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Abstract
Pseudomonas aeruginosa is an opportunistic pathogen and an important causative
agent of potentially life-threatening nosocomial infections in predisposed patients. The
Gram-negative bacterium produces a large and diverse repertoire of small-molecule sec-
ondary metabolites that serve as regulators and effectors of its virulence. In this study,
a range of mass spectrometry-based bacterial metabolomics approaches was used to
investigate these small-molecule virulence factors and their interplay with pseudomonal
metabolism as well as with phenotypic traits related to virulence. The groundwork was
laid by exploring the metabolite inventory of P. aeruginosa and improving the cover-
age of its metabolome by the application of a custom software named CluMSID, that
clusters analytes based on similarities of their MS2 spectra. CluMSID led to the anno-
tation of, i.a., 27 novel members of the class of alkylquinolone quorum sensing signalling
molecules, which represent crucial players in the highly complex network that regulates
pseudomonal virulence. The tool was developed towards a versatile and user-friendly
R package hosted on Bioconductor, whose functionalities and benefits are described in
detail. The new findings on the alkylquinolone chemodiversity led to further studies
with a mechanistic focus that probed the substrate specificity of the enzyme complex
PqsBC. It was demonstrated that PqsBC accepts different medium-chain acyl-coenzyme
A substrates for the condensation with 2-aminobenzoylacetate and thereby produces
alkylquinolones with various side chain lengths, whose distribution is a function of sub-
strate specificity and substrate availability. Moreover, it was shown that PqsBC also
synthesises alkylquinolones with unsaturated side chains. The focus was further broad-
ened from metabolite and pathway-centred questions to a more global perspective on
pseudomonal virulence and metabolism, which directed attention at PrmC, an enzyme
with a partially unknown function indispensable for in vivo virulence. An untargeted
metabolomics experiment yielded insights into the role of PrmC and its influence on
the pseudomonal endo- and exometabolome. Finally, clinical P. aeruginosa strains with
different virulence phenotypes were examined by untargeted metabolomics in order to
disclose metabolic variation and interconnections between virulence and metabolism.
The analysis resulted in the discovery of a putative virulence biomarker and enabled the
construction of a random forest classification model for certain virulence phenotypes
based only on metabolomics data. In summary, this study demonstrated the potential
of metabolomics for the investigation of P. aeruginosa virulence factors and thereby
contributed towards the comprehension of the complex interplay of metabolism and
virulence in this important pathogen.
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Zusammenfassung
Pseudomonas aeruginosa ist ein wichtiger opportunistischer Erreger potenziell lebens-
bedrohlicher nosokomialer Infektionen bei prädisponierten Patienten. Das Gram-nega-
tive Bakterium produziert ein vielfältiges Repertoire an niedermolekularen Sekundär-
metaboliten, die als Regulatoren und Effektoren seiner Virulenz dienen. In dieser Studie
wurde eine Reihe von Massenspektrometrie-basierten Ansätzen der bakteriellen Meta-
bolomik verwendet, um diese niedermolekularen Virulenzfaktoren und ihre Wechsel-
wirkungen mit dem pseudomonalen Metabolismus sowie mit virulenzassoziierten phä-
notypischen Merkmalen zu untersuchen. Die Grundlage bilden die Untersuchung des
Metaboliteninventars von P. aeruginosa und die Verbesserung der analytischen Abde-
ckung des Metaboloms durch die Anwendung einer selbstentwickelten Software namens
CluMSID, die MS2-Spektren nach Ähnlichkeit clustert. CluMSID führte zur Annotation
von u.a. 27 neuen Mitgliedern der Klasse der Alkylchinolone, die als Quorum-Sensing-
Signalmoleküle entscheidende Akteure im hochkomplexen Netzwerk der Virulenzregu-
lation darstellen. Das Tool wurde zu einem R-Paket entwickelt, das auf Bioconductor
verfügbar ist und dessen Funktionalitäten und Vorteile ausführlich beschrieben werden.
Die neuen Erkenntnisse über die Chemodiversität der Alkylchinolone führten zu weite-
ren Studien mit mechanistischem Schwerpunkt, die die Substratspezifität des Enzym-
komplexes PqsBC untersuchten. Es wurde nachgewiesen, dass PqsBC verschiedene mit-
telkettige Acyl-Coenzym-A-Substrate für die Kondensation mit 2-Aminobenzoylacetat
akzeptiert und dadurch Alkylchinolone mit verschiedenen Seitenkettenlängen produ-
ziert, deren Verteilung eine Funktion der Substratspezifität und der Substratverfügbar-
keit ist. Zudem konnte gezeigt werden, dass PqsBC auch Alkylchinolone mit ungesät-
tigten Seitenketten synthetisiert. Im Weiteren wurde der Fokus von Metaboliten- und
Stoffwechselweg-zentrierten Fragen hin zu einer globaleren Perspektive der pseudomona-
len Virulenz und des Metabolismus erweitert, was die Aufmerksamkeit auf PrmC lenkte,
ein Enzym mit teilweise unbekannter, für die in vivo-Virulenz unverzichtbarer Funk-
tion. Ein globales Metabolomik-Experiment lieferte Einblicke in die Rolle von PrmC
und seinen Einfluss auf das pseudomonale Endo- und Exometabolom. Schließlich wur-
den klinische P. aeruginosa-Stämme mit unterschiedlichen Virulenzphänotypen mittels
ungerichteter Metabolomik untersucht, um metabolische Variationen und Zusammen-
hänge zwischen Virulenz und Metabolismus aufzudecken. Die Analyse resultierte in der
Entdeckung eines putativen Virulenzbiomarkers und ermöglichte die Konstruktion ei-
nes Random-Forest-Klassifikationsmodells für bestimmte Virulenzphänotypen, das nur
auf Metabolomik-Daten basiert. Zusammenfassend hat diese Studie das Potenzial der
Metabolomik für die Untersuchung der Virulenzfaktoren von P. aeruginosa aufgezeigt
und damit zum Verständnis des komplexen Zusammenspiels von Metabolismus und
Virulenz bei diesem wichtigen Pathogen beigetragen.
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1

1 General Introduction

1.1. Pseudomonas aeruginosa

Pseudomonas aeruginosa is a Gram-negative rod-shaped γ-proteobacterium of high
scientific and medical relevance as a pathogen, model organism and ubiquitous envi-
ronmental microbe. It is the type species of the Pseudomonas genus, one of the most
complex and with more than 140 species the largest of the Gram-negative genera [1].
Walter Migula first described the genus Pseudomonas at the end of the 19th century
and named it based on the cellular morphology of the genus’ members [2–4]. While
Migula himself did not elaborate on its etymology, the name Pseudomonas is thought
to derive from the greek words ψευδής (pseudēs; wrong, false) and μονάς (monás; unit,
individual) [5]. However, it is not clear whether -monas really refers to ‘unit’ as in
unicellular organism and an alternative explanation says that it alludes to the Monas
genus, a group of nanoflagellate protists from the Crysophyceae family that display
a certain resemblance to Pseudomonas species in terms of size and motility [4]. The
epithet aeruginosa, from Latin aerūgō for ‘verdigris’, was coined by Julius Schröter in
1872, alluding to the blue-green colour of P. aeruginosa colonies and cultures [6]. In
the early days of microbiology, it also went by the names of Pseudomonas pyocyaneus
and Bacillus pyocyaneus which also refer to the pigments produced by the bacterium
[7]. Although P. aeruginosa has been identified as an infectious agent around the turn
of the last century [8, 9], it has only been considered a significant human pathogen since
the 1950s [7, 10, 11].

1.1.1. Relevance as an opportunistic pathogen

P. aeruginosa is able to infect a multitude of different plant and animal species, includ-
ing the model organisms Arabidopsis thaliana, Caenorhabditis elegans, Galleria mel-
lonella, Drosophila melanogaster and Mus musculus [12], but it has gained most impor-
tance as a human pathogen and causative agent of nosocomial infections, ranking among
the most frequent germs associated with healthcare-associated infections (HAIs) [13].
While mostly harmless for healthy humans, P. aeruginosa is capable of infecting nearly
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all human tissues as a facultative pathogen in predisposed individuals [14]. Along with
general immunocompromise, e. g. caused by AIDS or neutropenia under chemotherapy,
severe burn wounds as well as cystic fibrosis (CF) and other lung pathologies are the
most eminent risk factors for P. aeruginosa infections [15]. The most typical clinical
manifestation is pneumonia, with or without bacteremia, which is often associated with
(contaminated) medical devices [16, 17]. For instance, in intensive care patients on
artificial ventilation, intubation damages natural barriers and enables P. aeruginosa to
cause ventilator-associated pneumonia (VAP) which is difficult to manage and often
fatal [18]. As P. aeruginosa is a ubiquitous environmental bacterium that can persist
on various hospital surfaces [19, 20], the number of infections in susceptible populations
is high [15]. In 80-95% of CF patients, chronic (co-)infections with P. aeruginosa lead
to respiratory failure, the major cause of death for these patients which can only be
treated by lung transplantation [21]. Effective pathogen control or elimination is essen-
tial to prevent irreversible lung damage; however, antibiotic therapy is problematic as
P. aeruginosa is endowed with several natural and additional acquired drug resistances
and with an outer membrane that impairs drug uptake by its poor permeability [22].
Furthermore, P. aeruginosa is able to form biofilms that render it even less susceptible
to antibiotics, disinfectants and the host immune response [23, 24]. As the elderly are
more susceptible to P. aeruginosa colonisation and infection, the pathogen is expected
to further gain clinical importance in aging populations, i. e. in most of the world [25].

1.1.2. Metabolic versatility

P. aeruginosa is not only a human pathogen but also infects other animals and plants
[26]. Moreover, it can be found in almost all environments inhabited by humans and
thrives in various environmental niches as different as sweet melon rhizosphere and dol-
phin gastric juice [26, 27]. To survive under such diverse circumstances, the bacterium
has developed a broad range of metabolic features that enable it to metabolise a mul-
titude of organic substrates [28]. This metabolic versatility of Pseudomonas species
has been described as early as 1926, when L. E. den Dooren de Jong found that they
are capable of degrading various organic compounds [29, 30]. Today it is known that
P. aeruginosa is able to use a variety of carbon sources [31] and that it can flexibly
adapt its central carbon metabolism to use a combination of the Entner-Doudoroff,
Embden-Meyerhof-Parnas and pentose phosphate pathways [32]. Multiple metabolic
pathways are modified to meet the needs of a specific situation such as multi-species
competition in CF airway infections [33].
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bacterial cell 

signal molecules 

activator protein 

synthase gene 

QS regulated genes 

synthase 

Figure 1.1.: The general principle of quorum sensing. QSSM synthases produces QSSMs that tran-
sition to the extracellular space in the environment of the bacterium. The molecules
reach other bacterial individuums by means of diffusion. Once a concentration thresh-
old is passed, they are sensed by specific receptor proteins, which, in turn, serve as
activators or repressors for the gene expression of diverse QS regulated genes. The ex-
pression of synthase genes is activated as well, resulting in autoinduction and increased
QSSM production.

Metabolic versatility is not limited to catabolic pathways, though. P. aeruginosa
also produces a very rich arsenal of secondary metabolites [26]. Many of them are
associated with virulence and in turn interconnected with other metabolic processes
[34]. For instance, the chemodiversity of small molecules that P. aeruginosa uses to
communicate with conspecific individuals is unparalleled.

1.1.3. Quorum sensing

Quorum sensing (QS) denotes the bacterial interindividual communication by means of
diffusible secreted small molecule secondary metabolites [35]. The production of quo-
rum sensing signalling molecules (QSSM) remains on a basal level until a concentration
threshold (the quorum) is reached, whereupon the expression of various genes is influ-
enced, including the QS system itself (autoinduction) [35, 36]. This population density
dependent process serves diverse regulatory purposes (Figure 1.1). In P. aeruginosa,
which harbours one of the most complex and most intensively studied QS systems, mul-
tiple interconnected signalling systems regulate, among other phenomena, virulence and
persistence on the gene expression level, thus enabling the bacteria to flexibly adapt to
their host [37]. The three main QS systems and their interdependences are depicted in
Figure 1.2. The existence of a fourth QS systems which relies on 2-(2-hydroxylphenyl)-
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Figure 1.2.: Schematic representation of the las, rhl and pqs quorum sensing systems in Pseu-
domonas aeruginosa and their interconnections. Modified from [42] with information
from [43] and [37]. Large arrows, large ellipses and small circles represent genes, pro-
teins and QS signal molecules, respectively, and are colour-coded according to the QS
system they belong to. Green arrows signify up-regulation and red blocked lines down-
regulation of genes by proteins. Gray dashed lines symbolise unclear interactions. Grey
arrows indicate protein expression (gene to protein) or QS singnal molecule biosynthesis
(protein to small molecule).

thiazole-4-carbaldehyde, called IQS, has been postulated but not universally accepted
[38, 39]. Considering the importance of QS, QS inhibition is believed to be a promising
approach for novel anti-virulence drugs, so-called pathoblockers, that do not kill the
bacteria but limit the harm they can cause to the host [40–42].

The rhl and las QS systems

The canonical QS system in Gram-negative bacteria uses N -acylhomoserine lactones
(AHLs) as QSSM. AHLs are biosynthesised from fatty acids of variable lengths that
are connected to homoserine via a peptidic bond by LuxI-type enymes and sensed by
LuxR-type receptors [36]. The receptor-AHL complex binds to bacterial DNA and
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A B 

C D 

Figure 1.3.: Chemical structures of the most important quorum sensing signalling molecules of
the las, rhl and pqs quorum sensing systems in Pseudomonas aeruginosa. A: Bu-
tanoylhomoserine lactone (C4-HSL), rhl system. B: 3-Oxo-dodecanoylhomoserine lac-
tone (3OC12-HSL), las system. C: 2-Heptyl-4-quinolone (2-heptyl-4-hydroxyquinoline,
HHQ), pqs system. D: 2-Heptyl-3-hydroxy-4-quinolone (Pseudomonas quinolone sig-
nal, PQS), pqs system.

serves as a transcriptional regulator of various virulence genes [37]. In P. aerugi-
nosa, the las system, consisting of LasI and LasR, controls via the QSSM N -3-oxo-
dodecanoylhomoserine lactone (3-oxo-C12-HSL) the production of several elastases,
exotoxin A and alkaline phosphatase. The rhl system, that in turn consists of RhlI
and RhlR and employs N -butanoylhomoserine lactone as QSSM, regulates i. a. the
biosynthesis of rhamnolipids [44–46]. Both systems are autoinductive and connected by
LasR, which can act as a transcription factor for RhlR [37]. Beyond this, AHL depen-
dent regulation is much more complex and even after 20 years of research not entirely
understood. For example, there are LuxR family proteins for which no corresponding
LuxI-type equivalent exists but which are still able to modulate the AHL signal [47] and
only recently it has been found that P. aeruginosa RhlR has an alternative ligand pre-
sumably produced by PqsE, an enzyme from the pqs QS system [43]. Moreover, AHLs
have been shown to be able to alter gene expression in the absence of any LuxR-type
receptors [48], which further illustrates the complexity of AHL-dependent QS.

The pqs QS system

Beyond LuxI/LuxR-type QS, P. aeruginosa also possesses another QS system, the
pqs system, which is based on alkylquinolones (AQs) like 2-heptyl-4-quinolone (HHQ)
or 2-heptyl-3-hydroxy-4-quinolone (Pseudomonas quinolone signal, PQS) [49]. PQS,
HHQ and their congeners exert their influence on gene expression after binding to the
response regulator PqsR (synonym: MvfR), thereby up-regulating the expression of
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pqsABCDE and phnAB. Thus, along with autoinduction, the positive regulation of
phenazine biosynthesis is one of the main tasks of the pqs system [37]. The biosynthesis
of PQS is achieved by the proteins encoded in the pqs operon, PqsABCDE, as well
as PqsH. It has long been thought that PqsABCD catalyse the condensation of an-
thranilate and β-ketofatty acids to HHQ, which is then oxidised by PqsH to yield PQS
[50, 51]. In the meantime, however, it has been demonstrated that the biosynthesis
is effected from anthranilate, malonyl-CoA and fatty acids without β-keto group [52]:
Anthranilate is condensed with coenzyme A by PqsA and PqsD transfers a malonyl
group from malonyl-CoA onto anthraniloyl-CoA, yielding 2-aminobenzoylacetyl-CoA.
After hydrolysis, 2-aminobenzoylacetate (2-ABA) can be N -oxidised by PqsL to direct
it into quinolone-N -oxide (QNO) biosynthesis. Both 2-ABA and its congener 2-HABA
are condensed with a CoA-activated fatty acid by PqsBC, followed by spontaneous ring
formation yielding compounds of the HHQ and HQNO family, respectively (Figure 1.4).
While AQs with heptyl (HHQ, HQNO) or nonyl (NHQ, NQNO) chains are most fre-
quently reported, a multitude of related compounds with varying alkyl chain length
have been found in P. aeruginosa [53, 54]. The question why and how this biosynthetic
pathway yields so many similar but different AQ congeners is still not fully answered.
The role of the fifth protein encoded in the pqs operon, PqsE, has long been elusive,

although it had been identified early on as an important player in the production of
virulence factors such as rhamnolipids, lectins, pyocyanin and HCN [37]. Drees and
Fetzner could show that it takes part in AQ biosynthesis by acting as a thioesterase for
the intermediate 2-aminobenzoylacetyl-coenzyme A [55]. Recent studies suggest that
PqsE might be involved in the production of an unidentified alternative ligand of RhlR
thereby forming another crosslink in P. aeruginosa’s complex QS machinery [43, 56].

AQs are not only QSSM but also serve different purposes [57]. For instance, QNOs
possess antibiotic properties and have been shown to interfere with growth and virulence
of other bacterial species [58]. Moreover, PQS takes part in the formation of membrane
vesicles [59] and in iron homeostasis, where it chelates Fe3+ [60]. To summarise, AQs
are important regulators and effectors in many aspects of pseudomonal physiology,
especially with regard to virulence.

1.1.4. Virulence

Virulence is defined as the ability of a parasitic organism to harm its host, hence to
cause disease [61]. It is well known that virulence in P. aeruginosa is regulated by QS
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Figure 1.4.: Schematic of the alkylquinolone biosynthesis in Pseudomonas aeruginosa. Oval shapes
represent bioynthetic enzymes with orange shapes for Pqs enzymes and green shapes
for other enzymes. Solid arrows indicate main biochemical reactions and dashed arrows
biochemical side reactions. Square brackets signify instable intermediates.
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[44] and it has also been shown in the clinical setting that a correlation between QS
activity and virulence exists in patients suffering from Pseudomonas pneumonia [62].
Typical pseudomonal virulence factors are redox-active phenazines that are respon-

sible for the fluorescence of the bacteria [63]. Pyocyanin, the most extensively studied
phenazine in P. aeruginosa, can be detected in large quanitities in the sputum of in-
fected CF patients and, along with other virulence factors, plays an important role
in pathogenesis by generating reactive oxygen species that subject the host cells to
oxidative stress [64].
Rhamnolipids are surface-active glycolipids that are accountable for the establishment

of VAP in intensive care patients by disturbing the integrity of the lung epithelium and
hence facilitating paracellular invasion of the bacteria [62, 65]. In addition, they en-
able P. aeruginosa to eliminate polymorphnuclear neutrophil leukocytes, consequently
impairing the most important immune response in CF lungs [66, 67].
Furthermore, P. aeruginosa produces a range of peptidic virulence factors: The elas-

tase LasB is involved in the destruction of connective tissue and the invasion into the
epithelium, while exotoxin A inhibits eukaryotic protein biosynthesis and hence in-
duces apoptosis. Alkaline protease, katalase and superoxiddismutase as well as further
exoenzymes also contribute to P. aeruginosa virulence [68].
Besides, P. aeruginosa can produce hydrogen cyanide, which inhibits the host’s

cytochrome-C-oxidase und thereby interrupts the cellular respiratory chain. Interest-
ingly, HCN can be detected in exhaled breath of infected patients and thus serve as a
diagnostic biomarker [69].
Biofilm formation, i. e. the encapsulation of bacterial cells into an extracellular matrix

that adheres to a surface, is also considered part of the P. aeruginosa virulence strategy
since it enables the bacterium to persist in different infection sites and evade most
defense mechanisms of the immune system [70]. P. aeruginosa biofilms are formed by
secretion and maturation of polysaccharides, proteins and DNA [71]. The transition
from planktonic to biofilm lifestyle follows a complex regulation that includes switches
in metabolic profiles [72].
The fact that many pseudomonal virulence regulators and effectors are small-molecule

secondary metabolites makes P. aeruginosa an interesting pathogen to study the inter-
play of metabolism and virulence by means of metabolomics.
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1.2. Metabolomics

The termmetabolomics refers to an interdisciplinary field of study that combines aspects
of analytical chemistry, mass spectrometry, nuclear magnetic resonance spectroscopy
and data analysis to investigate the entirety, a certain subset or characteristic profiles
of low molecular weight compunds (<1500 Da) in a biological system under defined
conditions [73].

The field is rooted in analytical chemistry, biochemistry, clinical chemistry, natural
product chemistry as well as in the other omics disciplines, especially functional ge-
nomics. An often-cited historical ancestor of metabolomics experiments is the Urine
Wheel by Ullrich Pinder from 1506 [74] that classifies urine qualities and links them
to disease states, thus enabling diagnosis by analysis of a biofluid. This principle is
still at the core of many modern metabolomics experiments, especially in the medical
sciences [75]. Further milestones in the evolution of metabolomics were the introduction
of techniques for the labelling of metabolites; first by means of chemical labelling of
fatty acid precursors by Knoop in 1904 [76] and later by integration of stable isotopes
by Shemin and Rittenberg in 1945 [77]. These pivotal experiments enabled scientists
to study metabolism in chemical detail and paved the way for modern analytical bio-
chemistry. The first study that followed a contemporary metabolomics approach—still
avant la lettre—was published by Nobel laureate Linus Pauling and collaborators in
1971. They used gas chromatography—mass spectrometry to quantify metabolites in
urine and breath and achieved an analytical coverage of 250 and 280 metabolites, re-
spectively [78]. In 1998, the term ‘metabolome’ was coined by Oliver et al. [79] and
one year later, Nicholson et al. described ‘metabonomics’ as the study of metabolite
compositions in perturbed systems [80]. Historically, metabolomics was contrasted with
metabonomics and described only the study of biological systems in their natural state,
but is now mostly used as the general term for the systems biology investigation of
metabolites [81].

1.2.1. Systems biology from an analytical chemistry perspective

Systems biology tries to understand functions and processes in biological entities by
comprehensively examining their molecular components and their interaction networks
[82]. While the bottom-up approach does so by deducing from information about parts
or subsystem, top-down systems biology integrates global data from biological experi-
ments and uses this information to construct models that explain biological phenomena
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[82, 83]. This data is mostly generated by so-called omics technologies, i. e. experiments
that characterise that complete pool of a class of biological molecules [84]. Genomics
[85], transcriptomics [86], proteomics [87] and metabolomics are generally regarded as
the core omics disciplines, while more specific fields like lipidomics [88] or metallomics
[89] exist as well. The interrelation of omics experiments and systems biology is shown
in Figure 1.5.

biological question

experimental design

sample collection

data acquisition

data pre-processing

feature annotation

statistical data analysis

biological interpretation

integration

modelling
data

generation

validation

omics pipeline

system biology
circle

Figure 1.5.: Interrelation of omics experiments and systems biology. The systems biology circle
consists of data generation, integration, modelling and validation. Omics data is in-
tegrated and used for model building. The validation of the model requires new data
that is again integrated and used to improve the model. The figure is adapted from
[90].

Metabolomics as a scientific discipline is complementary to the other omics tech-
nologies genomics, transcriptomics and proteomics (Figure 1.6). The identification and
quantitation of metabolites produces a functional snap-shot of a biological system’s bio-
chemistry and offers the best correlation to the molecular phenotype, since metabolome
data—unlike genome or the proteome data—directly represent substrates and products
of biochemical processes in the cell, thus disclosing the final outcome of gene expression
and enzyme activity [91]. Furthermore, metabolomics is not limited to the detection of
endogenous metabolites but also covers exogenous substances and thereby enables the
study of the interplay of genome and environment [73].
In contrast to genes, transcripts and proteins, metabolites are a chemically extremely

diverse group of analytes. The metabolome comprises monomers, intermediates, cofac-
tors, signalling molecules, structural elements and many more [92]. They are commonly
classified as either primary or secondary metabolites, the latter being dispensable for
basic vital functions [93]. Metabolites vastly differ in polarity, size and reactivity, as
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Figure 1.6.: The Omics Cascade according to [91]. Genomics studies biological variation at the
most basic level and can reveal fundamental differences between individuals. Yet, it
cannot fully account for somatic mutations and misses out on all factors that influence
the expression of genes, e. g. epigenetic modifications. Transcriptomics measures gene
expression and thus covers the effects of gene regulation while it does not provide data
on how many of the transcripts are translated into functional proteins (e. g. by the
effects of posttranscriptional modifications). Similarly, proteomics analyses abundances
of proteins, hence describing biological systems on a phenotypic level, but is limited
by its inability to gauge the activity of proteins, which is affected by posttranslational
modifications, regulatory mechanisms and environmental factors such as substrate and
product concentrations. Metabolomics accounts for these as it quantifies products,
intermediates and substrates of enzymatic reactions along with exogenous molecules.

illustrated by the Staphylococcus aureus metabolome that comprises, i. a. amino acids,
peptides, carbohydrates, lipids, carboxylic acids, nucleosides, aromatic compounds and
many more [94]. Moreover, metabolite concentration ranges can run the gamut from
pg/ml to mg/ml [95]. The large variety of analytes requires a correspondingly large
variety of analytical methods and study designs, which makes metabolomics a hetero-
geneous field of research [96].

1.2.2. Targeted and untargeted metabolomics

Metabolomics approaches are generally classified as targeted or untargeted. Targeted
metabolomics refers to the analysis of a previously defined set of metabolites and of-
ten includes absolute quantification [97]. This approach is generally suited for classic
hypothesis-driven research and requires previous knowledge about chemical properties
of the metabolites to be analysed. If this information is known, modern mass spectrom-
etry technologies enable the distinction of very similar compounds and thus provide
detailed insights into metabolic processes in biological systems [73].
Untargeted or non-targeted metabolomics approaches aim to analyse the entire meta-

bolome in the most comprehensive way possible. To that end, both NMR and MS based
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methods can be used; however, liquid chromatography coupled to high resolution mass
spectrometry is the most eminent technology in the field [91]. Owing to the complexity
and heterogeneity of the metabolome, there is no standardised analytical methodology
to capture the complete metabolome [98]. Without previous knowledge about the exact
chemical composition of samples, the identification of detected metabolites is another
substantial problem in untargeted metabolomics [99]. On the other hand, untargeted
studies can be conducted with minimal assumptions, hence preventing biases which can
be introduced by the selection of analytes [81]; and after years of technical improvement
in high resolution mass spectrometry and progress in community curated spectral data
bases, hundreds to thousands of metabolites can potentially be identified in a biolog-
ical sample [91, 99–101]. Untargeted metabolomics generates huge amounts of data
that have to be handled with multivariate statistics and other advanced data analysis
methods [102]. The data can be analysed on a functional level or used to generate
classification models and thus aid in the generation of new hypotheses. These can, in
turn, be tested by targeted metabolomics or other types of experiments [81].

1.2.3. Metabolomics technologies

Due to the high complexity and diversity of possible samples and analytes, modern
metabolomics comprises a multitude of analytical and pre-analytical methods. Gener-
ally, they require more or less extensive sample preparation and most of the analytical
methodologies rely on chromatographic separation [103]. While other detection prin-
ciples exist, mass spectrometry and nuclear magnetic resonance are the predominant
methods for the qualitative and quantitative analysis of metabolites [104].

sample collection or
generation

sample 
preparation

chemical
analysis

data (pre-) 
processing

data analysis
and 

interpretation

Figure 1.7.: Schematic representation of a metabolomics workflow. Samples are collected or gener-
ated, then subjected to sample preparation procedures such as extraction or purification
to yield samples suitable for chemical analysis by mass spectrometry or nuclear mag-
netic resonance spectroscopy. The resulting analytical data has to be preprocessed and
processed before it can be analysed by means of chemometric, stastistical and systems
biology methods and finally interpreted in the biological context.
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Sample preparation

Sample preparation strategies depend on the type of sample and on the experimental
design. Methodologies range from minimal preparation, e. g. direct infusion from culti-
vation flasks [105] or desorption electrospray ionisation–mass spectrometry of bacterial
colonies [106], to sophisticated purification and enrichment strategies [107]. Compro-
mises have to be made to balance potential improvements in selectivity, sensitivity and
robustness on the one hand and throughput on the other hand [108].

In most experimental settings, the crucial basic steps of sample preparation are to
halt metabolic reactions as many metabolites have very short half-lives [109] and to
separate the relevant part of the sample from irrelevant parts, e. g. blood serum from
cellular components or bacterial biomass from cultivation fluid. Stopping the cellular
metabolism and preventing metabolite degradation by enzymatic or chemical reactions
is commonly referred to as ‘quenching’. Quenching is indispensable to ascertain that
metabolite concentrations measured in a metabolomics experiment actually represent
the biochemistry of the live sample [110]. Quenching approaches rely on quick tem-
perature changes and/or organic solvents that denature enzymes in the sample and
can be combined with the separation step [110, 111]. Standard methods for separation
include centrifugation [112] and filtration [113]. To enable extraction of metabolites,
cellular or tissue samples have to be lysed, which is done chemically by solvent addition,
mechanically, e. g. by bead beating, or via ultrasound [114].

Extraction, including protein removal, is usually performed on the samples to facili-
tate instrumental analysis by removing potentially interfering substances and irrelevant
analytes and by enrichment of analytes of interest. Liquid extraction is most commonly
used in metabolomics with either hydrophobic or hydrophilic solvents (e. g. chloroform
or methanol–water mixtures, respectively), depending on the chemical properties of the
target analytes [107]. If strong matrix effects or low analyte concentrations are observed,
solid phase extraction has been shown to be a valuable alternative or complementary
extraction method [115].

The larger the sample size and the more complex the study design, the more impor-
tant are sample preparation, handling and storage. Therefore, community guidelines for
pre-analytical processing and biobanking of metabolomics sample have been developed
[116].
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Separation: LC, GC, CE

Metabolomics experiments that use NMR spectroscopy for metabolite identification
and quantification as well as some specialised mass spectrometry techniques do not rely
on the separation of metabolites from extracted samples. These exceptions include di-
rect injection mass spectometry [105] and (imaging) mass spectrometry by desorption
electrospray ionisation, matrix-assisted laser desorption ionisation or related technolo-
gies [117]. For most mass spectrometry-based experimental setups, however, separating
the individual components of metabolite mixtures is of high importance, e. g. to avoid
signal distortion caused by ion suppression and to be able to distinguish isobaric an-
alytes [118]. In the analysis of complex extracts, separation performance can be the
decisive factor for analytical coverage and accuracy and hence determine the value of
the information gained in the experiment [119].
Common separation techniques include liquid chromatography (LC), gas chromatog-

raphy (GC) and capillary electrophoresis (CE) [120]. While the latter has so far re-
mained a niche technology, LC and GC are fundamental for metabolomics.

Liquid chromatography LC can be used to separate a large variety of different analytes
without pre-analytical derivatisation, which makes it a versatile separation method in
the bioanalytical sciences. Ultra high performance liquid chromatography (UHPLC) is
now the standard LC method used in both targeted and untargeted metabolomics [121].
Its main advantages are its wide range of analytes—also due to different possible column
chemistries—, its easy interfaceability with different types of mass spectrometers via
electrospray ionisation (ESI) and the large amount of available scientific literature on
LC-MS metabolomics [121, 122].

Reversed phases, i. e. nonpolar stationary phases, are most often used in LC-MS
metabolomics. Octadecylsilyl (RP18) columns are highly prevalent in all metabolomics
applications and suited for many types of samples [123]. While the metabolome coverage
of reversed phase LC can be improved by the correct choice of mobile phases [124], some
metabolite classes are not easily separable on RP18 or comparable columns. If highly
polar metabolites are of interest, RP separations can be complemented by hydrophilic
lipohilic interaction chromatography (HILIC). HILIC columns have been designed for
the analysis of polar compounds and the use of aqueous, low salt eluents renders it
particularly suitable for ESI-MS [125].
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Gas chromatography In contrast to LC, GC is suited for small compounds (<650Da),
especially for intermediates of the primary metabolism [126]. Analytes must either be
volatile or derivatisable into volatile compounds, e. g. by silylation using N -methyl-N -
(trimethylsilyl)trifluoracetamid (MSTFA) combined with methoxamination, and must
not be thermolabile [126, 127]. These limitations render GC unsuitable for some re-
search areas, such as bacterial secondary metabolism. On the other hand, LC methods
often lack coverage of important primary metabolites, which makes GC-MS and LC-MS
complementary techniques in metabolomics.

Unlike LC, GC is often coupled to mass spectrometers that use hard ionisation, which
has various implications for data analysis and specifically metabolite identification.
Various software and databases for annotation of GC-electron impact (EI)-mass spectra
exist and GC-EI-MS fragmentation is considered highly reproducible [126].

Detection: Mass spectrometry and NMR spectroscopy

Although some of the first metabolomics experiments were conducted with infrared
spectroscopy [79], mass spectrometry and NMR spectroscopy are now the detection
methods of choice.

NMR spectroscopy As mentioned above, NMR spectroscopy can be directly applied
to complex mixtures without prior separation and also sample preparation can be min-
imal which makes it a fast and experimentally simple method for metabolomics. Other
advantages are that the detection principal is universal, i. e. not discriminating metabo-
lite classes based on chemical properties, that measurements are non-destructive, en-
abling e. g. time series or in vivo metabolomics, and that absolute quantification is
achievable without using multiple internal standards [128, 129].

The main disadvantage of the technology is its low sensitivity and the resulting poor
metabolome coverage compared to MS-based approaches [129]. Along with the need
for complex data analysis and expensive instrumentation, this limitation restricts the
suitability of NMR spectroscopy for many metabolomics experiments, while it can play
to its strength whenever speed of analysis and absolute quantification are the key re-
quirements.

Mass spectrometry Complementary to NMR metabolomics, MS-based approaches
excel due to broad metabolome coverage, high sensitivity, better flexibility and cus-
tomisability and data analysis strategies that are more suitable for automatisation. On
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the downside, absolute quantification is challenging, measurements are destructive, not
all metabolites can be detected with the same sensitivity, and reproducibilty between
batches and platforms can be problematic [130].
Various MS methods are used in the field of metabolomics. The general setup is

shown in Figure 1.8.
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desorption,

…

mass
spectra

mass spectrometer

Figure 1.8.: Schematic of the general setup of a mass spectrometer. The analytes that have either
been separated by chromatography or are directly infused or are desorbed from the
sample are introduced into the mass sprectometer via the inlet. They are then ionised
in the ion source, separated by their mass-to-charge ratio (m/z) in the mass analyser
and detected by the ion detector. The signals from the ion detector are transmitted to
a data processing unit which returns MS data in the form of mass spectra. LC, liquid
chromatography; GC, gas chromatography; DI, direct infusion.

Ionisation As mass spectrometry operates on charged ions in the gas phase, un-
charged molecules have to be ionised prior to analysis and detection. The choice of
the ionisation method for a metabolomics experiment depends on the sample type and
the analytes, on the type of chromatography and mass spectrometry used and on the
research question. In GC-MS, the analytes are already in the gas phase and can directly
be ionised. The most common techniques are electron ionisation (EI, also called electron
impact ionisation) and different types of atmospheric pressure ionisation (API) [131].
EI uses a beam of accelerated electrons (mostly at 70 eV) to ionise precursor molecules,
which in most cases results in fragmentation of the parent molecule into charged and
neutral fragments, hence it is considered a hard ionisation method [132]. The inter-
pretation of EI fragmentation patterns is a long-established skill of analytical chemists
by use of which various structural information about the analyte can be deduced [133].
Multiple spectral databases exist for the annotation of GC-EI-MS spectra [134].
API methods, in turn, are soft ionisation methods that mostly leave the parent

ions intact and thus allow for the determination of the molecular mass of the analyte
[131]. Ion sources that operate under atmospheric pressure include amongst others
atmospheric pressure chemical ionisation (APCI) and electrospray ionisation (ESI).
ESI, whose invention by Fenn and colleagues has been honoured with a Nobel Prize in
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chemistry [135], is the standard ionisation method used in LC-MS [136]. Its functional
principle is laid out in Figure 1.9.
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Figure 1.9.: Schematic of the electrospray ionisation process in positive mode. The analyte solution
is transported through a capillary with an electric potential, usually at rates in the
µl/min range. Due to the electric potential, a so-called Taylor cone forms at the
outlet of the capillary and emits a spray of droplets (positively charged in ESI-(+)
mode). Once emitted, the droplets decrease in size as solvent evaporates, leading to
increasing charge density. As soon as Coulombic repulsion exceeds surface tension, so-
called Coulombic explosions generate smaller daughter droplets. This process recurs
until analyte ions can transition to the gas phase from the nanodroplets. The ions are
attracted by the oppositely charged orifice and fly towards the mass analyser through
the orifice’s aperture. In negative mode, the potential difference is reversed: Negatively
charged droplets are emitted from the Taylor cone and anions pass through a positively
charged orifice. Adapted from [137].

Chemically, ionisation happens predominantly by addition or removal of protons or
by adduct formation with charged species from the matrix, e. g. sodium or potassium
cations in positive mode and chloride or small organic anions in negative mode. Analytes
can be multiply charged and combinations of (de-)protonation and adduct formation are
possible. Despite the soft ionisation, various fragmentation reactions, often called in-
source fragmentations, can take place during ESI depending on the chemical structure of
the analytes [138]. Both adduct formation and in-source fragmentation provide valuable
information for the annotation of unknown analytes.

Mass analysers Once the analytes have been turned into gaseous ions, the mass
analyser determines their mass-to-charge ratio (m/z). Several basic principles for mass
analysis exist and most mass analysers used in metabolomics rely on the ideas of
quadrupole, ion trap, time-of-flight (TOF), ion cyclotron resonance (ICR) or Orbitrap
technology [138]. Triple quadrupole (QqQ), quadrupole ion trap and quadrupole time-
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of-flight (Q-TOF or QqTOF) mass analysers are popular variations or combinations of
the aforementioned types that allow for tandem mass spectrometry. The main criteria
for the choice of mass analyser in metabolomics experiments are resolution and sensitiv-
ity. Triple quadrupole and quadrupole ion trap instruments are able to detect very low
amounts of analytes very specifically, which renders these technologies ideal for targeted
metabolomics. Untargeted metabolomics, on the other hand, depends on metabolite
identification and hence benefits from the powerful resolution and the resulting high
or even ultra-high (< 5 ppm or <1ppm difference of measured and theoretical m/z,
respectively) mass accuracy of Q-TOF, Orbitrap or Fourier transform ICR instruments
[138, 139].
As EI per se results in characteristic fragmentation patterns, tandem mass spec-

trometry is usually not needed in GC-EI-MS. Respective instruments mostly use low
resolution mass analysers such as quadrupoles or ion traps, both of which separate ions
by an oscillating electric field [140].
In the liquid chromatography field, LC-QTOF-MS has demonstrated its qualities as a

reliable and versatile technology for untargeted metabolomics and metabolite identifica-
tion by widespread use in the community [141]. The functional principle of time-of-flight
mass spectrometry is the accelaration of analyte ions by an electric field whose strength
is known. As all ions of the same charge experience the same kinetic energie, the ve-
locity of each ion depends on its mass—or its mass-to-charge ratio if ions of different
charge are to be compared. The velocity in the electric field is measured indirectly by
recording the time of flight to the detector in a flight tube, and high accuracy mass-
to-charge ratios can be calculated from the results. Q-TOF instruments are hybrids
of triple quadrupole and TOF instruments, where basically the third quadrupole of a
QqQ is replaced by a TOF element. They offer the advantage of high resolution along
with extended capacities for tandem mass spectrometry inherent to QqQ technology
[142]. Design and function of a Q-TOF mass analyser are depicted in Figure 1.10.

Tandem mass spectrometry and fragmentation Tandem mass spectrometry (MS2,
MS/MS) is the coupling of two mass analysers or mass analysis steps with an additional
reaction step between them [143]. In metabolomics, MS2 is used to generate fragmen-
tation spectra of metabolites by a reaction called collision-induced dissociation (CID).
Accelerated analyte ions are directed into a collision cell filled with an inert buffer gas,
usually argon, and the release of kinetic energy upon collision leads to fragmentations
of the ions similar to those observed in electron ionisation, but via even-electron species
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Figure 1.10.: Design and function of an orthogonal reflectron quadrupole time-of-flight mass anal-
yser. The yellow arrows depict the ions’ trajectories from the ESI inlet to the detector.
Starting at atmospheric pressure in the ESI unit, they fly through the first quadrupole
(Q0) which is operated at low pressure and radiofrequency (r.f.) voltage. Q0 serves
to focus the ion beam and for collisional damping. Q1 is held under vacuum and
can be run in r.f. mode to let ions pass or as mass filter, which is relevant for MS2
measurements. In Q2, the pressure can be several milliTorrs as in Q0 and it is also
operated in r.f. mode to serve as a transmission element. It can be filled with a
collision gas, e. g. argon, and thus serve as a collision cell for MS2 fragmentation
experiments. After Q2, ions are orthogonally diverted and accelerated into the flight
tube by the ion modulator and the accelerating column. The flight tube replaces the
third quadrupole (Q3) of a triple quadruple mass analyser. Modern instruments use
a reflectron or ion mirror that directs the ions back through the flight tube where
they reach the detector. The time of flight is recorded and used for m/z calculation.
Adapted from [142].
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rather than radical ions [144]. In a Q-TOF mass spectrometer, CID happens in Q2 (cf.
Figure 1.10) and the collision energy that influences the degree of fragmentation can be
controlled. By using Q1 as a mass filter, ions of a distinct m/z can be selectively frag-
mented. Many MS instruments have an auto-MS/MS mode that selects the n ions with
the highest intensity in each scan for fragmentation, a process called data-dependent
acquisition (DDA). Data-independent acquisition (DIA) or all ion fragmentation (AIF)
does not use a mass filter and results in various fragment ions that cannot be directly
associated with an individual precursor m/z [145]. DDA—and DIA after additional
processing—results in tandem mass spectra that can be matched against MS2 libraries
or used to deduce structural information from the fragmentation patterns [138].

