real and all criteria of practical identifiability can readily be
applied:

S1 = Λr/i

[
Sr

Si

]
, (9)

Sr =
dRe {G(p)}

dp
= Re

{
dG(p)

dp

}
, (10)

Si =
dIm {G(p)}

dp
= Im

{
dG(p)

dp

}
. (11)

It can easily be verified that exchanging the decomposition
into real and imaginary part, and the derivative operator
in (10,11) is possible, because the complex unit can be
treated as a prefactor in the derivative. The right side of
(10,11) allows to calculate the real and imaginary part of
the sensitivity numerically after the complex derivative has

been calculated symbolically by the help of computer algebra,
which simplifies the calculations. Still, for very complex
models even dG/dp cannot be calculated symbolically.

Case 2: Unfortunately, the distance in the complex plane
is not very robust for identifying multiple mass models. In
[1] the followeing cost function is used instead:

J =

∣∣∣∣∣∣∣∣ΛA/P

[
|G(p)| − |GM|

∠ {G(p)} − ∠ {GM}

]∣∣∣∣∣∣∣∣2
2

. (12)

In our experience this cost function facilitates a more safe
convergence to the global optimum in parameter identifica-
tion, but it is more difficult to adjust the weights. Assuming
normal distributions for phase and amplitude the sample
covariance matrix could be used again. Often, however, the
sample covariance would be too expensive to measure and
the variance is small. Then, maximizing the likelihood is not
the major concern but rather the convergence to the global
optimum. Thus, all frequencies can be weighted equally by a
diagonal ΛA/P, but it is still difficult to choose the weighting
for amplitude and phase because different units are compared.

The sensitivity matrix is given by:

S2 = ΛA/P

[
SA2

SP2

]
, (13)

SA2,kj =
1

|Gk|
[
Im {Gk}Si,kj +Re {Gk}Sr,kj

]
, (14)

SP2,kj =
1

|Gk|2
[
Re {Gk}Si,kj − Im {Gk}Sr,kj

]
. (15)

Gk denotes the k-th spectral component of the modelled
transfer function. As it turns out, it is possible to write
this Jacobian matrix in terms of Sr,Si. So, whenever these
two can be calculated from analytic expressions, numeric
differentiation is not necessary for S2 either.

Case 3: In the third case to consider the logarithm of the
amplitude is evaluated instead of the amplitude itself:

J =

∣∣∣∣∣∣∣∣ΛA/P

[
log10 {|G(p)|} − log10 {|GM|}

∠ {G(p)} − ∠ {GM}

]∣∣∣∣∣∣∣∣2
2

. (16)

The advantage is that in the log scale a reasonable weight-
ing of amplitude and phase can be defined. The penalty
depends less on the absolute size of the amplitudes, which
eliminates the dependence on testbed properties. For example
π and 1 can be chosen as weightings for amplitude and phase,
respectively. Then 20 dB difference in the amplitude has an
equivalent effect as 180◦ in the phase.

The sensitivity matrix can be calculated symbolically, if
analytic expressions exist for Sr,Si:

S3 = ΛA/P

[
SA3

SP3

]
, (17)

SA3,kj =
1/ln(10)

|Gk|2
[Im {Gk}Si,kj + Re {Gk}Sr,kj ] ,

(18)



SP3,kj =
1

|Gk|2
[Re {Gk}Si,kj − Im {Gk}Sr,kj ] . (19)

As said before, cases 2 and 3 tend to find the correct model
parameters for multiple mass models easier and weighting is
more robust in the third case. Therefore, in the following only
the third case, (16) is used. A potential problem is, however,
that the measured and simulated phase must be interpolated
continuous beyond ±2π, which fails sometimes, especially
for coarse frequency resolutions, high measurement noise or
low damping.

D. Assessing practical identifiability

In the process of model selection models that are not
practically identifiable are excluded. Criteria for assessing
practical identifiability are not reviewed here but can be found
in [21], [22], [23], [24], [4], [10], [25], [26], [11]. Only the
criteria used in this paper are introduced briefly.