1.2.4. (Pre-)Processing and data analysis

Pre-processing

Mass spectrometers record (MS1) data in the two dimensions ofm/z and signal intensity.
If chromatography-coupled setups are used, retention time (RT) is an additional dimen-
sion, producing a three-dimensional data matrix. Two-dimensional chromatograms, i. e.
plots of signal intensity over time, can be generated from this data by summation of
the signals of all m/z traces (total ion chromatogram, TIC) or by filtering the m/z
dimension for a specific value or range (extracted ion chromatogram, EIC).
As the aim of most metabolomics experiments is the comparison of signal differences

between groups, experimental conditions etc., the MS data has to be pre-processed into
so-called feature tables. A feature represents a signal defined by RT and m/z, to which
a peak intensity or area in the individual samples can be assigned [130]. Several pre-
processing software tools have been developed, and XCMS and MS-DIAL are the most
widely used ones for DDA and DIA LC-MS, respectively [146, 147]. Popular GC-MS
pre-processing tools include AMDIS and MetaboliteDetector [148, 149]. LC-MS and
GC-MS data pre-processing consists of four basic steps: filtering, feature detection,
alignment and normalisation: Filtering reduces noise and smoothes peak shapes [150].
Feature detection distills signals of defined m/z, RT boundaries and intensity from
the chromatographic data; the most prominent feature detection algorithm is XCMS’
centWave which uses continuous wavelet transformation to model peaks [151]. Inter-
sample correspondence between features is established in the alignment step which often
includes retention time correction to account for RT shifts between chromatographic
runs. The ordered bijective interpolated warping (obiwarp) algorithm has become the
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standard method for alignment of LC-MS data [152]. Normalisation, finally, is applied
to level out inter-sample or inter-batch differences in feature intensities and thus remove
systematic bias. The use of multiple internal standards is the normalisation method of
choice for standard LC-MS and GC-MS experiments and it can be complemented by
scaling approaches based on statistical models [150].

Data analysis

Descriptive statistics is the easiest but also most important data analysis tool for meta-
bolomics feature tables: mean intensity, standard deviation and—if groups or conditions
are compared to each other or a reference—fold changes are routinely calculated for all
features and intensity distribution is visualised by means of boxplots. Significance test-
ing with Student’s or Welch’s t-test, Mann-Whitney U -test or ANOVA are standard
methods from the arsenal of inferential statistics. Like in all omics disciplines, they
should include correction for multiple testing in order to reduce false positive signifi-
cance estimates [153].

In addition to these univariate methods, multivariate analysis is heavily used in the
metabolomics community. As the multidimensional features × samples matrix is not
easily represented in two-dimensional plots for data exploration purposes, principal
components analysis (PCA) can be used for dimension reduction. PCA is an unsu-
pervised method (i. e. it does not use class information) that summarises information
from multiple dimensions into principal components which best explain the variation
between the data points [154]. It is used to gauge trends in the data set, e. g. whether
groups of samples are separated from each other.

In contrast to unsupervised methods, supervised methods use the class lable of sam-
ples to, for instance, generate discriminatory or prediction models. Partial least-squares
discriminant analysis is a supervised method with resemblance to PCA which can be
used for classification [155]. Classification models can also be build using machine learn-
ing algorithms like kernel support vector machines, artificial neural networks or random
forests [156]. The latter is particularly suited for untargeted metabolomics data, be-
cause it can handle input data that is not on the same scale and the models generated
are rather easily interpretable with regard to important metabolites [102, 157].

Another data analysis approach is the application of systems biology tools like me-
tabolic network reconstruction or pathway analysis [90]. These methods enable data
interpretation in a holistic biological context, but require extensive prior knowledge
about the biological systems.
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1.2.5. Metabolite identification

Metabolite identification is a key step for functional interpretation of metabolomics data
but it also represents one of the major challenges in the field of MS-based metabolomics
[158]. At the transition between data processing and metabolite identification is the
annotation of adducts, in-source fragments, isotopes and multiply charged ions. These
can make up a significant percentage of the detected features in an LC-MS data set, as
any given metabolite may produce many different features beside the one of the actual
(de-)protonated singly charged parent ion ([M+H]+ or [M–H]–) [159]. In the XCMS
software family, CAMERA is the tool used to annotate these features and group them
together [160].
While the feature’s exactm/z and isotopic pattern can reveal its sum formula, definite

identification necessitates the matching of at least two orthogonal analytical properties
to an authentic standard measured on the same instrument [161, 162]. For GC-MS,
that would be retention time or the standardised retention index and fragmentation
pattern and for LC-MS at least exact m/z and retention time, preferably along with an
MS2 spectrum recorded with similar collision energy.

If authentic standards are not locally available, online databases are used to assign
putative annotations to features based on exact m/z and MS2 or EI fragmentation pat-
tern [134]. METLIN [163], HMDB [164], MassBank [165] and the Golm Metabolome
Database [166] are among the most comprehensive metabolite databases but more spe-
cialised databases like the Pseudomonas aeruginosa Metabolome Database (PAMDB)
[167] exist as well. Search algorithms for metabolite databases compare spectral sim-
ilarities which are continuous numerical values, not true-or-false statements, therefore
suggested library matches have to be carefully examined [168, 169]. Moreover, mass
spectra differ depending on multiple factors such as instrument setup or matrix com-
position which can complicate annotation by spectral matching [134].
Features that cannot be annotated with local or online metabolite databases are

often refered to as ‘unknowns’. While ‘known unknowns’ are features that are not
annotated in the respective experiment but that are produced by compounds known in
the literature, ‘unknown unknowns’ are previously unreported, novel molecules [158].
Various computational tools have been developed to aid the structure elucidation of
both types of ‘unknowns’ [170]. Many of them rely on in silico generation of MS2 (or
MSn) spectra [171, 172], whereas others use substructure annotation [173] or spectral
similarity [174, 175]. A more detailed description of computational annotation strategies
can be found in the introduction to Chapter 3.
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1.2.6. Microbial metabolomics

Since MS-based exploration of secondary metabolites has been an integral part of mi-
crobial natural product research for decades, it is logical to also use more global meta-
bolomics techniques in this field [119]. Most analytical considerations described above
are applicable to microbial metabolomics as well as to mammalian or plant metabol-
omics; however, some experimental and data analysis steps have to be tailored to the
specific properties of microbial samples [176]. Particularly, fast sampling and quench-
ing is of particular importance for bacterial samples and extraction protocols have be
adjusted based on the expected metabolome composition [177]. Furthermore, the ex-
perimenter must decide if samples are directly collected, e. g. from the environment
or the human host, or if cultivation-based methods are used. In the latter case, the
type of cultivation—on agar, planktonic—and the specific parameters—growth condi-
tions, medium, incubation time—have to be thoroughly planned as they can have vast
effects on the metabolome [31]. The use of standardised conditions is often dictated
by the need to integrate metabolomics data with other functional genomic or pheno-
typic data. Planktonic cultivation of bacteria offers the advantage that not only the
cellular metabolome (the ‘endometabolome’) but also the excreted metabolites (the
‘exometabolome’) can be analysed [178].

According to Aldridge and Rhee, microbial metabolomics experiments can be clas-
sified into five general themes: enzyme annotation, in situ enzymology and pathway
analysis, chemical inventorying, chemotaxonomy, and biochemical phenotyping [179].
Both the elucidation of unknown enzyme functions and the mechanistic or functional
study of known enzymatic reactions can be achieved with in vitro and in vivo metabol-
omics methods [180]. Activity-based metabolomic profiling (ABMP) is used to observe
consequences of presence, absence or excess of an enzyme of interest. Its in vitro variant
compares the analytical profiles of metabolite extracts incubated with recombinantly
produced enzyme with untreated extracts to find which metabolite levels are altered
by in vitro turnover. In vivo ABMP, however, makes use of genetic engineering to pro-
duce knock-out and/or overexpressing strains and compares the metabolomes of these
strains to analyse in vivo effects of the enzyme in question, e. g. differential abundace
of metabolite in a certain metabolic pathway [181].

Chemical inventorying is where microbial metabolomics touches on classical natural
product research. The revelation of microbial chemodiversity is of intrinsic scientific
value and untargeted metabolomics is an invaluable addition to the natural product re-
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searcher’s toolbox [182], especially in conjunction with advanced computational meth-
ods [174].
Though MS-based methods have a long tradition in the identification of bacterial

species, metabolomics enables chemotaxonomy on the strain level as demonstrated for,
i. a., Mycobacterium tuberculosis [183], Bacillus cereus [184] or multiple Streptomyces
species [185]. Similarly, phenotypic properties can be linked to metabolomic profiles,
e. g. drug susceptibilty [186]. In addition to classification, these biochemical phenotypes
provide functional information in the form of differential abundances of metabolites
[187]. Since phenotype characterisation of pathogens is one of the most important steps
to understanding infections, metabolomics combined with microbiological expertise can
be a powerful tool for infection research [188].

1.2.7. The P. aeruginosa metabolome

The metabolome of P. aeruginosa is a particularly interesting study object for two
main reasons: First, the outstanding clinical importance of the pathogen and second,
the richness of its secondary metabolome along with the fact that many of its sec-
ondary metabolites are associated with virulence or its regulation. Efforts to explore
and catalogue the chemodiversity of pseudomonal secondary metabolites were enabled
by advances in bioanalytical chemistry in the 2000s, when AQs [54], phenazines [63],
rhamnolipids [189] and other groups of natural products were described in a more com-
prehensive manner and new congeners were discovered.
Around the same time, the first metabolomics experiments were conducted to study

how P. aeruginosa adapts its metabolism to different growth conditions, highlighting
the pathogen’s metabolic versatility [190] and suggesting that the switch between plank-
tonic and biofilm lifestyle includes an adaptation of cellular metabolism [191]. An early
exometabolomics study found that the virulence-associated anti-σ factor MucA modu-
lates the excretion of osmoprotective metabolites, hence leaving a ‘metabolic footprint’
of its activity in the spent growth medium [192]. In combination with endometabolomics
(or cellular metabolomics), Behrends et al. used NMR exometabolomics to systemat-
ically study a P. aeruginosa mutant library and revealed that not all metabolic phe-
notypes of knockout mutants can be easily linked to the known gene function of the
respective deficient gene [193].
Experimental conditions that mimick the situation at specific infection sites in the

human host enabled discoveries that were closer to the in vivo situation: In conditions
resembling the urinary tract, microbial metabolomics showed that multiple metabolic
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pathways, including amino acid utilisation and fatty acid biosynthesis, were altered
compared to standard laboratory conditions [194]. The cultivation in artificial spu-
tum medium, in turn, resulted in smaller differences in substrate utilisation but more
pronounced variation in excreted metabolites [195].

The study of clinical P. aeruginosa isolates, most importantly those from CF lungs,
led to the discovery that the bacterium strongly adapts its metabolism to the nutrient
availability at the specific infection site over time and that this effect on the P. aerugi-
nosa metabolome exceeds that of the clonal lineages, which demonstrates the usefulness
of metabolomics as a complementary method to the sequence-based omics technologies
[196–198]. Additionally, metabolomics has the potential to differentiate P. aeruginosa
strains and aid in the discovery of biomarkers for clinical phenotypes. This was demon-
strated for volatile metabolites measured by GC-MS by Bean et al. [199] and Bardin
et al. used rapid evaporative ionisation-MS to discern metabolic phenotypes of CF
isolates [200].

These examples of prior metabolomics studies on P. aeruginosa demonstrate the
potential of targeted and untargeted metabolomics in the complex task of unravelling
the interdependencies of metabolism and virulence in this important pathogen.
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22 Aims of the Thesis

The principal aim of this Thesis is to explore how targeted and untargeted metabol-
omics can be used to gain novel insights into virulence-associated processes in Pseu-
domonas aeruginosa.

Since metabolomics is still a young and developing discipline, its usefulness in infec-
tion research has not been fully exploited. While there are some examples of interesting
and relevant findings based on metabolomics data, a lot is left to discover and there is
a plethora of research questions that could potentially be answered by using targeted
and/or untargeted metabolomics as main or complimentary methodological approach.
In this Thesis, metabolomics technologies were used to address highly relevant ques-
tions on the biology and pathogenicity of P. aeruginosa that span from the molecular
to the cellular and population level. These are illustrated in the following paragraphs:

Exploring the chemical inventory of P. aeruginosa and extending the analytical cov-
erage of the P. aeruginosa metabolome (Publication 1) Metabolite identification
and analytical coverage of the metabolome is generally regarded as one of the main
challenges in untargeted metabolomics. That is particularly true for prolific producers
of secondary metabolites. The generation of useful biological knowledge from untar-
geted metabolomics data requires as much annotation as possible. At the starting point
of this dissertation, the percentage of features in a P. aeruginosa cell extract metabol-
omics data set was very low—both in the CBIO lab and in the literature. This fact
necessitated efforts to increase the annotation rate, and the first aim of the Thesis was
to enable identification and annotation of more P. aeruginosa metabolites by means
of chemometric and bioinformatic processing combined with advanced statistical meth-
ods. The second aim was to extend the existing knowledge on P. aeruginosa secondary
metabolites by identifying novel congeners of important virulence-associated metabo-
lites by the aforementioned tools and thus explore and describe the chemodiversity of
pseudomonal small molecule virulence factors.
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Turning the methodological advances into a robust, versatile and shareable software
and demonstrating its usefulness on different data types (Publication 2) Metabol-
omics, like any systems biology discipline, is a community-driven science and relies on
methodologies developed by the community for the community. Thus, it is a scientifi-
cally worthwhile endeavour to create novel processing and analysis tools that facilitate
the generation of knowledge from data and share them with peers. The third aim of
the Thesis is to do so by developing an R/Bioconductor package as a shareable form
of the CluMSID software on the basis of Publication 1. This software package is intro-
duced in the main body of Publication 2. Additional aims are to show that CluMSID
can help to extract useful information for feature annotation and identification not only
from high-resolution LC-MS/MS data but also from data generated by other types of
mass spectrometry. These are presented in the extensive Supplementary Information
of Publication 2.

Defining the chemodiversity of alkylquinolones and investigating their biosynthe-
sis by means of targeted metabolomics (Publication 3) Alkylquinolones are key
regulators of various virulence-associated processes in P. aeruginosa and hence an in-
teresting object of study for researchers interested in the interplay of the metabolome
and microbial pathogenicity. Building on the extended descriptive knowledge on the
chemodiversity of alkylquinolones gained in Publication 1, the Thesis aimed to transfer
this knowledge onto a functional level by investigating how this diversity is brought
about by the biosynthetical machinery. By integrating targeted metabolomics with
structural biology, proteomics and classical biochemical assays, a mechanistic model of
alkylquinolone biosynthesis by PqsBC is to be developed. Moreover, the biosynthe-
sis of an alkylquinolone subclass, mono-unsaturated alkylquinolones, should be studied
mechanistically for the first time.

Applying comprehensive untargeted metabolomics to study PrmC, a virulence-
associated enzyme of partly unknown function (Publication 4) The elucidation of
(partly) unknown enzyme functions is a demanding task and metabolomics can serve as
one building block in the solution. In the Thesis’ subproject described Publication 4, the
aim is to examine the influence of PrmC, an enzyme with a known role in protein trans-
lation and an underexplored function in the regulation of virulence, on the cellular and
extracellular metabolome of P. aeruginosa with a specific focus on virulence-associated
metabolites.

42



2

Discovering metabolic variation between P. aeruginosa clinical strains and gener-
ating a predictive model to gauge virulence from untargeted metabolomics data
(Publication 5) While in Publication 4, a defined genetically modified strain is com-
pared to wildtype P. aeruginosa, the aim of the subproject described in Publication
5 was to analyse virulence-associated metabolome differences between clinical isolates.
These strains have been collected in various hospitals and private practices at differ-
ent locations in Europe. Besides the description of metabolome differences between
strains with different virulence phenotypes, the identification of putative biomarkers
for pseudomonal virulence and the development of statistical models to gauge virulence
based on untargeted metabolomics data represent major objectives. To summarise,
this subproject will transfer existing and generate new knowledge about the interplay
of virulence and the metabolome on the level of clinical P. aeruginosa strains.
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3 Clustering of MS2 Spectra Using Unsupervised
Methods to Aid the Identification of
Secondary Metabolites from
Pseudomonas aeruginosa

This Chapter has been published as peer-reviewed article in a scientific journal:

T. Depke, R. Franke, and M. Brönstrup. “Clustering of MS2 spectra using unsupervised
methods to aid the identification of secondary metabolites from Pseudomonas aeruginosa”.
In: Journal of Chromatography B 1071 (Dec. 2017), pp. 19–28. doi: 10 . 1016 / j .
jchromb.2017.06.002

Abstract

Pseudomonas aeruginosa is an important opportunistic pathogen that produces a
large arsenal of small molecule virulence factors and quorum sensing signal molecules.
The annotation of these secondary metabolites in untargeted, mass spectrometry-
based metabolomics is difficult, as many of them cannot be found in common
metabolite databases, and as manual annotation is tedious. We therefore developed
an algorithm named CluMSID that uses cosine similarities of product ion spectra
and neutral loss patterns in combination with unsupervised clustering methods such
as multidimensional scaling, density based clustering and hierarchical clustering to
group structurally similar compounds and hence facilitate their annotation. The use
of this tool allowed us to find clusters for several classes of primary and secondary
metabolites, and helped identifying spectral similarities that would have gone un-
noticed in standard untargeted metabolomics data analysis workflows. CluMSID
enabled the annotation of 27 previously undescribed members of the canonical
classes of alkyl quinolone quorum sensing signal molecules and provided evidence
for the postulation of a new putative alkyl quinolone class. The CluMSID script
written in R is open source and can be used by anyone in the metabolomics and
natural product research community.
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3.1. Introduction

The Gram-negative bacterium Pseudomonas aeruginosa is an important opportunistic
pathogen that can infect various human tissues. It is particularly threatening for pa-
tients suffering from cystic fibrosis (CF), pneumonia, or wound infections [1, 2]. For
example, P. aeruginosa accounts for potentially fatal respiratory failure in 80–95% of
CF patients [3]. The intrinsic antibiotic resistance of P. aeruginosa [4] and its ability
to evade the host immune system by forming biofilms [5, 6] redound further to the high
clinical importance of this pathogen.
Like other bacteria, P. aeruginosa uses peptides and proteins as virulence factors [7],

but it especially relies on small molecule secondary metabolites to exert and regulate
its virulence, the most important classes being phenazines, rhamnolipids, homoserine
lactones and alkyl quinolones [8]. Phenazines (Fig. 3.1) are redox-active, coloured het-
erocyclic compounds that are also responsible for the green fluorescence of the bacteria
[9]. Pyocyanin, the best studied phenazine of P. aeruginosa, can be detected in the
sputum of infected CF patients. It is an important contributor to pathogenesis by gen-
erating reactive oxygen species that subject host cells to harmful oxidative stress [10].
Rhamnolipids are glycolipids with surfactant-like properties that disturb the integrity
of the lung epithelium and hence facilitate paracellular invasion of bacteria [11]. Fur-
thermore, they enable the bacterium to eliminate polymorphonuclear leucocytes and
thus evade the most important immune mechanism in CF patients’ lungs [12, 13].
P. aeruginosa regulates its virulence to a large extent by quorum sensing (QS) [8].

Like most Gram-negative bacteria, it possesses a QS system based on homoserine lac-
tones (HSLs), but it also features an additional system that consists of alkyl quinolones
like the Pseudomonas Quinolone Signal (PQS) or its biosynthetic precursor 2-heptyl-
[1H ]-4-quinolone (HHQ). Although these two species and 2-heptyl-[1H ]-4-quinolone-N -
oxide (HQNO) are usually referred to as the most prominent and most important quo-
rum sensing signal molecules, P. aeruginosa produces a large variety of alkyl quinolone
derivatives (Fig. 3.1G) [14].
The fact that a large portion of both the regulators and the effectors of pseudomonal

virulence are small molecules renders mass spectrometry-based metabolomics a suitable
method to study the complex interplay of virulence and metabolism in this pathogen.
Microbial metabolomics is a field of growing importance in basic microbiology, biotech-
nology, synthetic biology as well as medical microbiology and infection research [15].
Metabolomics, the analysis of the (near-)entirety of small molecules in a biological
system, is an integral part of systems biology and from all omics disciplines, it is as-
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Figure 3.1.: Chemical structures of selected secondary metabolites produced by Pseudomonas
aeruginosa. A-F: Selected phenazines produced by Pseudomonas aeruginosa. A:
Phenazine-1-carboxylic acid. B: Phenazine-1-carboxamide. C: Phenazine-1,6-
carboxylic acid. D: Pyocyanin. E: Tetrahydropyocyanin (putative structure) F: Aerugi-
nosin A. G: General structure of the three alkyl quinolone classes and the nomenclature
used in this article. The side chain composition is indicated by the prefix Cn or, in the
case of m-fold unsaturated side chains, Cn:m.
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sumed to be the one closest to the phenotype [16]. Therefore, it can help elucidating
metabolism as such, enzyme functions, or the interplay of metabolism and virulence or
other phenotypic traits [17–20].
The most eminent problem encountered by researchers in MS-based metabolomics is

metabolite identification [21]. Multiple tools have been developed to help the analyst
deal with this issue [22–27] including data base querying [28], computational prediction
of mass spectra [29, 30], substructure determination [31] and the analysis of fragmenta-
tion trees [32]. As all of them solve only parts of the problem, metabolite identification
remains the major obstacle on the way to biological interpretations of metabolomics
data. Whereas the metabolomes of some microbes such as Staphylococcus aureus have
been extensively (albeit still incompletely) annotated [33], the P. aeruginosa metabo-
lome measured by reversed phase LC–MS/MS contains in large part compounds that
cannot be found in the established metabolite data bases like METLIN [34], MassBank
[35] or HMDB/ECMDB [36, 37].
Similarity comparison of MS2 spectra has long been used in the field of proteomics to

group spectra derived from the same molecule [38]. Recent adaptations of this principle
in combination with networking algorithms have been applied to dereplication problems
in natural product research, metabolomics and molecular ecology [39–42]. The basic
idea is that compounds which produce similar MS2 spectra are likely to have a simi-
lar structure or at least share structural elements. The similarity of MS2 spectra can
be calculated in different ways [43], the most widely used being the cosine similarity
between n-dimensional vectors constructed from two spectra containing peaks with n
unique mass-to-charge ratios [44]. Treutler et al. have recently combined clustering of
MS2 spectra from data-independent measurements with information on feature regula-
tion gained on the MS1 level in their web application “MetFamily” in order to study
differences in abundance of metabolite families [45]. Another web application that uses
MS2 similarity is the “Molecular Networking” tool developed by the Doerrestein group
[42]. This approach uses spectral correlation and visualisation to group spectra and
allows for data exchange with other researchers but the possibilities for customisation
of the data analysis methods are limited.
In this article, we present an algorithm called CluMSID, short for Clustering of

MS2 Spectra for Metabolite Identification. It applies cosine similarity in combination
with clustering by unsupervised methods to group features by their MS2 fragmentation
in order to facilitate metabolite identification. The algorithm is encoded in an open
source, user friendly program written in the programming language R and handles
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LC–MS/MS data from data-dependent measurements which makes it usable for most
experimentators and data analysts in the field of metabolomics. In contrast to the
aforementioned web applications, CluMSID is a highly customisable and accesible tool
that is dedicated to assist in the metabolite identification process. We explored the
strengths and the limitations of CluMSID by clustering and assigning metabolite spectra
from a P. aeruginosa cell extract, and achieved extended metabolome coverage through
the identification of hitherto novel analogues of virulence regulators.

3.2. Materials and methods

3.2.1. Chemicals and analytical standards

LC eluents and extraction solvents were Baker Analyzed™ Ultra LC/MS grade (Fisher
Scientific, Schwerte, Germany). d-(+)-Glucose monohydrate was from Merck Millipore
(Darmstadt, Germany). LB broth powder, magnesium sulfate and casamino acids were
purchased from Roth (Karlsruhe, Germany). All other chemicals were obtained from
Sigma-Aldrich (Taufkirchen, Germany).

The MSMLS—Mass Spectrometry Metabolite Library of Standards (IROA Technolo-
gies, Bolton, MA) as well as a number of individually bought substances from Sigma-
Aldrich (Taufkirchen, Germany) were used as analytical standards for our in-house
library.

3.2.2. Bacterial strains and growth conditions

Pseudomonas aeruginosa PA14 from plate culture was used to inoculate four precul-
tures of 4mL volume each in Luria-Bertani broth [46]. The precultures were incu-
bated overnight at 37 °C in 15mL glass tubes under constant agitation (160 rotations
per minute) in a shaking incubator, and subsequently united and centrifuged at 4 °C
and 9000 g for 5min. The supernatant was discarded, and the pellet was resuspended
in 10mL BM2 medium (2mM (NH4)2SO4, 40mM K2HPO4, 22mM KH2PO4, 2mM
MgSO4, 10 µM FeSO4, 0.4% (w/v) glucose, 0.01% (w/v) casamino acids) by vigorous
shaking. Three 50mL cultures in BM2 medium were inoculated with 290 µL of this
suspension, resulting in a starting OD600 of 0.05. The cultures were incubated at 37 °C
and 160 rotations per minute in a shake incubator for 7.5 h until they reached an OD600

of 1.3 ± 0.1. 10mL from each culture flask were transferred to 50mL plastic tubes and
centrifuged at 4 °C and 9000 g for 5min. The supernatants were discarded, while the
pellet was shock frozen in liquid nitrogen and stored at –80 °C until further processing.
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3.2.3. Metabolite extraction

The thawed cell pellets were resuspended in 1mL 80% (v/v) methanol containing
0.1mg/L trimethoprim, 0.1mg/L nortriptyline and 0.3mg/L glipizide as internal stan-
dards. Complete resuspension and cell disruption was achieved by vigorous shaking for
1min, followed by sonication in an ice cold sonic bath (Sonorex Digiplus, BANDELIN
electronic, Berlin, Germany) for 15min. Cell debris was separated by centrifugation
at 4 °C and 11000 g for 20min. 900µL of the supernatant were transferred to a 2mL
plastic tube and dried in a centrifugal evaporator (Refrigerated CentriVap® Concen-
trator with –50 °C CentriVap® Cold Trap, Labconco, Kansas City, MO) at 20 °C and
full vacuum until complete dryness. Samples were reconstituted in 90 µL 80% (v/v)
methanol containing 1mg/L caffeine and 1mg/L naproxen as internal standards which
were added as part of a routine untargeted metabolomics workflow but were not used in
the analysis presented here. Equal volumes of each of the three samples were combined
to yield a pooled sample, which was used for further analysis.

3.2.4. Liquid chromatography—tandem mass spectrometry

The pooled metabolite extract was separated by ultra-high performance liquid chro-
matography on a Dionex Ultimate 3000 UPLC (Thermo Fisher Scientific, Waltham,
MA) using a 150mm Kinetex C18 reversed phase column with 1.7 µm particle size
and 2.1mm inner diameter (Phenomenex, Aschaffenburg, Germany) with a flow rate
of 300µL/min. Gradient elution with water with 0.1% (v/v) formic acid as eluent A
and acetonitrile with 0.1% (v/v) formic acid as eluent B was run as follows: 1% B for
t =0min to t =2min, linear gradient from 1% B to 100% B from t =2min to t =20min,
hold 100% B until t =25min and linear gradient from 100% B to 1% B from t =25min
to t =30min.

The sample was analysed by positive mode electrospray ionization quadrupole time-
of-flight mass spectrometry on a maXis™ HD QTOF (Bruker, Bremen, Germany) in full
scan mode (50–1500Da). Data dependent MS/MS was performed by collision-induced
dissociation of the three most abundant ions in each scan, making use of Bruker’s
“Smart Exclusion” functionality to minimize multiple fragmentation of the same ion.
The collision energy was ramped from 80% to 200% of the default auto-MS/MS collision
energy in order to get more information rich spectra.
The sample was rerun under the same chromatographic and mass spectrometry set-

tings except for a higher injection volume of 3µL (instead of 1µL) and the use of
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a preferred mass list. The list contained the m/z of all theoretically possible alkyl
quinolones with chain lengths of 0–21 carbon atoms and 0–2 double bonds (Supplemen-
tary Table 3.S1). The preferred mass list assured that alkyl quinolones contained in
the sample in sufficient concentrations were fragmented on all accounts.

3.2.5. Data processing

3.2.5.1. Data conversion and import

LC–MS/MS data were exported to mzXML files using Bruker DataAnalysis and Bruker
Compass Xport. All subsequent data analysis steps were carried out utilizing R (ver-
sion 3.3.1) [47] in the RStudio environment (version 0.99.896) [48]. The code can be
accessed via GitHub: https://github.com/tdepke/CluMSID and can also be found in
the Supplementary Material (Supplementary Computer Code 1). As can be seen from
the code, all steps except for the addition of manually evaluated annotations are done
automatically without the need for direct user intervention. The mzR package (version
2.4.1) [49–53] was used to import mzXML files into R. The overall number of MS2

spectra was counted and checked for plausibility as a quality control measure. All MS2

spectra were extracted and stored as a list. Each list entry corresponded to a spectrum
that was represented by a two column matrix containing the m/z of all fragments and
the respective signal intensities. The list was filtered to contain only spectra with more
than one fragment peak. Precursor m/z and retention time were collected for each
spectrum.

3.2.5.2. Correction of precursor m/z

As already reported by Garg et al. [40], mzXML files generated by Bruker Compass
Xport retain mass calibration from the *.baf file for peaks in MS1 and MS2 scans,
but contain uncalibrated masses for the precursor ions of MS2 spectra—a circumstance
that causes multiple problems in the handling of MS2 data. To correct this error, we
matched the indicated precursor m/z with the preceding MS1 scan and took the peak
m/z from the respective spectrum that was closest to it on the condition that it did
not deviate more than 100 ppm. In praxi, deviations as high as approximately 80 ppm
were observed.
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3.2.5.3. Generation of consensus spectra

In order to reduce artefact masses, species eluting after t =25min were excluded. As
many ions are fragmented several times despite optimized acquisition parameters, mul-
tiple spectra from the same feature were merged employing the following procedure:
Spectra were grouped if their precursor m/z differed less than 10 ppm. For the in-
dividual groups, precursor retention times were sorted in ascending order, and each
difference between neighbouring retention times was calculated. If neighbouring spec-
tra were recorded within an interval not bigger than 30 s, they were considered to belong
to one feature and were merged. A retention time difference of more than 30 s indicated
an isobaric species eluting separately and therefore, spectra were assigned to a new
feature. For each feature, median m/z and median retention time of the contributing
spectra were calculated. The respective spectra were merged by calculating the mean
intensities for all present fragment ions. Fragments were considered the same if their
m/z in the individual spectra had a difference of not more than 10 ppm. The mean of
the m/z values in the individual spectra was given as m/z in the merged spectrum. If
a fragment was not present in a spectrum, an intensity of 0 was used. Feature IDs for
all merged spectra were created from precursor ion m/z and retention times using the
same naming formula as XCMS [54].

3.2.5.4. Generation of neutral loss patterns

A second list that contained the neutral losses from each spectrum instead of the m/z
of the charged fragment ions was derived from the original spectra. To that end, all
fragment peak m/z were subtracted from the corrected precursor ion m/z, and the
intensity of each fragment peak m/z was adopted for the respective neutral loss.

3.2.5.5. Assignment of manual annotations

A list of feature IDs along with exact precursor ion m/z and retention time was printed
in a human-readable format. Level 1 identifications [55, 56], i. e. annotations based
on comparison of exact mass, MS2 spectrum and retention time to those of an authen-
tic standard measured on the same machine, were assigned to features if they could
be matched to authentic standards of our in-house library regarding their exact mass,
retention time and MS/MS fragmentation using Bruker Compass DataAnalysis and
LibraryEditor. Putative annotations were assigned based on exact mass and MS/MS
fragmentation searches in METLIN [34]. In case of alkyl quinolones and rhamnolipids,

52



3

3.2. Materials and methods

exact masses and fragmentation patterns were compared to literature data [14, 57,
58]. Metabolite names were appended to feature IDs, putative annotations in brackets.
Putative annotations, including those resulting from the cluster analysis, where addi-
tionally validated regarding exact mass and isotope pattern conformity using Bruker’s
SmartFormula functionality in DataAnalysis software (cf. section 2.5.1) [59]. As recom-
mended by Thiele et al. [59], 50mσ was chosen as upper threshold for isotope pattern
conformity. The respective data is listed in Supplementary Table 3.S7.

3.2.5.6. Calculation of spectral similarity and cluster analysis

Spectral similarity between two merged spectra a and b was calculated using the well-
established cosine similarity derived from the spectral contrast angle θ with square
root-transformed intensities ai and bi [43, 44, 60]:

cos θ =
∑

i ai × bi√∑
i a

2
i ×

∑
i b

2
i

(3.1)

All merged spectra, i. e. the consensus spectra generated as described in 2.5.3, were
subjected to pairwise comparison, and a distance matrix was constructed using 1−cos θ
as distance. The same procedure was applied for neutral loss patterns generated as de-
scribed in 2.5.4. For data visualization, metric multidimensional scaling was applied to
plot the distances between the spectra in two-dimensional space. The distance matrices
were further examined by density based clustering employing the Ordering Points To
Identify the Clustering Structure (OPTICS) algorithm [61] from the dbscan R pack-
age (version 0.9-8) [62] with an upper limit of the size of the epsilon neighbourhood
of 10000 and three as minimum number of points in the epsilon region. The thresh-
old to identify clusters was adjusted to 0.5 for original spectra and 0.7 for neutral loss
patterns. Thresholds for cutting dendrograms are by definition to a certain degree ar-
bitrary. The values we chose for this study proved to be useful to get appropriately
separated clusters. Cluster IDs were assigned to spectra and reachability plots were
created. Furthermore, hierarchical clustering with average linkage as agglomeration
method was performed on these distance matrices, and dendrograms were plotted in
traditional and circular layout, the latter by the use of the ape R package (version 3.5)
[63]. To identify the main clusters, the dendrogram was cut in groups at a height of
0.95, and cluster IDs were assigned to spectra.
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3.2.5.7. Analysis of samples measured with preferred mass list

The same data analysis workflow was used to analyse the samples measured with a
preferred mass list. Putative annotations for alkyl quinolones were assigned based on
exact mass and printed in square brackets in the respective figures. These annotations
were confirmed or dismissed based on spectral and neutral loss similarity to other alkyl
quinolones.

3.3. Results and discussion

3.3.1. Data pre-processing and manual assignment

The LC–MS/MS results file from the untargeted analysis of a P. aeruginosa PA14 cell
extract featured 6844 spectra in total, thereof 4202 MS2 spectra. 2765 MS2 spectra
contained more than one product ion peak. Dismissing spectra whose precursor ions
eluted during column washing left 2290 MS2 spectra that were considered in the anal-
ysis. By merging spectra from the same precursor, this number was further reduced to
518 consensus spectra that are assumed to represent distinct molecular features con-
tained in the sample. The spectra held an average of 12 product ion peaks, with 90% of
the spectra ranging between 2 and 25 peaks. 61 spectra could be identified by matching
exact mass, MS2 spectrum and retention time to our in-house library, including internal
standards and in-source fragments. Another 89 spectra could be putatively identified
by MS/MS and exact mass comparison to the METLIN database and relevant litera-
ture on P. aeruginosa secondary metabolites (Supplementary Table 3.S2). Thus, 368
spectra remained unassigned after matching to the in-house library and the manual as-
signment. We therefore employed data mining tools to reveal MS2 spectra similarities
that enable putative annotations of various features.

3.3.2. Data exploration by multidimensional scaling

Multidimensional scaling (MDS) is a versatile method to visualise distances between
data points in multidimensional space and hence was considered adequate to provide
an explorative overview of the MS2 similarity data generated by CluMSID. An MDS
plot of MS2 spectra similarities is shown in Supplementary Fig. 3.S1. Although spa-
tial separation is generally poor, three point clouds can be identified that comprise
putatively identified alkyl quinolones, peptides and amino acids as well as several glu-
tamate containing metabolites. Thus, this method could potentially be used to quickly
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assess whether a feature belongs to one of those three major clusters of spectra, but
other methodologies are to be preferred for a more detailed view that also covers other
substance classes.

3.3.3. Density-based clustering of MS2 spectra

Based on the structural diversity of metabolites in bacteria in general [64] and Pseu-
domonas species in particular [65], one assumes that an LC–MS/MS dataset of a bacte-
rial cell extract contains sets of spectra displaying high similarity to each other, because
they stem from secondary metabolites from the same chemical class or biosynthetic
pathway, along with various spectra from structurally different metabolites that can
only be weakly related to others. This fits well with the concept of density-based clus-
tering that aims to identify clusters whose members show close proximity to each other,
and to classify data points that do not integrate in clusters as noise. As the intra-group
similarity of different classes of secondary metabolites is expected to be varying, we
chose the OPTICS algorithm [61] as a density-based clustering tool to be included in
CluMSID.
Fig. 3.2 provides a graphical overview of the OPTICS clustering results in form of

a plot that depicts the reachability distance of each pair of subsequent spectra in the
order derived from the density-based clustering. The clusters are colour-coded, while
black lines represent noise.
For some groups that are expected to form clusters, density-based clustering yields

very good results: Cluster 2 (green in Fig. 3.2) includes various adenine containing
metabolites. Phenazine-1-carboxylic acid, phenazine-carboxamide and their in-source
fragments are conglomerated in cluster 23 (grey), whereas pyocyanin is located remote
from the other phenazines in cluster 16 (orange). The alkyl quinolone spectra are not
gathered in one density-based cluster, but rather separately grouped by their chain
length: While the C9-congeners are part of the large cluster 1 (red), species with C7,
C13 and C11 are grouped in the individual clusters 8, 11 and 12, respectively, comprising
both saturated and unsaturated alkyl quinolones of all three classes. Most other alkyl
quinolones as well as the large part of rhamnolipids are classified as noise.
Though the density-based clustering functionality of CluMSID succeeded in grouping

of some sets of similar metabolites and thus provides useful hints for feature annotation,
its overall performance regarding the P. aeruginosa cell extract used in this study is
not entirely convincing. Nonetheless, OPTICS clustering is implemented in CluMSID
as one option of unsupervised methods for the clustering of MS2 spectra.
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Figure 3.2.: Reachability plot of OPTICS-clustered MS2 spectra. The 518 consensus spectra are
ordered by the OPTICS algorithm and each bar in the reachability plot represents the
OPTICS distance of two consecutive spectra, i.e. low bars signify high similarity and
“valleys” in the plot correspond to clusters of similar spectra. Clusters were identified
with a reachability distance threshold of 0.5 and colour coded. Clusters discussed in the
text are annotated in the plot using their cluster ID: 1: various compounds including
C9 alkyl quinolones. 2: adenine containing metabolites. 8: C7 alkyl quinolones. 11:
C13 alkyl quinolones. 12: C11 alkyl quinolones. 16: pyocyanin and its derivatives. 23:
phenazine-1-carboxylic acid and related compounds. Spectra classified as not belonging
to a cluster (“noise”) are coloured in black. A full list of cluster assignments including
the colour-coding can be found in Supplementary Table 3.S3.
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3.3.4. Hierarchical clustering of MS2 spectra

Agglomerative hierarchical clustering, one of the oldest clustering methods, is among
the most frequently used data mining tools. It uses pairwise distances—that have in
this case been calculated in advance by cosine similarity of MS2 spectra—to perform a
stepwise grouping of the data points into clusters [66]. The results of the hierarchical
clustering of all 518 MS2 spectra by cosine similarity of square root-transformed intensi-
ties have been visualized in form of a heat map (Supplementary Fig. 3.S2). Hierarchical
clustering with average linkage agglomeration led to the formation of several clusters
with different sizes and intermediate to high intra-cluster spectral similarities, whereas
only very few features showed considerable similarity to spectra outside their own clus-
ter. More than 90% of all pairwise comparisons (245090 of 268324) resulted in a spectral
similarity of zero, i. e. the respective spectra had no fragment ion m/z in common. Cut-
ting the dendrogram at a height of 0.95 units yielded 125 clusters (Fig. 3.3). Only 29
of them contain more than two features, indicating that many analytes produced MS2

spectra that cannot be assigned to a group of structurally comparable features. A full
list of cluster assignments is provided in Supplementary Table 3.S4.
Cluster 43 contains most features, with 98 spectra assigned to it (Fig. 3.3). Ac-

cording to the manual identification procedure (section 3.1), it includes the known
alkyl quinolones HHQ, HQNO and PQS along with multiple putatively identified alkyl
quinolones. The only annotated cluster member not belonging to the alkyl quinolone
group is a sodium adduct of the internal standard nortriptyline. HHQ and HQNO,
whose retention times overlapped, cluster very closely together as they share amongst
other the typical alkyl quinolone fragments 159.068 and 172.076 (Fig. 3.4A). In even
closer proximity to HQNO, a feature of 519.323 Da can be found, which corresponds
to a proton-bound dimer of HQNO. A spectrum with a precursor mass of 503.327 Da
clustered next to HHQ with a high cosine similarity of 0.73 also contained the afore-
mentioned typical alkyl quinolone peaks, along with the parent masses of both HHQ
and HQNO (Supplementary Fig. 3.S3). The ion probably represents a proton-bound
mixed dimer of the two co-eluting alkyl quinolones formed in the ionization source.
The phenomenon of closely clustered spectra from [M+H]+ and [2M+H]+ ions can also
be observed for C9:1-QNO (m/z 286.180 and 571.353), C11:1-PQS (m/z 314.211 and
627.416) and C11:1-HQ (m/z 298.217 and 595.426), amongst others. This proves that
spectral similarity can also help to find features that derive from the same analyte.
Apart from the known alkyl quinolones, the cluster contains metabolite spectra as-

signed to alkyl quinolones that have not been reported in the literature (although
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Figure 3.3.: Results of the hierarchical clustering with average linkage as agglomeration method
of 518 consensus MS2 spectra visualised as circular dendrogram. Clusters were ob-
tained by cutting at 0.95 are colour coded in the dendrogram. Cluster IDs of clusters
discussed in the main text as well as their colour coding is indicated in the outer
circle: 4: predominantly glutamate containing metabolites. 6: various peptides and
peptide-like metabolites. 7: adenine containing metabolites. 35: pyocyanin and related
compounds. 43: alkyl quinolones. 48: non-pyocyanin phenazines. 63: among others
rhamnolipid [M+H]+ features.

58



3

3.3. Results and discussion

Figure 3.4.: Most important alkyl quinolone fragmentation reactions according to [14]. A: Frag-
mentation reactions for HHQ and HQNO congeners with 159.068 as main fragment
m/z for both classes and 184.076 as well as 198.091 as signature fragment m/z for
species with an α-β double bond. B: Main fragmentation reaction for PQS congeners
with 175.063 as signature fragment m/z that is not observed for the other classes.
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Taylor et al. have postulated the existence of short-chain alkyl quinolones based on
low resolution GC-electron capture MS data [67]). The components show the typi-
cal alkyl quinolone fragmentation and conform to the homologous series of saturated
or mono-unsaturated 2-alkyl-4-quinolones (HHQ-like) or 2-alkyl-4-hydroxyquinoline-N -
oxides (HQNO-like): C4-HQ and C4:1-HQ with m/z 202.122 and 200.107 elute in low
concentration at similar retention times. They do not display the most typical fragment
ion of m/z 159.068, but another characteristic fragment of m/z 172.076 (Supplemen-
tary Fig. 3.S4). A spectrum derived from a precursor of m/z 176.071, clustering close
to C5-HQ, can be assigned to C1-QNO based on exact mass and fragmentation pat-
tern. In the same region of the dendrogram, a feature can be putatively identified as
C6-HQ build on the same reasoning. The feature M232.13T495.36, whose exact mass
matches the known compound C5-QNO, has not been identified by library search, as
it lacked the abovementioned main typical fragments associated with alkyl quinolones,
presumably because it is present in a too low concentration. However, the fact that
it is grouped with the other alkyl quinolones based on spectral similarity supports the
assignment.
In addition, the cluster contains a set of spectra that display the characteristic frag-

mentation pattern, but whose precursor masses do not correspond to members of re-
ported series of alkyl quinolones. Most notably, several features show an m/z that is
2.02Da below that of a mono-unsaturated alkyl quinolone, e.g. M312.2T794.57 with
an exact mass of 312.1951Da compared to 314.2121Da for C11:1-QNO. Using low
resolution data, this feature could have easily been mistaken as C12:1-HQ with a the-
oretical exact mass of 312.2322Da, an analogue that has also been detected in the
sample with a median m/z of 312.2327. The high resolution data, however, revealed
a sum formula of C20H25NO2 that is in accordance with a doubly unsaturated C11
hydroxyquinoline-N -oxide, C11:2-QNO. The spectrum shows fragment peaks of m/z
184.075 and 198.092, which have been deemed characteristic for (mono-)unsaturated
alkyl quinolones by Lépine et al. [14] and could be generated in the same manner from
doubly unsaturated species (Supplementary Fig. 3.S5). Similarly, features with m/z of
268.1697, 296.2015, 310.2166, 312.1960, 324.2327 and 340.2276 can be putatively an-
notated as C9:2-HQ, C11:2-HQ, C12:2-HQ, C11:2-QNO (different isomer), C13:2-HQ
and C13:2-QNO, respectively.
Another set of features from the alkyl quinolone cluster exhibits masses that con-

form to sum formulae of alkyl quinolones possessing an additional oxygen atom, e. g.
M330.21T844.12 with an m/z of 330.2068 that is consistent with the sum formula
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C20H27NO3. Lépine et al. have postulated a series of 3-alkyl-2,3-dihydroxy-4-quinolones
that are presumably derived from the respective N -oxides and produce signature frag-
ments at m/z 178, 162, 160, 146, 144 and 132, the latter being the most intensive
[14]. Although the aforementioned feature from this analysis would match the pre-
cursor mass of 3-undecenyl-2,3-dihydroxy-4-quinolone (Fig. 3.S5A), the MS2 spectrum
differs considerably from the fragment pattern reported by Lépine et al., containing
the characteristic alkyl quinolone fragment at m/z 159.068 along with 184.076, that
indicate an unsaturated side chain (Supplementary Fig. 3.S6). The most intensive peak
at m/z 312.1964, the mass of the putative C11:2-QNO, is connected to the precursor
mass by a neutral loss of H2O. The same pattern is apparent in several other features:
M304.19T717.91 is contained in the sample in very low concentrations, therefore, typ-
ical alkyl quinolone fragment ions cannot be observed. But 286.1797, corresponding
to a loss of water and to the mass of C9:1-QNO, is the most prominent peaks in the
MS2 spectrum (Supplementary Fig. 3.S7). This is also confirmed in the isobaric feature
M304.19T786.75 that in turn possesses the 159.068 and 184.075 peaks (Supplementary
Fig. 3.S8). The same patterns appear in M332.22T890.1, containing a peak whose m/z
corresponds to the mass of C11:1-QNO, and in M358.24T929.17 with a peak match-
ing C13:2-QNO (Supplementary Fig. 3.S9). In a few more features included in the
respective cluster, the exact masses conform to this scheme, whereas the fragmentation
patterns diverge for unknown reasons. From the present MS/MS data, it cannot be
excluded that the abovementioned series of spectra derive from 3-alkyl-2,3-dihydroxy-
4-quinolones that undergo differing fragmentation reactions under the conditions ap-
plied in this study. Still, the facile loss of water in these compounds suggests that a
side chain oxidation accounts for the additional oxygen. This assumption is backed
by the absence of a hydroxylated quinolone fragment as produced by PQS congeners
(Fig. 3.4B). Therefore, we propose that M330.21T844.12 are products of an allylic ox-
idation of the side chain (Fig. 3.5B). However, the hierarchical clustering based on
spectral similarity as enabled by CluMSID has pointed to the fact that these analytes
are related to alkyl quinolones which has been supported by examining the individual
fragmentation patterns.

The fact that there are so few 2-alkyl-3-hydroxy-4-quinolones, i. e. PQS analogues, in
the cluster seems surprising, but a closer inspection revealed the absence of such spectra
outside of cluster 43. It is rather a separation problem that these compounds are only
infrequently fragmented in data dependent MS/MS scans: As reported in the literature
[68–70], we observed that PQS was prone to significant peak broadening (Supplementary
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Figure 3.5.: Possible structures of an alkyl quinolone species with the sum formula C20H27NO3.
A: 3-Alkyl-2,3-dihydroxy-4-quinolone as postulated by [14]. B: Side chain oxidation
product as proposed in this study. Both structures have the same exact mass but the
fragmentation pattern with a pronounced loss of water is better explained by structure
B.

Fig. 3.S10). Thus, the analysis of PQS analogs by liquid chromatography requires
measures like chelating additives in the mobile phase [68] or preanalytical derivatisation
[70], which are not suitable for untargeted approaches. A detailed and easy to inspect
representation of cluster 43 can be found in Supplementary Fig. 3.S11.
Cluster 4, the second largest cluster, contains glutamate with its signature frag-

ments at m/z 148.060 (precursor), 130.049, 102.055 and 84.044 as well as a number of
glutamate-containing substances. For instance, a glutamate in-source fragment and
N -acetylglutamate clustered very closely to glutamate, and also an in-source frag-
ment of folic acid featuring all the characteristic glutamate fragments can be found
in this region of the dendrogram. Furthermore, glutathione disulfide, UDP-muramyl-
pentapeptide (doubly charged) and some peptides containing glutamate form part of
this cluster. The third largest cluster is cluster 6 that comprises amino acids, peptides
and peptide-related compounds such as panthotenate. As peptidic metabolites are not
in the focus of this study, clusters 4 and 6 are not discussed in detail—however, it
is worth noting that the algorithm is capable of grouping peptides together and can
help in their annotation. Another example of the broader utility of the algorithm is
cluster 7, which represents a dense group of metabolites containing adenine and some
related compounds, namely adenosine, adenosine monophosphate, adenosine diphos-
phate, flavin adenine dinucleotide, nicotinamide adenine dinucleotide, nicotinamide
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adenine dinucleotide phosphate, S-adenosyl-homocysteine, deoxyadenosine monophos-
phate, methylthioadenosine, hypoxanthine and nicotinamide.

While the phenazine virulence factors phenazine-1-carboxamide, phenazine-1-carb-
oxylic acid and phenazine-1,6-dicarboxylic acid along with their in source fragments con-
stitute cluster 48 (Supplementary Fig. 3.S12), the most prominent member of the family
is located quite far away from its congeners in cluster 35 (Supplementary Fig. 3.S13).
In fact, pyocyanin’s tandem mass spectrum displayed a very low cosine similarity of
0.02 to that of phenazine-1-carboxylic acid and no similarity at all to phenazine-1-
carboxamide and phenazine-1,6-dicarboxylic acid spectra. This can be attributed to the
fact that although pyocyanin has a phenazine scaffold, its different hydroxylation state
apparently affects MS/MS fragmentation substantially. Although the known species
1-hydroxyphenazine and 2-hydroxyphenazine were not found in this analysis, a number
of other spectra exhibited high similarity to that of pyocyanin. None of them could be
identified by library or database searches, but the clustering in combination with bio-
chemical reasoning gave some hints on the compounds’ identities. M215.12T626.24 pro-
duced a spectrum whose fragment peaks correspond to the most prominent fragments
in the spectrum of pyocyanin, and as its precursor mass is 4.03Da higher, we suggest
an annotation as the reduced form of pyocyanin, tetrahydropyocyanin (Supplemen-
tary Fig. 3.S14). M254.09T400.89 could, once its structural connection to pyocyanin
had been revealed by our algorithm, be identified as aeruginosin A (Supplementary
Fig. 3.S15) as originally reported by Holliman in 1969 [71] (not to be confused with a
group of octahydroindoles also called aeruginosins [72]). This assignment is supported
by comparison of the MS2 spectrum to one published by Abu et al. [73]. Another
interesting spectrum with a precursor mass of 255.0761Da is located directly next to
pyocyanin with a high cosine similarity of 0.65. It contains the signature fragments of
pyocyanin at m/z 168.068 and 196.063 as well as a peak with the m/z of pyocyanin
itself, 211.087, implying major structural similarity of the two compounds (Supplemen-
tary Fig. 3.S16). As the retention time of the two features differs by about 100 s,
it can be excluded that the feature in question is an ESI adduct of pyocyanin. The
mass difference respectively the neutral loss from 255.076 to 211.087 commonly oc-
curs through the loss of CO2 from a carboxylic acid. To the best of our knowledge, a
pyocyanin carboxylic acid has not been described before, but as pyocyanin is biosyn-
thesised from phenazin-1-carboxylic acid by oxidative decarboxylation, it is conceivable
that the equivalent reaction of phenazine-1,6-dicarboxylic acid could produce such a
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species. Finally, M181.08T724.14 could be identified as phenazine that is generated
spontaneously during the pyocyanin biosynthesis [74].
The third important group of small molecule metabolites associated with P. aerugi-

nosa virulence are rhamnolipids. In contrast to alkyl quinolones and phenazines, they
are not as nicely grouped in one or two clusters. Most noteworthy is the fact that
the [M+H]+ and the [M+Na]+ adduct of the same compound do not cluster together,
reflecting different fragmentation pathways despite an identical structure of the ana-
lyte. Whereas all [M+H]+ spectra are grouped in cluster 63, the respective sodium
adducts are more scattered. At least spectra from some rhamnolipid sodium adducts
were closely similar to those derived from [2M+Na]+ adducts.

3.3.5. Hierarchical clustering of neutral loss patterns

Structural similarity can not only be revealed by shared charged fragments, but also
by common neutral losses. Therefore, clustering based on the similarity of neutral loss
patterns can provide useful complimentary information to the data generated by com-
paring product ion spectra. We therefore implemented functionalities in CluMSID that
allow for the generation of neutral loss patterns and the respective distance matrix as
well as the mining of this information by MDS, density based clustering and hierarchical
clustering. In contrast to the approach employed by Li et al. [41] that relies on match-
ing neutral losses to a library of commonly observed uncharged fragments, CluMSID
preserves all neutral loss information by generating neutral loss patterns and making
use of cosine similarity for the comparison.
A list of cluster assignments and the respective dendrograms produced by these

methods can be found in Supplementary Table 3.S5 and Fig. 3.S17. An interesting
observation of the utility of neutral loss based clustering can be made in this study by
comparing the surrounding environment of nucleotides in the MS2 spectra and the neu-
tral loss patterns dendrograms. As mentioned in Section 3.4, the product ion spectrum
of AMP clusters alongside those of other adenine-containing metabolites, whereas its
highest neutral loss similarities are to GMP and CMP (cluster 9). That is expected, as
all of these molecules lose phosphate and ribose.
Neutral loss similarity can also be misleading, as exemplified by cluster 11, which

includes alkyl quinolones, two phenazines and the internal standard nortriptyline along
with glutamyl-alanine, nicotinamide, hypoxanthine and anthranilate. This is a rather
heterogeneous group from a structural point of view. On the other hand, the clusters
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comprising the putatively identified rhamnolipids are much denser than those obtained
by spectral clustering of product ions.

Density based clustering and multidimensional scaling of neutral loss pattern data
yielded only little informative grouping of spectra (data not shown) and shall therefore
not be discussed in this article; it is, however, possible with CluMSID and might prove
useful in other contexts.

3.3.6. Semi-targeted analysis with preferred mass lists

The hierarchical cluster analysis of the data from the semi-targeted MS/MS method
could nicely reproduce the grouping of alkyl quinolones in one cluster, as almost all
of them are assigned to cluster 29 (see Supplementary Table 3.S6 for a full list and
Supplementary Fig. 3.S18 for the respective dendrogram), underlining the utility of
CluMSID.

Table 3.1 lists all alkyl quinolones from the three canonical classes that have been
identified by semi-targeted analysis of a P. aeruginosa cell extract, in total 59 different
species, not counting cis-trans isomers. Especially the description of doubly unsaturated
congeners represents an important extension of the P. aeruginosa “quinolinome”. The
detection of alkyl quinolones with C15 and even one with a C17 side chain also represent
minor advances in defining the chemodiversity of quorum sensing signal molecules.

The authors are aware that the experimental setup of this study, i. e. the use of
a pooled sample of cultures grown in minimal medium under limited oxygenisation,
does not allow to generalise on the multitude of environments P. aeruginosa is able
to inhabit. It should also be stressed that the CluMSID workflow may only be used
to gain qualitative information on metabolite identities and no quantitative data on
production levels et cetera. Still, in summary, CluMSID led, in combination with the
semi-targeted analysis with preferred mass lists, to the MS2-based identification of 27
alkyl quinolone species that have, to the best of our knowledge, not been reported
before. By enhancing the coverage of low-abundant congeners in a systematic manner,
CluMSID helped defining the chemodiversity of quorum sensing signal molecules.

3.4. Conclusion

We addressed a major challenge in mass spectrometry-based untargeted metabolomics,
the feature identification, by developing a tool that clusters MS2 product ion spectra
and neutral loss patterns based on their cosine similarity using different unsupervised
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Table 3.1.: Alkyl quinolones identified by semi-targeted analysis.
2-alkyl-4-quinolones 2-alkyl-4-hydroxyquinoline-N-oxides
side chain m/z previously reported: side chain m/z previously reported:
C1 160.0757 C1 176.0706
C2 174.0914 C2 190.0863
C3 188.1070 [58] C3 204.1019
C4 202.1227 C3:1 202.0863
C5 216.1383 [14, 58] C5 232.1332 [14]
C5:1 214.1227 [14] C5:1 230.1176
C6 230.1540 [14, 58] C6 246.1489 [14]
C6:1 228.1383 [14] C7 260.1645 [14]
C7 244.1696 [14] C7:1 258.1489 [14]
C7:1 242.1540 [14, 58] C8 274.1802 [14]
C8 258.1853 [14, 58] C8:1 272.1645 [14]
C8:1 256.1696 [14] C9 288.195 [14]
C9 272.2009 [14, 58] C9:1 286.1802 [14]
C9:1 270.1853 [14, 58] C9:2 284.1645
C9:2 268.1696 C10 302.2115 [14]
C10 286.2166 [14] C10:1 300.1958 [14]
C10:1 284.2009 [14] C11 316.2271 [14]
C11 300.2322 [14, 58] C11:1 314.2115 [14]
C11:1 298.2166 [14, 58] C11:2 312.1958
C11:2 296.2009 C12:1 328.2271
C12 314.2479 C13 344.2584
C12:1 312.2322 [14, 58] C13:1 342.2428
C12:2 310.2166 C13:2 340.2271
C13 328.2635 [14, 58]
C13:1 326.2479 [14, 58] 2-alkyl-3-hydroxy-4-quinolones
C13:2 324.2322 side chain m/z previously reported:
C15 356.2948 C7 260.1645 [14]
C15:1 354.2792 C7:1 258.1489
C15:2 352.2635 C9 288.1958 [14]
C17:1 382.3105 C9:1 286.1802
C10:1 300.1958
C11:1 314.2115
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methods. The program called CluMSID is provided as an open source tool usable by
anyone in the metabolomics community.

The utility of CluMSID was demonstrated by the identification of 27 novel members
of the canonical alkyl quinolones, including a series of AQs with doubly unsaturated
side chain. Also pyocyanin congeners that were either unknown or could not be found in
common metabolite databases were annotated. In addition, CluMSID correctly grouped
metabolites with common functional elements (e. g. peptides, nucleotides) in clusters,
thereby facilitating a structural annotation. Therefore, we are convinced that CluMSID
is a beneficial tool for the study of metabolomes of diverse provenance.
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Supplementary Figures

Figure 3.S1.: MDS plot displaying cosine differences of 518 MS2 spectra. Major groups are marked
by coloured circles. Orange: predominantly alkyl quinolones. Green: predominantly
glutamate-containing metabolites. Red: predominantly peptides and amino acids.
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Figure 3.S2.: Heatmap displaying cosine similarity between 518 consensus spectra and dendrogram
as result of hierarchical clustering with average linkage. Red = high similarity, yellow
= intermediate similarity, white = no similarity.
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Figure 3.S3.: MS2 spectrum of M503.33T797.17, a putative proton-bound mixed dimer of HHQ
and HQNO.
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Figure 3.S4.: MS2 spectra of M202.12T578.44 (A) and M200.11T578.31 (B) that have been
putatively annotated as C4-HQ and C4:1-HQ.
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Figure 3.S5.: MS2 spectrum of M312.2T794.57, putative C11:2-QNO.

Figure 3.S6.: MS2 spectrum of M330.21T844.12, a putative side chain-oxidation product of C11:1-
QNO.
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Figure 3.S7.: MS2 spectrum of M304.19T717.91, a putative side chain-oxidation product of C9-
QNO.

Figure 3.S8.: MS2 spectrum of M304.19T786.75, another putative side chain-oxidation product
of C9-QNO.
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Figure 3.S9.: MS2 spectrum of M358.24T929.17, a putative side chain-oxidation product of C13:1-
QNO.

Figure 3.S10.: Extracted ion chromatogram of m/z 260.164, the exact mass of the [M+H]+ of
both HQNO and PQS. HQNO elutes first and in a good peak shape, while PQS
elutes later and fails to produce a defined peak.
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Figure 3.S11.: Cluster 43 containing various alkyl quinolone species.

Figure 3.S12.: Cluster 48 from the dendrogram obtained by hierarchical clustering of MS2 spec-
tra similarities. The Cluster contains the phenazine derivatives that are not N-
methylated.

Figure 3.S13.: Cluster 35 from the dendrogram obtained by hierarchical clustering of MS2 spectra
similarities. The Cluster contains the pyocyanin and related phenazine species.
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Figure 3.S14.: MS2 spectra of pyocyanin (upper pane) and M215.12T626.24, putatively annotated
as tetrahydropyocyanin (lower pane).

Figure 3.S15.: MS2 spectrum of M254.09T400.89, annotated as aeruginosin A.
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Figure 3.S16.: MS2 spectra of pyocyanin (upper pane) and M255.08T482.73, putatively annotated
as pyocyanin carboxylic acid (lower pane).
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Figure 3.S17.: Dendrogram obtained by hierarchical clustering of neutral loss pattern similarities.
Feature IDs are colour coded according to the cluster ID they have been assigned
to (cf. Supplementary Table 5).
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Figure 3.S18.: Dendrogram obtained by hierarchical clustering of product ion spectra similarities
of the spectra acquired in the alkyl quinolone-biased semi-targeted analysis. Feature
IDs are colour coded according to the cluster ID they have been assigned to (cf.
Supplementary Table 6).
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Supplementary Tables

For the sake of readability, Supplementary Tables 1.S1 to 1.S7 have been moved to
Appendix A.

Supplementary Computer Code

1 # CluMSID 0.1
2

3 library(mzR)
4 library(iontree)
5 library(ape)
6 library(dbscan)
7 library(RColorBrewer)
8

9 ## Open connection to mzXML file
10 aa <- openMSfile("PoolA_R_SE.mzXML")
11

12 ## Count MS2 spectra (QC)
13 mslvl <- c()
14 for (z in 1:length(aa)) {
15 mslvl[z] <- header(aa, z)$msLevel
16 }
17 length(mslvl[mslvl == 2])
18

19 ## Extract MS2 spectra
20 spectra <- list()
21 for (z in 1:length(aa)) {
22 spectra[[z]] <- peaks(aa, z)
23 }
24 ms2log <- mslvl == 2
25 ms2spectra <- spectra[ms2log]
26

27 ## Create list with spectra containing 2 or more peaks
28 vec <- c()
29 for (k in 1:length(ms2spectra)) {
30 vec[k] <- (nrow(ms2spectra[[k]]) >= 2)
31 }
32 ms2spectra2 <- ms2spectra[vec]
33

34 ## Correct uncalibrated precursor masses
35 pmz <- header(aa)$precursorMZ
36 new.pmz <- 0
37 for (i in 2:length(pmz)) {
38 if (pmz[i] == 0) {
39 x <-
40 0
41 } else {
42 if (pmz[(i - 1)] == 0) {
43 x <-
44 peaks(aa, (i - 1))[which.min(abs(pmz[i] - peaks(aa, (i - 1))[, 1])), 1]
45 } else {
46 if (pmz[(i - 2)] == 0) {
47 x <-
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48 peaks(aa, (i - 2))[which.min(abs(pmz[i] - peaks(aa, (i - 2))[, 1])), 1]
49 } else {
50 if (pmz[(i - 3)] == 0) {
51 x <-
52 peaks(aa, (i - 3))[which.min(abs(pmz[i] - peaks(aa, (i - 3))[, 1])), 1]
53 } else {
54 x <- NA
55 }
56 }
57 }
58 }
59 if (x == 0 ||
60 ((abs(x - pmz[i]) / pmz[i]) * 1e06) <= 100) {
61 new.pmz[i] <- x
62 } else {
63 new.pmz[i] <- NA
64 }
65 }
66

67 ## Create a matrix with precursor m/z and retention time for all spectra in ms2list
68 precursor <- cbind(new.pmz, header(aa)$retentionTime)
69 precursor2 <- precursor[ms2log,][vec,]
70

71 ## Exclude everything with RT >25min
72 cutend <- precursor2[, 2] < 25 * 60
73 precursormzrt <- precursor2[cutend,]
74 ms2list <- ms2spectra2[cutend]
75

76 ## Get median m/z and median RT for precursor masses that differ less than 10ppm
77 flist <- list()
78 mz1 <- precursormzrt
79 while (nrow(mz1) >= 1) {
80 l1 <- abs(mz1[1, 1] - mz1[, 1]) <= mz1[1, 1] * 1E-5
81 l2 <- matrix(mz1[c(l1, l1)], ncol = 2)
82 l3 <- diff(l2[, 2])
83 l4 <- c(0, which(l3 > 30), nrow(l2))
84 l5 <- list()
85 for (i in 1:(length(l4) - 1)) {
86 l5[[i]] <- l2[(l4[i] + 1):(l4[i + 1]),]
87 }
88 flist <- append(flist, l5)
89 mz1 <- matrix(mz1[c(!l1, !l1)], ncol = 2)
90 }
91 ### Calculate median m/z and median RT for all ’features’
92 for (i in 1:length(flist)) {
93 if (is.matrix(flist[[i]])) {
94 flist[[i]] <- cbind(flist[[i]],
95 rep(median(flist[[i]][, 1]), times = nrow(flist[[i]])),
96 rep(median(flist[[i]][, 2]), times = nrow(flist[[i]])))
97 } else {
98 flist[[i]] <- c(flist[[i]], flist[[i]])
99 }

100 }
101 medmzrt <- c()
102 for (i in 1:length(flist)) {
103 medmzrt <- rbind(medmzrt, flist[[i]])
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104 }
105 medmzrt <-
106 as.data.frame(medmzrt)
107 colnames(medmzrt) <- c("mz", "rt", "med.mz", "med.rt")
108 #### Create IDs
109 medmzrt$id <- paste("M", round((medmzrt$med.mz), 2),
110 "T", round((medmzrt$med.rt), 2), sep = "")
111 ### Put back in original order
112 medmzrt <- medmzrt[order(medmzrt$rt),]
113

114 ## Define merging functions
115 mergeTolerance <- function(x, y, tolerance = 1e-5) {
116 mrg <- merge(x, y, by = "V1", all = T)
117 mrg[is.na(mrg)] <- 0
118 i <- 1
119 while (!is.na(mrg[(i + 1), 1])) {
120 if (abs(mrg[i, 1] - mrg[(i + 1), 1]) <= mrg[i, 1] * tolerance) {
121 mrg[i, 1] <- (mrg[i, 1] + mrg[(i + 1), 1]) / 2
122 mrg[i,-1] <- mrg[i,-1] + mrg[(i + 1),-1]
123 mrg <- mrg[-(i + 1),]
124 i <- i + 1
125 colnames(mrg) <-
126 c("V1", 2:ncol(mrg)) #suppresses error warning ’duplicate column names’
127 } else {
128 i <- i + 1
129 }
130 }
131 mrg
132 }
133

134 mergeSpecList <- function(speclist, mzmed) {
135 mrgls <- list()
136 for (z in 1:length(speclist)) {
137 z0 <- c()
138 for (j in 1:(z - 1)) {
139 z0[j] <- mzmed[z] == mzmed[j]
140 }
141 if (z != 1 & any(z0)) {
142 mrgls[[z]] <- mrgls[[which(z0 == T)[1]]]
143 } else {
144 if (sum(mzmed == mzmed[z]) > 1) {
145 z1 <- as.matrix(Reduce(mergeTolerance,
146 speclist[mzmed == mzmed[z]]))
147 z1[is.na(z1)] <- 0
148 z2 <-
149 cbind(z1[, 1], round((rowSums(z1) - z1[, 1]) / ncol(z1[,-1])))
150 mrgls[[z]] <- z2
151 } else {
152 mrgls[[z]] <- speclist[[z]]
153 }
154 }
155 }
156 names(mrgls) <- names(speclist)
157 mrgls
158 }
159
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160 ## Merge spectra in the list that fulfill identity criteria
161 names(ms2list) <- medmzrt$id
162 mergedlist <- mergeSpecList(ms2list, medmzrt$id)
163 shortlist <- mergedlist[!duplicated(mergedlist)]
164 shortmzrt <- medmzrt[!duplicated(mergedlist), 3:4]
165

166 ## Make list with neutral loss spectra
167 nllist <- list()
168 for (i in 1:length(shortlist)) {
169 nl <-
170 cbind((shortmzrt[i, 1] - shortlist[[i]][, 1]), shortlist[[i]][, 2])
171 nl <- subset(nl, nl[, 1] >= -(shortmzrt[i, 1] * 1e-5))
172 nllist[[i]] <- nl
173 }
174 names(nllist) <- names(shortlist)
175

176 ## Print precursor m/z and RT from all merged spectra
177 ## and identify in Bruker DataAnalysis
178 write.table(
179 cbind(names(shortlist), shortmzrt),
180 file = "161019metaboident_SE_pre.csv",
181 sep = ",",
182 row.names = F
183 )
184

185 ## Read in manual annotations
186 ident <-
187 read.csv(file = "161022metaboident_SE_post.csv", stringsAsFactors = F)
188 metabonames <- c()
189 for (n in 1:nrow(ident)) {
190 if (is.na(ident[n, 4]) && is.na(ident[n, 5])) {
191 metabonames[n] <- ident[n, 1]
192 }
193 if (!is.na(ident[n, 4])) {
194 metabonames[n] <- paste(ident[n, 1], "␣-␣", ident[n, 4], sep = "")
195 }
196 if (is.na(ident[n, 4]) && !is.na(ident[n, 5])) {
197 metabonames[n] <-
198 paste(ident[n, 1], "␣-␣", "(", ident[n, 5], ")", sep = "")
199 }
200 }
201 names(shortlist) <- metabonames
202 names(nllist) <- metabonames
203

204 ## Define similarity score
205 cossim <- function(x, y) {
206 colnames(x) <- NULL
207 colnames(y) <- NULL
208 mm <- mergeTolerance(x, y)
209 sum(sqrt(mm[, 2]) * sqrt(mm[, 3])) / (sqrt(sum(mm[, 2])) * sqrt(sum(mm[, 3])))
210 }
211

212 ## Create distance matrix for MS2 spectra
213 distmat <-
214 matrix(nrow = length(shortlist), ncol = length(shortlist))
215 for (m in 1:length(shortlist)) {
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216 for (l in m:length(shortlist)) {
217 if (is.na(distmat[m, l])) {
218 distmat[m, l] <- 1 - cossim(shortlist[[m]], shortlist[[l]])
219 distmat[l, m] <- distmat[m, l]
220 }
221 }
222 }
223 colnames(distmat) <- names(shortlist)
224 row.names(distmat) <- names(shortlist)
225

226 ## Create distance matrix for neutral loss spectra
227 distmat.nl <-
228 matrix(nrow = length(nllist), ncol = length(nllist))
229 for (m in 1:length(nllist)) {
230 for (l in m:length(nllist)) {
231 if (is.na(distmat.nl[m, l])) {
232 distmat.nl[m, l] <- 1 - cossim(nllist[[m]], nllist[[l]])
233 distmat.nl[l, m] <- distmat.nl[m, l]
234 }
235 }
236 }
237 distmat.nl[is.na(distmat.nl)] <- 1
238 colnames(distmat.nl) <- names(nllist)
239 row.names(distmat.nl) <- names(nllist)
240

241 ## Multidimensional scaling
242

243 fit <- cmdscale(as.dist(distmat), eig = TRUE, k = 2)
244 x <- fit$points[, 1]
245 y <- fit$points[, 2]
246 pdf(file = "figure_mds.pdf",
247 height = 12,
248 width = 12)
249 plot(
250 x,
251 y,
252 xlab = "Coordinate␣1",
253 ylab = "Coordinate␣2",
254 type = "p",
255 col = grey(0.3)
256 )
257 dev.off()
258

259 ## Density based clustering using OPTICS
260 opt <-
261 optics(as.dist(distmat),
262 eps = 10000,
263 minPts = 3,
264 search = "dist")
265 opt.nl <-
266 optics(
267 as.dist(distmat.nl),
268 eps = 10000,
269 minPts = 3,
270 search = "dist"
271 )
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272

273 ### Identify clusters by cutting the reachability plot (black is noise)
274 res <- optics_cut(opt, eps_cl = 0.5)
275

276 pdf(file = "20161025_optics_SE.pdf",
277 height = 6,
278 width = 12)
279 plot(res)
280 dev.off()
281

282 clustmat <- NULL
283 for (i in c(1:max(res$cluster), 0)) {
284 x <-
285 cbind(colnames(distmat)[res$cluster == i], rep(i, length(colnames(distmat)[res$y

cluster == i])))
286 clustmat <- rbind(clustmat, x)
287 }
288 write.csv(clustmat, file = "20161024_dbclust.csv")
289 res.nl <- optics_cut(opt.nl, eps_cl = 0.7)
290

291 ### Create plot
292 opal <- palette()
293 palette(c(opal, rep(c("orange", opal[-1]),10)))
294

295 pdf(file = "figure_optics.pdf",
296 height = 6,
297 width = 12)
298 plot(res)
299 dev.off()
300 palette(opal)
301

302 clustmat.nl <- NULL
303 for (i in c(1:max(res.nl$cluster), 0)) {
304 x <-
305 cbind(colnames(distmat)[res.nl$cluster == i], rep(i, length(colnames(distmat.nl)[y

res.nl$cluster == i])))
306 clustmat.nl <- rbind(clustmat.nl, x)
307 }
308 write.csv(clustmat.nl, file = "20161024_dbclustnl.csv")
309

310 ## Hierarchical clustering
311 clust <- hclust(as.dist(distmat), method = "average")
312 hclusttree <- cutree(clust, h = 0.95)
313 hclustmat <- cbind(names(hclusttree), hclusttree)
314

315 ### Plot heatmap
316 hm <- heatmap(distmat, Rowv = as.dendrogram(clust), Colv = "Rowv", distfun = NULL, symmy

= T)
317

318 ### Plot dendrogram (2 different layouts)
319 clr <- brewer.pal(n = 8, name = "Dark2")
320 pdf(file = "figure_hclust_dendrogram.pdf",
321 width = 30,
322 height = 30)
323 plot(
324 as.phylo(clust),
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325 type = "fan",
326 cex = 0.7,
327 tip.color = rep(clr, 16)[hclusttree]
328 )
329 dev.off()
330 pdf(file = "figure_clusters.pdf",
331 width = 10,
332 height = 35)
333 plot(
334 as.phylo(clust),
335 type = "phylo",
336 cex = 0.4,
337 tip.color = rep(clr, 16)[hclusttree]
338 )
339 dev.off()
340

341 write.csv(hclusttree, file = "20161024_hclust.csv")
342

343 clust.nl <- hclust(as.dist(distmat.nl), method = "average")
344 hclusttree.nl <- cutree(clust.nl, h = 0.95)
345 write.csv(hclusttree.nl, file = "20161024_hclustnl.csv")
346

347 ### Plot dendrogram
348 pdf(file = "figure_hclust_dendrogram_nl.pdf",
349 width = 30,
350 height = 30)
351 plot(
352 as.phylo(clust.nl),
353 type = "fan",
354 cex = 0.7,
355 tip.color = rep(clr, 16)[hclusttree.nl]
356 )
357 dev.off()
358

359 close(aa)
360

361 ###################
362

363 ## Tools for analysis & interpretation
364

365 ### Print spectrum as table from ’shortlist’
366 print.matrix <- function(m){
367 write.table(format(m, justify="right"),
368 row.names=F, col.names=F, quote=F)
369 }
370 ms2 <- function(x){print.matrix(shortlist[[x]])}
371

372 ### Plot spectrum from ’shortlist’
373 specplot <- function(n, list = shortlist) {
374 plot(x = list[[n]][,1],
375 y = list[[n]][,2] / max(list[[n]][,2]),
376 type = "h",
377 xlim = c(0, (max(list[[n]][, 1]) * 1.1)),
378 xaxs = "i",
379 xlab = expression(italic(m/z)),
380 ylim = c(0, 1.1),
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381 yaxs = "i",
382 ylab = "intensity␣relative␣to␣base␣peak",
383 main = names(list[n]))
384 text(x = (list[[n]][,1])[(list[[n]][,2] / max(list[[n]][,2])) > 0.1],
385 y = (list[[n]][,2] / max(list[[n]][,2]))[(list[[n]][,2] / max(list[[n]][,2])) > y

0.1],
386 labels = round((list[[n]][, 1])[(list[[n]][,2] / max(list[[n]][,2])) > 0.1], 4),
387 pos = 3,
388 cex = 0.75)
389 }
390

391 ### Create mirror plot of two spectra from ’shortlist’
392 specplot2 <- function(n, o, list = shortlist) {
393 plot(
394 x = list[[n]][, 1],
395 y = list[[n]][, 2] / max(list[[n]][, 2]),
396 type = "h",
397 xlim = c(0, (max(c(
398 list[[n]][, 1], list[[o]][, 1]
399 )) * 1.1)),
400 xaxs = "i",
401 xlab = expression(italic(m / z)),
402 ylim = c(-1.2, 1.2),
403 yaxs = "i",
404 yaxt = "n",
405 ylab = "intensity␣relative␣to␣base␣peak",
406 main = paste(names(list[n]), "--", names(list[o]))
407 )
408 points(x = list[[o]][, 1],
409 y = -(list[[o]][, 2] / max(list[[o]][, 2])),
410 type = "h")
411 abline(a = 0, b = 0)
412 axis(2,
413 at = seq(-1, 1, 0.5),
414 labels = c(1.0, 0.5, 0.0, 0.5, 1.0))
415 text(
416 x = (list[[n]][, 1])[(list[[n]][, 2] / max(list[[n]][, 2])) > 0.1],
417 y = (list[[n]][, 2] / max(list[[n]][, 2]))[(list[[n]][, 2] / max(list[[n]][, 2])) >y

0.1],
418 labels = round((list[[n]][, 1])[(list[[n]][, 2] / max(list[[n]][, 2])) > 0.1], 4),
419 pos = 3,
420 cex = 0.75
421 )
422 text(
423 x = (list[[o]][, 1])[(list[[o]][, 2] / max(list[[o]][, 2])) > 0.1],
424 y = -((list[[o]][, 2] / max(list[[o]][, 2]))[(list[[o]][, 2] / max(list[[o]][, 2]))y

> 0.1]),
425 labels = round((list[[o]][, 1])[(list[[o]][, 2] / max(list[[o]][, 2])) > 0.1], 4),
426 pos = 1,
427 cex = 0.75
428 )
429 }
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4 CluMSID: an R package for similarity-based
clustering of tandem mass spectra to aid
feature annotation in metabolomics

This Chapter has been published as peer-reviewed article in a scientific journal:

T. Depke, R. Franke, and M. Brönstrup. “CluMSID: an R package for similarity-based
clustering of tandem mass spectra to aid feature annotation in metabolomics”. In: Bioin-
formatics (Jan. 2019). issn: 1367-4803. doi: 10.1093/bioinformatics/btz005

Abstract

Summary: Compound identification is one of the most eminent challenges in the
untargeted analysis of complex mixtures of small molecules by mass spectrometry.
Similarity of tandem mass spectra can provide valuable information on putative
structural similarities between known and unknown analytes and hence aids feature
identification in the bioanalytical sciences. We have developed CluMSID (Clustering
of MS2 spectra for metabolite identification), an R package that enables researchers
to make use of tandem mass spectra and neutral loss pattern similarities as a part
of their metabolite annotation workflow. CluMSID offers functions for all analysis
steps from import of raw data to data mining by unsupervised multivariate methods
along with respective (interactive) visualisations. A detailed tutorial with example
data is provided as supplementary information.
Availability: CluMSID is available as R package from https://github.com/tdepke/

CluMSID/

Contact: tobias.depke@helmholtz-hzi.de or mark.broenstrup@helmholtz-hzi.de
Supplementary information: Supplementary data are available at Bioinformatics
online
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4.1. Introduction

The untargeted analysis of complex mixtures of small molecules using liquid chromatog-
raphy coupled to (tandem) mass spectrometry (LC-MS(/MS)) has developed into an
important technology to study biological systems, from the various applications of
metabolomics to natural product research, drug discovery, environmental and foren-
sic sciences. Still, the technique faces various challenges, the most important being
metabolite identification [1]. To address this issue, multiple tools have been developed
that aid identification by different approaches, mostly relying on computational mass
spectrometry [2].
In proteomics and metabolomics, similarity of tandem mass spectra is routinely used

to gauge the match score of experimental and library spectra [3]. It is now also es-
tablished that similarities in tandem mass spectrometry (MS2) fragmentation can hint
towards structural relations between analytes [4]. In this paper, we present a cus-
tomisable open access tool for similarity-based clustering of LC-MS/MS data from
data-dependent acquisitions. It enables reproducible analyses and is fully integratable
into R pipelines that use e. g. the popular packages from the ‘xcms’ family. The tool is
also applicable to flow injection or GC-EI-MS data. However, we will refer to the most
frequent experimental type, i. e. LC-MS/MS, in the following. The tool can handle
mass spectra following positive and negative ionization from low- and high-resolution
mass analyzers. With these assets, CluMSID has the potential to become a valuable
extension of the metabolomics data analyst’s toolbox.

4.2. Implementation and main functions

CluMSID is a highly flexible open source tool written in R that combines MS2 spec-
tral similarity comparisons with several unsupervised data mining methods. The data
can be accessed at all stages and custom data analysis steps can easily be integrated.
CluMSID is available as R package that can be downloaded from GitHub and used on
all platforms.

4.2.1. Data import, pre-processing and similarity calculation

For its main functions (Fig. 4.1), CluMSID requires LC-MS/MS data in a standard non-
proprietary formats that can be parsed by mzR (http://github.com/sneumann/mzR),
e. g. mzXML. MS2 spectra are extracted from the raw file and redundant MS2 spectra
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Extract MS² spectra from raw data 
files 

extractMS2spectra() 

Merge MS² spectra and generate 
neutral loss patterns 
mergeMS2spectra() 

Add feature annotations 
writeFeaturelist() 
addAnnotations() 

Generate distance matrix 
distanceMatrix() 

Raw data  
(e.g. mzXML) 

peak table 

library search 
results 

additional data 
analysis tools 

Multi-
dimensional 

scaling 

Density-
based 

clustering 

Hierarchical 
clustering 

Correlation 
networks 

MDSplot() OPTICSplot() HCplot() networkplot() 

Figure 4.1.: Schematic of a CluMSID workflow. The main functions of CluMSID and their logical
order are illustrated. Grey boxes signify data (pre-)processing steps that serve as the
basis for multidimensional scaling, clustering, correlation networks or other additional
analysis tools. White boxes on the right symbolise optional in- or output, black boxes
required input.

are merged into consensus spectra. This process can either operate stand-alone by
grouping spectra from the same precursor ion within a retention time interval defined
by the user, or spectra can be assigned to peaks picked by a different method or software
by means of an external peak table, e. g. generated by ‘xcms’ [5].

During the merging process, neutral loss patterns are generated for all features by
subtraction of each fragment m/z from the precursor m/z. Neutral losses represent
uncharged fragments that also convey structural information comparable to charged
fragments. The neutral loss patterns can be processed like MS2 spectra. Annotations
can be added to features that have been identified by the user, e. g. by using online or
in-house spectral libraries.

A distance matrix is produced from the list of (annotated) consensus spectra by
calculating spectral similarities for every pairwise combination. The similarity measure
used by CluMSID is the spectral contrast angle, also known as cosine similarity or
cosine score [6]. This distance matrix is the basis for the clustering functions and can
be used with non-CluMSID functions to customise the analysis workflow.
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4.2.2. Mining and visualisation of similarity data

Four data mining methods along with respective (interactive) visualisations are in-
cluded in CluMSID: multidimensional scaling (MDS), density-based clustering with
the OPTICS (Ordering points to identify the clustering structure) algorithm (https:
//cran.r-project.org/web/packages/dbscan/), hierarchical clustering and the gen-
eration of correlation networks using the ‘network’ package [7]. In the first study
that employed a CluMSID prototype, hierarchical clustering proved the most suitable
method to putatively annotate P. aeruginosa secondary metabolites [8].
CluMSID’s correlation network functions are particularly useful for researchers who

have worked with ‘Molecular Networking’ before but would like to use a more interactive
and flexible tool. The MDS plot and the correlation network visualisation can also
be generated in an interactive and zoomable version based on the ‘plotly’ package
(https://cran.r-project.org/web/packages/plotly/).

4.2.3. Additional functionalities

CluMSID harbours a set of accessory functions, e. g. to find spectra that contain a
specific fragment or neutral loss or to match single spectra against a set of (library)
spectra.
Furthermore, MS1 pseudospectra, i. e. groups of MS1 peaks derived from the same

analyte like adducts, fragments etc., as produced by the ‘CAMERA’ package [9] can be
extracted from raw data and analysed like MS2 spectra.

4.2.4. Comparison to existing tools

Similarity-based clustering of LC-MS/MS data from data-independent acquisition can
also be performed using the “MetFamily” tool [10] or the more specialised MS/MS data
mining tool “MetCirc” [11] while the best known method to study MS2 spectra from
data-dependent acquisition (auto-MS/MS) is “Molecular Networking”, a widely used
web tool that however offers relatively little possibilities for customisation [12]. Whereas
“Molecular Networking” and “MetFamily” are web applications that can be accessed
via a webserver with the need to upload data, we provide a package that does not
rely on the public upload of data and offers greater transparency and customisability
by enabling access to the data at every step of the analysis. The incorporation of
CluMSID in an existing R pipeline that uses for instance ‘xcms’ for peak picking is
a usecase which we expect to be very common and useful for the community working
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4.3. Conclusion

with untargeted metabolomics data. “MetCirc” is an interactive visualisation tool to
compare MS2 experimental data across organisms or tissues, thus it has a different focus
than CluMSID. While the distance matrix is calculated in a similar manner, CluMSID
features more options for data preprocessing, analysis and visualisation, like hierarchical
and density-based clustering. The analysis of pseudospectra and neutral loss patterns
are additional, valuable features.