For a model structure to be valid all parameters must
have a certain minimal importance according to the msqr
parameter importance index (PII) given by [10]:

δmsqr
j =

∣∣∣∣Sj∆pj
∣∣∣∣
2

(20)

with Sj the column of the sensitivity matrix corresponding
to parameter j. If this criterion is violated, at least one of
the parameters is of little importance and cannot be identified
precisely. Also, the model is not parsimonious. The parameter
∆pj is supposed to be a normalization constant in the unit
of parameter pj , for example the nominal value or a quarter
of the range of reasonable values [10]. In [11] normalization
is omitted. Here, the previously identified parameter value is
chosen for ∆pj . Defining the threshold for this parameter is
somewhat arbitrary. Gabor et.al [11] set it to four orders of
magnitude below the maximum PII.

Furthermore, the collinearity index γk:

γk =
1√
λk
, (21)

reveals (multi-)collinearity among parameters, which is criti-
cal if γk exceeds 5...20 [10]. λk is the smallest singular value
of S̃ , that is the matrix S with all columns normalized to
unit length. This normalization ensures a clear separation of
collinearity and the PIIs.

Alternatively, collinearity can be measured by the scaled
condition indices [24]:

η̃k =
µmax

µk
. (22)

µk and µmax are the k-th and the maximal singular value of
S̃ , respectively. Critical values are 10...30 [24].

In the experiments of the next section a combination of
these three exclusion criteria is used for model selection. The
exact thresholds will be given together with the results.

Fig. 2. Testbed 1: Stacker crane

III. EXPERIMENTAL RESULTS

As an experimental validation the structure and parameter
identification is demonstrated for two testbeds. Since these
results are highly dependent on the chosen thresholds, this
dependency is investigated more thoroughly afterwards.

A. Structure and parameter optimization

The structure optimization is applied to the two testbeds
shown in Fig. 2 and 3. Testbed 1 is a stacker crane with
5.6 m mast height and 5 m length of the horizontal axis (x)
along the shelf. All experiments are carried out on x with the
vertical axis in a position of 2 m. Testbed 2 has only one axis
which is driven in direct drive. In Figs. 4 and 5 the FRFs of
training and test are shown. They have both been recorded
with stepped sine excitation, but different amplitudes.

Parameter ranges have been chosen 0...1000 for stiffnesses,
and 0...0.1 for dampers and moments of inertias (physical
units). If more prior knowledge is available, the ranges can
be narrowed. Parameters are identified with particle swarm
optimization which is parameterized with a number of parti-
cles that equals 200 times the number of parameters of the
current model. In the structure identification a maximum of
4 masses are considered (120 different models) for which the
calculation takes approx. seven hours while for a maximum
of 3 masses it takes only 35 min., implemented in Matlab
on an i7 4-core computer running at 3.7 GHz with 16 GB
DDR4 RAM. The overproportionally long calculation time
for 4-mass models can be explained by the fact that they
often require numerical sensitivity matrix calculation due to
TF complexity.



Fig. 3. Testbed 2: Linear positioning system

Fig. 4. Frequency response functions of testbed 1, measurement and best
model

In Figs. 4 and 5 the best model is also shown, including
asymptotes. The chosen thresholds for the three criteria are
given in the first row of each section in Tab. I. For testbed 1 a
3-mass system with additional damper to the base at mass 2
and delay time results, 9 estimation parameters. For testbed
2 it is a 4-mass system with additional damper at mass 1 and
delay time, 12 estimation parameters.

The effect of changing the thresholds has been studied
for two alternative settings, see rows two and three in
Tab. I. Testbed 1 is always assigned the same model, while
for testbed 2 different models result (3-mass system with
additional damper at mass 3 and delay time, 9 estimation
parameters, for the second set of thresholds and a 2-mass
system with additional damper at mass 2 and delay time, 6
estimation parameters, for the third set). The corresponding
FRFs are not shown. So especially for testbed 2, which
cannot be categorized visually very clearly, the algorithmic
result also depends strongly on the thresholds.

B. Threshold dependencies

To further investigate the dependence on thresholds of the
identifiability criteria each of the three criteria is applied once

Fig. 5. Frequency response functions of testbed 2, measurement and best
model

TABLE I
THREE CHOSEN SETTINGS FOR THE IDENTIFIABILITY CRITERIA AND

CORRESPONDING BEST MODEL FOR BOTH TESTBEDS. THE FIRST ROW IN

EACH SECTION CORRESPONDS TO THE FIRST SET OF SETTINGS AND SO

ON.