4.3. Conclusion

CluMSID is a tool that aids the identification of features in untargeted LC-MS/MS
analysis by the use of MS2 spectral similarity and unsupervised learning methods. It
offers functions for a complete and customisable workflow from raw data to visualisa-
tions in the form of a freely accessible R package. We are convinced that CluMSID will
benefit both the wider metabolomics community and scientists from other bioanalytical
fields applying untargeted LC-MS/MS analysis by enabling researchers to integrate MS2

spectra and neutral loss patterns similarity data into their feature annotation workflow.
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Introduction

This tutorial shows how to use the CluMSID package to help annotate MS2 spectra from untargeted LC-MS/MS
data. CluMSID works with MS2 data generated by data-dependent acquisition and requires an mzXML file (like in
this example) or any other file that can be parsed by mzR, like mzML, mzTab or netCDF, as input. It can be used
both stand-alone and together with the XCMS suite of preprocessing tools.
CluMSID extracts and merges MS2 spectra and generates neutral loss patterns for each feature. Additionally, it
can make use of information from the CAMERA package to generate pseudospectra from MS1 level data. The tool
uses cosine similarity to generate distance matrices from MS2 spectra, neutral loss patterns and pseudospectra.
These distance matrices are the basis for multivariate statistics methods such as multidimensional scaling, density-
based clustering, hierarchical clustering and correlation networks. The CluMSID package provides functions for
these methods including (interactive) visualisation but the distance/similarity data can also be analysed with other
R functions.
For the demonstrations in this tutorial, we will mainly use data from pooled Pseudomonas aeruginosa cell extracts,
measured in ESI-(+) mode with auto-MS/MS on a Bruker maxisHD qTOF after reversed phase separation by
UPLC. For details, please refer to the Depke et al. 2017 publication (doi: 10.1016/j.jchromb.2017.06.002.).
To be able to access the example data, we also need the related package CluMSIDdata. Both packages are
available from Bioconductor, starting from version 3.9, and can be installed as follows:
if (!requireNamespace("BiocManager", quietly = TRUE))

install.packages("BiocManager")
BiocManager::install(c("CluMSIDdata", "CluMSID"))

Before the release of R 3.6 in April/May 2019, the installation from Bioconductor requires the user to install the
development versions of R and Bioconductor. For those who wish to avoid working with devel version, R 3.5
compatible versions of CluMSID and CluMSIDdata are available from GitHub and can be installed as follows:
if (!requireNamespace("devtools", quietly = TRUE)) install.packages("devtools")
devtools::install_github("tdepke/CluMSIDdata", ref = "pkg")
devtools::install_github("tdepke/CluMSID", ref = "pkg")

Once installed, both packages are loaded, along with tidyverse which we will use later.
library(CluMSID)
library(CluMSIDdata)
library(tidyverse)

MS2spectrum and pseudospectrum classes

CluMSID uses a custom S4 class named MS2spectrum to store spectral information in the following slots:
• id: a character string similar to the ID used by XCMSonline or the ID given in a predefined peak list
• annotation: a character string containing a user-defined annotation, defaults to empty
• precursor: (median) m/z of the spectrum’s precursor ion
• rt: (median) retention time of the spectrum’s precursor ion
• polarity: the polarity with which the spectrum was recorded, either positive or negative
• spectrum: the actual MS2 spectrum as two-column matrix (column 1 is (median) m/z, column 2 is (median)

intensity of the product ions)
• neutral_losses: a neutral loss pattern generated by subtracting the product ion mass-to-charge ratios

from the precursor m/z in a matrix format analogous to the spectrum slot
The pseudospectrum class is very similar but it contains no information on precursor m/z and therefore no
neutral loss pattern, either. By default, the id slot contains the “pcgroup” number assigned by CAMERA.
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The individual slots of MS2spectrum and pseudospectrum objects can be accessed via the standard S4 way using
object@slot, e.g. object@annotation or by using an accessor function. These exist for all slots and are called
accessFoo(), where Foo is the slot name (not exactly, though, because Bioconductor does not allow to mix
snake_case and camelCase in function names):

• accessID(object)
• accessAnnotation(object)
• accessPrecursor(object)
• accessRT(object)
• accessPolarity(object)
• accessSpectrum(object)
• accessNeutralLosses(object).

Extract MS2 spectra from *.mzXML file

The first step in the CluMSID workflow is to extract MS2 spectra from the raw data file (in mzXML format). This
is done by the extractMS2spectra function which internally uses several functions from the mzR package. The
function offers the possibility to filter spectra that contain less a defined number of peaks and/or do not fall in a
defined retention time window. Setting the recalibrate_precursor argument to TRUE activates a correction
process for uncalibrated precursor m/z data that existed in older version of Bruker’s Compass Xport (cf. Depke et
al. 2017). It is not necessary to use it with files generated by other software but does not corrupt the data, either.
Please be aware that mzR often throws warnings concerning the Rcpp version that can usually be ignored.
ms2list <- extractMS2spectra(system.file("extdata",

"PoolA_R_SE.mzXML",
package = "CluMSIDdata"),

min_peaks = 2,
recalibrate_precursor = TRUE,
RTlims = c(0,25))

This operation has now extracted all the MS2 spectra from the raw data file and stored them in a list. Each list
entry is an object of class MS2spectrum. The list is quite long because it still contains a lot of spectra that derive
from the same chromatographic peak.
length(ms2list)
#> [1] 2290

In our example, the first two spectra in the list derive from the same peak and thus have the same precursor ion
and almost the same retention time.
head(ms2list, 4)
#> [[1]]
#> An object of class "MS2spectrum"
#> id:
#> annotation:
#> precursor: 146.1652
#> retention time: 56.266
#> polarity: positive
#> MS2 spectrum with 2 fragment peaks
#> neutral loss pattern with 0 neutral losses
#> [[2]]
#> An object of class "MS2spectrum"
#> id:
#> annotation:
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#> precursor: 146.1653
#> retention time: 57.292
#> polarity: positive
#> MS2 spectrum with 3 fragment peaks
#> neutral loss pattern with 0 neutral losses
#> [[3]]
#> An object of class "MS2spectrum"
#> id:
#> annotation:
#> precursor: 129.1387
#> retention time: 57.545
#> polarity: positive
#> MS2 spectrum with 2 fragment peaks
#> neutral loss pattern with 0 neutral losses
#> [[4]]
#> An object of class "MS2spectrum"
#> id:
#> annotation:
#> precursor: 112.1119
#> retention time: 57.797
#> polarity: positive
#> MS2 spectrum with 2 fragment peaks
#> neutral loss pattern with 0 neutral losses

From the output above, you also see that the MS2spectrum class has a show() generic that summarises the MS2

spectrum and neutral loss pattern data. To show the default output, use showDefault(). Be aware that neutral
loss patterns have not been calculated in this step.
showDefault(ms2list[[2]])
#> An object of class "MS2spectrum"
#> Slot "id":
#> character(0)
#>
#> Slot "annotation":
#> character(0)
#>
#> Slot "precursor":
#> [1] 146.1653
#>
#> Slot "rt":
#> [1] 57.292
#>
#> Slot "polarity":
#> [1] "positive"
#>
#> Slot "spectrum":
#> [,1] [,2]
#> [1,] 72.08064 2448
#> [2,] 84.08077 328
#> [3,] 112.11228 843
#>
#> Slot "neutral_losses":
#> <0 x 0 matrix>
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Merge MS2 spectra that derive from the same peak/feature

To reduce the amount of redundant MS2 spectra, the mergeMS2spectra() function is used to generate consensus
spectra from the MS2 spectra that derive from the same precursor. CluMSID offers two possibilities to do so:

Merge spectra without external peaktable

This possibility is the standard method for stand-alone use of CluMSID and is equivalent to what has been
described in Depke et al. 2017. It does not need additional input and summarises consecutive spectra that have
the same precursor m/z if their retention time fall within a defined threshold (rt_tolerance, defaults to 30s). A
retention time difference between consecutive spectra larger than rt_tolerance is interpreted as chromatographic
separation and respective spectra will be assigned to a new feature. The mz_tolerance argument should be set
according to your instruments m/z precision, the default is 1 * 10-5 (10ppm, equivalent to ±5ppm instrument
precision). The peaktable and exclude_unmatched arguments are not used in this method and are to be left at
their default.
featlist <- mergeMS2spectra(ms2list)

length(featlist)
#> [1] 518

head(featlist, 4)
#> [[1]]
#> An object of class "MS2spectrum"
#> id: M146.17T59.35
#> annotation:
#> precursor: 146.1653
#> retention time: 59.35
#> polarity: positive
#> MS2 spectrum with 8 fragment peaks
#> neutral loss pattern with 7 neutral losses
#> [[2]]
#> An object of class "MS2spectrum"
#> id: M129.14T58.57
#> annotation:
#> precursor: 129.1387
#> retention time: 58.57
#> polarity: positive
#> MS2 spectrum with 4 fragment peaks
#> neutral loss pattern with 3 neutral losses
#> [[3]]
#> An object of class "MS2spectrum"
#> id: M112.11T57.8
#> annotation:
#> precursor: 112.1119
#> retention time: 57.8
#> polarity: positive
#> MS2 spectrum with 2 fragment peaks
#> neutral loss pattern with 1 neutral losses
#> [[4]]
#> An object of class "MS2spectrum"
#> id: M251.16T60.64
#> annotation:
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#> precursor: 251.1603
#> retention time: 60.64
#> polarity: positive
#> MS2 spectrum with 9 fragment peaks
#> neutral loss pattern with 8 neutral losses

The total amount of spectra was reduced from 2290 to 518 and as many other, the redundant spectra #1 and #2
in the raw list are now merged to one consensus spectrum (#1 in the merged list).
In this step, neutral loss patterns have been generated that look like this:
accessNeutralLosses(featlist[[1]])
#> [,1] [,2]
#> [1,] 74.08475 6429
#> [2,] 73.08163 262
#> [3,] 71.07394 239
#> [4,] 62.08476 1044
#> [5,] 34.05341 2363
#> [6,] 33.05024 144
#> [7,] 17.02688 852

Merge spectra with external peaktable, e.g. from XCMS

The second possibility is to supply a peaktable, i.e. a list of picked peaks with their mass-to-charge ratios and
retention times. This is particularly useful if you want to annotate a complete metabolomics data set. In our
example, we have a metabolomics dataset called “TD035” in which we have measured a range of samples in MS1

mode for relative quantification. Additionally, we have measured a pooled QC sample in MS2 mode for annotation.
The MS1 data were analysed using XCMSonline and we want to group the MS2 spectra so that they match the
XCMSonline peak picking.
The spectra are extracted as shown above:
ms2list2 <- extractMS2spectra(system.file("extdata",

"TD035-PoolMSMS2.mzXML",
package = "CluMSIDdata"),

min_peaks = 2,
recalibrate_precursor = TRUE,
RTlims = c(0,25))

The peaklist is imported from the XCMSonline output. The list has to contain at least 3 columns:
• column 1: name/identifier of the feature
• column 2: m/z
• column 3: retention time

Shown below is an easy way of getting from an XCMSonline annotated diffreport to a suitable peaktable using
tidyverse functions. Of course, you can achieve the same goal with base R functions or even in Excel. Depending
on the retention time format in your *.mzXML file, you might have to convert from minutes to seconds or vice
versa. Here, we have minutes in the XCMSonline output but seconds in the MS2 file, so we multiply by 60.
ptable <- read_delim(file = system.file("extdata",

"TD035_XCMS.annotated.diffreport.tsv",
package = "CluMSIDdata"),

delim = "\t") %>%
select(c(name, mzmed, rtmed)) %>%
mutate(rtmed = rtmed * 60)
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head(ptable)
#> # A tibble: 6 x 3
#> name mzmed rtmed
#> <chr> <dbl> <dbl>
#> 1 M245T2 245. 100.
#> 2 M440T2_1 440. 107.
#> 3 M578T2 578. 104.
#> 4 M85T1 85.0 60.8
#> 5 M126T1_1 126. 61.0
#> 6 M688T24 688. 1468.

We can now use this peaktable as an argument for mergeMS2spectra(). You can choose whether you want to
keep or exclude MS2 spectra that do not match any peak in the peaktable. These can occur in regions of the
chromatogramm where there are no clear peaks but the auto-MS/MS still fragments the most abundant ions.
These unmatched spectra are merged following the same rules as described above (method without peaktable). In
this example, we keep the unmatched spectra. We use the default values for m/z and retention time tolerance
and thus do not need to specify them.
featlist2 <- mergeMS2spectra(ms2list2,

peaktable = ptable,
exclude_unmatched = FALSE)

head(featlist2, 4)
#> [[1]]
#> An object of class "MS2spectrum"
#> id: M213T0
#> annotation:
#> precursor: 213.1462
#> retention time: 6.04
#> polarity: positive
#> MS2 spectrum with 5 fragment peaks
#> neutral loss pattern with 3 neutral losses
#> [[2]]
#> An object of class "MS2spectrum"
#> id: xM158T31.17
#> annotation:
#> precursor: 158.0027
#> retention time: 31.17
#> polarity: positive
#> MS2 spectrum with 3 fragment peaks
#> neutral loss pattern with 3 neutral losses
#> [[3]]
#> An object of class "MS2spectrum"
#> id: M146T1_3
#> annotation:
#> precursor: 146.1650
#> retention time: 61.15
#> polarity: positive
#> MS2 spectrum with 7 fragment peaks
#> neutral loss pattern with 6 neutral losses
#> [[4]]
#> An object of class "MS2spectrum"
#> id: M129T1_4
#> annotation:
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#> precursor: 129.1384
#> retention time: 60.74
#> polarity: positive
#> MS2 spectrum with 2 fragment peaks
#> neutral loss pattern with 2 neutral losses

Note that the 2nd entry in featlist2 is marked with an ‘x’ which means that it could not be assigned to a feature
in the peaktable.
For the sake of simplicity, only the data generated from the stand-alone procedure will be used for the following
examples. Be assured that all of them would also work with the data generated with the help of an external
peaktable (featlist2).

Add annotations

The next step is to add (external) annotations to the list of features, e.g. from a spectral library that you curate
in-house or one that has been supplied by your instrument manufacturer. If you do not (want to) annotate your
features at all, this step can be skipped completely, leaving the annotation slot of the MS2spectrum objects
empty.

Manual procedure

CluMSID offers several possibilities to add annotations to your feature list. The most basic one first generates a
list of features and saves it as *.csv file. For that you use the writeFeaturelist() function and only have to
specify your list of spectra and a file name for the output file (here: pre_anno.csv). You can then manually fill
in your annotations in a new column in the table, save it (in this example under the name post_anno.csv) and
reload it to R:
writeFeaturelist(featlist, "pre_anno.csv")

annotatedSpeclist <- addAnnotations(featlist,
system.file("extdata",

"post_anno.csv",
package = "CluMSIDdata"))

annotatedSpeclist will then be equivalent to featlist with annotations added to the annotation slot of the
list entries.

Alternative procedures

You can add annotations without leaving the R environment, too. addAnnotations() also accepts objects of
class data.frame as annolist argument. Be aware that addAnnotations() assigns the annotation based on
the position in the feature list. I.e., if the order of the features in your list of features (featlist) and your list of
annotations (annolist) is different, you will get nonsense results.
The savest ways to addAnnotations() with a data.frame is to use Featurelist() to generate a data.frame
that is formatted in the same way as the file output from writeFeaturelist() and then match your identifications
against this data.frame and use the result as argument for addAnnotations().
Say you have an object called annos that contains feature IDs (the same as in featlist) and annotations in a
two-column data.frame with "id" and "annotation" as column names. It could look like this:

A-8

4

Chapter 4: Publication 2:
CluMSID: an R package for clustering of tandem mass spectra

108



str(annos)
#> 'data.frame': 154 obs. of 2 variables:
#> $ id : chr "M146.17T59.35" "M129.14T58.57" "M112.11T57.8" "M148.06T69.65" ...
#> $ annotation: chr "spermidine" "spermidine (fragment)" "spermidine (fragment)" "glutamate" ...
head(annos)
#> id annotation
#> 1 M146.17T59.35 spermidine
#> 2 M129.14T58.57 spermidine (fragment)
#> 3 M112.11T57.8 spermidine (fragment)
#> 4 M148.06T69.65 glutamate
#> 5 M130.05T69.64 glutamate (fragment)
#> 6 M179.06T71.32 gluconolactone

addAnnotations(featlist, annos, annotationColumn = 2) will throw an error because featlist and
annos are of different length. Instead, you need to do the following:
fl <- featureList(featlist)

fl_annos <- dplyr::left_join(fl, annos, by = "id")

Now, you can annotate your list of spectra using addAnnotations(featlist, fl_annos, annotationColumn
= 4).
An analogous procedure works if you have your annotations stored in a peaktable that you have used for
mergeMSspectra(). As the order of spectra in the list will not be same as the order of features in your peaktable,
you need to do a matching with the output of featureList() as well.

Generate distance matrices

Once we have a list of MS2spectrum objects containing all the required information with or without annotation,
we can generate distance matrices from (product ion) MS2 spectra as well as from neutral loss patterns. These
distance matrices serve as the basis for further analysis of the data. Both for MS2 spectra and neutral loss patterns,
cosine similarity is used as similarity metric:

cos(θ) =
∑

i ai · bi√∑
i ai

2 · ∑
i bi

2

Distance matrix for product ion spectra

For most applications, analysing the similarity of product ion MS2 spectra will be most useful. The generation of
the distance matrix is done by just one simple command but it can take some time to calculate.
distmat <- distanceMatrix(annotatedSpeclist)

Distance matrix for neutral loss patterns

Common neutral losses and neutral loss patterns can convey information about structural similarity, as well,
e.g. with nucleotides or glykosylated secondary metabolites. CluMSID offers the possibility to study neutral loss
patterns independently from product ion spectra. The generation of a distance matrix is analogous, you just need
to set the type argument to "neutral_losses":
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nlmat <- distanceMatrix(annotatedSpeclist, type = "neutral_losses")

Visualise distance/similarity data using multidimensional scaling (MDS)

One rather simple possibility to visually analyse the spectral similarity data is multidimensional scaling, a dimension
reduction method that simplifies distances in n-dimensional space to those in two-dimensional space (n in this case
being the number of consensus spectra or neutral loss patterns that were used to generate the distance matrix in
the previous step). CluMSID offers a simple function to produce an MDS plot from the distance matrix with the
option to highlight annotated metabolites and the possibility to generate an interactive plot using plotly.
Standard MDS plots are generated as follows:
For MS2 spectra:
MDSplot(distmat, highlight_annotated = TRUE)
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Figure A-1: Multidimensional scaling plot as a visualisation of MS2 spectra similarities of the example data set. Red dots
signify annotated spectra, black dots spectra from unknown metabolites.
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For neutral loss patterns:
MDSplot(nlmat, highlight_annotated = TRUE)
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Figure A-2: Multidimensional scaling plot as a visualisation of neutral loss similarities of the example data set. Red dots
signify annotated spectra, black dots spectra from unknown metabolites.

Interactive plots are zoomable and show feature names upon mouse-over. They are generated like normal MDS
plots and can be viewed within RStudio or—after saving as html file using htmlwidgets—displayed in a normal
web browser.
my_mds <- MDSplot(distmat, interactive = TRUE, highlight_annotated = TRUE)

htmlwidgets::saveWidget(my_mds, "mds.html")
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This is how it looks like if you open the html file in Firefox and mouse over a feature:

Figure A-3: Screenshot of the interactive version of the Multidimensional scaling plot visualising MS2 spectra similarities of
the example data set (cf Figure 1). Zoomed image section with tooltip displaying feature information upon mouse-over.

Perform density-based clustering using the OPTICS algorithm

For density-based clustering with CluMSID, the ‘OPTICS’ algorithm and its implementation in the dbscan package
is used. Density-based clustering is a useful clustering method that often yields different results than hierarchical
clustering and can thus provide additional insight into the data. CluMSID has two functions to perform density-
based clustering, one for the reachability plot which is the most useful visualisation of OPTICS results and one
that outputs a data.frame containing the cluster assignations for every feature.
Both functions require as arguments a distance matrix as well as three parameters for the underlying functions
dbscan::optics and dbscan::extractDBSCAN: eps, minPts and eps_cl. Lowering the eps parameter (default
is 10000) limits the size of the epsilon neighbourhood which from experience has very little effect on the results.
minPts defaults to 3 in CluMSID. It defines how many points are considered for reachability distance calculation
between clusters. The dbscan::optics default for minPts is 5. Users are encourage to experiment with this
parameter. eps_cl is the reachability threshold to identify clusters and can be varied based on your data. Lowering
eps_cl leads to a larger number of smaller clusters and vice versa for raising the value. In general, it is advisable to
chose a higher eps_cl for MS2 spectra than for neutral loss patterns, since the latter tend to show less similarity to
each other. For details, please refer to the dbscan help for the dbscan::optics and dbscan::extractDBSCAN
functions.
If the default parameters are used, the generation of an OPTICS reachability plots is very simple, shown here for
MS2 spectra and neutral loss patterns:
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OPTICSplot(distmat)
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Figure A-4: Reachability distance plot resulting from OPTICS density based clustering of the MS2 spectra similarities of
the example data set. Bars represent features in OPTICS order with heights corresponding to the reachability distance to
the next feature. The dashed horizontal line marks the reachability threshold that separates clusters. The resulting clusters
are colour-coded with black representing noise, i.e. features not assigned to any cluster.

OPTICSplot(nlmat, eps_cl = 0.7)
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Figure A-5: Reachability distance plot resulting from OPTICS density based clustering of the neutral loss similarities of the
example data set (cf Figure 4).
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In the reachability plots, every line represents a feature and the height of the line is the reachability distance to
the next feature in the OPTICS order. Thus, valleys represent groups of similar spectra or neutral loss patterns.
The order and the cluster assignment can be studied using the OPTICStbl function that outputs a three-column
data.frame with feature id, cluster assignment and OPTICS order. The order of features in the data.frame
corresponds to the original order in the input distance matrix. Features that were not assigned to a cluster are
black in the reachability plot and have the cluster ID 0. OPTICStbl takes the same arguments as OPTICSplot.
The two functions have to be run with exactly the same parameters to assure compatibility of results.
OPTICStable <- OPTICStbl(distmat)

head(OPTICStable)
#> feature cluster_ID OPTICS_order
#> 1 M146.17T59.35 - spermidine 1 1
#> 2 M129.14T58.57 - spermidine (fragment) 1 3
#> 3 M112.11T57.8 - spermidine (fragment) 1 4
#> 4 M251.16T60.64 0 185
#> 5 M212.85T65.02 0 518
#> 6 M290.85T64.76 0 517

Perform hierarchical clustering

In Depke et al. 2017, hierarchical clustering proved the most useful method to unveil structural similarities
between features. analogous to density-based clustering, CluMSID offers two functions, one for plots and one for a
data.frame with cluster assignments, both taking a distance matrix as the only compulsory argument. The other
two parameters are h (defaults to 0.95), the height where the tree should be cut (see stats::cutree for details)
and type that determines the type visualisation:

• heatmap: a heatmap displaying pairwise similarities/distances along with cluster dendrograms
• dendrogram (default): a circular dendrogram with colour code for cluster assignment

Create a heatmap

Heatmaps of our example data for MS2 and neutral loss pattern similarity are created as follows (with reduced
label font size by changing cexRow and cexCol as well as margins of the underlying heatmap.2 function):
HCplot(distmat, type = "heatmap",

cexRow = 0.06, cexCol = 0.06,
margins = c(5,5))
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M145.08T508.11
M214.13T411.31
M188.12T399.72
M243.09T558.67 − lumichrome
M205.1T370.99 − tryptophan
M163.09T512.64
M263.12T576.07
M136.08T584.09
M233.13T676.23 − nortriptyline ISTD (fragment)
M303.19T979.65
M191.09T676.49 − nortriptyline ISTD (fragment)
M415.21T859.73
M321.1T537.6
M891.36T747.39
M103.05T235.3 − phenylalanine (fragment)
M468.17T744.02 − glipizide ISTD + Na
M185.1T763.53 − naproxen ISTD (fragment)
M250.08T762.76
M291.09T462.05 − trimethoprim ISTD
M275.11T445.88
M120.04T450.56 − anthranilate (fragment)
M728.23T398.3
M312.2T1037.01
M170.1T885.9
M174.06T277.59
M346.2T881.21
M325.07T819.96 − pyochelin
M324.16T867.42
M159.07T795.61 − HHQ (fragment)
M188.11T535.78 − C3−HQ
M204.1T564.12
M159.09T464.27
M302.17T804.83
M316.23T869.51 − C11−QNO
M595.43T950.84
M274.18T842.43 − C8−QNO
M503.33T797.17
M519.32T799.12 − HQNO [2M+H]+
M260.16T651.62 − HQNO
M242.15T789.6 − C7:1−HQ
M270.19T873.15 − C9:1−HQ
M541.38T909.89
M288.2T824.42 − C9−QNO
M288.2T765.88 − C9−QNO
M575.38T904.16
M286.18T921.6 − C9:1−PQS
M300.2T894.8 − C10:1−QNO
M198.09T874.45
M326.18T833.85
M310.18T853.38
M358.24T929.17
M184.08T792.48
M328.26T1127.63 − C13−HQ
M326.25T1043.73 − C13:1−HQ
M256.17T851.43 − C8:1−HQ
M342.24T1078.72 − C13:1−PQS
M342.24T912.12 − C13:1−QNO
M314.21T944.87 − C11:1−PQS
M332.22T890.1
M314.21T825.99 − C11:1−QNO
M312.2T794.57
M310.22T1008.4
M214.12T663.32 − C5:1−HQ
M232.13T683.77 − C5−QNO
M284.2T959.42 − C10:1−HQ
M284.16T840.09
M286.18T728.73 − C9:1−QNO
M571.35T875.76
M304.19T786.75
M297.14T656.95
M284.29T1262.26
M432.26T815.37
M202.12T578.44
M344.19T754.17
M358.2T834.1
M258.15T768.47 − C7:1−QNO
M360.22T923.7
M204.1T435.6
M292.17T907.81
M289.12T417.28
M263.14T447.96 − Pro Phe
M378.2T412.48 − Pro Tyr Val
M439.29T506.82
M441.31T516.66
M326.21T414.96
M505.3T526.66
M360.19T459.98
M195.11T378.66
M472.85T348.87
M256.18T309.56
M277.15T466.47
M311.14T527.97
M1156.91T690.64
M900.04T690
M1156.76T690.25
M1012.42T688.19
M1012.54T689.35
M245.13T525.64 − cyclo(Phe Pro)
M257.15T449.13
M132.1T122.82 − leucine / isoleucine / norleucine
M360.21T355.1 − Ile Val Glu / Val Ile Glu
M268.66T408.73
M220.12T336.88 − panthotenate
M243.13T457.64
M120.08T233.48 − phenylalanine (fragment)
M336.19T415.21 − Phe Val Ala / Val Phe Ala
M164.06T147.09 − pterine
M496.34T1018.23 − PC(16:0/0:0)
M262.16T278.37
M327.34T917.18
M112.11T57.8 − spermidine (fragment)
M146.17T59.35 − spermidine
M251.16T60.64
M231.11T430.8
M1051.36T342.36
M526.18T342.1
M397.14T289.26
M590.7T351.59
M848.79T380.87
M793.27T273.95
M535.19T118.41 − Glu Glu Glu Glu
M913.31T388.16
M1180.4T351.98
M977.84T395.18
M472.65T332.73
M351.59T166.13
M359.64T368.9
M314.09T175.26
M190.07T117.36 − N−acetylglutamate
M148.06T69.65 − glutamate
M162.08T82.05
M350.62T409.24 − folic acid (fragment)
M382.65T337.93
M316.16T94.47
M265.57T546.37
M289.14T649.01
M367.64T355.63
M290.13T105.39
M307.08T126.2 − glutathion disulphide (2+)
M568.14T338.32
M516.16T395.97
M323.06T135.83 − dTMP
M219.1T77.65 − Glu Ala
M479.19T333.77
M211.09T382.17 − pyocyanin
M255.08T740.91
M215.12T626.24
M181.08T724.14
M694.26T376.97
M708.77T349.12
M348.07T90.34 − AMP
M136.06T90.6 − AMP (fragment)
M193.07T150.49 − S−(5'−adenosyl)−homocysteine (2+)
M664.12T108.26 − NAD
M695.13T91.88 − AMP (2+)
M332.56T107.48 − NAD (2+)
M385.13T151.52 − S−(5'−adenosyl)−homocysteine
M137.05T112.16 − hypoxanthine
M189.12T85.8
M182.07T141.05
M195.09T436.77 − caffeine ISTD
M734.27T356.41
M225.07T698.07 − phenazine−1−carboxylic acid
M224.08T640.69 − phenazine−1−carboxamide
M206.03T721.29
M257.06T704.3
M215.08T362.66
M187.09T505
M359.28T966.42
M387.31T1109.17
M385.29T1079.09
M338.34T1339.43
M415.34T1132.34
M387.31T1159.58
M679.43T1051.39 − Rha−Rha−C10−C12 / Rha−Rha−C12−C10
M705.44T1095.83 − Rha−Rha−C12:1−C12 / Rha−Rha−C12−C12:1
M559.13T1193.82
M727.21T324.67
M911.28T323.37
M179.06T71.32 − gluconolactone
M324.06T75.32 − CMP
M302.18T879.54
M330.21T962.26
M276.16T811.73
M338.14T94.98
M243.18T392.85
M202.18T115.29
M159.11T102.26
M1087.71T1109.95
M409.29T1159.84
M1031.65T1023.18
M381.26T1078.47
M1083.68T1073.79
M699.39T1013.83 − Rha−Rha−C10−C12:1 / Rha−Rha−C12:1−C10 + Na
M98.98T141.84
M244.11T293.5
M480.31T982.77 − PE(18:1/0:0)
M959.61T986.65
M454.29T963.69 − PE(16:0/0:0)
M646.36T912.5
M452.28T896.1
M533.29T1139.9
M505.25T982.5 − PG(16:1/0:0) + Na
M474.26T899.22
M113.06T779.69
M194.07T346.78
M393.3T1294.68
M326.38T1031.82
M323.09T586.42
M123.09T1250.04
M122.1T1374.68
M122.1T1460.79
M121.97T1468.13
M146.98T1381.23
M146.98T1316.52
M136.11T1272.39
M394.35T1366.24
M929.31T750.51
M354.32T1200.38
M354.32T1236.97
M729.44T1131.57 − Rha−Rha−C12−C12 + Na
M727.42T1093.9 − Rha−Rha−C12:1−C12 / Rha−Rha−C12−C12:1 + Na
M254.09T100.71
M530.13T538.67
M99.51T1040.17
M201.09T806.25
M418.14T474.32
M311.25T1335.27
M194.08T340.15
M125.57T156.99
M413.32T1163.6
M290.85T64.76
M320.17T232.69
M261.13T385.55
M307.02T733.71
M655.28T772.63
M437.19T860.52
M361.24T989
M473.35T1082.31
M397.26T1099.57
M441.36T1259.15
M397.33T1269.79
M353.29T1284.86
M355.28T1117.75
M555.36T1151.77 − Rha−C10−C12 / Rha−C12−C10 + Na
M755.46T1159.83
M757.47T1212.99
M661.49T1220.54
M573.43T1232.94
M485.38T1248.74
M532.36T1262.01
M865.62T1277.85
M777.57T1286.67
M733.54T1292.1
M645.49T1301.45
M469.39T1328.01
M557.44T1313.67
M324.33T1331.38
M502.35T1343.85
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Figure A-6: Symmetric heat map of the distance matrix displaying MS2 spectra similarities of the example data set along
with dendrograms resulting from hierarchical clustering based on the distance matrix. The colour encoding is shown in the
top-left insert.

HCplot(nlmat, type = "heatmap",
cexRow = 0.06, cexCol = 0.06,
margins = c(5,5))

A-15

4

Supplementary information

115



M
13

3.
96

T
13

97
.3

5
M

42
5.

36
T

13
38

.3
8

M
32

4.
33

T
13

31
.3

8
M

46
9.

39
T

13
28

.0
1

M
55

7.
44

T
13

13
.6

7
M

60
1.

46
T

13
07

.1
6

M
68

9.
52

T
12

98
.0

5
M

73
3.

54
T

12
92

.1
M

77
7.

57
T

12
86

.6
7

M
82

1.
6T

12
83

.0
4

M
86

5.
62

T
12

77
.8

5
M

46
6.

32
T

12
74

.4
6

M
39

7.
33

T
12

69
.7

9
M

63
3.

15
T

12
61

.7
5

M
28

4.
29

T
12

62
.2

6
M

48
5.

38
T

12
48

.7
4

M
57

3.
43

T
12

32
.9

4
M

66
1.

49
T

12
20

.5
4

M
75

7.
47

T
12

12
.9

9
M

36
9.

3T
11

66
.6

M
75

5.
46

T
11

59
.8

3
M

12
4.

09
T

13
69

.7
5

M
35

5.
28

T
11

17
.7

5
M

44
3.

34
T

11
15

.6
6

M
31

1.
26

T
11

03
.9

8
M

42
9.

32
T

10
84

.6
3 

−
 c

ho
le

st
er

yl
 a

ce
ta

te
M

34
1.

27
T

10
84

.6
3

M
29

2.
66

T
10

25
.5

2
M

23
9.

66
T

10
17

.2
M

99
.5

1T
10

40
.1

7
M

95
9.

61
T

98
6.

65
M

28
9.

15
T

95
4.

48
M

62
7.

42
T

94
5.

38
M

67
2.

37
T

93
0.

21
M

57
5.

38
T

90
4.

16
M

41
5.

21
T

85
9.

73
M

16
1.

1T
80

0.
82

M
11

3.
06

T
77

9.
69

M
30

9.
13

T
78

0.
23

M
25

0.
08

T
76

2.
76

M
91

3.
35

T
74

7.
39

M
10

12
.6

7T
69

3.
51

M
90

0.
04

T
69

0
M

11
56

.9
1T

69
0.

64
M

11
57

.0
5T

68
7.

92
M

10
12

.4
2T

68
8.

19
M

18
1.

08
T

72
4.

14
M

28
9.

14
T

64
9.

01
M

20
0.

11
T

57
8.

31
M

26
3.

12
T

62
4.

79
M

20
4.

1T
56

4.
12

M
50

5.
3T

52
6.

66
M

18
7.

09
T

50
5

M
41

8.
14

T
47

4.
32

M
15

9.
09

T
46

4.
27

M
30

0.
2T

46
1.

28
M

26
3.

14
T

44
7.

96
 −

 P
ro

 P
he

M
29

5.
19

T
41

7.
02

M
26

8.
66

T
40

8.
73

M
18

8.
12

T
39

9.
72

M
97

7.
84

T
39

5.
18

M
29

8.
1T

38
5.

29
 −

 5
'−

m
et

hy
lth

io
ad

en
os

in
e

M
69

4.
26

T
37

6.
97

M
35

9.
64

T
36

8.
9

M
67

9.
29

T
36

1.
61

M
68

6.
76

T
35

8.
74

M
21

7.
1T

34
7.

04
M

19
4.

08
T

34
0.

15
M

59
7.

68
T

33
5.

59
 −

 U
D

P
−

m
ur

am
yl

−
pe

nt
ap

ep
tid

e
M

12
35

.4
T

32
4.

66
M

91
1.

28
T

32
3.

37
M

27
6.

11
T

27
6.

54
M

32
0.

17
T

23
2.

69
M

35
1.

59
T

16
6.

13
M

12
5.

57
T

15
6.

99
M

19
3.

07
T

15
0.

49
 −

 S
−

(5
'−

ad
en

os
yl

)−
ho

m
oc

ys
te

in
e 

(2
+

)
M

32
3.

06
T

13
5.

83
 −

 d
T

M
P

M
33

2.
56

T
10

7.
48

 −
 N

A
D

 (
2+

)
M

69
5.

13
T

91
.8

8 
−

 A
M

P
 (

2+
)

M
85

.0
6T

86
.7

M
29

0.
85

T
64

.7
6

M
22

6.
18

T
70

3.
76

M
25

4.
16

T
28

0.
46

M
25

6.
18

T
30

9.
56

M
66

4.
12

T
10

8.
26

 −
 N

A
D

M
33

2.
08

T
11

3.
21

 −
 d

A
M

P
M

32
4.

06
T

75
.3

2 
−

 C
M

P
M

36
4.

07
T

97
.1

9 
−

 G
M

P
M

14
4.

98
T

14
09

.5
6

M
14

6.
98

T
13

16
.5

2
M

70
8.

77
T

34
9.

12
M

65
5.

23
T

35
9.

27
M

39
7.

14
T

28
9.

26
M

48
0.

64
T

32
9.

62
M

84
8.

79
T

38
0.

87
M

33
2.

62
T

16
5.

35
M

59
0.

7T
35

1.
59

M
47

2.
85

T
34

8.
87

M
19

1.
05

T
84

.3
7

M
57

1.
35

T
87

5.
76

M
50

3.
33

T
79

7.
17

M
31

6.
21

T
43

0.
54

M
65

5.
28

T
77

2.
63

M
26

2.
16

T
27

8.
37

M
45

9.
23

T
10

54
.9

1
M

44
6.

19
T

74
5.

32
 −

 g
lip

iz
id

e 
IS

T
D

M
41

3.
33

T
10

95
.8

3
M

38
5.

29
T

10
79

.0
9

M
41

5.
34

T
11

90
.2

9
M

35
9.

28
T

96
6.

42
M

38
7.

31
T

11
59

.5
8

M
38

7.
31

T
11

09
.1

7
M

54
3.

4T
91

0.
68

M
56

3.
36

T
91

0.
94

M
50

2.
29

T
98

5.
62

 −
 P

E
(1

8:
1/

0:
0)

 +
 N

a
M

12
2.

1T
14

60
.7

9
M

49
6.

34
T

10
18

.2
3 

−
 P

C
(1

6:
0/

0:
0)

M
52

2.
36

T
10

43
.6

M
48

0.
31

T
98

2.
77

 −
 P

E
(1

8:
1/

0:
0)

M
45

4.
29

T
96

3.
69

 −
 P

E
(1

6:
0/

0:
0)

M
51

1.
3T

11
37

.2
9

M
48

5.
29

T
10

92
.0

8
M

24
5.

59
T

49
5.

11
M

26
5.

57
T

54
6.

37
M

34
2.

24
T

48
6.

25
 −

 P
ro

 Il
e 

Le
u 

or
 is

om
er

M
37

8.
2T

41
2.

48
 −

 P
ro

 T
yr

 V
al

M
34

4.
25

T
47

6.
52

 −
 L

eu
 L

eu
 V

al
 o

r 
is

om
er

M
23

1.
17

T
47

5.
37

 −
 L

eu
 V

al
M

44
1.

31
T

51
6.

66
M

42
7.

29
T

48
5.

86
M

32
6.

21
T

41
4.

96
M

56
8.

14
T

33
8.

32
M

10
51

.3
6T

34
2.

36
M

52
5.

18
T

35
2.

51
M

79
3.

27
T

27
3.

95
M

53
5.

19
T

11
8.

41
 −

 G
lu

 G
lu

 G
lu

 G
lu

M
31

6.
16

T
94

.4
7

M
30

1.
11

T
76

.8
8

M
36

0.
21

T
35

5.
1 

−
 Il

e 
V

al
 G

lu
 / 

V
al

 Il
e 

G
lu

M
61

3.
16

T
12

7.
23

 −
 g

lu
ta

th
io

n 
di

su
lfi

de
M

53
0.

13
T

53
8.

67
M

32
2.

11
T

13
1.

92
M

30
4.

19
T

97
7.

83
M

30
3.

19
T

97
9.

65
M

24
4.

11
T

29
3.

5
M

32
5.

07
T

73
9.

09
 −

 p
yo

ch
el

in
M

32
5.

07
T

12
85

.1
2

M
23

0.
15

T
73

5.
39

 −
 C

6−
H

Q
M

30
2.

21
T

95
6.

81
 −

 C
10

−
Q

N
O

M
25

6.
17

T
85

1.
43

 −
 C

8:
1−

H
Q

M
26

8.
17

T
87

5.
49

M
24

2.
15

T
78

9.
6 

−
 C

7:
1−

H
Q

M
28

6.
18

T
92

1.
6 

−
 C

9:
1−

P
Q

S
M

30
0.

2T
92

5.
27

 −
 C

10
:1

−
Q

N
O

M
32

8.
19

T
78

1.
65

M
27

6.
16

T
81

1.
73

M
32

6.
18

T
83

3.
85

M
28

6.
18

T
72

8.
73

 −
 C

9:
1−

Q
N

O
M

20
2.

18
T

11
5.

29
M

23
2.

13
T

68
3.

77
 −

 C
5−

Q
N

O
M

27
2.

16
T

82
2.

08
 −

 C
8:

1−
Q

N
O

M
26

0.
16

T
79

6.
66

 −
 H

Q
N

O
M

39
1.

29
T

12
97

.2
8

M
41

3.
27

T
12

97
.0

3 
−

 B
is

(2
−

et
hy

lh
ex

yl
)p

ht
ha

la
te

 C
O

N
T

M
28

4.
2T

90
4.

43
 −

 C
10

:1
−

H
Q

M
24

4.
17

T
79

6.
4 

−
 H

H
Q

M
29

6.
2T

95
8.

11
M

27
2.

2T
91

0.
42

 −
 C

9−
H

Q
M

28
4.

2T
95

9.
42

 −
 C

10
:1

−
H

Q
M

48
5.

11
T

61
2.

66
M

34
2.

24
T

91
2.

12
 −

 C
13

:1
−

Q
N

O
M

20
2.

09
T

54
5.

21
M

31
6.

23
T

87
1.

07
 −

 C
11

−
Q

N
O

M
55

5.
36

T
11

51
.7

7 
−

 R
ha

−
C

10
−

C
12

 / 
R

ha
−

C
12

−
C

10
 +

 N
a

M
32

6.
25

T
10

43
.7

3 
−

 C
13

:1
−

H
Q

M
31

1.
25

T
13

35
.2

7
M

25
7.

25
T

12
11

.0
4

M
30

4.
19

T
92

1.
87

M
28

3.
22

T
12

39
.0

8
M

32
4.

23
T

10
25

.7
9

M
34

2.
24

T
10

78
.7

2 
−

 C
13

:1
−

P
Q

S
M

31
6.

23
T

10
07

.3
7 

−
 C

11
−

P
Q

S
M

31
4.

21
T

94
4.

87
 −

 C
11

:1
−

P
Q

S
M

10
83

.6
8T

10
73

.7
9

M
70

5.
44

T
10

95
.8

3 
−

 R
ha

−
R

ha
−

C
12

:1
−

C
12

 / 
R

ha
−

R
ha

−
C

12
−

C
12

:1
M

70
7.

46
T

11
32

.6
 −

 R
ha

−
R

ha
−

C
12

−
C

12
M

35
8.

2T
83

5.
92

M
38

1.
26

T
10

78
.4

7
M

52
7.

32
T

10
21

.6
2 

−
 R

ha
−

C
10

−
C

10
 /R

ha
−

C
12

−
C

8 
+

 N
a

M
55

5.
35

T
11

08
.3

9 
−

 R
ha

−
C

10
−

C
12

 / 
R

ha
−

C
12

−
C

10
 +

 N
a

M
55

3.
34

T
10

72
.2

5 
−

 R
ha

−
C

10
−

C
12

:1
 / 

R
ha

−
C

12
:1

−
C

10
 +

 N
a

M
67

3.
38

T
96

6.
68

 −
 R

ha
−

R
ha

−
C

10
−

C
10

 +
 N

a
M

72
7.

42
T

10
93

.9
 −

 R
ha

−
R

ha
−

C
12

:1
−

C
12

 / 
R

ha
−

R
ha

−
C

12
−

C
12

:1
 +

 N
a

M
72

9.
44

T
11

31
.5

7 
−

 R
ha

−
R

ha
−

C
12

−
C

12
 +

 N
a

M
36

0.
22

T
92

3.
7

M
33

6.
19

T
41

5.
21

 −
 P

he
 V

al
 A

la
 / 

V
al

 P
he

 A
la

M
19

7.
13

T
42

3.
26

M
18

2.
07

T
14

1.
05

M
20

7.
06

T
69

9.
1 

−
 p

he
na

zi
ne

−
1−

ca
rb

ox
yl

ic
 a

ci
d 

(f
ra

gm
en

t)
M

21
3.

07
T

65
2.

92
M

17
4.

06
T

36
0.

96
M

24
5.

13
T

52
5.

64
 −

 c
yc

lo
(P

he
 P

ro
)

M
26

1.
12

T
41

9.
11

M
20

7.
05

T
64

1.
72

 −
 p

he
na

zi
ne

−
1−

ca
rb

ox
am

id
e 

(f
ra

gm
en

t)
M

27
7.

15
T

46
6.

47
M

21
1.

14
T

49
7.

45
 −

 c
yc

lo
(L

eu
 P

ro
)

M
27

5.
11

T
44

5.
88

M
33

2.
22

T
89

0.
1

M
35

4.
32

T
12

36
.9

7
M

16
4.

06
T

14
7.

09
 −

 p
te

rin
e

M
16

3.
09

T
51

2.
64

M
17

9.
07

T
11

4.
5

M
22

4.
08

T
64

0.
69

 −
 p

he
na

zi
ne

−
1−

ca
rb

ox
am

id
e

M
12

3.
09

T
14

17
.8

1
M

21
4.

13
T

41
1.

31
M

14
6.

17
T

59
.3

5 
−

 s
pe

rm
id

in
e

M
12

3.
06

T
10

3.
31

 −
 n

ic
ot

in
am

id
e

M
12

0.
08

T
23

3.
48

 −
 p

he
ny

la
la

ni
ne

 (
fr

ag
m

en
t)

M
13

6.
06

T
90

.6
 −

 A
M

P
 (

fr
ag

m
en

t)
M

31
4.

09
T

17
5.

26
M

32
1.

1T
74

6.
09

M
30

4.
06

T
13

2.
18

M
14

3.
08

T
13

8.
17

M
13

6.
08

T
58

4.
09

M
28

8.
2T

76
5.

88
 −

 C
9−

Q
N

O
M

26
9.

06
T

70
8.

74
 −

 p
he

na
zi

ne
−

1,
6−

di
ca

rb
ox

yl
ic

 a
ci

d
M

22
5.

07
T

69
8.

07
 −

 p
he

na
zi

ne
−

1−
ca

rb
ox

yl
ic

 a
ci

d
M

35
8.

24
T

92
9.

17
M

23
2.

13
T

49
5.

36
M

25
7.

06
T

70
4.

3
M

13
7.

05
T

11
2.

16
 −

 h
yp

ox
an

th
in

e
M

30
4.

19
T

78
6.

75
M

25
5.

08
T

74
0.

91
M

20
4.

1T
43

5.
6

M
30

4.
19

T
71

7.
91

M
32

8.
14

T
77

2.
12

M
25

4.
09

T
40

0.
89

M
18

8.
07

T
37

1.
25

 −
 tr

yp
to

ph
an

 (
fr

ag
m

en
t)

M
29

9.
14

T
96

.5
4

M
20

5.
1T

37
0.

99
 −

 tr
yp

to
ph

an
M

12
1.

97
T

14
68

.1
3

M
30

7.
02

T
73

3.
71

M
14

8.
06

T
69

.6
5 

−
 g

lu
ta

m
at

e
M

16
2.

08
T

82
.0

5
M

17
8.

05
T

86
7.

16
M

16
6.

09
T

23
3.

22
 −

 p
he

ny
la

la
ni

ne
M

13
0.

05
T

69
.6

4 
−

 g
lu

ta
m

at
e 

(f
ra

gm
en

t)
M

17
6.

07
T

46
5.

7
M

21
5.

12
T

62
6.

24
M

33
0.

19
T

72
4.

4
M

18
5.

1T
76

3.
53

 −
 n

ap
ro

xe
n 

IS
T

D
 (

fr
ag

m
en

t)
M

19
8.

09
T

87
4.

45
M

22
0.

12
T

33
6.

88
 −

 p
an

th
ot

en
at

e
M

18
6.

09
T

53
1.

62
M

29
1.

15
T

44
4.

85
 −

 tr
im

et
ho

pr
im

 IS
T

D
M

20
2.

12
T

57
8.

44
M

11
2.

11
T

57
.8

 −
 s

pe
rm

id
in

e 
(f

ra
gm

en
t)

M
28

2.
14

T
11

45
.4

2
M

21
1.

09
T

38
2.

17
 −

 p
yo

cy
an

in

M160.08T433.66
M136.11T1448.2
M195.09T436.77 − caffeine ISTD
M214.12T663.32 − C5:1−HQ
M188.11T535.78 − C3−HQ
M233.13T676.23 − nortriptyline ISTD (fragment)
M204.12T389.98
M360.19T459.98
M185.1T729.78 − naproxen (fragment)
M136.11T1272.39
M393.12T645.89
M231.1T763.28 − naproxen ISTD
M116.07T73.51 − proline
M132.1T122.82 − leucine / isoleucine / norleucine
M182.08T125.93 − tyrosine
M190.05T411.45 − kynurenate
M179.06T71.32 − gluconolactone
M197.07T71.57
M219.13T335.84 − Ser Leu
M121.97T1381.09
M186.13T666.88
M201.09T806.25
M190.07T117.36 − N−acetylglutamate
M184.08T908.6
M159.07T795.61 − HHQ (fragment)
M276.16T680.26 − nortriptyline ISTD + Na
M110.06T100.45 − 2−aminophenol
M288.2T824.42 − C9−QNO
M314.21T825.99 − C11:1−QNO
M219.1T77.65 − Glu Ala
M138.06T451.33 − anthranilate
M98.98T141.84
M260.16T651.62 − HQNO
M330.21T844.12
M330.21T962.26
M288.2T705.59 − C9−QNO
M243.09T558.67 − lumichrome
M118.06T585.64
M734.27T356.41
M321.1T537.6
M250.14T156.21
M129.14T58.57 − spermidine (fragment)
M189.12T85.8
M338.14T94.98
M338.34T1339.43
M187.12T391.55
M327.34T917.18
M180.05T120.87 − (iso)xanthopterine
M231.11T430.8
M194.07T346.78
M145.08T508.11
M354.32T1200.38
M260.16T583.7 − C7−QNO
M457.11T433.91 − FMN
M251.15T228.5
M399.26T461.02
M215.08T362.66
M195.11T378.66
M311.14T527.97
M174.06T277.59
M120.04T450.56 − anthranilate (fragment)
M149.02T1295.98
M243.08T362.4
M206.03T721.29
M328.23T993.95 − C12:1−QNO
M577.33T1107.35
M701.41T1049.33 − Rha−Rha−C10−C12 / Rha−Rha−C12−C10 + Na
M699.39T1013.83 − Rha−Rha−C10−C12:1 / Rha−Rha−C12:1−C10 + Na
M581.37T1153.59
M583.38T1189.9
M409.29T1159.84
M499.29T936.54
M302.18T879.54
M358.2T834.1
M679.43T1051.39 − Rha−Rha−C10−C12 / Rha−Rha−C12−C10
M1087.71T1109.95
M677.41T1014.86 − Rha−Rha−C10−C12:1 / Rha−Rha−C12:1−C10
M288.2T902.1 − C9−PQS
M340.23T1007.62
M342.24T1034.94
M298.22T984.33 − C11:1−HQ
M314.21T892.19 − C11:1−QNO
M346.2T881.21
M267.17T955.25
M326.25T1125.41 − C13:1−HQ
M312.23T1001.35 − C12:1−HQ
M316.23T869.51 − C11−QNO
M227.08T670.26
M159.11T102.26
M254.09T100.71
M251.16T60.64
M286.18T808.85 − C9:1−QNO
M270.19T766.9 − C9:1−HQ
M270.19T873.15 − C9:1−HQ
M258.19T853.38 − C8−HQ
M324.16T867.42
M287.19T1183.15
M286.18T864.03 − C9:1−QNO
M274.18T842.43 − C8−QNO
M258.15T768.47 − C7:1−QNO
M284.16T840.09
M310.18T853.38
M312.2T1037.01
M314.21T1034.15
M302.17T804.83
M300.2T894.8 − C10:1−QNO
M312.2T794.57
M312.2T929.44
M216.14T670.01 − C5−HQ
M172.17T813.55
M344.19T754.17
M282.22T1185.24
M394.35T1366.24
M325.07T819.96 − pyochelin
M317.09T742.2
M255.08T482.73
M245.18T210.61
M243.18T392.85
M290.13T105.39
M516.16T395.97
M295.13T406.65 − Glu Phe
M250.12T856.23
M317.14T103.57
M664.23T165.1
M922.32T329.89
M732.26T383.07
M1180.4T351.98
M728.23T398.3
M439.29T506.82
M358.2T377.48 − Ile Pro Glu / Leu Pro Glu
M491.29T496.41
M473.3T511.21
M316.22T413.91 − Val Val Val
M328.22T437.8 − Pro Leu Val
M392.25T573.83 − Phe Leu Leu or isomer
M243.13T457.64
M258.58T397.4
M307.08T126.2 − glutathion disulphide (2+)
M483.27T981.33 − PG(16:1/0:0)
M242.08T74.02
M452.28T896.1
M533.29T1139.9
M507.27T1100.59
M505.25T982.5 − PG(16:1/0:0) + Na
M122.1T1374.68
M474.26T899.22
M541.38T909.89
M542.07T108.52 − NAD (fragment)
M387.31T1049.58
M359.28T1022.4
M359.28T1078.46
M415.34T1132.34
M385.3T1014.61
M468.17T744.02 − glipizide ISTD + Na
M264.18T675.46 − nortriptyline ISTD
M289.12T417.28
M469.38T1466.95
M268.1T171.87 − adenosine
M519.32T799.12 − HQNO [2M+H]+
M404.23T734.62
M432.26T815.37
M462.85T367.6
M328.26T1127.63 − C13−HQ
M461.66T328.59
M367.64T355.63
M719.75T366.82
M526.18T342.1
M784.27T374.37
M913.31T388.16
M146.98T1450.82
M146.98T1381.23
M331.18T363.96
M348.07T90.34 − AMP
M325.04T78.94 − UMP
M308.06T84.63 − dCMP
M270.19T371.24
M304.18T373.32
M479.19T333.77
M212.85T65.02
M428.04T80.88 − ADP
M372.55T88.26 − NADP (2+)
M99.09T97.84
M278.57T112.67
M388.11T146.83
M385.13T151.52 − S−(5'−adenosyl)−homocysteine
M416.12T271.35
M340.06T231.65
M103.05T235.3 − phenylalanine (fragment)
M323.07T305.37
M727.21T324.67
M472.65T332.73
M382.65T337.93
M363.77T343.13
M235.07T357.45
M666.22T359.78
M693.77T367.08
M795.26T374.75
M578.85T381.64
M261.13T385.55
M364.62T397.4
M350.62T409.24 − folic acid (fragment)
M145.08T410.28
M786.17T426.25 − FAD
M257.15T449.13
M291.09T462.05 − trimethoprim ISTD
M159.07T466.73
M831.14T503.95
M246.13T525.63
M275.03T536.04
M775.9T572.93
M263.12T576.07
M323.09T586.42
M297.14T656.95
M191.09T676.49 − nortriptyline ISTD (fragment)
M1012.54T689.35
M900.15T689.22
M1012.29T689.74
M1156.76T690.25
M929.31T750.51
M891.36T747.39
M274.27T767.94
M353.16T780.48
M184.08T792.48
M437.19T860.52
M170.1T885.9
M292.17T907.81
M646.36T912.5
M595.43T950.84
M500.22T974.72
M361.24T989
M310.22T1008.4
M1031.65T1023.18
M326.38T1031.82
M473.35T1082.31
M397.26T1099.57
M487.36T1112.82
M399.31T1118.65
M99.51T1121.65
M278.18T1152.3
M413.32T1163.6
M559.13T1193.82
M705.51T1214.43
M617.46T1226.29
M529.41T1240.64
M123.09T1250.04
M441.36T1259.15
M532.36T1262.01
M488.33T1270.83
M122.1T1276.28
M353.3T1282.53
M353.29T1284.86
M609.34T1288.22
M393.3T1294.68
M645.49T1301.45
M265.96T1330.45
M513.41T1320.44
M284.3T1328.91
M542.42T1359.88
M502.35T1343.85
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Figure A-7: Symmetric heat map of the distance matrix displaying neutral loss similarities of the example data set along
with dendrograms resulting from hierarchical clustering based on the distance matrix. The colour encoding is shown in the
top-left insert.

Obviously, it makes sense to export the plots to larger pdf or png files (e.g. 2000 × 2000 pixels) to examine them
closely. If exported to pdf, the feature names remain searchable (Ctrl+F in Windows).

Create a dendrogram

With the dendrogram, too, it is advisable to export is to pdf in a large format, e.g. as follows:
pdf(file = "CluMSID_dendro.pdf", width = 20, height = 20)
HCplot(distmat)
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dev.off()

The plot from our example data looks like this:
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Figure A-8: Circularised dendrogram as a result of agglomerative hierarchical clustering with average linkage as agglomeration
criterion based on MS2 spectra similarities of the example data set. Each leaf represents one feature and colours encode
cluster affiliation of the features. Leaf labels display feature IDs, along with feature annotations, if existent. Distance from
the central point is indicative of the height of the dendrogram.
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The clusters are colour-coded and if exported to pdf, the tip labels containing feature ID and annotation are
searchable.The height of the dendrogram’s branching points serves as another piece of information when interpreting
the clustered data as it signifies similarity of features.
For a detailed example of how to interpret, please refer to Depke et al. 2017, where CluMSID helped to identify
new members of several classes of secondary metabolites in Pseudomonas aeruginosa.
Like with density-based clustering, it is also possible to generate a list of features with respective cluster assignments
using HCtbl. As mentioned above for OPTISplot and OPTICStbl, it is crucial to run HCplot and HCtbl using
the same parameters.
HCtable <- HCtbl(distmat)

head(HCtable)
#> feature cluster_ID
#> 1 M146.17T59.35 - spermidine 1
#> 2 M129.14T58.57 - spermidine (fragment) 1
#> 3 M112.11T57.8 - spermidine (fragment) 1
#> 4 M251.16T60.64 1
#> 5 M212.85T65.02 2
#> 6 M290.85T64.76 3

Generate a correlation network

As a new functionality, CluMSID offers the possibility to analyse the similarity data using weighted correlation
networks. These networks offer some advantages with respect to standard clustering methods, most notably that
they do not strictly assign every feature to a distinct cluster but also represent similarities between features that
would fall into different clusters in hierarchical or density-based clustering. Thus, correlation networks potentially
contain more useful information for data interpretation. On the downside, the interpretation is also complicated
by this lack of concrete cluster assignments. E.g., we cannot simply look up which features belong to the same
cluster in order to examine their spectra closely but we have to go back to the correlation network visualisation
and search for connected features manually.
networkplot requires some arguments:

• distmat: matrix ; a distance matrix like for all other functions described above
• interactive: logical ; Similar to MDSplot, correlation network can be generate as interactive plots that are

zoomable and display feature IDs on mouse-over. If that is desired, set interactive to TRUE (default is
FALSE).

• show_labels: logical ; whether to display feature IDs in the (non-interactive) plot (default is FALSE, ignored
if interacive = TRUE)

• label_size: numeric; font size of feature ID labels (default is 1.5, which is way smaller than the default
in GGally::ggnet2, 4.5)

• highlight_annotated: logical ; whether to plot dots for features with annotation in a different colour
(same as in MDSplot, default is FALSE)

• min_similarity: numeric ; the minimum similarity (1 – distance) threshold (similarities below this threshold
will be ignored, default is 0.1)

• exclude_singletons: logical ; whether to exclude features from the plot that do not have connections to
other features, particularly useful with data sets containing very dissimilar spectra, e.g. neutral loss patterns
or MS1 pseudospectra (default is FALSE)
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A standard non-interactive correlation network for the MS2 example data can be plotted like this:
networkplot(distmat, highlight_annotated = TRUE,

show_labels = TRUE, interactive = FALSE)

M146.17T59.35 − spermidine

M129.14T58.57 − spermidine (fragment)

M112.11T57.8 − spermidine (fragment)

M251.16T60.64

M212.85T65.02

M290.85T64.76

M148.06T69.65 − glutamateM130.05T69.64 − glutamate (fragment)

M179.06T71.32 − gluconolactone

M197.07T71.57

M116.07T73.51 − proline

M242.08T74.02

M324.06T75.32 − CMP

M301.11T76.88

M219.1T77.65 − Glu Ala

M325.04T78.94 − UMP

M428.04T80.88 − ADP

M162.08T82.05

M191.05T84.37

M308.06T84.63 − dCMP

M189.12T85.8

M85.06T86.7

M372.55T88.26 − NADP (2+)

M348.07T90.34 − AMP

M136.06T90.6 − AMP (fragment)

M695.13T91.88 − AMP (2+)

M316.16T94.47

M338.14T94.98

M364.07T97.19 − GMP

M299.14T96.54

M99.09T97.84

M254.09T100.71

M110.06T100.45 − 2−aminophenol

M123.06T103.31 − nicotinamide

M159.11T102.26

M317.14T103.57
M290.13T105.39M332.56T107.48 − NAD (2+)

M664.12T108.26 − NAD

M542.07T108.52 − NAD (fragment)

M278.57T112.67
M137.05T112.16 − hypoxanthine

M332.08T113.21 − dAMP

M179.07T114.5

M202.18T115.29

M190.07T117.36 − N−acetylglutamate

M535.19T118.41 − Glu Glu Glu Glu

M180.05T120.87 − (iso)xanthopterine

M132.1T122.82 − leucine / isoleucine / norleucine

M307.08T126.2 − glutathion disulphide (2+)

M182.08T125.93 − tyrosine

M613.16T127.23 − glutathion disulfide

M322.11T131.92

M304.06T132.18

M323.06T135.83 − dTMP

M143.08T138.17

M98.98T141.84

M182.07T141.05

M388.11T146.83

M164.06T147.09 − pterine

M193.07T150.49 − S−(5'−adenosyl)−homocysteine (2+)
M385.13T151.52 − S−(5'−adenosyl)−homocysteine

M250.14T156.21

M125.57T156.99

M664.23T165.1

M332.62T165.35

M351.59T166.13

M268.1T171.87 − adenosine

M314.09T175.26

M245.18T210.61

M251.15T228.5

M166.09T233.22 − phenylalanineM120.08T233.48 − phenylalanine (fragment)

M340.06T231.65

M320.17T232.69

M103.05T235.3 − phenylalanine (fragment)

M397.14T289.26

M793.27T273.95

M416.12T271.35

M174.06T277.59

M262.16T278.37

M276.11T276.54

M254.16T280.46

M244.11T293.5

M323.07T305.37

M256.18T309.56
M911.28T323.37M727.21T324.67

M1235.4T324.66

M461.66T328.59

M922.32T329.89
M480.64T329.62

M479.19T333.77

M472.65T332.73

M597.68T335.59 − UDP−muramyl−pentapeptide

M219.13T335.84 − Ser Leu

M382.65T337.93

M220.12T336.88 − panthotenate

M568.14T338.32

M194.08T340.15

M526.18T342.1

M1051.36T342.36
M363.77T343.13

M194.07T346.78

M217.1T347.04

M472.85T348.87

M708.77T349.12

M590.7T351.59

M525.18T352.51

M1180.4T351.98M367.64T355.63

M360.21T355.1 − Ile Val Glu / Val Ile Glu

M734.27T356.41

M235.07T357.45
M655.23T359.27

M686.76T358.74

M666.22T359.78

M174.06T360.96

M679.29T361.61

M243.08T362.4M215.08T362.66

M331.18T363.96

M693.77T367.08

M719.75T366.82

M462.85T367.6

M359.64T368.9

M188.07T371.25 − tryptophan (fragment)

M205.1T370.99 − tryptophan

M270.19T371.24

M304.18T373.32

M784.27T374.37

M795.26T374.75

M694.26T376.97

M358.2T377.48 − Ile Pro Glu / Leu Pro Glu
M195.11T378.66

M848.79T380.87

M211.09T382.17 − pyocyanin

M578.85T381.64

M732.26T383.07

M298.1T385.29 − 5'−methylthioadenosine

M261.13T385.55

M913.31T388.16

M187.12T391.55

M204.12T389.98

M243.18T392.85

M258.58T397.4

M977.84T395.18

M516.16T395.97

M364.62T397.4

M728.23T398.3

M188.12T399.72

M254.09T400.89

M295.13T406.65 − Glu Phe

M350.62T409.24 − folic acid (fragment)

M268.66T408.73

M145.08T410.28

M190.05T411.45 − kynurenateM214.13T411.31

M378.2T412.48 − Pro Tyr Val

M316.22T413.91 − Val Val Val

M328.22T437.8 − Pro Leu ValM326.21T414.96

M336.19T415.21 − Phe Val Ala / Val Phe Ala

M295.19T417.02

M289.12T417.28

M261.12T419.11

M197.13T423.26

M786.17T426.25 − FAD

M316.21T430.54

M231.11T430.8

M160.08T433.66

M457.11T433.91 − FMN

M204.1T435.6

M195.09T436.77 − caffeine ISTD

M291.15T444.85 − trimethoprim ISTD

M275.11T445.88

M263.14T447.96 − Pro Phe

M257.15T449.13

M120.04T450.56 − anthranilate (fragment)
M138.06T451.33 − anthranilate

M243.13T457.64

M360.19T459.98

M300.2T461.28

M399.26T461.02

M291.09T462.05 − trimethoprim ISTD

M176.07T465.7

M159.09T464.27

M277.15T466.47

M159.07T466.73

M418.14T474.32

M231.17T475.37 − Leu Val

M491.29T496.41

M344.25T476.52 − Leu Leu Val or isomer

M255.08T482.73

M211.14T497.45 − cyclo(Leu Pro)
M342.24T486.25 − Pro Ile Leu or isomer

M427.29T485.86

M245.59T495.11

M232.13T495.36

M145.08T508.11

M439.29T506.82

M831.14T503.95

M187.09T505

M163.09T512.64

M473.3T511.21
M441.31T516.66

M245.13T525.64 − cyclo(Phe Pro)M246.13T525.63

M505.3T526.66

M311.14T527.97

M530.13T538.67

M186.09T531.62M188.11T535.78 − C3−HQ

M275.03T536.04

M321.1T537.6

M202.09T545.21

M265.57T546.37

M243.09T558.67 − lumichrome

M204.1T564.12M260.16T583.7 − C7−QNO

M775.9T572.93
M392.25T573.83 − Phe Leu Leu or isomer

M263.12T576.07

M200.11T578.31

M202.12T578.44

M136.08T584.09

M118.06T585.64

M323.09T586.42

M485.11T612.66

M215.12T626.24

M263.12T624.79

M224.08T640.69 − phenazine−1−carboxamide

M207.05T641.72 − phenazine−1−carboxamide (fragment)

M393.12T645.89

M289.14T649.01

M213.07T652.92

M260.16T651.62 − HQNO

M297.14T656.95

M186.13T666.88

M214.12T663.32 − C5:1−HQ

M216.14T670.01 − C5−HQ

M227.08T670.26

M264.18T675.46 − nortriptyline ISTDM233.13T676.23 − nortriptyline ISTD (fragment)

M191.09T676.49 − nortriptyline ISTD (fragment)

M276.16T680.26 − nortriptyline ISTD + Na

M232.13T683.77 − C5−QNO
M1012.42T688.19M1012.54T689.35

M1157.05T687.92M900.15T689.22M1156.91T690.64

M1012.29T689.74

M900.04T690M1156.76T690.25

M1012.67T693.51

M225.07T698.07 − phenazine−1−carboxylic acid

M207.06T699.1 − phenazine−1−carboxylic acid (fragment)

M257.06T704.3

M226.18T703.76

M288.2T705.59 − C9−QNO

M269.06T708.74 − phenazine−1,6−dicarboxylic acid

M325.07T739.09 − pyochelin

M304.19T717.91

M206.03T721.29

M286.18T728.73 − C9:1−QNO

M181.08T724.14

M330.19T724.4

M185.1T729.78 − naproxen (fragment)

M307.02T733.71

M404.23T734.62

M230.15T735.39 − C6−HQ

M255.08T740.91

M317.09T742.2

M446.19T745.32 − glipizide ISTD

M468.17T744.02 − glipizide ISTD + Na

M321.1T746.09

M913.35T747.39

M891.36T747.39

M328.19T781.65

M929.31T750.51

M344.19T754.17

M231.1T763.28 − naproxen ISTDM185.1T763.53 − naproxen ISTD (fragment)

M250.08T762.76

M288.2T765.88 − C9−QNO

M258.15T768.47 − C7:1−QNO

M270.19T766.9 − C9:1−HQ

M274.27T767.94

M328.14T772.12

M655.28T772.63

M242.15T789.6 − C7:1−HQ

M309.13T780.23
M353.16T780.48

M113.06T779.69

M304.19T786.75

M184.08T792.48

M260.16T796.66 − HQNO

M244.17T796.4 − HHQ
M312.2T794.57

M159.07T795.61 − HHQ (fragment)
M503.33T797.17M519.32T799.12 − HQNO [2M+H]+

M161.1T800.82M302.17T804.83

M201.09T806.25

M286.18T808.85 − C9:1−QNO

M276.16T811.73M172.17T813.55

M432.26T815.37

M325.07T819.96 − pyochelin

M272.16T822.08 − C8:1−QNO

M314.21T825.99 − C11:1−QNO
M288.2T824.42 − C9−QNO

M284.16T840.09

M326.18T833.85

M358.2T834.1

M274.18T842.43 − C8−QNO

M358.2T835.92

M258.19T853.38 − C8−HQM330.21T844.12

M286.18T864.03 − C9:1−QNO
M270.19T873.15 − C9:1−HQM268.17T875.49

M256.17T851.43 − C8:1−HQ

M310.18T853.38

M250.12T856.23

M437.19T860.52

M415.21T859.73

M324.16T867.42

M178.05T867.16

M302.18T879.54

M316.23T869.51 − C11−QNO

M316.23T871.07 − C11−QNO

M571.35T875.76

M198.09T874.45

M346.2T881.21

M452.28T896.1

M170.1T885.9

M332.22T890.1

M314.21T892.19 − C11:1−QNO

M300.2T925.27 − C10:1−QNO
M288.2T902.1 − C9−PQS

M300.2T894.8 − C10:1−QNO

M474.26T899.22

M284.2T904.43 − C10:1−HQ

M575.38T904.16

M184.08T908.6

M292.17T907.81

M272.2T910.42 − C9−HQ
M541.38T909.89M543.4T910.68

M563.36T910.94

M342.24T912.12 − C13:1−QNO

M646.36T912.5

M312.2T929.44

M327.34T917.18

M304.19T921.87

M286.18T921.6 − C9:1−PQS

M360.22T923.7

M358.24T929.17

M672.37T930.21

M499.29T936.54

M314.21T944.87 − C11:1−PQS

M296.2T958.11

M627.42T945.38

M298.22T984.33 − C11:1−HQ

M454.29T963.69 − PE(16:0/0:0)

M595.43T950.84

M289.15T954.48

M267.17T955.25

M302.21T956.81 − C10−QNO

M284.2T959.42 − C10:1−HQ

M330.21T962.26

M673.38T966.68 − Rha−Rha−C10−C10 + Na

M359.28T966.42

M480.31T982.77 − PE(18:1/0:0)

M500.22T974.72

M304.19T977.83M303.19T979.65

M505.25T982.5 − PG(16:1/0:0) + Na

M483.27T981.33 − PG(16:1/0:0)

M502.29T985.62 − PE(18:1/0:0) + Na

M959.61T986.65

M361.24T989

M328.23T993.95 − C12:1−QNO

M99.51T1040.17

M312.23T1001.35 − C12:1−HQ
M340.23T1007.62

M316.23T1007.37 − C11−PQS

M310.22T1008.4

M324.23T1025.79

M699.39T1013.83 − Rha−Rha−C10−C12:1 / Rha−Rha−C12:1−C10 + Na

M385.3T1014.61

M677.41T1014.86 − Rha−Rha−C10−C12:1 / Rha−Rha−C12:1−C10

M239.66T1017.2

M496.34T1018.23 − PC(16:0/0:0)

M527.32T1021.62 − Rha−C10−C10 /Rha−C12−C8 + Na

M359.28T1022.4

M1031.65T1023.18

M292.66T1025.52

M326.38T1031.82

M342.24T1034.94

M314.21T1034.15

M312.2T1037.01

M326.25T1043.73 − C13:1−HQ

M522.36T1043.6

M701.41T1049.33 − Rha−Rha−C10−C12 / Rha−Rha−C12−C10 + Na

M387.31T1049.58

M679.43T1051.39 − Rha−Rha−C10−C12 / Rha−Rha−C12−C10

M459.23T1054.91

M341.27T1084.63

M553.34T1072.25 − Rha−C10−C12:1 / Rha−C12:1−C10 + Na

M385.29T1079.09

M1083.68T1073.79

M381.26T1078.47

M342.24T1078.72 − C13:1−PQS

M359.28T1078.46

M727.42T1093.9 − Rha−Rha−C12:1−C12 / Rha−Rha−C12−C12:1 + Na

M473.35T1082.31

M429.32T1084.63 − cholesteryl acetate

M507.27T1100.59
M485.29T1092.08

M413.33T1095.83

M705.44T1095.83 − Rha−Rha−C12:1−C12 / Rha−Rha−C12−C12:1

M326.25T1125.41 − C13:1−HQ

M397.26T1099.57

M311.26T1103.98

M555.35T1108.39 − Rha−C10−C12 / Rha−C12−C10 + Na

M387.31T1109.17

M577.33T1107.35

M1087.71T1109.95

M487.36T1112.82

M443.34T1115.66

M399.31T1118.65

M355.28T1117.75

M99.51T1121.65

M124.09T1369.75

M328.26T1127.63 − C13−HQ

M533.29T1139.9

M729.44T1131.57 − Rha−Rha−C12−C12 + Na

M415.34T1132.34

M707.46T1132.6 − Rha−Rha−C12−C12

M511.3T1137.29

M581.37T1153.59M282.14T1145.42

M555.36T1151.77 − Rha−C10−C12 / Rha−C12−C10 + Na

M278.18T1152.3

M387.31T1159.58

M409.29T1159.84

M755.46T1159.83

M413.32T1163.6

M369.3T1166.6

M282.22T1185.24

M287.19T1183.15

M583.38T1189.9

M415.34T1190.29

M559.13T1193.82

M354.32T1200.38

M257.25T1211.04

M757.47T1212.99

M705.51T1214.43

M661.49T1220.54

M617.46T1226.29

M573.43T1232.94

M354.32T1236.97

M529.41T1240.64

M283.22T1239.08

M485.38T1248.74

M123.09T1250.04

M284.29T1262.26

M441.36T1259.15
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Figure A-9: Correlation network plot based on MS2 spectra similarities of the example data set. Grey dots indicate
non-identified features, orange dots identified ones. Labels display feature IDs, along with feature annotations, if existent.
Edge widths are proportional to spectral similarity of the connected features.
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As you can guess from this busy plot, it makes sense to use the interactive visualisation. Just like with MDSplot,
you can view the interactive plot within RStudio or save it as html and view it in web browser.
my_net <- networkplot(distmat, interactive = TRUE,

highlight_annotated = TRUE)

htmlwidgets::saveWidget(my_net, "net.html")

This is how it looks like if you open the html file in Firefox, zoom in on a cluster and mouse over a feature:

Figure A-10: Screenshot of the interactive version of the Correlation network plot based on MS2 spectra similarities of the
example data set (cf Figure 9). Zoomed image section with tooltip displaying feature information upon mouse-over.

Please be aware that the spatial arrangement of the data points in the plot has a random component, i.e. while
the relative position of the points (the distance to each other) is always the same, the absolute position varies and
will not be the same even if the same command is executed twice.
The pairwise similarity of spectra or neutral loss patterns of features expressed by the cosine score is signified by
the width of the line connecting the two features. All pairwise similarities greater than min_similarity result in
a connecting line in the plot. The spatial proximity in which the features are mapped onto the plot is determined
by the multivariate method underlying the network generation.
As we have already noticed after inspection of the heatmaps on p.13–14, the neutral loss patterns show much less
similarity to each other than the MS2 spectra data. Thus, we expect quite a few neutral loss patterns that do not
show any similarity to another neutral loss pattern. This expectation justifies the exclusion of these ‘singletons’
from the correlation network analysis. To do so, just set exclude_singletons to TRUE:
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networkplot(nlmat, highlight_annotated = TRUE,
show_labels = TRUE, exclude_singletons = TRUE)
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Figure A-11: Correlation network plot based on neutral loss similarities of the example data set. Grey dots indicate
non-identified features, orange dots identified ones. Labels display feature IDs, along with feature annotations, if existent.
Edge widths are proportional to spectral similarity of the connected features.
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Additional functionalities

Multidimensional scaling, density-based clustering, hierarchical clustering and correlation network analysis are
the main CluMSID tools to analyse MS2 spectra or neutral loss pattern similarity data, however, the package
contains some additional functionalities that may facilitate data analysis in some cases and can also be used in
other contexts with or without the above-mentioned unsupervised methods.

Access individual spectra from a list of spectra by various slot entries

Accessing S4 objects within lists is not trivial. Therefore, CluMSID offers a function to access individual or several
MS2spectrum objects by their slot entries. getSpectrum() requires the following arguments:

• featlist: a list that contains only objects of class MS2spectrum
• slot: the slot to be searched (invalid slot arguments will produce errors):

– id
– annotation
– precursor (m/z of precursor ion)
– rt (retention time of precursor)

• what: the search term or number, must be character for id and annotation and numeric for precursor
and rt

• mz.tol: the tolerance used for precursor ion m/z searches, defaults to 1E-05 (10ppm)
• rt.tol: the tolerance used for precursor ion retention time searches, defaults to 30s; high values can be

used to specify retention time ranges (see example)
Some examples will demonstrate the use of getSpectrum():
1. Accessing a spectrum by its ID. For this, the exact feature ID must be known:
getSpectrum(annotatedSpeclist, "id", "M244.17T796.4")
#> An object of class "MS2spectrum"
#> id: M244.17T796.4
#> annotation: HHQ
#> precursor: 244.1700
#> retention time: 796.4
#> polarity: positive
#> MS2 spectrum with 98 fragment peaks
#> neutral loss pattern with 81 neutral losses

2. Accessing a spectrum by its annotation. For this, the exact annotation has to be known as well, other
annotations will produce a message:
getSpectrum(annotatedSpeclist, "annotation", "HHQ")
#> An object of class "MS2spectrum"
#> id: M244.17T796.4
#> annotation: HHQ
#> precursor: 244.1700
#> retention time: 796.4
#> polarity: positive
#> MS2 spectrum with 98 fragment peaks
#> neutral loss pattern with 81 neutral losses

getSpectrum(annotatedSpeclist, "annotation", "C7-HQ")
#> No spectrum with that annotation.
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3. Accessing spectra by their precursor ion m/z. If the list contains more than one spectrum with a precursor
ion m/z within the tolerance, the output is again a list of MS2spectrum objects that meet the specified criterion:
getSpectrum(annotatedSpeclist, "precursor", 286.18, mz.tol = 1E-03)
#> [[1]]
#> An object of class "MS2spectrum"
#> id: M286.18T728.73
#> annotation: C9:1-QNO
#> precursor: 286.1799
#> retention time: 728.73
#> polarity: positive
#> MS2 spectrum with 4 fragment peaks
#> neutral loss pattern with 2 neutral losses
#> [[2]]
#> An object of class "MS2spectrum"
#> id: M286.18T808.85
#> annotation: C9:1-QNO
#> precursor: 286.1804
#> retention time: 808.85
#> polarity: positive
#> MS2 spectrum with 7 fragment peaks
#> neutral loss pattern with 5 neutral losses
#> [[3]]
#> An object of class "MS2spectrum"
#> id: M286.18T864.03
#> annotation: C9:1-QNO
#> precursor: 286.1808
#> retention time: 864.03
#> polarity: positive
#> MS2 spectrum with 183 fragment peaks
#> neutral loss pattern with 167 neutral losses
#> [[4]]
#> An object of class "MS2spectrum"
#> id: M286.18T921.6
#> annotation: C9:1-PQS
#> precursor: 286.1808
#> retention time: 921.6
#> polarity: positive
#> MS2 spectrum with 3 fragment peaks
#> neutral loss pattern with 1 neutral losses

4. Accessing spectra by their precursor retention time. Here, too, we can extract several MS2spectrum
objects by setting a larger retention time tolerance. If we want to extract the spectra of all compounds that elute
from 6min (360s) to 8min (480s), we proceed as follows:
six_eight <- getSpectrum(annotatedSpeclist, "rt", 420, rt.tol = 60)
length(six_eight)
#> [1] 75
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Find spectra that contain a specific fragment or neutral loss

Another pair of accessory functions is findFragment() and findNL() which are used to find spectra that
contain a specific fragment ion or neutral loss. Analogous to getSpectrum(), they need as arguments a list of
MS2spectrum objects, the m/z of the fragment or neutral loss of interest and the respective m/z tolerance in ppm
(default is 10ppm). The two functions can be useful in many situation, e.g. when working with lipid data where
head groups and fatty acids often give characteristic fragments or neutral losses. In the world of P. aeruginosa
secondary metabolites, alkylquinolones (AQs) play an important role and most of the AQ MS2 spectra contain a
signature fragment with an m/z of 159.068. Based on this fragment m/z, we can create a list of putative AQs:
putativeAQs <- findFragment(annotatedSpeclist, 159.068)
#> 70 spectra were found that contain a fragment of m/z 159.068 +/- 10 ppm.

An example for common neutral losses are nucleoside monophospates that all loose ribose-5’-monophosphate,
resulting in a neutral loss of 212.009 in ESI-(+). Using findNL() we find CMP, UMP, AMP and GMP.
findNL(annotatedSpeclist, 212.009)
#> 4 neutral loss patterns were found that contain a neutral loss of m/z 212.009 +/- 10 ppm.
#> [[1]]
#> An object of class "MS2spectrum"
#> id: M324.06T75.32
#> annotation: CMP
#> precursor: 324.0591
#> retention time: 75.32
#> polarity: positive
#> MS2 spectrum with 8 fragment peaks
#> neutral loss pattern with 8 neutral losses
#> [[2]]
#> An object of class "MS2spectrum"
#> id: M325.04T78.94
#> annotation: UMP
#> precursor: 325.0429
#> retention time: 78.94
#> polarity: positive
#> MS2 spectrum with 5 fragment peaks
#> neutral loss pattern with 5 neutral losses
#> [[3]]
#> An object of class "MS2spectrum"
#> id: M348.07T90.34
#> annotation: AMP
#> precursor: 348.0707
#> retention time: 90.34
#> polarity: positive
#> MS2 spectrum with 21 fragment peaks
#> neutral loss pattern with 19 neutral losses
#> [[4]]
#> An object of class "MS2spectrum"
#> id: M364.07T97.19
#> annotation: GMP
#> precursor: 364.0659
#> retention time: 97.19
#> polarity: positive
#> MS2 spectrum with 6 fragment peaks
#> neutral loss pattern with 6 neutral losses
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Match one spectrum against a set of spectra

If you are mainly interested in one or a few number of spectra or neutral loss patterns, it may be sufficient to
match one feature at a time against a larger set of spectra. This set of spectra can be all spectra contained in one
mzXML file like in all the examples in this tutorial or they could be a spectral library, as long as its format in R is a
list of MS2spectrum objects.
The getSimilarities() function requires several arguments:

• spec: The spectrum to be compared to other spectra. Can be either an object of class MS2spectrum or a
two-column numerical matrix that contains fragment mass-to-charge ratios in the first and intensities in the
second column.

• speclist: The set of spectra to which spec is to be compared. Must be a list where every entry is an
object of class MS2spectrum. Can be generated from an mzXML file as shown above or constructed using
new("MS2spectrum", ...) for every list entry (see example).

• type: Specifies whether MS2 spectra or neutral loss patterns are to be compared. Must be either ‘spectrum’
(default) or ‘neutral_losses’.

• hits_only: Logical that indicates whether the result should contain only similarities greater than zero (see
example).