Criterion Threshold Testbed 1 Testbed 2
Max. scaled

condition
index

30 6.4 11.3
10 6.4 10.3
10 6.4 2.6

Max. PII
Min. PII

1000 10.2 12.0
1000 10.2 7.7
1000 10.2 7.5

Max. 20 4.0 7.0
collinearity 10 4.0 7.0

index 5 4.0 1.9

exclusively in Figs. 6 and 7. Its threshold is varied in steps
from 1 to 10000. For each step the model with the lowest
J is selected among all models that fulfil this criterion. The
number of estimation parameters of the best model for this
threshold is plotted. For reference, the thresholds of the first
setting in Tab. I are indicated by dashed lines.

Clearly, a strong dependence on the thresholds exists and
mostly the number of parameters increases as the threshold
increases. Exceptions exist where models with fewer parame-
ters are more critical regarding one of the criteria than models
with one or two more parameters.

What is disguised by this figure is the interplay between
the three criteria. E.g. a model may be highly collinear,
while all parameters have approx. the same sensitivity or
vice versa. Thus, it can happen that the resulting model is
very simple although all criteria applied exclusively allow
for more complex models. The combined result would be
hard to visualize in a 2D plane. Also, it is not known how
many models are ruled out by a certain criterion and a given
threshold. In order to investigate this Figs. 8 and 9 show the



Fig. 6. Number of estimation parameters of the best model for a given
threshold of the one current criterion, testbed 1

Fig. 7. Number of estimation parameters of the best model for a given
threshold of the one current criterion, testbed 2

number of models that fulfil a certain criterion depending on
the chosen threshold out of all 120 models.

The graphs of testbed 1 show a clear edge at approx. 60
models. Only if the thresholds are chosen below that, the
number of valid models diminishes steeply. As expectable
from the above results, testbed 2 shows a more gradual slope.

IV. DISCUSSION

This approach towards structure and parameter identifica-
tion in frequency domain minimizes the difference between
model and test data while considering criteria of practical
identifiability based on local sensitivity analysis. It can handle
different formulations of the cost function. The chosen model
seems intuitively plausible, but it depends strongly on the
chosen thresholds. Especially when different interpretations
of the data are admitted by visual inspection the algo-
rithm will also suggest different models depending on the
thresholds. It is questionable if it is possible to choose the
thresholds in advance without carefully analysing all criteria
for a given model, also all scaled condition indices, not only

Fig. 8. Number of models that suffice the considered criterion depending
on the threshold, testbed 1

Fig. 9. Number of models that suffice the considered criterion depending
on the threshold, testbed 2, legend as in Fig. 8

the maximum.
The selected model is not necessarily the best choice for a

certain intended purpose such as feedforward, control design,
but it can be used with confidence as a practically identifiable
model with good fit. Any results obtained by this methods
should be reviewed carefully regarding integrity.

What is disregarded is the model uncertainty, for example
it is questionable if a model with the additional damper at a
different mass may or may not lead to an equally good model.
This aspect could further be investigated by calculating the
Akaike weights [4] and structural distinguishability.

It was chosen to include only those submodels that have
exclusively identifiable parameters. Although this is sound,
it sometimes leads to unintuitive conclusions, e.g. when
an elastically coupled mass is not included only because
the damping parameter cannot be identified securely. Here,
different strategies could be further investigated for the
transition from parameter investigations to submodel inclu-
sion/exclusion decisions.

V. CONCLUSIONS

A procedure for model selection in frequency domain has
been proposed that minimizes the Kullback-Leibler distance
while also maintaining practical identifiability of all esti-
mation parameters. It aims at mechanical models of servo



systems including multiple-mass resonators. Criteria for prac-
tical identifiability are derived locally from the sensitivity
matrix which is calculated for different formulations of the
equation error. In most cases an analytic expression can
be found and only for complex 4-mass models numeric
differentiation is necessary.

Because of the tests for practical identifiability the depen-
dence on knowledge of measurement noise is less critical.
This is an advantage because often this knowledge is not
available and by averaging the noise level can be reduced
arbitrarily.

In experiments with two industry-like testbeds the method
proves to reveal the characteristic mechanical properties of
the two setups. Due to normalization thresholds for the
criteria of practical identifiability can be chosen almost
independently of the testbed properties but the results are
still depended on the exact choice.
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