In the first example, we want to find all MS2 spectra in our example data set that are similar to the spectrum of
pyocyanin, an important secondary metabolite from Pseudomonas aeruginosa and therefore match the pyocyanin
spectrum against our annotatedSpeclist. Because we have already identified pyocyanin in the data set, we can
use getSpectrum to extract the MS2spectrum object from annotatedSpeclist. We do not want to search all
518 elements of the result vector, so we set hits_only to TRUE to exclude spectra that have 0 similarity to the
pyocyanin spectrum.
pyo <- getSpectrum(annotatedSpeclist, "annotation", "pyocyanin")

sim_pyo <- getSimilarities(pyo, annotatedSpeclist, hits_only = TRUE)
sim_pyo
#> M110.06T100.45 M123.06T103.31 M332.56T107.48 M332.08T113.21
#> 0.0235166588 0.0071763662 0.0032575891 0.0035153018
#> M182.08T125.93 M166.09T233.22 M120.08T233.48 M103.05T235.3
#> 0.0414005385 0.0394723541 0.0492390806 0.0826780036
#> M174.06T277.59 M220.12T336.88 M525.18T352.51 M243.08T362.4
#> 0.0391004892 0.0205482303 0.0060019991 0.0145904545
#> M188.07T371.25 M205.1T370.99 M211.09T382.17 M187.12T391.55
#> 0.0176900909 0.0179895663 1.0000000000 0.0210280136
#> M188.12T399.72 M254.09T400.89 M160.08T433.66 M291.15T444.85
#> 0.0105392131 0.2071528536 0.0489638040 0.0106479317
#> M120.04T450.56 M138.06T451.33 M176.07T465.7 M491.29T496.41
#> 0.0287432023 0.0202198052 0.0275059908 0.0610208210
#> M255.08T482.73 M245.59T495.11 M145.08T508.11 M163.09T512.64
#> 0.6451546287 0.2583432230 0.0473127795 0.0034167239
#> M188.11T535.78 M321.1T537.6 M243.09T558.67 M136.08T584.09
#> 0.0057005179 0.0293635312 0.0116275804 0.0132716679
#> M118.06T585.64 M215.12T626.24 M224.08T640.69 M213.07T652.92
#> 0.0203921366 0.3252546561 0.0325490977 0.0083842257
#> M216.14T670.01 M227.08T670.26 M264.18T675.46 M233.13T676.23
#> 0.0009299928 0.0034818309 0.0172023762 0.0143332573
#> M225.07T698.07 M207.06T699.1 M257.06T704.3 M226.18T703.76
#> 0.0253940205 0.0230298767 0.0028192053 0.0255571995
#> M325.07T739.09 M181.08T724.14 M330.19T724.4 M255.08T740.91
#> 0.0010572974 0.1283755709 0.5019236568 0.2030839014
#> M446.19T745.32 M321.1T746.09 M891.36T747.39 M231.1T763.28
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#> 0.0750793676 0.1017149711 0.0714108632 0.0070294838
#> M185.1T763.53 M288.2T765.88 M258.15T768.47 M328.14T772.12
#> 0.0094225379 0.0018840838 0.0168976240 0.0009052790
#> M242.15T789.6 M304.19T786.75 M260.16T796.66 M244.17T796.4
#> 0.0071606643 0.0066966285 0.0141834395 0.0106077162
#> M159.07T795.61 M314.21T825.99 M326.18T833.85 M286.18T864.03
#> 0.0124577125 0.0006167122 0.0023434969 0.0205024121
#> M270.19T873.15 M268.17T875.49 M178.05T867.16 M198.09T874.45
#> 0.0089744139 0.0011687551 0.0413446455 0.0064665757
#> M170.1T885.9 M288.2T902.1 M184.08T908.6 M272.2T910.42
#> 0.0062571323 0.0100270721 0.0036517997 0.0086043375
#> M312.2T929.44 M314.21T944.87 M296.2T958.11 M298.22T984.33
#> 0.0085388744 0.0128215188 0.0054678320 0.0065812089
#> M500.22T974.72 M304.19T977.83 M303.19T979.65 M340.23T1007.62
#> 0.0396920510 0.0059045590 0.0049045093 0.0052002486
#> M324.23T1025.79 M314.21T1034.15 M326.25T1043.73 M679.43T1051.39
#> 0.0005826366 0.0030626495 0.0005424581 0.0008290325

We get 84 spectra that have a non-zero similarity to the pyocyanin spectrum, including pyocyanin itself with a
similarity of 1. Of course, we can further filter the data by subsetting the result vector in order to exclude spectra
that have only minimal similarity, e.g. M679.43T1051.39 with a cosine similarity of only 0.0008 (the last element
in the vector).
In the second example, we generate a new speclist, e.g. from a spectral library. We look at the unknown feature
that has most similarity to pyocyanin. As pyocyanin is contained in annotatedSpeclist itself, we have to look
at the second highest similarity. Again, we use getSpectrum() to extract the object from annotatedSpeclist:
highest_sim <- sort(sim_pyo, decreasing = TRUE)[2]

sim_spec <- getSpectrum(annotatedSpeclist, "id", names(highest_sim))
sim_spec
#> An object of class "MS2spectrum"
#> id: M255.08T482.73
#> annotation:
#> precursor: 255.0761
#> retention time: 482.73
#> polarity: positive
#> MS2 spectrum with 5 fragment peaks
#> neutral loss pattern with 3 neutral losses

We see that the feature is not annotated. We are interested whether this feature also shows similarity to other
members of the phenazine family of P. aeruginosa secondary metabolites. Some phenazines are contained in
annotatedSpeclist but some are not, so we make a new speclist called phenazines and add the missing
spectra manually from an in-house library:
phenazines <- list()
phenazines[[1]] <- getSpectrum(annotatedSpeclist,

"annotation", "pyocyanin")
phenazines[[2]] <- getSpectrum(annotatedSpeclist,

"annotation", "phenazine-1-carboxamide")
phenazines[[3]] <- getSpectrum(annotatedSpeclist,

"annotation", "phenazine-1-carboxylic acid")
phenazines[[4]] <- getSpectrum(annotatedSpeclist,

"annotation", "phenazine-1,6-dicarboxylic acid")
phenazines[[5]] <- new("MS2spectrum", id = "lib_entry_1",
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annotation = "1-hydroxyphenazine",
spectrum = matrix(c(168.0632, 14,

169.0711, 288,
170.0743, 33,
179.0551, 62,
197.0653, 999),

byrow = TRUE,
ncol = 2))

phenazines[[6]] <- new("MS2spectrum", id = "lib_entry_2",
annotation = "2-hydroxy-phenazine-1-carboxylic acid",
spectrum = matrix(c(167.0621, 43,

179.0619, 93,
180.0650, 12,
195.0564, 40,
223.0509, 999,
224.0541, 142,
241.0611, 60),

byrow = TRUE,
ncol = 2))

phenazines[[7]] <- new("MS2spectrum", id = "lib_entry_3",
annotation = "pyocyanin (library spectrum)",
spectrum = matrix(c(168.0690, 58,

183.0927, 152,
184.0958, 19,
196.0640, 118,
197.0674, 15,
211.0873, 999,
212.0905, 145),

byrow = TRUE,
ncol = 2))

getSimilarities(sim_spec, phenazines, hits_only = FALSE)
#> M211.09T382.17 M224.08T640.69 M225.07T698.07 M269.06T708.74 lib_entry_1
#> 0.6451546 0.0000000 0.0000000 0.0000000 0.0000000
#> lib_entry_2 lib_entry_3
#> 0.0000000 0.6375061

As a result, we get the interesting information that the MS2 spectra similarity of our unknown feature seems to be
specific to pyocyanin (both the experimental and the library spectrum).

Convert MSnbase objects to class MS2spectrum

The MSnbase package—which is commonly used for proteomics applications and is also associated with XCMS3—
has two classes for (MS2) spectra, Spectrum and Spectrum2 which contain spectra along with metainformation.
These metainformation differ from those contained in MS2spectrum objects and are not very well suited for
metabolomics applications. Still, it is possible to use CluMSID functions with objects of those two classes by
converting them to MS2spectrum objects using as.MS2spectrum():
CluMSID_object <- as.MS2spectrum(MSnbase_object)
# or alternatively
CluMSID_object <- as(MSnbase_object, "MS2spectrum")
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Split polarities from polarity-switching runs

As polarity-switching and similar methords are gaining importance in LC-MS/MS metabolomics, CluMSID offers
the possibility to process LC-MS/MS data containing spectra of different polarities. As spectra from positive and
negative ionisation show different fragmentation mechanisms and patterns, it does not appear to be useful to
compare spectra of different polarity to each other. Therefore, CluMSID provides a function to separate positive
and negative spectra from each other. This has to be done in the very beginning of the analysis to not interfere
with spectral merging. Positive and negative spectra can than be processed independently from each other as
shown above.
A schematic workflow would look like this:
raw_list_mixedpolarities <- extractMS2spectra("raw_file_mixedpolarities.mzXML")

raw_list_positive <- splitPolarities(raw_list_mixedpolarities, "positive")
raw_list_negative <- splitPolarities(raw_list_mixedpolarities, "negative")

speclist_positive <- mergeMS2spectra(raw_list_positive)
speclist_negative <- mergeMS2spectra(raw_list_negative)

. . . and so on as described in this tutorial.

Use MS1 pseudospectra instead of or in addition to MS2 data

MS1 pseudospectra are groups of peaks/ions that derive or are assumed to derive from the same compound. They
consist of peaks for in-source fragment, adducts etc. Pseudospectra can contain structural information about
analytes, e.g. about moieties that easily fragment even in MS1 mode without CID. Thus, it might sometimes be
useful to study similarities between pseudospectra analogously to those between MS2 spectra. CluMSID makes use
of the CAMERA package to assign peaks to pseudospectra. A custom S4 class named pseudospectrum is used
which is very similar to the MS2spectrum class. For obvious reasons, it does not contain a precursor ion m/z slot
and thus no neutral loss pattern, either. The pcgroup defined by CAMERA is used as ID, an annotation can be
added if desired.

Extract pseudospectra

To extract pseudospectra, you first have to process your data using the CAMERA package, either in R or via
XCMSonline, where this is done automatically. There are two possibilities to use the extractPseudospectra()
function in CluMSID: either with an xsAnnotate object which you generate with CAMERA in R or with a data.frame
that contains data on m/z, retention time, intensity and pcgroup, e.g. the results table from XCMSonline.
The latter is demonstrated with the XCMSonline results table already used to generate a peak table. If the column
names are not changed, the data.frame can be supplied as-is and intensity_columns does not have to be
specified. We want to exclude pseudospectra that have only one peak, so we set min_peaks = 2.
pstable <-

read_delim(file = system.file("extdata",
"TD035_XCMS.annotated.diffreport.tsv",
package = "CluMSIDdata"),

delim = "\t")

pseudospeclist <- extractPseudospectra(pstable, min_peaks = 2)

As a result, we get a list with 198 pseudospectra that we can now process further.

A-28

4

Chapter 4: Publication 2:
CluMSID: an R package for clustering of tandem mass spectra

128



Create distance matrix for pseudospectra

The creation of a distance matrix is analogous to the procedure for MS2 spectra:
pseudodistmat <- distanceMatrix(pseudospeclist)

Generate a correlation network for pseudospectra

The distance matrix can now be used for MDS, clustering and correlation networks just like described above. For
demonstration, we generate a correlation network:
networkplot(pseudodistmat, show_labels = TRUE, exclude_singletons = TRUE)

2

4

6

7

8

9

10

14

15

16

17

20

23

24

26

28

30

33

34

36

42

44

45

48

50

58

59
61

62

70

73

77

78

85

86

89

90

92

94

96

97

98

101

104

106
107

112

115

119

121

123

124

131

133

137

138

139

143

152

155

156

169

171

177

179

184

190

192

196

202

207

212

215

220

221

223
226

227

230

239

248

Figure A-12: Correlation network plot based on similarities of pseudospectra of the example data set. Grey dots indicate
non-identified features, orange dots identified ones. Labels display CAMERA’s pseudospectra IDs. Edge widths are proportional
to spectral similarity of the connected features.

With the exclusion of singletons, we get a much less busy plot than for MS2 data but we still find quite a few
connections that may prove informative.
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Introduction

Although originally developed for high resolution LC-MS/MS data, CluMSID can also be used to find similarities
in GC-EI-MS data, i.e. data from hard ionisation mass spectrometry.
As the peak picking and spectral merging differs considerably from data dependent ESI-MS/MS, we cannot use
the standard CluMSID functions extractMS2spectra() and mergeMS2spectra(). In fact, the analysis of mass
spectra from hard ionisation mass spectrometry resembles the one of MS1 pseudospectra in ESI-MS. Thus, we can
use the CluMSID function extractPseudospectra() in conjunction with pseudspectra generated by the CAMERA
package.
Since xcms and CAMERA sometimes have difficulties in handling GC-EI-MS data, we use the metaMS package that
enables workflows specialised to the analysis of such data. We also require the metaMSdata package from which
we import the FEMSsettings object that contains xcms and CAMERA settings for GC-EI-MS data.
library(CluMSID)
library(CluMSIDdata)
library(metaMS)
library(metaMSdata)
data(FEMsettings)

Data import and preprocessing

As example data, we use GC-EI-MS metabolomics data from pooled cell extracts of Pseudomonas aeruginosa
measured on a Thermo Scientific ITQ linear ion trap that has been converted to netCDF using Thermo Xcalibur.
A netCDF file is available in the CluMSIDdata package:
pool <- system.file("extdata",

"1800802_TD_pool_total_1.cdf",
package = "CluMSIDdata")

To generate a list of (pseudo)spectra, we first need an xsAnnotate object as generated by CAMERA. In the case of
GC-MS data, it is more convenient to use to use the metaMS function runCAMERA() than actual CAMERA functions.
metaMS::runCAMERA requires an xcmsSet object which we generate by using xcms::xcmsSet on our netCDF
file (we can do that in one go). We used standard GC-MS settings for runCAMERA() as they are proposed in the
metaMS vignette.
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xA <- runCAMERA(xcmsSet(pool),
chrom = "GC",
settings = metaSetting(TSQXLS.GC, "CAMERA"))

Extraction and annotation of spectra

From the xsAnnotate object, we can now extract the (pseudo)spectra using the CluMSID function
extractPseudospectra() function as we would do for MS1 pseudospectra from LC-ESI-MS data.
pslist <- extractPseudospectra(xA, min_peaks = 0)

Adding annotations is not as easy as with LC-(DDA-)MS/MS data, because only the retention time and the
spectrum itself describe the feature and no precursor m/z is available. Thus, feature annotations/identifications
made in a different programme, in this case MetaboliteDetector, have to be compared to the spectra in the pslist
object.
Like with LC-(DDA-)MS/MS data, we can use writeFeaturelist() and addAnnotations() to add external
annotations. The table output from writeFeaturelist() will give NA for all precursor m/z.
writeFeaturelist(pslist, "GC_pre.csv")

To facilitate manual annotation, it helps to plot the spectra along with the relevant information for every
feature/pseudospectrum. That can be done by CluMSID’s specplot function:
specplot(pslist[[27]])
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Figure B-1: Barplot for pseudospectrum 27, displaying fragment m/z on the x-axis and intensity normalised to the
maximum intensity on the y-axis.
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In this example, we load the list of feature annotations from CluMSIDdata:
apslist <- addAnnotations(featlist = pslist,

annolist = system.file("extdata",
"GC_post.csv",
package = "CluMSIDdata"))

Generation of distance matrix

This list of spectra in turn serves as an input for distanceMatrix(). As we are dealing with low resolution data,
we have to adjust the m/z tolerance. The default value, 10ppm, is suitable for time-of-flight mass spectrometers
while linear ion traps or single quadrupoles which are commonly used in GC-EI-MS only have unit mass resolution,
equivalent to a relative mass error of 0.02 to 0.001 depending on the m/z of the analyte. We chose 0.02 to be
tolerant enough for low molecular weight analytes:
pseudodistmat <- distanceMatrix(apslist, mz_tolerance = 0.02)

Data exploration

Starting from this distance matrix, we can use all the data exploration functions that CluMSID offers. In this
example workflow, we look at a cluster dendrogram:
HCplot(pseudodistmat, type = "heatmap",

cexRow = 0.3, cexCol = 0.3,
margins = c(7,7))
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Figure B-2: Symmetric heat map of the distance matrix displaying pseudospectra similarities of the GC-EI-MS example
data set along with dendrograms resulting from hierarchical clustering based on the distance matrix. The colour encoding is
shown in the top-left insert.

It is directly visible that the resulting clusters are not as dense as with the LC-MS/MS example data. In turn,
there are more between-cluster similarities.
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This also shows in the correlation network, resulting in a chaotic plot when used with the default minimal similarity
of 0.1:
networkplot(pseudodistmat, highlight_annotated = TRUE,

show_labels = TRUE, exclude_singletons = TRUE)
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Figure B-3: Correlation network plot based on pseudospectra similarities of the GC-EI-MS example data set, generated
with the default similarity threshold of 0.1. Grey dots indicate non-identified features, orange dots identified ones. Labels
display feature IDs, along with feature annotations, if existent. Edge widths are proportional to spectral similarity of the
connected features.
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By choosing a higher similarity threshold of e.g. 0.4, it is far easier to identify clusters:
networkplot(pseudodistmat, highlight_annotated = TRUE,

show_labels = TRUE, exclude_singletons = TRUE,
min_similarity = 0.4)
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Figure B-4: Correlation network plot based on pseudospectra similarities of the GC-EI-MS example data set, generated
with the custom similarity threshold of 0.4. Grey dots indicate non-identified features, orange dots identified ones. Labels
display feature IDs, along with feature annotations, if existent. Edge widths are proportional to spectral similarity of the
connected features.

Presumably, the high between-cluster similarities are due to the low resolution data and the resulting fact, that
fragment with different chemical composition but same unit resolution mass cannot be distinguished.
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We can also use hierarchical clustering to identify clusters of similar (pseudo-)spectra. Here, too, we have to adjust
h to account for higher between-cluster similarities:
HCplot(pseudodistmat, h = 0.7)
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Figure B-5: Circularised dendrogram as a result of agglomerative hierarchical clustering with average linkage as agglomeration
criterion based on pseudospectra similarities of the GC-EI-MS example data set. Each leaf represents one feature and
colours encode cluster affiliation of the features. Leaf labels display feature IDs, along with feature annotations, if existent.
Distance from the central point is indicative of the height of the dendrogram.

We see that e.g. octadecanoic acid, hexadecanoic acid and dodecanoic acid form a nice cluster as well as the
phosphorate containing metabolites phosphoenolpyruvic acid, glyceric acid-3-phosphate, glycerol-3-phosphate and
phosphoric acid itself.
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It is also apparent that some features have a similarity of 1 and could therefore represent the same compound, like
e.g. the features 98, 67 and 72. Those three features cluster together with AMP and UMP, suggesting that they
could be nucleotides as well.
To illustrate the use of CluMSID’s accessory function with this type of data, we take another look at nucleotides:
A signature fragment for nucleotides in GC-EI-MS is m/z 315 that derives from pentose-5-phosphates. We see
this fragment in Figure 1, the spectrum of UMP (derivatised with 5 TMS groups). We can use findFragment to
see if there are more spectra outside the cluster that freature this fragment. As we deal with unit masses, we
would like to find m/z of 315 ± 0.5 which we can do by setting tolerance = 0.5/315:
fragmentlist <- findFragment(apslist, mz = 315, tolerance = 0.5/315)
#> 6 spectra were found that contain a fragment of m/z 315 +/- 1587.30158730159 ppm.

vapply(X = fragmentlist, FUN = accessID, FUN.VALUE = integer(1))
#> [1] 2 14 20 21 27 35

We find four more spectra that contain a 315 fragment that could be investigated closer.

Conclusion

In conclusion, every annotation method is extremely limited if only low resolution data is available and so is
CluMSID. Still, we see that the tool works independently of chromatography and mass spectrometry method and
even has the potential to give some good hints for feature annotation in GC-EI-MS metabolomics.
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Introduction

Although originally developed for liquid chromatography-tandem mass spectrometry (LC-MS/MS) data, CluMSID
can also be used with direct infusion-tandem mass spectrometry (DI-MS/MS) data.
Generally, the missing retention time dimension makes feature annotation in metabolomics harder but if only direct
infusion data is at hand, CluMSID can help to get an overview of the chemodiversity of a sample measured by
DI-MS/MS.
In this example, we will use a similar sample (1µL Pseudomonas aeruginosa PA14 cell extract) as in the General
Tutorial, measured on the same machine, a Bruker maxisHD qTOF operated in ESI-(+) mode with auto-MS/MS
but without chromatographic separation.

Data import

We load the file from the CluMSIDdata package:
library(CluMSID)
library(CluMSIDdata)

DIfile <- system.file("extdata",
"PA14_maxis_DI.mzXML",
package = "CluMSIDdata")

Data preprocessing

The extraction of spectra works the same way as with LC-MS/MS data:
ms2list <- extractMS2spectra(DIfile)
length(ms2list)
#> [1] 373

Merging of redundant spectra is less straightforward when retention time is not available. Depending on the
MS/MS method it can be next to impossible to decide whether two spectra with the same precursor m/z and
similar fragmentation patterns derive from the same analyte or from two different but structurally similar ones.
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In this example, we would like to merge spectra with identical precursor ions only if they were recorded one right
after another. We can do so by setting rt_tolerance to 1 second:
featlist <- mergeMS2spectra(ms2list, rt_tolerance = 1)
length(featlist)
#> [1] 349

We see that we have hardly reduced the number of spectra in the list. If we would decide to merge all spectra
with identical precursor m/z from the entire run, we could do so by setting rt_tolerance to the duration of the
run, in this case approx. 250 seconds:
testlist <- mergeMS2spectra(ms2list, rt_tolerance = 250)
length(testlist)
#> [1] 75

The resulting number of spectra is drastically lower but the danger of merging spectra that do not actually derive
from the same analyte is also very big.

Generation of distance matrix

In this very explorative example, we skip the integration of previous knowledge on feature identities and generate a
distance matrix right away:
distmat <- distanceMatrix(featlist)

Data exploration

Starting from this distance matrix, we can use all the data exploration functions that CluMSID offers. In this
example workflow, we look at a cluster dendrogram:
HCplot(distmat)
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Figure C-1: Circularised dendrogram as a result of agglomerative hierarchical clustering with average linkage as agglomeration
criterion based on MS2 spectra similarities of the DI-MS/MS example data set. Each leaf represents one feature and colours
encode cluster affiliation of the features. Leaf labels display feature IDs, along with feature annotations, if existent. Distance
from the central point is indicative of the height of the dendrogram.

It is directly obvious that we have some spectra that are nearly identical and thus most likely derive from the
same analyte, e.g. the many spectra with a precursor m/z of 270.19. But we still see nice clustering of similar
spectra with different precursor m/z, e.g. the huge gray cluster that contains a lot of different alkylquinolone type
metabolites (see General Tutorial).
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Conclusion

In conclusion, CluMSID is very useful to provide an overview of spectral similarities within DI-MS/MS runs but
wherever annotation is in the focus, one should not do without the additional layer of information created by
chromatographic separation.
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Introduction

As described in the GC-EI-MS tutorial, CluMSID can also be used to analyse low resolution data—although using
low resolution data comes at a cost.
In this example, we will use a similar sample (1µL Pseudomonas aeruginosa PA14 cell extract) as in the General
Tutorial, measured with similar chromatography but on a different mass spectrometer, a Bruker amaZon ion trap
instrument operated in ESI-(+) mode with auto-MS/MS. In addition to introducing a workflow for low resolution
LC-MS/MS data, this example also demonstrates that CluMSID can work with data from different types of mass
spectrometers.

Data import

We load the file from the CluMSIDdata package:
library(CluMSID)
library(CluMSIDdata)

lowresfile <- system.file("extdata",
"PA14_amazon_lowres.mzXML",
package = "CluMSIDdata")

Data preprocessing

The extraction of spectra works the same way as with high resolution LC-MS/MS data:
ms2list <- extractMS2spectra(lowresfile)
length(ms2list)
#> [1] 1989

Like in the GC-EI-MS example, we have to adjust mz_tolerance to a much higher value compared to high
resolution data, while the retention time tolerance can remain unchanged.
featlist <- mergeMS2spectra(ms2list, mz_tolerance = 0.02)
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length(featlist)
#> [1] 525

We see that we have similar numbers of spectra as in the General Tutorial, because we tried to keep all parameters
except for the mass spectrometer type comparable.

Generation of distance matrix

As we do not have low resolution spectral libraries at hand, we skip the integration of previous knowledge on
feature identities in this example and generate a distance matrix right away:
distmat <- distanceMatrix(featlist)

Data exploration

Starting from this distance matrix, we can use all the data exploration functions that CluMSID offers.
When we now make an MDS plot, we learn that the similarity data is very different from the comparable high
resolution data:
MDSplot(distmat)
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Figure D-1: Multidimensional scaling plot as a visualisation of MS2 spectra similarities of the low resolution LC-MS/MS
example data set. Black dots signify spectra from unknown metabolites.
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To get a better overview of the data and the general similarity behaviour, we create a heat map of the distance
matrix:
HCplot(distmat, type = "heatmap",

cexRow = 0.1, cexCol = 0.1,
margins = c(6,6))
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Figure D-2: Symmetric heat map of the distance matrix displaying MS2 spectra similarities of the low resolution LC-MS/MS
example data set. along with dendrograms resulting from hierarchical clustering based on the distance matrix. The colour
encoding is shown in the top-left insert.

We clearly see that the heat map is generally a lot “warmer” than in the General Tutorial (an intuition that is
supported by the histogram in the top-left corner), i.e. we have a higher general degree of similarity between
spectra. That is not surprising as the m/z information has much fewer levels than in high resolution data and
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fragments of different sum formula are more likely to have indistinguishable mass-to-charge ratios.
We also see that some more or less compact clusters can be identified. This is easier to inspect in the dendrogram
visualisation:
HCplot(distmat, h = 0.8, cex = 0.5)
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Figure D-3: Circularised dendrogram as a result of agglomerative hierarchical clustering with average linkage as agglomeration
criterion based on MS2 spectra similarities of the low resolution LC-MS/MS example data set. Each leaf represents one
feature and colours encode cluster affiliation of the features. Leaf labels display feature IDs. Distance from the central
point is indicative of the height of the dendrogram.
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Conclusion

In conclusion, CluMSID is capable of processing low resolution LC-MS/MS data and if high resolution data is not
available, it can be very useful to provide an overview of spectral similarities in low resolution data, thereby helping
metabolite annotation if some individual metabolites can be identified by comparison to authentic standards.
However, concerning feature annotation, high resolution methods should always be favoured for the many benefits
they provide.
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Introduction

In this tutorial, we would like to demonstate the use of CluMSID with a publicly available LC-MS/MS data set
deposited on MetaboLights. We chose data set MTBLS433 that can be accessed on the MetaboLights web page
(https://www.ebi.ac.uk/metabolights/MTBLS433) and which has been published in the following article:
Kalogiouri, N. P., Alygizakis, N. A., Aalizadeh, R., & Thomaidis, N. S. (2016). Olive oil authenticity studies by
target and nontarget LC-QTOF-MS combined with advanced chemometric techniques. Analytical and bioanalytical
chemistry, 408(28), 7955-7970.
The authors analysed olive oil of various providence using reversed-phase ultra high performance liquid
chromatography-electrospray ionisation quadrupole time of flight tandem mass spectrometry in negative mode
with auto-MS/MS fragmentation.
As a representative pooled sample is not provided, we will combine MS2 data from several runs and use the peak
picking done by the authors of the study for the merging of MS2 spectra. Some metabolite annotations are also
included in the MTBLS433 data set which we will integrate into our analysis.

library(CluMSID)
library(CluMSIDdata)
library(tidyverse)

Extract MS2 spectra from multiple *.mzML files

For demonstration, not all files from the analysis will be included into the analysis. Four data files from the data
set have been chosen that represent olive oil samples from different regions in Greece:

• YH1_GA7_01_10463.mzML: YH1, from Komi
• AX1_GB5_01_10470.mzML: AX1, from Megaloxori
• LP1_GB3_01_10467.mzML: LP1, from Moria
• BR1_GB6_01_10471.mzML: BR1, from Agia Paraskevi

Note that these are mzML files that can be processed the exact same way as mzXML files.
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Furthermore, we would like to use the peak picking and annotation data from the original authors which we can
read from the file m_mtbls433_metabolite_profiling_mass_spectrometry_v2_maf.tsv.
First, we extract MS2 spectra from the respective files separately by using extractMS2spectra(). Then, we just
combine the resulting lists into one list using base R functionality:
YH1 <- system.file("extdata", "YH1_GA7_01_10463.mzML",

package = "CluMSIDdata")
AX1 <- system.file("extdata", "AX1_GB5_01_10470.mzML",

package = "CluMSIDdata")
LP1 <- system.file("extdata", "LP1_GB3_01_10467.mzML",

package = "CluMSIDdata")
BR1 <- system.file("extdata", "BR1_GB6_01_10471.mzML",

package = "CluMSIDdata")

YH1list <- extractMS2spectra(YH1)
AX1list <- extractMS2spectra(AX1)
LP1list <- extractMS2spectra(LP1)
BR1list <- extractMS2spectra(BR1)

raw_oillist <- c(YH1list, AX1list, LP1list, BR1list)

Merge spectra with external peak list

First, we import the peak list by reading the respective table and filtering for the relevant information. We only
need the columns metabolite_identification, mass_to_charge and rentention_time and we would like
to replace "unknown" with an empty field in the metabolite_identification column. Plus, the features do
not have a unique identifier in the table but we can easily generate that from m/z and RT. Note that the retention
time in the raw data is given in seconds and in the data table it is in minutes, so we have to convert. For the sake
of consistency, we also change the column names. We use tidyverse syntax but users can do as they prefer.
raw_mtbls_df <- system.file("extdata",

"m_mtbls433_metabolite_profiling_mass_spectrometry_v2_maf.tsv",
package = "CluMSIDdata")

mtbls_df <- readr::read_delim(raw_mtbls_df, "\t") %>%
mutate(metabolite_identification =

str_replace(metabolite_identification, "unknown", "")) %>%
mutate(id = paste0("M", mass_to_charge, "T", retention_time)) %>%
mutate(retention_time = retention_time * 60) %>%
select(id,

mass_to_charge,
retention_time,
metabolite_identification) %>%

rename(mz = mass_to_charge,
rt = retention_time,
annotation = metabolite_identification)

This peak list, or its first three columns, can now be used to merge spectra. We exclude spectra that do not
match to any of the peaks in the peak list. As we are not very familiar with instrumental setup, we set the limits
for retention time and m/z deviation a little wider. To make an educated guess on mass accuracy, we take a
look at an identified metabolite, its measured m/z and its theoretical m/z. We use arachidic acid [M–H]–, whose
theoretical m/z is 311.2956:
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## Define theoretical m/z
th <- 311.2956

## Get measured m/z for arachidic acid data from mtbls_df
ac <- mtbls_df %>%

filter(annotation == "Arachidic acid") %>%
select(mz) %>%
as.numeric()

## Calculate relative m/z difference in ppm
abs(th - ac)/th * 1e6
#> [1] 28.91143

So, we will work with an an m/z tolerance of ±30ppm (which seems rather high for a high resolution mass
spectrometer).
oillist <- mergeMS2spectra(raw_oillist,

peaktable = mtbls_df[,1:3],
exclude_unmatched = TRUE,
rt_tolerance = 60,
mz_tolerance = 3e-5)

Add annotations

To add annotations, we use mtbls_df as well, as described in the General Tutorial:
fl <- featureList(oillist)
fl_annos <- dplyr::left_join(fl, mtbls_df, by = "id")

annolist <- addAnnotations(oillist, fl_annos, annotationColumn = 6)

Generate distance matrix

For the generation of the distance matrix, too, we use an m/z tolerance of ±30ppm:
distmat <- distanceMatrix(annolist, mz_tolerance = 3e-5)

Explore data

To explore the data, we have a look at a cluster dendrogram:
HCplot(distmat, h = 0.7, cex = 1)
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Figure E-1: Circularised dendrogram as a result of agglomerative hierarchical clustering with average linkage as agglomeration
criterion based on MS2 spectra similarities of the MTBLS433 LC-MS/MS example data set. Each leaf represents one
feature and colours encode cluster affiliation of the features. Leaf labels display feature IDs. Distance from the central
point is indicative of the height of the dendrogram.

Since it was not in the focus of their study, the authors identified only a few metabolites. If we look at the positions
of these metabolites in the cluster dendrogram, we see that the poly-unsaturated fatty acids alpha-linolenic acid
and alpha-linolenic acid are nicely separated from the saturated fatty acids stearic acid and arachidic acid. We
would expect the latter to cluster together but a look at the spectra reveals that stearic acid barely produces any
fragment ions and mainly contains the unfragmented [M–H]– parent ion:
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specplot(getSpectrum(annolist, "annotation", "Stearic acid"))
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Figure E-2: Barplot for the feature M283.2642T14.62, identified as stearic acid, displaying fragment m/z on the x-axis and
intensity normalised to the maximum intensity on the y-axis.

In contrast, arachidic acid produces a much richer spectrum:
specplot(getSpectrum(annolist, "annotation", "Arachidic acid"))
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Figure E-3: Barplot for the feature M311.3046T15.1, identified as arachidic acid, displaying fragment m/z on the x-axis
and intensity normalised to the maximum intensity on the y-axis.

Inspecting the features that cluster close to arachidic acid shows that many of them have an exact m/z that
conforms with other fatty acids of different chain length or saturation (within the m/z tolerance), e.g. the
neighbouring feature M339.2125T15.32 that could be arachidonic acid [M+Cl]–.
Looking at oleic acid [M–H]–, we see that it clusters very closely to M563.5254T13.93, whose m/z is consistent
with oleic acid [2M-H]- and some other possible adducts.
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As a last example, the only identified metabolite that does not belong to the class of fatty acids is acetosyringone,
a phenolic secondary plant metabolite. It forms part of a rather dense cluster in the dendrogram, suggesting high
spectral similarities to the other members of the cluster. It would be interesting to try to annotate more of these
metabolite to find out if they are also phenolic compounds.

Conclusion

In conclusion, we demonstrated how to use CluMSID with a publicly available data set from the MetaboLights
repository and how to include external information such as peak lists or feature annotations into a CluMSID
workflow. In doing so, we had a look on a few example findings that could help to annotate more of the features in
the data set and thereby showed the usefulness of CluMSID for samples very different from the ones in the other
tutorials.
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5 The Alkylquinolone Repertoire of
Pseudomonas aeruginosa is Linked to
Structural Flexibility of the FabH-like PQS
Biosynthesis Enzyme PqsBC

This Chapter has been published as peer-reviewed article in a scientific journal:

F. Witzgall, T. Depke, M. Hoffmann, M. Empting, M. Brönstrup, R. Müller, and W.
Blankenfeldt. “The Alkylquinolone Repertoire of Pseudomonas aeruginosa is Linked to
Structural Flexibility of the FabH-like 2-Heptyl-3-hydroxy-4(1H)-quinolone (PQS) Biosyn-
thesis Enzyme PqsBC”. in: ChemBioChem 19.14 (May 2018), pp. 1531–1544. doi: 10.
1002/cbic.201800153

Abstract

Pseudomonas aeruginosa is a bacterial pathogen that causes life-threatening in-
fections in immunocompromised patients. It produces a large armory of saturated
and mono-unsaturated 2-alkyl-4(1H)-quinolones (AQs) or AQ N-oxides (AQNOs)
that serve as signaling molecules to control the production of virulence factors,
are involved in membrane vesicle formation and iron chelation and also have e. g.
antibiotic properties. It has been shown that the FabH-like heterodimeric enzyme
PqsBC catalyzes the last step in the biosynthesis of the most abundant AQ con-
gener 2-heptyl-4(1H)-quinolone (HHQ) by condensing octanoyl-coenzyme A (CoA)
with 2-aminobenzoylacetate (2-ABA), but the basis for the large number of other
AQs/AQNOs produced by P. aeruginosa is not known. Here, we demonstrate
that PqsBC uses different medium-chain acyl-CoAs to produce various saturated
AQs/AQNOs and also biosynthesizes mono-unsaturated congeners. Further, we
have determined structures of PqsBC in four different crystal forms at 1.5 Å to
2.7 Å resolution. Together with a previous report, this reveals that PqsBC adopts
open, intermediate and closed conformations that alter the shape of the acyl-binding
cavity and explain the promiscuity of PqsBC. The different conformations also allow
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us to propose a model for structural transitions that accompany the catalytic cycle
of PqsBC, which may have broader implications for other FabH-enzymes, where
such structural transitions have been postulated but never been observed.

Keywords:
enzymes; protein structures, structure-activity relationships, transferases, enzyme catal-
ysis, quorum sensing, FabH, conformational change

5.1. Introduction

The Gram-negative bacterium P. aeruginosa is a serious burden for public health. It
is a major causative agent of hospital-acquired lung infections often leading to death
in cystic fibrosis patients, of catheter-associated urinary tract infections, bacterial ker-
atitis due to contaminated contact lenses and of wound infections [1–3]. The ability of
P. aeruginosa to adapt to diverse environments and to cause different types of infections
requires a time- and habitat-dependent coordinated expression of target genes. This is
achieved by a complex intercellular communication network that controls up to 10% of
the P. aeruginosa genome and is therefore considered as a potential therapeutic tar-
get [4–6]. Bacterial cell-to-cell communication is often referred to as “quorum sensing
(QS)”, as its underlying mechanisms involve the synthesis and the secretion of small
signaling molecules (autoinducers, AIs) that are sensed by specific transcriptional recep-
tors, which are activated as soon as a certain AI level (quorum) is reached [7, 8]. Besides
the production of a large arsenal of virulence factors needed for survival and persistence
in the host, QS-regulated processes in P. aeruginosa include biofilm formation, motility
and the activation of the CRISPR-Cas adaptive immune system [9, 10]. P. aeruginosa
has three major intercellular communication circuits, which are also interlinked with
each other [9, 11]. Two of these pathways, the las [12–14] and rhl [15–17] systems, rely
on N -acyl-l-homoserine lactones, which are common autoinducers in Gram-negative
bacteria [7, 8]. The third QS circuit, the pqs system, responds to 2-heptyl-3-hydroxy-
4(1H )-quinolone (PQS) or its biosynthetic precursor 2-heptyl-4(1H )-quinolone (HHQ),
which both activate the transcriptional multiple virulence factor regulator MvfR (also
known as PqsR) and belong to the class of 2-alkyl-4(1H )-quinolones (AQs) [18–21].
HHQ- or PQS-bound PqsR complexes induce the expression of the pqsABCDE operon,
which encodes HHQ biosynthetic proteins (Scheme 5.1) [20–23]. The aryl-coenzyme
A (CoA) ligase PqsA activates anthranilate to anthraniloyl-CoA, which is then con-
densed with malonyl-CoA to 2-aminobenzoylacetyl-CoA (2-ABA-CoA) by PqsD [24,
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25]. The thioesterase PqsE and other thioesterases of P. aeruginosa catalyze the hy-
drolysis of 2-ABA-CoA to 2-aminobenzoylacetate (2-ABA), which is the building block
for the 4-quinolone ring structure of AQs [26, 27]. 2-ABA is a branch point metabo-
lite in HHQ biosynthesis, as it is shuttled into different reaction pathways. Due to its
instability, it can spontaneously decompose into 2-aminoacetophenone (2-AA) by the
loss of CO2 or by undergoing intramolecular cyclization into 2,4-dihydroxyquinoline
(DHQ) [27, 28]. In the main biosynthetic route to HHQ, however, the heterodimeric
PqsBC complex (EC 2.3.1.180) transfers 2-ABA onto octanoate to synthesize HHQ
in a decarboxylative Claisen condensation after an acyl-enzyme intermediate between
the active site cysteine (C129) of PqsC and octanoyl-CoA has been formed [28, 29].
In a final step, HHQ gets hydroxylated at carbon position C3 by the monooxygenase
PqsH [30]. Additionally, a very recent study demonstrated that PqsBC can also use 2-
hydroxylaminobenzoylacetate (2-HABA) as a second substrate, generated from 2-ABA
by the monooxygenase PqsL, to yield 2-heptyl-4-hydroxyquinoline N -oxide (HQNO)
[31], which is one of the most abundant 2-alkyl-4-hydroxyquinoline N -oxides (AQNOs)
in P. aeruginosa [21, 32]. PqsB and PqsC are homologous to β-ketoacyl-acyl-carrier
protein synthases III (FabH) of the thiolase superfamily, but unlike other FabH ho-
mologs that have a conserved His-Asn-Cys catalytic triad, PqsB lacks all of these three
residues and PqsC has only a catalytic dyad composed of His-Cys (H269-C129) [28, 29,
33]. It has recently been shown by Drees et al. [29] that the missing asparagine side
chain in PqsC is mimicked by the NH2 group of 2-ABA in the reaction cycle.
In addition to HHQ and PQS, which are the most relevant AQs in terms of cell-to-

cell communication, P. aeruginosa produces more than 50 distinct AQs/AQNOs with
saturated or unsaturated alkyl side chains of different lengths [34]. The repertoire of
AQs in P. aeruginosa is highly diverse and so are their functions. Besides their role
as signaling molecules in cell-to-cell communication, AQs and AQNOs are involved
in iron chelation, membrane vesicle formation, show antimicrobial activities and can
manipulate the immune system of an infected mammalian host [35]. All these diverse
QS-dependent and QS-independent functions of AQs and AQNOs help P. aeruginosa
to outcompete other microorganisms in the environment or to escape cellular immune
responses of the host in order to create a favorable growth habitat [35].
Although it is well known that P. aeruginosa mainly produces AQ and AQNO con-

geners with alkyl chain lengths of 7 or 9 carbon atoms [21, 34, 36, 37], the molecular
mechanisms leading to this selectivity are unknown. Until now, it has only been demon-
strated that the alkyl chain of HHQ/PQS originates from octanoate introduced by
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Scheme 5.1.: Current understanding of AQ and AQNO biosynthesis in Pseudomonas aeruginosa,
highlighting the role of PqsBC. Dashed arrows indicate breakdown reactions. TesB
is a broad-specific thioesterase that can replace PqsE in this pathway.

156



5

5.2. Results

PqsBC [28]. However, since P. aeruginosa also synthesizes AQ and AQNO derivatives
with shorter, longer and mono-unsaturated alkyl chains, it seems likely that PqsBC
can also utilize the respective acyl-CoA primers for condensation. We therefore investi-
gated the acyl-CoA substrate specificity of PqsBC, using enzymatic assays and feeding
experiments as well as by analyzing PqsBC crystal structures from five different crystal
forms. This shows that PqsBC prefers medium-chain acyl-CoAs and is the key fac-
tor of the pqs system that drives the AQ/AQNO distribution found in P. aeruginosa.
Our data also provide evidence that PqsBC is directly involved in the biosynthesis of
mono-unsaturated AQs/AQNOs. Crystal structures demonstrate that PqsBC exists in
open, closed and intermediate conformations. Such conformations have previously been
postulated for other FabH enzymes, but have never been observed. Our data therefore
provide new insight into the acyl-CoA binding mechanism of FabH-like proteins.

5.2. Results

5.2.1. The diversity of AQs/AQNOs produced by P. aeruginosa depends
strictly on PqsBC

Recently, it has been shown that the heptyl side chain of HHQ derives from octanoyl-
CoA, which is incorporated by the heterodimeric FabH-like enzyme PqsBC [28]. To
investigate the importance of PqsBC for the production of the whole spectrum of AQs
and AQNOs, we analyzed their production in P. aeruginosa PA14 wildtype and in
nonpolar pqsB– and pqsC – mutant strains grown in minimal medium using LC-MS.
Hydroxylated species (PQS analogs) were excluded from analysis, as AQ/AQNO hy-
droxylation occurs downstream of PqsBC (Scheme 1) [20, 21, 30]. Towards this, it
has been described previously that PQS analogues and AQNOs of the same side chain
length can be distinguished both by their MS/MS fragmentation and by their chromato-
graphic behavior despite identical mass-to-charge ratios [34, 37, 38]. In addition, PQS
congeners did not give defined peaks and had different retention times than AQs and
AQNOs under the chromatographic conditions used in this study. While AQs/AQNOs
were completely absent in the pqsB– and pqsC – mutants, we observed a large variety
of different AQs/AQNOs in the wildtype strain (Figure 5.1A). We mainly detected
saturated and mono-unsaturated (cis and trans) AQs and AQNOs with odd-numbered
aliphatic side chains containing 7 to 11 carbon atoms, while only traces of AQ congeners
with even-numbered alkyl chains were found (Figures 5.1A, B; the nomenclature for
AQs/AQNOs used here was adapted from Depke et al. [38]). The two most abundant

157



5

Chapter 5: Publication 3:
PqsBC determines the AQ repertoire of P. aeruginosa

Figure 5.1.: AQ/AQNO profile of Pseudomonas aeruginosa PA14. A) Total ion chromatograms of
bacterial cell extracts of wildtype P. aeruginosa PA14 (black), ED117 (pqsB–, blue) and
ED218 (pqsC–, magenta). The magnified insert shows the relevant AQ/AQNO section.
Chromatograms from three replicates are shown for each strain. CX :n-HQ are AQs
(HHQ series) and CX :n-QNO are AQNOs (HQNO series) with X and n representing
the number of carbon atoms and the number of double bonds in the aliphatic chain,
respectively (e.g. C7-HQ is equivalent to HHQ). The most prominent AQ/AQNO peaks
in the chromatograms of wildtype P. aeruginosa PA14 are annotated with the m/z of
their [M+H]+ ions. None of the annotated AQs/AQNOs is present in the mutant
strains. B) Mean peak areas of saturated AQs (white bars) or AQNOs (gray bars) in
combined cell and supernatant extracts of exponentially growing wildtype P. aeruginosa
PA14 in arbitrary units (A.U.). Differences in AQ/AQNO levels shown in panels A)
and B) are due to the fact that A) shows only cellular AQs/AQNOs, while both cellular
and extracellular AQs/AQNOs were quantified for B). Since the annotation of AQs
and AQNOs is based on their MS2 spectra containing the characteristic radical cation
with m/z = 159, which cannot be formed from C1-HQ/C1-QNO, the identity of C1-
HQ/C1-QNO cannot be verified. The error bars are the standard deviations from three
independent measurements. For comparability, the scaling is identical to Figure 5.7A.

saturated species produced by P. aeruginosa PA14 were C7-HQ (HHQ) or C7-QNO
(HQNO) and C9-HQ (NHQ) or C9-QNO (NQNO) (Figure 5.1B), which is line with
previous reports [21, 34, 36, 37]. These results suggest that PqsBC synthesizes not only
HHQ but also other AQs/AQNOs by using shorter or longer acyl-CoAs.

5.2.2. PqsBC accepts a broad spectrum of acyl-CoAs

To corroborate the hypothesis that PqsBC synthesizes other AQ/AQNO derivatives
directly, we performed proteomic assays to test whether PqsBC can also accept other
saturated acyl-CoA substrates besides octanoyl-CoA. Towards this, PqsBC was in-
cubated with different even-numbered saturated acyl-CoAs ranging from acetyl- to
tetradecanoyl-CoA (C2- to C14-CoA) and protein acylation was analyzed with ESI-
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Figure 5.2.: Acylation of PqsBC. A) Overlaid total ion chromatograms of PqsBC loaded with
saturated acyl-CoAs, ranging from C2- to C14-CoA (n = 0-12; only even numbers), and
the respective deconvoluted mass spectra confirming acylation. B) Deconvoluted mass
spectra of a competitive acyl-CoA loading experiment with PqsBC treated with C2- to
C14-CoA (n = 0-12; only even numbers) in equimolar ratio reveals only octanoylated
and decanoylated PqsC species. The peak at 38530.6Da corresponds to free PqsC
(theoretical mass including the residual residues GPH of the affinity tag: 38530.0Da).

MS. In all cases, PqsC was loaded with the respective acyl chain, while PqsB remained
unmodified as expected (Figure 5.2A). However, incubation with acetyl-CoA, butyryl-
CoA and hexanoyl-CoA resulted in incomplete PqsC modification.

In a second analysis, PqsBC was incubated with a mixture containing all acyl-CoAs
at equal concentrations. Notably, PqsC was only loaded with octanoate and decanoate,
revealing a clear preference for the corresponding acyl-CoAs (Figure 5.2B). To evalu-
ate if substrate utilization can be shifted by increasing the concentration of one acyl-
CoA over the other, we incubated PqsBC with a constant amount of octanoyl-CoA
and equimolar or 10-fold higher concentrations of hexanoyl-, decanoyl-, dodecanoyl- or
tetradecanoyl-CoA in 1:1 competition assays (Figure 5.S1 in the Supporting Informa-
tion). Even with 10-fold excess of hexanoyl- or tetradecanoyl-CoA, PqsBC was only
loaded with octanoate (Figures 5.S1A, D). In the case of a 10-fold excess of decanoyl-
CoA, however, the loading shifted towards the decanoylated PqsBC species and only
a minor fraction modified with the octanoyl moiety remained (Figure 5.S1B). Similar
observations were made with dodecanoyl-CoA (Figure 5.S1C). Incubation of PqsBC
with equimolar concentrations of octanoyl- and dodecanoyl-CoA, on the other hand,
resulted in almost complete modification with octanoate. Together, these acyl-CoA
loading experiments indicate that octanoyl- and decanoyl-CoA are the preferred acyl-
CoA substrates for PqsBC and that transacylation of PqsC can be influenced to some
extent by increasing the concentration of the acyl-CoA primers for C8- to C12-CoA,
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Table 5.1.: Acyl-CoA substrate specificity of PqsBC.
Acyl-CoA Acyl chain

length
[CoA] (µM)
(PqsBC)

[CoA] (µM)
(PqsBCC129A)

Acetyl-CoA 2 n. d. -
Butyryl-CoA 4 n. d. -
Hexanoyl-CoA 6 205 ± 8 -
Octanoyl-CoA 8 459 ± 10 n. d.
Decanoyl-CoA 10 261 ± 19 -
Dodecanoyl-CoA 12 n. d. -
Tetradecanoyl-CoA 14 n. d. -
Hexadecanoyl-CoA 16 n. d. -

PqsBC (1 µM) was mixed with acyl-CoA (500 µM) and 2-ABA (1mM). The reaction was stopped
after 20 min. The absorbance of the sample was measured at 412 nm after the addition of DTNB
(2 mM) to determine the concentration of free coenzyme A (CoA). The conversion of octanoyl-CoA
by PqsBCC129A was tested as a negative control. The errors are the standard deviations from three
independent measurements. n. d.: no detectable CoA release. -: not tested.

suggesting that the AQ/AQNO spectrum produced by P. aeruginosa is also influenced
by acyl-CoA availability.
We also investigated the acyl-CoA substrate specificity of PqsBC by endpoint mea-

surements under turnover conditions in the presence of the second substrate 2-ABA,
since transacylation only reflects the first reaction step and the substrate specificity
could also be influenced by the overall kinetics of the enzyme. Acyl-CoA turnover
was monitored by the release of CoA upon enzyme-acyl intermediate formation, which
was detected spectrophotometrically with 5,5’-dithiobis-2-nitrobenzoic acid (DTNB,
Ellman’s reagent) at 412 nm. PqsBC displayed its highest activity with octanoyl-CoA
(459 µM CoA), followed by decanoyl-CoA (261 µM CoA) and hexanoyl-CoA (205µM
CoA) (Table 5.1). No CoA was detected from the short-chain acetyl- or butyryl-CoA
or the long-chain dodecanoyl-, tetradecanoyl- or hexadecanoyl-CoA. These data show
that PqsBC has a clear preference for medium-chain acyl-CoAs with aliphatic tails of
6 to 10 carbon atoms, exhibiting the highest activity with octanoyl-CoA.

5.2.3. Structure determination of PqsBC in four different crystal forms

In order to correlate the observed preference for medium-chain acyl-CoAs with struc-
tural features of PqsBC, we aimed at obtaining a crystal structure of octanoylated
wildtype PqsBC and of the active site mutants PqsBCC129A or PqsBCC129S to cap-
ture an enzyme-octanoyl-CoA complex, which is expected to form before the acyl
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group is transferred onto active site C129 of PqsC. Despite extensive efforts in soak-
ing and cocrystallization experiments with wildtype PqsBC and with the mutants
PqsBCC129A/PqsBCC129S, however, this was not successful. Nevertheless, we deter-
mined the structures of ligand-free PqsBC wildtype and PqsBCC129A/PqsBCC129S mu-
tants in four different crystal forms (crystal form 1 to 4) at 1.53Å to 2.7Å resolution.
The crystals contained two, four or eight PqsBC heterodimers in their asymmetric units
(Figures 5.S2 and 5.S3; Tables 5.S1 and 5.S2). Interestingly, crystals belonging to crys-
tal forms 1, 2 and 3 could only be obtained with protein still carrying the purification
tag at the N -terminus of PqsC. Crystal packing analysis revealed that the purification
tag mediated crucial crystal contacts to neighboring symmetry-related PqsBC molecules
in the respective crystal lattices (Figure 5.S4).

Molecules from the precipitant were observed in the active site of PqsC in crystal
forms 1 and 3 (Figures 5.S5A, B), and in the wildtype PqsBC structure of crystal form
2, we identified additional elongated but ambiguous electron density around the active
site cysteine C129 (Figure 5.S5C). This electron density probably originated from a
covalently bound co-purified ligand.

5.2.4. Analysis of PqsBC in five different crystal forms reveals flexibility
around the active site of PqsC

We used the Protein Structural Statistics Web Server (PSSweb) [39, 40] to compare
all PqsBC heterodimers in the asymmetric units of the different crystal forms. To-
gether with the crystal structure determined by Drees et al. [29] (PDB ID: 5DWZ;
designated as crystal form 5), this analysis included 22 independent copies of PqsBC.
PqsB shows only minor structural variations except for the C -terminus, some surface
exposed residues and a loop region (residues 186-188) at the upper area of the dimeric
interface (Figures 5.3A, C). PqsC, in contrast, is highly variable in several regions sur-
rounding the putative acyl-CoA binding channel near active site residues C129 and
H269 (Figures 5.3B, C). The variable structural elements include helix α1 (residues
33-39) with W35 and a 310 helix (residues 168-171) with R168. W35 and R168 are
highly conserved in FabH enzymes (Figure 5.S6) and are known to be involved in CoA
binding by intercalating the adenine moiety of CoA between the guanidine (R168) and
the indole (W35) groups [41–44]. The largest structural variations in PqsC are found in
a region between β10 and helix α5 (residues 212-243), which is part of an area termed as
“flap” in FabH from Mycobacterium tuberculosis (mtFabH), where it has been predicted
to undergo large structural rearrangements during the binding of the acyl-CoA primer
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(residues 201-234 in PqsC correspond to the flap region in mtFabH; Figure 5.S6) [45]. In
contrast, amino acids in the immediate vicinity of the catalytic residues C129 and H269
are highly similar between the analyzed structures, indicating rigidity (Figures 5.3B,
C).

5.2.5. PqsC adopts open, intermediate and closed conformations

Superimposition of the 22 copies of PqsBC contained in the five different crystals forms
revealed that these heterodimers can be assigned to “open”, “intermediate” and “closed”
states, depending on the positions of structural elements surrounding the active site
(Figure 5.4A, Table 5.S3). They show different conformations of the flap and helix α1,
whose flexibility is also reflected in high B-factors (Figures 5.4A and S7). The open form
is only found in crystal form 5, while crystal forms 1 to 4 belong to the intermediate or
closed states (Table 5.S3).
In the open form, secondary structure elements containing W35 and R168 are pushed

outward relative to the closed state (Figure 5.4B). An interesting observation is that the
peptide bond between V241 and P242 adopts a cis conformation in open PqsBC whereas
it is in the trans conformation in the closed and intermediate structures (Figures 5.4C
and 5.S8), suggesting that P242 could serve as a hinge during the catalytic cycle of
PqsBC. The shape of the active site changes dramatically between the open and closed
form: while residues 231 to 240 adopt a loop structure in the open state that enlarges
the catalytic cavity (termed “loop A” by Drees et al. [29]; Figure 5.S6), they form an
imperfect, kinked α-helix acting as an N -terminal extension of helix α5 in the closed
form, leading to reduction in size of the substrate-binding pocket. This transition
moves residues 231 to 238 closer to the active site by up to 17.2Å (Figure 5.4D). At
the same time, strand β11 of the mobile flap is raised, which also contributes to closing
and shrinking of the binding pocket (Figure 5.4E). The distance between Cα-atoms of
Q234 (loop A/helix α5) and W35 (helix α1) decreases from 29Å in the open to 11Å
in the closed conformation, highlighting the long-range structural rearrangements that
accompany the interconversion of the two states.

5.2.6. The acyl-binding site acts as a molecular ruler that determines the
acyl-CoA specificity of PqsBC

It is evident from other FabH homologs that the shape and the size of the acyl-binding
channel dictate the acyl-CoA substrate specificity of these enzymes [44, 46, 47]. To
investigate if the geometry of the acyl-binding site of PqsBC also reflects its speci-
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Figure 5.3.: Structural comparison of 22 individual PqsBC heterodimers in crystal forms 1 to 5 with
the Protein Structural Statistics Web Server (PSSweb) [39, 40]. A/B) Average stan-
dard deviations of backbone coordinates (Å) of all PqsB (A) and PqsC (B) chains by
residue. The catalytic dyad (C129, H269) and conserved residues for acyl-CoA binding
(W35, R168) as well as the potential hinge residue P242 are indicated as triangles and
dots, respectively. C) Average PqsBC heterodimer in cartoon representation colored
by the standard deviation (Å) for the backbone coordinates. Backbone atoms of PqsB
or PqsC with an average standard deviation smaller than 0.6 Å are colored in dark and
light gray, respectively. Important residues and secondary structure elements of PqsC
discussed in the main text are highlighted.
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Figure 5.4.: Conformational changes in PqsBC. A) Open (red; PDB ID: 5DWZ [29]), intermediate
(yellow; PDB ID: 6ET1, this study) and closed conformations (green; PDB ID: 6ET2,
this study) of PqsC. PqsB is shown in dark gray and residues with only small or no
changes in PqsC are shown in light gray. B) R168 and W35, which clamp the adenine
ring of the acyl-CoA substrate in other FabH enzymes, move inwards upon closing of
the active site. C) Residue P242 in helix α5 adopts a cis configuration in the open
form (red) and a trans configuration in the closed state (green). D) Residues S231-
A238 of loop A in the open conformation of PqsC (red) are part of helix α5 in the
closed form (green). Dashed lines indicate distances between the same residue in the
open and closed state. E) Amino acids of the mobile flap including β11 of the open
conformation (green) move upwards relative to those in the closed conformation (red).
Intermediate conformations are omitted in panels B-E) for clarity.
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ficity for octanoyl-CoA (Table 5.1), we aligned the closed form of PqsBCC129A with
mtFabH bound to dodecanoyl-CoA (PDB ID: 1U6S [44]) to model a complex between
PqsBCC129A and octanoyl-CoA (Figure 5.5). According to this, octanoyl-CoA occu-
pies an L-shaped pocket in PqsC, which can be subdivided into a long pantetheinate
or CoA-binding tunnel and a shorter, buried acyl-binding channel (Figures 5.5A, B)
that is similar to those found in crystal structures of mtFabH-dodecanoyl-CoA [44] or
of FabH from Micrococcus luteus (mlFabH) [48]. The substrate-binding pocket is only
accessible via the pantetheinate L-arm, and the two subchannels are separated by the
catalytic dyad of PqsC (C129, H269) at the bottom of the binding cleft (Figures 5.5A,
B).

Our model suggests that the side chains of W35 and R168 sandwich the adenine ring
via π-alkyl and π–π interactions, respectively, thereby anchoring the CoA portion of
octanoyl-CoA like a clamp at the protein surface of PqsC (Figure 5.5C). This stacking
recognition motif is fully conserved in FabH enzymes (Figure 5.S6). The main chain
carbonyl oxygen of R168 additionally fixes the adenine ring by forming a hydrogen
bond with the amino group. The ribose phosphate forms a salt bridge with R168 and
is also hydrogen bonded to S231. Additional hydrogen bonds are formed between the
diphosphate moiety and indole nitrogen atom of W39 as well as the side chain of Q234
(Figure 5.5C). S231 and Q234 are both located on loop A in the open state (Fig-
ure 5.4D), which is one of the most divergent regions between the open and the closed
conformations of PqsBC. While the pantothenate moiety is stabilized by hydrophobic
interactions, the β-mercaptoethylamine unit is hydrogen-bonded to the backbone car-
bonyl oxygen of P271 (Figure 5.5D). The aromatic ring of F173 mediates a sulfur-π
interaction with the sulfur atom of the thioester bond and the main chain amino group
of T331 forms a hydrogen bond with the thioester’s carbonyl oxygen. The octanoyl
chain is embedded in the hydrophobic acyl-binding pocket (Figures 5.5A, B, D). The
distal end of this tunnel is closed by M76*/A77* of PqsB and by P87/L162/L225 of
PqsC (Figure 5.5D).

Side views of the acyl-binding sites of PqsBCC129A models bound to octanoyl- and
dodecanoyl-CoA show that the 11.5Å long alkyl-binding channel provides enough space
for medium-chain acyl-CoAs (hexanoyl- to decanoyl-CoA) and has an optimal length
for octanoyl-CoA (Figure 5.5B). Alkyl chains with more than 10 carbon atoms are
expected to have to fold their aliphatic tails back to fit in the hydrophobic pocket
(Figure 5.5B), which would lead to unfavorably strained alkyl conformations and to
disadvantageous contacts with backbone atoms, whereas shorter chains will establish
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Figure 5.5.: Modeling of PqsBC-acyl-CoA complexes. A) Schematic representation of the L-shaped
acyl-CoA binding site of PqsBC, which can be subdivided into a channel for the CoA
moiety (CoA-binding channel) and a tunnel for the hydrophobic fatty acid part (acyl-
binding channel). Octanoyl-CoA (blue) and important residues (dark gray for PqsB,
indicated by asterisks; black for PqsC) lining the binding pocket are indicated. B) Sur-
face cutaway side view of the L-shaped acyl-CoA binding pocket of PqsBC in complex
with octanoyl-CoA (white) superposed with dodecanoyl-CoA (black). C) Predicted in-
teractions between residues of the CoA-binding channel of PqsC (green) and octanoyl-
CoA (white). Hydrogen bonds and salt bridges are indicated with dashed black and
light blue lines, respectively. The adenine moiety of octanoyl-CoA is sandwiched by
the side chains of R168 and W35. D) Alkyl-binding channel of PqsBC in complex with
octanoyl-CoA (white). Hydrogen bonds (black dashed lines) and sulfur–π interactions
(magenta dashed lines) between PqsC and the cysteamine moiety or the thioester of
octanoyl-CoA are shown. The octanoyl chain is embedded in a hydrophobic pocket
formed by residues of both PqsB (dark gray) and PqsC (green).
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Figure 5.6.: Transition from the open A) to the closed state B) reduces the size of the acyl-
binding pocket from 708 to 256Å3 (white surfaces, calculated with KVFinder [49])
as a consequence of changes in the indicated residues. The model of octanoyl-CoA
(white, ball-and-stick) is shown to highlight the tight fit to the acyl-CoA binding site
in the closed state. PqsB and PqsC are shown in dark gray and red/green, respectively.
Residues of PqsB are indicated by an asterisk.

fewer hydrophobic interactions. The modeled PqsBC-acyl-CoA complexes thus explain
the substrate specificity of PqsBC towards medium-chain acyl-CoAs.
Next, we compared the alkyl-binding site of the open and closed conformations of

PqsBC (Figure 5.6) to obtain insight into changes at the active site that are expected
to accompany substrate binding. The acyl cavity of the open state (708Å3) is calcu-
lated to be about three times larger than that of the closed conformation (256Å3).
As mentioned above, strand β11 of the flap region also adopts a completely different
conformation between the two structures: residues F227 and L225 of PqsC are located
at the side of the acyl cavity in the open state (Figure 5.6A) but cover the acyl cav-
ity from top and front in the closed conformation (Figure 5.6B). Other residues with
significantly different orientations are M76* of PqsB and P87 of PqsC (Figures 5.6A,
B). In the open form, M76* and P87 face each other and are oriented upwards to
provide space for the alkyl chain (Figure 5.6A), while they are turned downwards in
the PqsBCC129A-octanoyl-CoA model, thereby closing the cavity at the distal end of
the channel (Figure 5.6B).
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5.2.7. The AQ/AQNO spectrum of P. aeruginosa depends on acyl-CoA
availability to PqsBC

The analysis of the structure (Figure 5.5) and the results of the enzymatic in vitro as-
says outlined above (Figure 5.2 and Table 5.1) explain PqsBC’s selectivity for medium-
chain acyl-CoAs but also suggest that the enzyme should not be able to distinguish
between odd- and even-numbered acyl-CoA substrates, provided they fall into the cor-
rect size regime. At equal substrate concentrations, this should lead to a bell-shaped
profile for AQ/AQNO derivatives of different alkyl size in P. aeruginosa, suggesting
that the observed deviations from this distribution in cell cultures (Figure 5.1B) orig-
inate from acyl-CoA availability as a consequence of the fatty acid metabolism in the
bacterium. To test this, we performed feeding experiments with exogenously sup-
plied individual fatty acid precursors from acetic acid to tetradecanoic acid in wild-
type P. aeruginosa PA14 cultures at a fixed concentration of 2mM and quantified the
resulting relative AQ/AQNO levels (Figure 5.7A). In contrast to non-supplemented
cultures (Figure 5.1B), the AQ/AQNO profile was indeed bell-shaped with a maximum
at C6-HQ/C7-QNO, indicative of a preference of heptanoyl- and octanoyl-CoA. Fur-
ther, the profile is characterized by a sharp increase from C3-HQ/QNO to C4-HQ/QNO
and a steep drop after C9-HQ/C9-QNO. These results are in line with the preference
of PqsBC for medium-chain acyl-CoAs and show that the AQ/AQNO distribution in
unfed P. aeruginosa reflects the availability of octanoyl- and decanoyl-CoA as the C2-
fragment nature of fatty acid metabolism.

Unexpectedly, we observed that addition of fatty acids longer than decanoic acid
did not result in an increase of the respective AQ/AQNO but in elevated levels of
AQs/AQNOs with shorter alkyl chains (Figure 5.S9). Apparently, long-chain fatty
acids (> C10) run through the β-oxidation cycle until they reach an alkyl chain length
that falls into the substrate range of PqsBC, and are then channeled into the AQ/AQNO
biosynthetic pathway.

5.2.8. PqsBC also produces mono-unsaturated AQs/AQNOs

In addition to saturated AQs/AQNOs, P. aeruginosa also produces mono-unsaturated
congeners (Figure 5.S10; Cn:1-HQ/QNO, where n is the number of carbon atoms of
the aliphatic side chain) [21, 34, 36, 38]. It has been shown that the double bond is
located between the α and β carbons and that the respective cis and trans isomers have
different chromatographic retention times [34]. Recently, it was found that the trans
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isomer of mono-unsaturated C9:1-QNO exhibits high bacteriostatic activity against
S. aureus MRSA strains, while the respective cis isomer and its saturated AQ congener
C9-HQ were inactive [50]. Although mono-unsaturated AQs (C9:1-HQ) have already
been described by Wells in 1952 [51], there is currently no information whether the
double bond is already introduced by PqsBC-mediated incorporation of an unsaturated
acyl-CoA precursor or whether it is the consequence of an unidentified desaturase that
acts downstream of AQ/AQNO biosynthesis.

In the course of our feeding experiments, we found that addition of octanoic acid to
the growth medium not only increased the level of saturated C7-HQ but also that of its
mono-unsaturated congener C7:1-HQ (Figure 5.S11). To shed further light onto this,
we conducted an analogous experiment by adding fully deuterated octanoic-d15 acid as
fatty acid precursor to the culture medium of wildtype P. aeruginosa PA14. We de-
tected mass shifts of 15Da for both C7-HQ and C7-QNO as expected, but also observed
mass shifts of 13Da for the respective mono-unsaturated C7 congeners, demonstrating
that octanoic-d15 acid was also incorporated into C7:1-HQ or C7:1-QNO either prior or
after unsaturation (Figure 5.S12). To discriminate between these possibilities, cultures
were supplemented with a mixture of cis/trans-2-octenoic acid (2mM). As shown in
Figure 5.7B, C7:1-HQ/QNO levels strongly increase after addition of this compound,
indicating that PqsBC can also use this unsaturated precursor. It therefore seems likely
that C7:1-HQ and C7:1-QNO observed in unfed cultures derive from octenoyl-CoA that
arises as an intermediate of the β-oxidation pathway.

5.3. Discussion

Alkylquinolones and their N -oxides (AQs/AQNOs) play an important role in P. aerugi-
nosa and it has long been known that abundant amounts and a diverse spectrum of these
compounds are produced by the bacterium [21, 34–37]. Here, we have used targeted
metabolomics, feeding experiments, proteomics, biochemical assays and structural bi-
ology to investigate the role of the FabH-like heterodimeric PqsBC in the production
of AQ/AQNO derivatives. Our study shows that PqsBC is a promiscuous enzyme
that generates many of these compounds directly by utilizing acyl-CoA substrates with
saturated and unsaturated alkyl chains of different length. PqsBC’s preference for
medium-chain acyl-CoAs provides a rationale why the most abundant AQs/AQNOs
found in P. aeruginosa culture contain a C7- or a C9-alkyl chain, but it fails to explain
why derivatives of uneven-chain acyl-CoAs and of smaller substrates with significant
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Figure 5.7.: The AQ/AQNO spectrum of P. aeruginosa depends on the availability of fatty acids
and 2-octenoic acid is the precursor of C7:1-HQ and C7:1-QNO. A) Mean peak area
in A.U. of AQs (white bars) and AQNOs (gray bars) in combined cell and supernatant
extracts generated from cultures of exponentially growing wildtype P. aeruginosa PA14
fed with 2mM of the respective precursor fatty acid (e.g. octanoic acid for C7-HQ).
Error bars show the standard deviation from three independent measurements. Note
that the AQ/AQNO levels of C4-HQ/C4-QNO to C9-HQ/C9-QNO after precursor
feeding are higher than those of unfed cultures (Figure 5.1B) and show a bell-shaped
profile, indicative of incorporation of the supplied fatty acids into AQs/AQNOs. B)
Mean peak area of cis/trans C7:1-HQ and C7:1-QNO in cell extracts of exponen-
tially growing wildtype P. aeruginosa PA14 fed with EtOH (control, black bars), with
octanoic acid (2mM, white cross-striped bars) or with 2-octenoic acid (2mM, grey
cross-striped bars). The error bars represent the standard deviation from three inde-
pendent measurements. The large increase in C7:1-HQ/C7:1-QNO upon the addition
of 2-octenoic acid suggests that the mono-unsaturated C7-alkyl chain originates from
2-octenoic acid.
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turnover in in vitro assays, such as hexanoyl-CoA, are underrepresented in vivo. Feed-
ing experiments with C2- to C14-fatty acids suggest that these AQs/AQNOs are absent
because the respective fatty acid/acyl-CoA precursors are not available for AQ/AQNO
biosynthesis.

The level and composition of acyl-CoAs is dynamic and influenced by several enzymes
involved in fatty acid degradation (Fad) and biosynthesis (Fab) [52], some of them still
uncharacterized in P. aeruginosa. The initial acyl-CoA pool is defined by the substrate
specificity of multiple fatty acyl-CoA ligases (FadDs), which prime fatty acids with
CoA for the β-oxidation cycle after uptake [53, 54]. Acyl-CoA dehydrogenases (FadE)
introduce the α–β double bond to produce the respective unsaturated enoyl-CoAs in
the first step of β-oxidation, before additional enzymes (FadB, FadA) catalyze their
further breakdown. A recent study revealed that the transcriptional regulator PsrA
counteracts the conversion of acyl-CoAs to enoyl-CoAs by repressing the transcription
of the FadE-homolog PA0506, thereby increasing the level of saturated acyl-CoAs that
are then available for AQ/AQNO biosynthesis [55]. Interestingly, octanoyl-CoA, which
is the preferred substrate of PqsBC as demonstrated here, has a special role in the fatty
acid metabolism of P. aeruginosa: in addition to degradation via β-oxidation, it can
be condensed with malonyl-ACP to produce the rhamnolipid precursor β-ketodecanoyl-
ACP by the enzyme PA3286, which directly links β-oxidation with de novo fatty acid
and rhamnolipid biosynthesis [56, 57]. In addition to Fad or Fab enzymes, there are
also acyl carrier proteins (ACPs) and enzymes involved in the biosynthesis of cell wall
components or of rhamnolipids that also make use of the fatty acid pool. This highlights
that PqsBC competes with many other fatty acid-metabolizing enzymes to branch
medium-chain acyl-CoAs into AQ/AQNO biosynthesis. In this context, it may be worth
noting that the N -acyl-l-homoserine lactone synthases RhlI of the rhl system and LasI
of the las circuit prefer ACP-loaded C4- and 3-oxo-C12 acyl chains, respectively [58,
59]. As PqsBC selectively uses medium-chain acyl-CoAs, it is probably ensured that
the rhl, las and pqs quorum sensing circuits access different fatty acid subpools and do
not steal acyl-substrates from each other. Further, AQs with C7- or C9-alkyl chains are
the most potent co-inducers of PqsR and the best substrates of PqsH [30, 60, 61]. This
shows that PqsBC, PqsR and PqsH are perfectly attuned to one another, suggesting
co-evolution not only of the rhl, las and pqs systems but also within the pqs system
itself.
The finding that the AQNO profile of P. aeruginosa cultures in both the presence and

the absence of exogenous fatty acids follows the same trend as that of AQs (Figures 5.1B
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and 5.7A) supports the findings of a recent study [31] that PqsBC also catalyzes the
synthesis of AQNOs from 2-HABA (produced by PqsL) and from acyl-CoAs. Our study
also provides evidence that in addition to saturated acyl-CoAs, PqsBC also accepts
α,β-unsaturated acyl-CoAs, which are most probably formed in the first step of the
β-oxidation cycle, to produce the respective mono-unsaturated AQs/AQNOs directly.

The substrate preferences of PqsBC are rooted in its three-dimensional structure,
and we found that PqsBC in its closed conformation contains a hydrophobic alkyl-
binding chamber that provides sufficient space to accommodate octanoyl- and decanoyl-
moieties in addition to shorter alkyl chains. These shorter substrates will establish fewer
interactions with the active site whereas larger molecules will have to adopt unfavorable
geometries, explaining the bell-shaped distribution of AQs/AQNOs when cultures of
P. aeruginosa were supplied with large amounts of C2- to C14-fatty acids. Apparently,
the acyl-binding tunnel of PqsBC serves as a “molecular ruler” that restricts the alkyl
chain length of the substrate to 10 or fewer carbon atoms. While catalytic residues are
only found in PqsC, the acyl-binding tunnel is in part also built by residues from PqsB,
showing that this otherwise inactive monomer not only acts as a chaperone for PqsC
but also plays a role in shaping the acyl-CoA substrate selectivity of PqsBC.
Importantly, our extensive sampling of crystallization conditions yielded four new

crystal forms, of which two have large asymmetric units containing four and eight copies
of the protein complex. Together with the structure recently published by Drees et al.
[29], this allowed us to compare 22 PqsBC heterodimers in different crystallographic
environments. Structural analysis showed that PqsB is very similar in all heterodimers,
at the same time revealing a structural plasticity of PqsC that manifests itself in open,
intermediate and closed conformations of PqsC. With this, our study provides the first
direct experimental corroboration for the existence of distinct conformational states in
a FabH-like enzyme. Earlier studies have reported only closed conformations, suggest-
ing that the closed state is in general thermodynamically favored [41, 42, 44, 46–48,
62–64]. Evidence for the dynamic nature of these enzymes and for the existence of
open conformations has been rather indirect until now [43, 45, 65, 66]. For example,
an apo structure of Escherichia coli FabH (ecFabH, PDB ID: 1HNK) was found to be
unstructured in regions implicated in ligand binding [43], and kinetic as well as crystal-
lographic analyses with alkyl-CoA disulfide inhibitors suggested that this unstructured
ecFabH resembles an open form that closes upon binding of the CoA-ligand [65]. This
view was later refined to the “open state model” by studies on mtFabH showing that
a mutant with a blocked acyl-binding pocket could still bind an inhibitor, but this was
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only possible if the enzyme opened by movement of the flap region and exposed its
binding site [45, 67]. The open state model is further supported by molecular dynam-
ics (MD) simulations of the FabH-like PQS biosynthesis enzyme PqsD and of ecFabH,
which demonstrated large motions of the flap region and in the areas with conserved
residues for adenine stacking [66, 68]. These MD profiles are strikingly similar to the
structural fluctuations observed in the ensemble of PqsC crystal structures shown in
Figure 5.3B. We are therefore confident that the open, intermediate and closed confor-
mations of PqsBC identified here are not crystallographic artifacts but resemble trapped
“conformational snapshots” that occur during acyl-CoA binding of PqsBC.

Comparison of the three conformational states of PqsBC enables us to speculate
about a structural mechanism for the opening and closing of PqsBC during catalysis,
which is summarized in Figure 5.8. At the outset of the catalytic cycle, substrate-free
PqsBC is expected to be in the open form with P242 in the cis-conformation. The
adenine moiety of the acyl-CoA substrate would then bind between the conserved W35
and R168 (Figure 5.5C) and cis-trans isomerization at V241-P242 would accompany
the transition of loop A in the open state to the elongated, kinked helix α5 observed
in the closed conformation (Figures 5.4C, D), which concomitantly pushes strand β11
upward (Figure 5.4E). This allows residues S231 and Q234 of the extended helix α5
to establish favorable interaction with the CoA moiety of the substrate (Figure 5.5C),
pulling the structural elements containing the W35/R168 clamp towards the active site
(Figure 5.4B). The active site will close further by movement of strand β11 from PqsC,
which slides over the acyl-binding pocket like a zipper. Due to this displacement, F227
(PqsC) can then shield the pocket from the top like a lid and L225 (PqsC) moves to
the far end of the tunnel, thereby pushing P87 (PqsC) and M76* (PqsB) downwards to
establish the distal walls of the channel (Figures 5.6A, B). As a consequence, the bound
substrate would be locked in the closed conformation to undergo the transacylation
reaction with C129. Interestingly, the finding that PqsBC was also loaded with long-
chain dodecanoyl or tetradecanoyl units (Figure 5.2A), which are expected not to fit into
the acyl-binding cavity of PqsC, seems to indicate that full closing is not required for
this reaction. However, competition experiments (Figure 5.S1) and enzymatic reactions
including the second substrate 2-ABA (Table 5.1) suggest that transacylation in the
open state of these long-chain primers is less efficient and blocks structural changes
required for the second half-reaction of the catalytic cycle. This second half-reaction
likely is initiated by dissociation of CoA, which would not require large structural
perturbations, since CoA is bound mostly at the surface of PqsC. The release of CoA
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Figure 5.8.: A structural, hypothetical model of the catalytic cycle of PqsBC. (1) After octanoyl-
CoA binds to the enzyme, PqsBC (PqsB: dark gray; PqsC: light gray) transitions from
the open (red) into the closed state (green). (2) The octanoyl chain is transferred to
active site C129 of PqsC, followed by the release of CoA. (3) 2-ABA enters the active
site and undergoes decarboxylative condensation with the octanoyl-PqsC intermediate
to produce HHQ. (4) The re-opening of PqsBC leads to the release of HHQ (or of
the Claisen condensation intermediate that finally undergoes cyclization to HHQ). A
surface cutaway side view of the L-shaped acyl-CoA binding channel is shown at each
reaction step.
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is expected to open a channel through which the second substrate 2-ABA can enter
the active site while the enzyme would remain in the closed state. The AQ/AQNO
product forms by decarboxylative condensation followed by intramolecular cyclization
of the condensation intermediate. While it is at present unclear if this final cyclization
proceeds within the active site and if it requires catalysis [29], the decarboxylative
condensation releases the acyl group from C129. As a consequence, forces that hold the
enzyme in the closed state would be interrupted, allowing re-opening and dissociation
of the product.

A similar model has already been suggested for mtFabH [45, 67]. It has to be noted,
however, that P242 of PqsC is not conserved in other FabH enzymes such as mtFabH
(Figure 5.S6) and therefore, due to the potential importance of its cis/trans isomer-
ization, details of the hypothetical model purported here may not apply to all FabH
proteins. This is not surprising because of the large diversity of this family and the spe-
cial role that PqsBC takes within these proteins. Most FabH enzymes are homodimers
involved in fatty acid biosynthesis, have a catalytic triad, and utilize acyl-CoA primers
and malonyl-ACP to produce 3-ketoacyl-ACPs. In contrast, PqsBC is heterodimeric,
requires only a catalytic dyad, and produces a bicyclic AQ product from acyl-CoA and
2-ABA. The flexibility of the flap region in most other FabH enzymes may therefore
be encoded in other residues, and Sachdeva et al. [45] have previously suggested that
conserved glycine residues that flank the flap region in other FabH enzymes but not
in PqsBC (Figure 5.S6) play a role in opening and closing the active site. Although
it is obvious from the crystal structures that the orientation of P242 has large struc-
tural consequences for the active site of PqsBC, further in-depth investigation will be
necessary to evaluate its potential role in the catalytic mechanism of PqsBC.

Due to its importance in controlling virulence and because of its unique occurrence
in P. aeruginosa, the pqs system is currently evaluated as a drug target in novel anti-
virulence strategies [69–71]. The finding that PqsBC adopts distinct conformations that
have been resolved here to high resolution and could be addressed selectively may offer
new opportunities for these drug discovery programs.

5.4. Experimental Section

Full experimental procedures can be found in the supporting online information.
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Chemicals and bacterial strains

UCBPP-PA14 was used as the wildtype strain for all experiments. The nonpolar mutant
strains ED117 (pqsB::TnphoA) and ED218 (pqsC ::Kan) were kindly provided by Eric
Déziel and co-workers [28]. 2-ABA was kindly provided by Steffen L. Drees and Susanne
Fetzner [27]. All acyl-CoAs were purchased from Larodan with the exception of acetyl-
CoA, which was acquired from Sigma-Aldrich. DTNB was obtained from Thermo Fisher
Scientific and CoA was purchased from AppliChem.

Metabolomic analysis of Pseudomonas aeruginosa

AQ/AQNO analysis in P. aeruginosa has been performed as described elsewhere [38].
Briefly, bacteria where grown in BM2 minimal medium with or without exogenous fatty
acids (2mM). Methanol extracts of cells and culture supernatants were analyzed by
HPLC-coupled mass spectrometry, using a 150mm Kinetex C18 reversed-phase column
with 1.7 µm particle size and 2.1mm inner diameter (Phenomenex) and a quadrupole
time-of-flight mass spectrometer (maXis HD QTOF, Bruker) with positive mode elec-
trospray ionization. Signal quantification was based on the calculation of peak areas in
extracted ion chromatograms of the respective analytes.

Acyl-CoA loading assays and LC-MS measurements of intact proteins

Acyl-CoA loading assays were performed with PqsBC (5µM) and acyl-CoAs (50 µM)
in Tris/HCl (50mM, pH 7.6) at 30 °C. After incubation for 30min, the samples (20µL)
were directly submitted for intact protein analyses. All ESI-MS measurements were
performed on a Dionex Ultimate 3000 RSLC system using a ProSwift RP-4H (mono-
lithic PS-DVB), 250× 1mm column (Thermo Fisher Scientific) and a maXis 4G hr-ToF
mass spectrometer (Bruker Daltonics) equipped with the standard Bruker ESI source.

Cloning and site-directed mutagenesis

The pqsB (PA0997) and pqsC (PA0998) genes from Pseudomonas aeruginosa PAO1
were amplified from chromosomal DNA by PCR (primers listed in Table 5.S4). pqsB was
cloned into pET26b (Merck Millipore) and pqsC was ligated into pET19m or p10$ [72],
both based on the pET19b vector (Merck Millipore). The resulting plasmid pET19m-
pqsC produces PqsC with an N -terminal His6 tag followed by a recognition motif for
TEV (tobacco etch virus) protease, while p10$-pqsC encodes PqsC with an N -terminal
His6-tagged T7 lysozyme removable by human rhinovirus 3C protease. The active site

176



5

5.4. Experimental Section

cysteine C129 of PqsC was mutated to alanine (PqsCC129A) or serine (PqsCC129S) in
pET19mod-pqsC and p10$-pqsC by PCR-based mutagenesis (Table 5.S4).

Expression and purification of (His6-)PqsBC, (His6-)PqsBCC129A and PqsBCC129S

Recombinant proteins were produced in E. coli BL21(DE3)pLysS (Promega) or BL21-
CodonPlus(DE3)-RIL (Agilent Technologies) co-transformed with pET26b-pqsB and
pET19m-pqsC or p10$-pqsC. Purification involved nickel affinity and size exclusion
chromatography with or without an intermittent protease cleavage and chromatog-
raphy step to remove the His6-affinity tag (Table 5.S5). The purified proteins were
concentrated to 20–35mgmL–1, flash-cooled in liquid nitrogen and stored at –80 °C.

PqsBC activity assay with 2-ABA and acyl-CoAs of different carbon chain lengths

Enzymatic activities were measured in a spectrophotometric assay by using 5,5’-dithiobis-
(2-nitrobenzoic acid) (DTNB, Ellman’s reagent) to monitor the formation of free CoA
at 412 nm [73, 74]. Acyl-CoA or DTNB stock solutions were freshly prepared in MilliQ
water or DMSO, respectively. The concentrations of acyl-CoA stocks were measured
at 259 nm [75] and the concentration of free CoA already present in the respective
acyl-CoA stock was calculated by adding DTNB and comparing to a standard curve.
For the enzyme activity assay, PqsBC (1µM) was mixed with acyl-CoA (500 µM) and

2-ABA (1mM) and the samples were incubated at room temperature for 20min. The
reaction was stopped with SDS before measuring released CoA with DTNB.

Crystallization, data-collection, phasing, refinement and structural analysis

Initial crystallization conditions were identified with commercial screens using the sit-
ting drop vapor diffusion method. After optimization by random and grid screening,
crystals were harvested in cryo-protectant (Table 5.S1, Figure 5.S2) and diffraction data
were collected on beamlines X06DA/X10SA at the Swiss Light Source (Paul Scherrer
Institute, Villigen, Switzerland) and on PETRA III beamline P11 at DESY (Hamburg,
Germany). Diffraction data were indexed and integrated with XDS [76] or XDSAPP
[77], and scaled with Aimless [78]. Since no other PqsBC structure was available at
the outset of these studies, initial phases were derived by a combination of molecu-
lar replacement and heavy atom derivatization, using data from crystal form 2. The
model was finalized by alternating steps of manual model building in COOT [79] and
maximum-likelihood refinement in phenix.refine [80]. The final model was used to de-
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termine the structures of PqsBC in other space groups by molecular replacement using
Phaser [81]. Model qualities were evaluated with MolProbity [82]. Data collection and
refinement statistics are listed in Table 5.S2. Atomic coordinates and structure factor
amplitudes have been deposited in the Protein Data Bank (www.rscb.org) [83] with
accession codes 6ESZ, 6ET0, 6ET1, 6ET2 and 6ET3.
Structural representation were rendered with PyMOL [84], secondary structure ele-

ments were assigned with DSSP [85] and protein cavities were calculated with KVFinder
[49].

Modeling of PqsBCC129A-acyl-CoA complexes

PqsBCC129A-acyl-CoA complexes were modeled with the structure of His6-PqsBCC129A

determined in this study (chains IJ of crystal form 3, PDB ID: 6ET2) and the X-ray
coordinates of mtFabH in complex with dodecanoyl-CoA (PDB ID: 1U6S [44]) using
Molecular Operating Environment (MOE, Chemical Computing Group) [86].
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MD, molecular dynamics;
mlFabH, Micrococcus luteus FabH;
mtFabH, Mycobacterium tuberculosis FabH;
MvfR, multiple virulence factor regulator;
PDB, Protein Data Bank;
PQS, 2-heptyl-3-hydroxy-4(1H )-quinolone;
PSSweb, Protein Structural Statistics Web Server;
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TEV, tobacco etch virus.
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Metabolomic analysis of Pseudomonas aeruginosa

Bacteria were pre-cultured overnight in lysogeny broth (LB) at 37 °C and 160 rpm in a
shaking incubator. The cells were pelleted by centrifugation (4 °C, 9000 g, 5min) and
used to inoculate BM2 minimal medium consisting of (NH4)2SO4 (2mM), K2HPO4

(40mM), KH2PO4 (22mM), MgSO4 (2mM), FeSO4 (10 µM), glucose (0.4%,w/v) and
casein hydrolysate (0.01%,w/v). The starting OD600 was adjusted to 0.05 and the
cultures were harvested after 8 h at an OD600 of 1.5± 0.1. For the analysis of cellular
AQs/AQNOs, the cells were pelleted by centrifugation (4 °C, 9000 g, 5min) and the
pellet was snap frozen in liquid nitrogen while the supernatant was discarded. For the
combined analysis of cellular and extracellular AQs/AQNOs, the collected volume of
culture broth was dried overnight in a centrifugal evaporator (Refrigerated CentriVap
Concentrator with –50 °C CentriVap Cold Trap, Labconco) at 20 °C.
Fatty acid feeding experiments were conducted by supplementing the minimal medium

with final concentrations of 2mM fatty acid. As the fatty acids were dissolved in ethanol
(100%, v/v), the respective amount of ethanol was added to the control samples. For
the fatty acid feeding experiments, all members of the homologous series from acetic
acid to tetradecanoic acid as well as 2-octenoic acid (mixture of cis and trans) and
the perdeuterated octanoic-d15 acid were tested. All experiments were performed in
triplicates.
Cell pellets and dried culture broth samples were reconstituted to the original con-

centration in methanol (100%, v/v) by two rounds of vigorous shaking for 1min and
subsequent 10min sonication in an ice cold ultrasonic bath (Sonorex Digiplus, BAN-
DELIN electronic). After centrifugation (4 °C, 9000 g, 5min), a defined volume of the
supernatant was collected and dried in a centrifugal evaporator overnight at 20 °C. The
sample was then reconstituted in half the volume of acetonitrile (50%, v/v) with formic
acid (0.1%, v/v) by shaking for 5 s, followed by sonication for 5min and again shaking
for 5 s.

The analytical procedure was essentially conducted as described by Depke et al. [1].
In short, the extracts were separated on a 150mm Kinetex C18 reversed-phase column
with 1.7µm particle size and 2.1mm inner diameter (Phenomenex) using a gradient
of water with formic acid (0.1%, v/v) as eluent A and acetonitrile with formic acid
(0.1%, v/v) as eluent B. The gradient elution was performed as follows: hold 1% B for
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2min, proceed with a linear gradient from 1% B to 100% B over 18min, remain at
100% B for 5min and return to 1% B with a linear gradient over 5min. The samples
were analysed on a quadrupole time-of-flight mass spectrometer (maXis HD QTOF,
Bruker) using positive mode electrospray ionization. Full scan data (50–1500 Da) were
recorded and collision-induced dissociation was used to collect data-dependent MS/MS
data for feature annotation. Signal quantification was based on the calculation of peak
areas in extracted ion chromatograms of the respective analytes. AQs and AQNOs
were annotated as described by Depke et al. [1]. The nomenclature used in this study
is CX :n-HQ for 2-alkyl-4(1H )-quinolones (HHQ series) and CX :n-QNO for 2-alkyl-4-
hydroxyquinoline N -oxides (HQNO series) with X representing the number of carbons
in the aliphatic chain and n the number of double bonds in the chain, i.e. C7-HQ is
equivalent to HHQ (2-heptyl-4(1H )-quinolone).

Acyl-CoA loading assays and LC-MS measurements of intact proteins

Acyl-CoA loading assays were performed with PqsBC (5µM) and acyl-CoAs (50 µM)
in Tris/HCl (50mM, pH 7.6) at 30 °C. After incubation for 30min, the samples (20µL)
were directly submitted for intact protein analyses. All ESI-MS measurements of intact
protein samples were performed on a Dionex Ultimate 3000 RSLC system using a
ProSwift RP-4H (monolithic PS-DVB), 250× 1mm column (Thermo Fisher Scientific).
Separation of the samples (1.0 µL) was achieved by a multistep gradient from (A) H2O
+ formic acid (0.1%, v/v) + dimethyl sulfoxide (DMSO, 1%, v/v) to (B) acetonitrile +
formic acid (0.1%, v/v) + DMSO (1%, v/v) at a flow rate of 200 µLmin–1 at 45 °C. The
gradient was initiated by a 0.5min isocratic step at 5% (B), followed by an increase to
65% (B) in 18min, followed by an increase to 98% in 0.5min to end up with a 3min step
at 98% (B) before reequilibration to the initial conditions. UV spectra were recorded
with a diode array detector in the range from 200 to 600 nm. The LC flow was split to
75 µLmin–1 before entering a maXis 4G hr-ToF mass spectrometer (Bruker Daltonics)
using the standard Bruker ESI source. In the source region, the temperature was set
to 180 °C, the capillary voltage was 4000V, the dry-gas flow was 6.0 Lmin–1 and the
nebulizer was set to 1.1 bar. Mass spectra were acquired in positive ionization mode
ranging from 600–1800m/z at 2.5Hz scan rate. Protein masses were deconvoluted by
using the Maximum Entropy algorithm (Spectrum Square Associates, Inc.).
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Cloning and site-directed mutagenesis

The pqsB (PA0997) and pqsC (PA0998) genes from Pseudomonas aeruginosa PAO1
were amplified from chromosomal DNA by PCR with sequence specific primers (Ta-
ble 5.S44). To generate an untagged construct of PqsB, the PCR product of pqsB was
cloned into pET26b (Merck Millipore) using the restriction enzymes NdeI (NEB) and
BamHI (NEB). The amplicon coding for PqsC was cloned into NdeI/XhoI-digested
pET19m and p10$ [2], which are engineered plasmids based on the pET19b vector
(Merck Millipore). The resulting plasmid pET19m-pqsC produces PqsC with a N -
terminal His6 tag followed by a recognition motif for TEV (tobacco etch virus) protease
(MGHHHHHHA-ENLYFQGH-PqsC; recognition sequence of TEV protease is under-
lined), while p10$-pqsC encodes PqsC with a N -terminal His6-tagged T7 lysozyme
(T7L) (MGHHHHHHAENLYFQGH-T7L-LEVLFQGH-PqsC; recognition sequences for
TEV protease and 3C protease are indicated by underlined and italics characters, re-
spectively), which can be removed by human rhinovirus 3C protease. The active site
cysteine C129 of PqsC was mutated to alanine (PqsCC129A) or serine (PqsCC129S) in
pET19mod-pqsC and p10$-pqsC by site-directed mutagenesis via PCR using KAPA
HiFi DNA Polymerase (Kapa Biosystems) with primers listed in Table 5.S4. Parental
template DNA was digested with DpnI (NEB).

Expression and purification of (His6-)PqsBC, (His6-)PqsBCC129A and PqsBCC129S

The expression plasmids pET26b-pqsB/pET19m-pqsC or pET26b-pqsB/p10$-pqsC were
co-transformed into chemically competent E. coli BL21(DE3)pLysS (Promega) or BL21-
CodonPlus(DE3)-RIL cells (Agilent Technologies), respectively. An overnight pre-
culture grown from a single colony in lysogeny broth (LB) medium containing ampicillin
(100mgL–1), kanamycin (50mgL–1) and chloramphenicol (34mgL–1) at 37 °C was used
for inoculation of Terrific Broth (TB) medium supplemented with the same antibiotics
to an optical density (OD600) of 0.05. When this culture reached an OD600 of 0.8–1.0
at 37 °C, the temperature was shifted to 20 °C and protein expression was induced with
isopropyl-β-d-thiogalactopyranoside (IPTG, 0.5mM) for 20 h. Cells were centrifuged
at 6.800 g for 15min at 4 °C, the pellet was shock frozen in liquid nitrogen and stored
at –80 °C. In the following, the general purification procedures for His6-tagged and un-
tagged PqsBC are described. For the purification of distinct PqsBC variants, slightly
different buffers were used (summarized in Table 5.S5).
The thawed cell pellet was resuspended in buffer A supplemented with MgCl2 (2mM),

DNase I (0.6mgL–1, Roche Life Science) and a cOmplete mini EDTA-free protease in-
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hibitor cocktail tablet (Roche Life Science). Resuspended cells were disrupted with an
Emulsiflex-C3 homogenizer (Avestin) and the insoluble fraction was removed by cen-
trifugation (37.000 g for 45min at 4 °C). Recombinant His6-PqsC/PqsB (His6-PqsBC) or
His6-T7L-PqsC/PqsB (His6-T7L-PqsBC) was isolated from the supernatant by nickel
affinity chromatography using a 5mL HisTrap HP column (GE Healthcare) charged
with NiSO4 (100mM) and equilibrated with buffer A. The complex was eluted with
an imidazole gradient of 2–40% buffer B [buffer A with imidazole (500mM)]. Fractions
containing the target proteins were pooled and 1mg His6-tagged TEV protease per
25mg His6-PqsBC or 1mg His6-tagged 3C protease per 40mg His6-T7L-PqsBC was
added to cut off the His6 tag or the His6-T7L tag from the N -terminus of PqsC. The
mixture was dialyzed against buffer C containing β-mercaptoethanol (2mM) in a dial-
ysis bag (Thermo Scientific Snakeskin, 3.5 kDa MWCO) overnight at 4 °C. A second
nickel affinity chromatography was performed using a 5mL HisTrap HP column (GE
Healthcare) with buffer C and buffer D [buffer C with imidazole (500mM)] to separate
cleaved and uncleaved protein complex and to remove the protease. Because in the
case of His6-PqsBC TEV protease cleavage efficiency was low, the majority of PqsC
still exhibited the N -terminal hexahistidine tag. Therefore, uncleaved His6-PqsBC and
cleaved PqsBC fractions were pooled separately. In contrast, 3C protease removed
the His6-T7L tag from PqsC with high efficiency. Protein fractions were concentrated
(Sartorius Vivaspin, 30 kDa MWCO), loaded onto a HiLoad 26/60 Superdex 200 col-
umn (GE Healthcare) and eluted with buffer C. Fractions containing pure His6-PqsBC
or PqsBC were concentrated (Sartorius Vivaspin, 30 kDa MWCO) to 20–35mgmL–1,
flash-cooled in liquid nitrogen and stored at –80 °C.

Another batch of His6-tagged PqsBC was purified according to the same protocol, but
instead of a second nickel affinity chromatography, His6-PqsBC complex was purified
by anion exchange chromatography (Table 5.S5). For this, His6-PqsBC was applied
onto a 5mL HiTrap Q FF column (GE Healthcare) in buffer C after dialysis and eluted
with a NaCl gradient of 17–22% buffer D [buffer C with NaCl (1M)]. For size-exclusion
chromatography buffer E was used. Untagged or His6-tagged PqsBC variants (His6-
PqsBCC129A, PqsBCC129A, PqsBCC129S) were purified in the same manner as described
for wildtype His6-PqsBC (pET26b-pqsB/pET19m-pqsC ) or untagged PqsBC (pET26b-
pqsB/p10$-pqsC ), respectively.
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PqsBC activity assay with 2-ABA and acyl-CoAs with different carbon chain
lengths

The enzymatic activity of PqsBC with 2-ABA and different acyl-CoAs was measured in
a spectrophotometric assay with 5,5’-dithiobis-(2-nitrobenzoic acid) (DTNB, Ellman´s
reagent) by monitoring the formation of free coenzyme A (CoASH) at 412 nm [3, 4].
For the quantification of CoASH product, a CoASH standard curve was prepared by
mixing DTNB (200mM, 1µL) with different concentrations of CoASH in the range of
0.01–0.2mM in a total sample volume of 100µL in inactivation buffer [HEPES (20mM),
NaCl (150mM), SDS (0.5%,w/v), pH 7.5].

Acyl-CoA or DTNB stock solutions were freshly prepared in MilliQ water (adjusted
to pH 5.0 with HCl) or in DMSO, respectively. The concentration of each acyl-CoA
stock ([acyl-CoA]total) was measured at 259 nm (ε259= 15000M–1 cm–1) [5] and the
concentration of free CoASH ([CoASH]free) already present in the respective acyl-CoA
stock was calculated from the CoASH standard curve in the presence of DTNB. The
concentration of intact, non-hydrolyzed acyl-CoA ([acyl-CoA]intact) was obtained by
subtracting [CoASH]free from [acyl-CoA]total.

For the enzyme activity assay, PqsBC (1 µM) was mixed with acyl-CoA (500µM)
and 2-ABA (1mM) in assay buffer [HEPES (20mM), NaCl (150mM), pH 7.5] and the
samples were incubated at room temperature for 20min in a total volume of 25µL.
The reaction was stopped by adding 24.5 µL of termination buffer [HEPES (20mM),
NaCl (150mM), SDS (1%,w/v), pH 7.5]. Free thiols of released CoASH were reacted
with DTNB (200mM, 0.5µL) to the yellow 2-nitro-5-thiobenzoate (TNB2–) and its
absorbance at 412 nm (A412) was measured with a NanoDrop 2000 UV-Vis spectropho-
tometer (Thermo Fisher Scientific). As a negative control, the C129A active site mutant
PqsBCC129A was incubated with octanoyl-CoA and 2-ABA. The background signal at
412 nm, determined from blank samples in which PqsBC was inactivated with inacti-
vation buffer [HEPES (20mM), NaCl (150mM), SDS (0.5%,w/v), pH 7.5] prior to the
addition of 2-ABA and acyl-CoA substrates, was subtracted from the A412 value of the
respective sample. Blank samples were treated in the same manner described above,
but the reaction was terminated with inactivation buffer. The concentration of free
CoASH produced in the enzymatic reaction was calculated from the CoASH standard
curve. All acyl-CoAs were purchased from Larodan with the exception of acetyl-CoA,
which was acquired from Sigma-Aldrich. DTNB was obtained from Thermo Fisher
Scientific and CoASH was purchased from AppliChem.

191



5

Chapter 5: Publication 3:
PqsBC determines the AQ repertoire of P. aeruginosa

Crystallization, data collection, phasing and refinement

Initial crystallization conditions were identified by mixing His6-PqsBC, His6-PqsBCC129A,
PqsBC, PqsBCC129A or PqsBCC129S solution (0.2 µL, 2.5 to 25mgmL–1) with precip-
itant (0.2 µL), using a Honeybee 961 dispensing robot (Digilab Genomic Solutions) at
20 °C or an OryxNano robot (Douglas Instruments) at 4 °C in 96 well sitting drop
INTELLI crystallization plates (Art Robbins Instruments) charged with precipitant
reservoirs (60µL). Several hits for His6-PqsBC, His6-PqsBCC129A and PqsBCC129S were
identified at 20 °C within 3–13 days. Crystals were optimized with random and grid
screens dispensed by the Formulator liquid handling system (Formulatrix), either with
the same setup as described for initial crystallization screening, or in 24 well hanging
drop VDX plates (Hampton Research) by mixing protein solution (1 µL) with pre-
cipitant (1 µL) equilibrated against precipitant reservoir (500 µL) at 20 °C. Information
about cryoprotectants, final crystallization conditions and unit cell dimensions are sum-
marized in Table 5.S1. Crystal morphologies are shown in Figure 5.S2. X-ray diffraction
data were collected at 100K on beamlines X06DA/X10SA at the Swiss Light Source
(Paul Scherrer Institute, Villigen, Switzerland) and on PETRA III beamline P11 at
DESY (Hamburg, Germany). Diffraction data were indexed and integrated with XDS
[6] or XDSAPP [7], and scaled with Aimless [8] of the CCP4 program suite [9]. Data
quality and correct space group assignment of the processed data was assessed with
Xtriage [10] of the Phenix software suite [11].
Since the PqsBC crystal structure by Drees et al. [12] was not available at the outset

of these studies, initial phases were derived by a combination of molecular replacement
and heavy atom derivatization. First, the molecular replacement pipeline BALBES [13]
selected a crystal structure of the homodimeric FabH from Aquifex aeolicus VF5 (PDB
ID: 2EBD; 18% and 25% sequence identity to PqsB and PqsC, respectively) to locate
three out of four expected PqsBC heterodimers in a native dataset of crystal form 2
(C121, a= 151.5Å, b=230.9Å, c= 134.3Å, α=90.0°, β=113.9° and γ=90°). These
initial phases were then used to calculate a single-wavelength anomalous diffraction
(SAD) difference density map from a dataset obtained at 1.0077Å from a crystal in
the same space group but soaked with HgCl2 (1mM) for 16 h. The SAD difference
map revealed the presence of four anomalous scatterers, three located close to the
active site cysteine residues of the dimers positioned by BALBES and one lying in
unoccupied space, hinting at the position of the missing PqsBC molecule. By feeding
these four positions as mercury atoms into the phenix.autosol routine of the Phenix
software suite [11, 14], it was possible to obtain protein fragments that allowed rough
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pre-positioning of a fourth A. aeolicus VF5 FabH homodimer, which was then correctly
oriented by phased molecular replacement in MOLREP [15] from the CCP4 software
package [9]. After several rounds of density modification with DM [16], automated
iterative model building and refinement with the ARP/wARP web service (http://
arpwarp.embl-hamburg.de) [17] and with Buccaneer [18], the model was finalized by
alternating steps of manual model building in COOT [19] and maximum-likelihood
refinement cycles in phenix.refine [20]. In the last few refinement cycles, water molecules
and ligands were included, and TLS (translation, liberation, screw) refinement [21] was
enabled after automatically dividing the model into TLS groups in phenix.refine [20].
The final model was used to determine the structures of PqsBC variants belonging
to other space groups by molecular replacement using Phaser [22] or by rigid body
refinement implemented in phenix.refine [20]. The overall quality of model geometries
was evaluated with MolProbity (http://molprobity.biochem.duke.edu/) [23]. Data
collection and refinement statistics are listed in Table 5.S2. Final atomic coordinates
and structure factor amplitudes have been deposited in the Protein Data Bank (www.
rscb.org) [24] with accession codes 6ESZ, 6ET0, 6ET1, 6ET2 and 6ET3.
All figures showing PqsBC crystal structures were prepared with PyMOL (Schrö-

dinger) [25], secondary structure elements were assigned with DSSP [26], interactions
between PqsBC and ligands were analyzed with Discovery Studio Visualizer 4.5 (Biovia)
[27] and protein cavities were calculated with the KVFinder PyMOL plugin (default
settings) [28].

Structural comparison of PqsBC in five different crystal forms

The crystal structures of the PqsBC variants His6-PqsBC, His6-PqsBCC129A, PqsBCC129S

in crystal forms 1–4 determined in this study and of crystal form 5 determined by Drees
et al. [12] contain 2, 4 or 8 copies of the PqsBC heterodimer in their asymmetric units
(22 copies in total). For structural comparison, the single PqsBC chains were ex-
tracted from the PDB files, ligands and water molecules were removed. The individual
heterodimers were analyzed with the Protein Structural Statistics Web Server (PSSweb;
http://pssweb.org) [29, 30]. The N -terminal purification tag of PqsC was excluded
from analysis. Prior to the calculation of Cartesian coordinate statistics from the en-
semble of PDB files, a multiple sequence alignment was performed with Clustal Omega
[31] and structures were superposed with Theseus [32] implemented in the PSSweb
workflow [29, 30]. Finally, the individual PqsBC heterodimers were manually clustered
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into open, intermediate and closed states based on the locations of helix α1 and loop
A/elongated helix α5 (Table 5.S3).

Modeling of PqsBCC129A-acyl-CoA complexes

PqsBCC129A-acyl-CoA complexes were modeled with the structure of His6-PqsBCC129A

determined in this study (chains IJ of crystal form 3, PDB ID: 6ET2) and the X-ray
coordinates of the related enzyme FabH from Mycobacterium tuberculosis (mtFabH) in
complex with dodecanoyl-CoA (PDB ID: 1U6S [33]) using Molecular Operating En-
vironment (MOE, Chemical Computing Group) [34]. In detail, protein and ligand
coordinates of chain A of PDB ID 1U6S were superimposed on His6-PqsCC129A to re-
veal structural similarities between both proteins and to obtain a putative binding pose
of acyl-CoA ligands in PqsC. Starting from this, the His6-PqsCC129A-acyl-CoA com-
plexes were generated and geometrically optimized after removal of the co-crystalized
MOPS buffer component. Initially, pronounced steric clashes between His6-PqsCC129A

and the adenosyl-diphosphate moiety as well as the terminal hydrocarbon units of the
dodecanoyl moiety were observed. Hence, the dodecanoyl-CoA ligand was truncated
to octanoyl-CoA and the conformation of the diphosphate linker was adjusted to min-
imize unfavourable contacts. Then, the built-in QuickPrep function was applied using
the AMBER10:EHT force field and default parameters. Subsequently, the restraints
were removed and the structure was energy-minimized with the same force field. The
dodecanoyl-CoA complexes was modeled based on this structure via addition of ter-
minal hydrocarbon units followed by the same QuickPrep and energy minimization
steps.
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Table 5.S2.: Crystallographic data collection and refinement statistics for different PqsBC variants.
Data set His6-WT His6-C129A His6-WT His6-WT (HgCl2) His6-C129A C129S
Crystal form 1 1 2 2 3 4
Data collection
X-ray source[a] SLS SLS SLS SLS PETRA III SLS
Beamline X06DA X06DA X06DA X06DA P11 X10SA
Detector Pilatus 2MF Pilatus 2MF Pilatus 2MF Pilatus 2MF Pilatus 6MF Pilatus 6MF
Wavelength (Å) 1.0000 1.0000 1.0000 1.0077 1.0332 1.0000
Space group P212121 P212121 C121 C121 P1211 C121
Resolution range (Å) 47.46-1.84 47.12-1.53 48.11-2.65 48.18-3.30 49.61-2.60 48.21-2.25

(1.87-1.84) (1.56-1.53) (2.70-2.65) (3.39-3.30) (2.64-2.60) (2.31-2.25)
Unit-cell parameters
a (Å) 62.0 61.7 151.5 146.3 121.4 205.2
b (Å) 142.4 141.4 230.9 231.9 170.2 63.8
c (Å) 171.1 170.7 134.3 134.2 148.4 119.1
α (°) 90.0 90.0 90.0 90.0 90.0 90.0
β (°) 90.0 90.0 113.9 114.1 101.0 120.8
γ (°) 90.0 90.0 90.0 90.0 90.0 90.0
Mosaicity (°) 0.10 0.10 0.37 0.19 0.08 0.11
Total No. of reflections 1087443 1655372 470948 2616517 1255674 430035

(51635) (83877) (23877) (182592) (63696) (28204)
Unique reflections 132059 224695 121019 61995 181283 63167

(6539) (11031) (5927) (4570) (8998) (4410)
Multiplicity 8.2 (7.9) 7.4 (7.6) 3.9 (4.0) 42.2 (40.0) 6.9 (7.1) 6.8 (6.4)
Completeness (%) 100.0 (100.0) 100.0 (99.8) 99.4 (99.0) 100.0 (100.0) 99.9 (99.9) 100.0 (100.0)
Mean I/σ(I) 14.1 (2.0) 14.1 (2.0) 10.7 (1.6) 13.0 (1.6) 12.0 (2.0) 11.9 (1.7)
Rmeas (%)[b] 12.8 (114.2) 8.1 (121.9) 13.1 (111.4) 36.4 (315.4) 14.4 (109.4) 12.7 (113.4)
Rp.i.m. (%)[c] 4.4 (40.4) 2.9 (43.6) 6.5 (54.9) 5.6 (50.1) 5.4 (40.9) 4.8 (44.5)
CC1/2 (%)[d] 99.8 (80.6) 99.0 (74.1) 99.5 (60.3) 99.8 (79.1) 99.6 (68.6) 99.8 (70.0)
Solvent content (%) 53 52 67 67 52 48
Refinement
Resolution range (Å) 47.34-1.84 47.12-1.53 48.11-2.65 48.98-2.60 48.21-2.25

(1.86-1.84) (1.55-1.53) (2.68-2.65) (2.63-2.60) (2.29-2.25)
Rwork (%)[e] 15.0 (26.4) 14.0 (24.6) 18.1 (31.2) 18.4 (28.4) 16.9 (26.0)
Rfree (%)[e] 17.9 (32.3) 15.8 (28.0) 20.3 (34.0) 22.0 (32.8) 20.1 (28.8)
R.m.s. deviations
Bonds (Å) 0.007 0.005 0.002 0.003 0.002
Angles (°) 0.829 0.902 0.547 0.596 0.546
No. of non H-atoms
Protein 10970 11184 21000 42197 10176
Ligands 102 142 - 104 43
Water 1212 1518 719 825 512
Average B factors (Å2)
Protein 30 26 64 53 51
Ligands 61 50 - 67 85
Water 40 40 48 36 46
Ramachandran plot (%)
Favored regions 97.6 97.6 97 97.6 97.8
Outliers 0.2 0.2 0.2 0.2 0.2
MolProbity score[f] 1.17 1.27 1.08 0.99 0.96
PDB ID 6ESZ 6ET0 6ET1 6ET2 6ET3

Values in parentheses are for the highest resolution shell.
[a] SLS: Swiss Light Source (Paul Scherrer Institute, Villigen, Switzerland); PETRA III: Positron-Electron Tandem
Ring Accelerator (DESY, Hamburg, Germany).
[b] Rmeas= Σhkl [N(hkl)/(N(hkl) - 1)]1/2 Σi |Ii(hkl) - <I(hkl)>| / Σhkl Σi Ii(hkl), where N(hkl) is the number of
observations of the reflection with the index hkl, Ii(hkl) is the intensity of the ith measurement of the reflection hkl
and <I(hkl)> is the mean intensity of multiple observations of the reflection hkl [35].
[c] Rp.i.m.= Σhkl [1/(N(hkl) - 1)]1/2 Σi |Ii(hkl) - <I(hkl)>| / Σhkl Σi Ii(hkl) [36].
[d] CC1/2 is the Pearson correlation coefficient between the intensities of two random half-data sets [37].
[e] Rwork/free= Σhkl |Fobs(hkl) – Fcalc(hkl)| / Σhkl Fobs(hkl), where Fobs(hkl) and Fcalc(hkl) are the observed and the
calculated structure factor amplitudes, respectively. Rfree is calculated for 5% of reflections that are excluded from
structure refinement [38].
[f] MolProbity score: quality criterion including the clash score, the Ramachandran and rotamer statistics [23].196
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Table 5.S3.: Clustering of PqsBC heterodimers into open, closed and intermediate states.
Number PqsBC variant Space group Crystal form Chains Conformation

1 Wildtype P212121 1 AB intermediate
2 Wildtype P212121 1 CD intermediate
3 Wildtype C2 2 AB intermediate
4 Wildtype C2 2 CD intermediate
5 Wildtype C2 2 EF intermediate
6 Wildtype C2 2 GH intermediate
7 C129A P212121 1 AB intermediate
8 C129A P212121 1 CD intermediate
9 C129A P212121 5 AD open
10 C129A P212121 5 BC open
11 C129A P212121 5 EF open
12 C129A P212121 5 GH open
13 C129A P21 3 AB intermediate
14 C129A P21 3 CD intermediate
15 C129A P21 3 EF intermediate
16 C129A P21 3 GH intermediate
17 C129A P21 3 IJ closed
18 C129A P21 3 KL intermediate
19 C129A P21 3 MN intermediate
20 C129A P21 3 OP intermediate
21 C129S C2 4 AB disordered
22 C129S C2 4 CD closed

Structures of PqsBC variants belonging to crystal form 1-4 were solved in this study, while the
structure of PqsBCC129A in crystal form 5 was determined by Drees et al. [12] (PDB ID: 5DWZ).
Classification of chains AB of PqsBCC129S was not possible because the mobile flap of PqsCC129S

(chain A) was completely disordered in this heterodimer.
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Table 5.S4.: Oligonucleotides for amplification of pqsB and pqsC and for site-directed mutagenesis of pqsC.
Primer Sequence (5’→3’) Final plasmid(s)

pqsB_NdeI_for GTA TTA CAT ATG TTG ATT CAG GCT GTG GGG pET26b-pqsBpqsB_BamHI_rev TTA TTC GGA TCC TTA TGC ATG AGC TTC TCC
pqsC_NdeI_for GTG TCG CAT ATG CAT AAG GTC AAA CTG GC pET19m-pqsC, p10$-pqsCpqsC_XhoI_rev TAC TTA CTC GAG TCA GCA CAC CAG CAC CTC
pqsC_C129A_for CCA TTG GAT TCG CAG ATG GAG GCG GCC AGC TTC CTG CTC AAC CTG pET19m-pqsCC129A, p10$-pqsCC129A
pqsC_C129A_rev CAG GTT GAG CAG GAA GCT GGC CGC CTC CAT CTG CGA ATC CAA TGG
pqsC_C129S_for CCA TTG GAT TCG CAG ATG GAG TCT GCC AGC TTC CTG CTC AAC CTG pET19m-pqsCC129S, p10$-pqsCC129S
pqsC_C129S_rev CAG GTT GAG CAG GAA GCT GGC AGA CTC CAT CTG CGA ATC CAA TGG

Restriction sites (NdeI, BamHI, XhoI) are written as bold characters and stop codons are underlined. The mutations (C129A or C129S) that were
introduced by site-directed mutagenesis are highlighted in yellow.
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Table 5.S5.: PqsBC variants purified in this study.

Plasmids Expressed protein Purification steps Purification buffers Purified
protein

pET26b-pqsB
pET19m-pqsC His6-PqsBC

1st Ni2+-IMAC, TEV
cleavage, 2nd

Ni2+-IMAC, SEC
Buffer A (150 mM NaH2PO4/Na2HPO4, 300 mM NaCl; pH 7.5)
Buffer B (buffer A with 500 mM imidazole)
Buffer C (20 mM HEPES, 150 mM NaCl; pH 7.5)
Buffer D (buffer C with 500 mM imidazole)

His6-PqsBC
and PqsBC
(batch 1)

1st Ni2+-IMAC, anion
exchange, SEC Buffer A (150 mM NaH2PO4/Na2HPO4, 300 mM NaCl; 2 mM

TCEP; pH 7.8)
Buffer B (buffer A with 500 mM imidazole)
Buffer C (15 mM Tris-HCl, 20 mM NaCl, 2 mM TCEP; pH 8.0)
Buffer D (buffer C with 1 M NaCl)
Buffer E (20 mM HEPES, 150 mM NaCl, 1 mM TCEP; pH 7.8)

His6-PqsBC
(batch 2)

pET26b-pqsB
p10$-pqsC His6-T7L-PqsBC

1st Ni2+-IMAC, 3C
cleavage, 2nd

Ni2+-IMAC, SEC
Buffer A (150 mM NaH2PO4/Na2HPO4, 300 mM NaCl, 2 mM
TCEP; pH 7.8)
Buffer B (buffer A with 500 mM imidazole)
Buffer C (20 mM HEPES, 150 mM NaCl, 1 mM TCEP; pH 7.8)
Buffer D (buffer C with 500 mM imidazole)

PqsBC (batch
2)

pET26b-pqsB
pET19m-

pqsCC129A
His6-PqsBCC129A

1st Ni2+-IMAC, TEV
cleavage, 2nd

Ni2+-IMAC, SEC
Buffer A (150 mM NaH2PO4/Na2HPO4, 300 mM NaCl, 1 mM
DTT; pH 7.5)
Buffer B (buffer A with 500 mM imidazole)
Buffer C (20 mM HEPES, 150 mM NaCl, 1 mM DTT; pH 7.5)
Buffer D (buffer C with 500 mM imidazole)

His6-
PqsBCC129A

and
PqsBCC129A

pET26b-pqsB
p10$-pqsCC129S His6-T7L-PqsBCC129S

1st Ni2+-IMAC, 3C
cleavage, 2nd

Ni2+-IMAC, SEC
Buffer A (150 mM NaH2PO4/Na2HPO4, 300 mM NaCl, 2 mM
TCEP; pH 7.8)
Buffer B (buffer A with 500 mM imidazole)
Buffer C (20 mM HEPES, 150 mM NaCl, 0.5 mM TCEP; pH 7.8)
Buffer D (buffer C with 500 mM imidazole)

PqsBCC129S

IMAC: immobilized metal ion affinity chromatography; SEC: size exclusion chromatography; DTT: dithiothreitol; TCEP: tris(2-carboxyethyl)phosphine.
Different preparations (batch 1/batch 2) of His6-PqsBC were used for crystallization setup (Table 5.S1).
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Supporting Figures

Figure 5.S1.: Deconvoluted mass spectra of PqsBC competitive acyl-CoA loading experiments.
(A) C8- vs. C6-CoA (octanoyl- vs. hexanoyl-CoA). (B) C8- vs. C10-CoA (octanoyl-
vs. decanoyl-CoA). (C) C8- vs. C12-CoA (octanoyl- vs. dodecanoyl-CoA). (D) C8-
vs. C14-CoA (octanoyl- vs. tetradecanoyl-CoA). For each combination, an experi-
ment with equimolar quantities of the two acyl-CoAs was performed as well as an
experiment with 10-fold higher concentrations of hexanoyl-, decanoyl-, dodecanoyl-
or tetradecanoyl-CoA over octanoyl-CoA.
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Figure 5.S2.: Crystal morphologies of different PqsBC variants. (A) His6-PqsBCC129A crystals
(crystal form 1). (B) His6-PqsBC crystals (crystal form 2). (C) His6-PqsBCC129A

crystal (crystal form 3). (D) PqsBCC129S crystal (crystal form 4). Crystals in A–
D grew within 3 to 13 days. Crystallization conditions and cell dimensions of the
different crystal forms are reported in Table 5.S1.

Figure 5.S3.: Crystal packing of different PqsBC variants. Unit cell representations of (A) crys-
tal form 1 with two His6-PqsBC heterodimers in the asymmetric unit (ASU), (B)
crystal form 2 with four His6-PqsBC/ASU, (C) crystal form 3 with eight His6-
PqsBCC129A/ASU and of (D) crystal form 4 with two PqsBCC129S/ASU. PqsB (light
magenta/cyan) and PqsC (silver/yellow) are shown in cartoon representation. PqsBC
heterodimers in the ASUs are colored in light magenta and silver. Details about the
unit cell dimensions of crystal forms 1–4 are reported in Table 5.S1.
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Figure 5.S4.: Crystal contacts of the TEV-protease cleavable His6-tag at the N-terminus of PqsC
with symmetry related molecules in crystal form 1. (A) The overall structures of three
PqsBC heterodimers (PqsBC1, PqsBC2 and PqsBC3) in the crystal lattice are shown.
PqsC and PqsB monomers are colored in gray and light magenta, respectively. The
His6-tags followed by TEV-protease recognition sites at the N-termini of the PqsC
monomers are highlighted in yellow. The close-up view (right) depicts the purification
tag of PqsC1 that interacts with neighboring PqsB2 and PqsC3 molecules in the
crystal lattice. Hydrogen bonds (dashed lines) are formed between the backbone and
side-chains of A-8C1 ↔ N51C3 and L-5C1 ↔ R224B2, between side-chains of Y-4C1 ↔
D253B2 and between main-chain carbonyl and amide groups of F-3C1 ↔ W222B2. In
addition, the purification tag forms a cation-π contact with the guanidinium group of
R224B2 via F-3C1. Further hydrogen bonds between the side-chains of E-7C1 ↔ Q-2C1
and N-6C1 ↔ Q-2C1 stabilize the tag. (B) Stereo view of the 2mFo-DFc electron
density map (blue mesh) of the purification tag at the N-terminus of PqsC (yellow)
contoured at 0.7σ.
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Figure 5.S5.: Ligands bound to the active site of PqsC. Stereo view of the active sites of (A)
His6-PqsBC (crystal form 1) in complex with (4S)-2-methylpentane-2,4-diol (MPD)
and of (B) His6-PqsBCC129A (crystal form 3) bound to MOPS. MPD and MOPS are
components of the respective precipitant. Hydrogen bonds are depicted with dashed
black lines. CSD129 in (A) is a sulfinic acid resulting from oxidation of C129. (C)
Stereo plot of an unknown modification at C129 in the active site of His6-PqsBC
(crystal form 2). PqsB (light magenta) and PqsC (silver) are shown in cartoon
representations. Unbiased difference electron density mFo-DFc maps (green meshes)
of bound ligands are displayed at 3σ.
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Figure 5.S6.: Multiple sequence alignment of PqsC (Uniprot ID: Q9I4X1), PqsB (Uniprot ID:
Q9I4X2) and FabH enzymes from Mycobacterium tuberculosis (mtFabH; Uniprot
ID: P9WNG3), Escherichia coli (ecFabH; Uniprot ID: P0A6R0) and from Staphylo-
coccus aureus (saFabH; Uniprot ID: Q8NXE2). The alignment was performed with
Clustal Omega [31] and processed using ESpript3.0 (http://espript.ibcp.fr)
[39]. Secondary structure elements (α: α-helix; β: β-strand; η: 310 helix) of PqsC
crystal structures in the open (PqsC_o) and in the closed form (PqsC_c) are drawn at
the top and at the bottom of the alignment, respectively. Strictly conserved residues
(arginine, tryptophan) involved in acyl-CoA binding are highlighted in green, the cat-
alytic triad is displayed in yellow (cysteine and histidine) and gray (asparagine; absent
in PqsC). The mobile flap suggested to undergo large conformational rearrangements
during the catalytic cycle of mtFabH is indicated in cyan [40]. The V241-P242 prolyl
peptide bond, which adopts cis and trans configurations in PqsC_o and PqsC_c,
respectively, is colored in orange. In PqsC_o, helix α5 is notably shorter than in
PqsC_c. PqsB lacks all conserved residues of FabH enzymes. Identical residues are
in white letters boxed in black and similar residues are in black bold letters.
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Figure 5.S7.: Conformational states of PqsBC. (A) Cartoon, (B) surface and (C) B-factor putty
representations of open (red; PDB ID: 5DWZ [12]), intermediate (yellow; PDB ID:
6ET1; this article) and closed (green; PDB ID: 6ET2; this article) conformations
of PqsBC. PqsB in (A) and (B) is colored in gray. Structural elements of PqsC
undergoing large conformational changes between the open and the closed forms are
highlighted in light blue. (C) The backbone atoms of these mobile regions have also
higher B-factors (thick red tubes) compared to rigid areas (thin dark blue tubes).
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Figure 5.S8.: Stereo plots of the V241-P242 peptide bond in cis (A, open PqsBC) and trans
configuration (B, closed PqsBC) with2mFo-DFc electron density maps (blue mesh)
contoured at 1σ.
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Figure 5.S9.: Effect of exogenous fatty acid addition on the AQ profile of P. aeruginosa. Mean
peak areas of AQs are in arbitrary units (A.U.). Exponentially growing wildtype
P. aeruginosa PA14 were fed with EtOH (control), octanoic, undecanoic or dodecanoic
acid (2mM) and both cellular and extracellular metabolites were extracted. The error
bars are the standard deviations from three independent measurements. The scaling
of the y-axis is the same as in Figure 5.7A of the main text. In contrast to medium-
chain fatty acids such as octanoic acid (C8), fatty acids longer than decanoic acid
(C10) are not directly incorporated into the respective one carbon shorter AQ, but
they are successively degraded in C2 units (most probably via β-oxidation) until they
reach a length that can be used by PqsBC.
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Figure 5.S10.: Mono-unsaturated AQs/AQNOs in combined cell and supernatant extracts of ex-
ponentially growing wildtype P. aeruginosa PA14. Mean peak areas of cis/trans
mono-unsaturated AQs (white bars) or AQNOs (gray bars) are in in arbitrary units
(A.U.). The error bars are the standard deviations from three independent mea-
surements. The scaling of the y-axis scaling is the same as shown in main text
Figure 5.1B for the respective saturated AQs/AQNOs.
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Figure 5.S11.: Addition of octanoic acid increased the levels of C7:1-HQ in P. aeruginosa PA14.
Extracted ion chromatograms of m/z= 242.1539 (mass-to-charge ratio for C7:1-
HQ) of cell extracts of exponentially growing wildtype P. aeruginosa PA14 (first
panel, PA14 WT), ED117 (second panel, pqsB-) and ED218 (third panel, pqsC-)
mutant strains supplemented with EtOH (control, black) or octanoic acid (2mM,
blue). Each condition was measured in triplicates. The two peaks in the extracted
ion diagram of PA14 WT derive from the cis and trans isomers of C7:1-HQ. PA14
WT cultures supplemented with octanoic acid exhibit higher levels of C7:1-HQ
compared to the EtOH controls, while C7:1-HQ is not produced in the pqsB– and
pqsC– mutant strains.
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Figure 5.S12.: Addition of fully deuterated octanoic-d15 acid led to deuterated C7-HQ/C7-QNO
and C7:1-HQ/C7:1-QNO species. Total ion chromatogram with full scan mass spec-
trum of the chromatogram region where C7-HQ, C7-QNO and C7:1-HQ co-elute
(first panel) and extracted ion chromatograms of deuterated C7-HQ (second panel),
C7:1-HQ (third panel), C7-QNO (fourth panel) and C7:1-QNO (fifth panel) of cell
extracts of exponentially growing wildtype P. aeruginosa PA14 (PA14 WT) sup-
plemented with octanoic-d15 acid (2mM). The three most abundant ions in the
full scan mass spectrum (first panel) represent C7-HQ (m/z =259.2635), C7-QNO
(m/z =275.2581) and C7:1-HQ (m/z =255.2353) exhibit mass shifts of 15Da (sat-
urated congeners) or 13Da (mono-unsaturated congeners), showing that octanoic-
d15 acid was incorporated. Theoretical m/z values are indicated in the respective
panel for each AQ/AQNO species; extracted ion chromatograms were constructed
with ±0.002Da tolerance from the theoretical m/z.
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6 The peptide chain release factor
methyltransferase PrmC influences the
Pseudomonas aeruginosa PA14 endo- and
exometabolome

This Chapter has been published in a peer-reviewed scientific journal:

T. Depke, S. Häussler, and M. Brönstrup. “The Peptide Chain Release Factor Methyltrans-
ferase PrmC Influences the Pseudomonas aeruginosa PA14 Endo- and Exometabolome”.
In: Metabolites 10.10 (Oct. 2020), p. 417. doi: 10.3390/metabo10100417

Abstract

Pseudomonas aeruginosa is one of the most important nosocomial pathogens and
understanding its virulence is the key to effective control of P. aeruginosa infections.
The regulatory network governing virulence factor production in P. aeruginosa is
exceptionally complex. Previous studies have shown that the peptide chain release
factor methyltransferase PrmC plays an important role in bacterial pathogenicity.
Yet, the underlying molecular mechanism is incompletely understood. In this study,
we used untargeted liquid and gas chromatography coupled to mass spectrometry
to characterise the metabolome of a prmC defective P. aeruginosa PA14 strain
in comparison with the corresponding strain complemented with prmC in trans.
The comprehensive metabolomics data provided new insight into the influence of
prmC on virulence and metabolism. prmC deficiency had broad effects on the
endo- and exometabolome of P. aeruginosa PA14 with a marked decrease of the
levels of aromatic compounds accompanied by reduced precursor supply from the
shikimate pathway. Furthermore, a pronounced decrease of phenazine production
was observed as well as lower abundance of alkylquinolones. Unexpectedly, the
metabolomics data showed no prmC dependent effect on rhamnolipid production
and an increase in pyochelin levels. A putative virulence biomarker identified in a
previous study was significantly less abundant in the prmC deficient strain.
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6.1. Introduction

The ubiquitous γ-proteobacterium Pseudomonas aeruginosa is an important causative
agent of infections in predisposed individuals such as those suffering from cystic fi-
brosis or burn wounds [1]. Deemed a priority antibiotic resistant bacterium by the
WHO [2], it poses a considerable threat to public health, and causes a high number
of nosocomial infections [3, 4]. P. aeruginosa possesses an arsenal of virulence fac-
tors that is intricately regulated by quorum sensing systems and activated in response
to environmental factors via multiple signalling pathways [5]. While a large number
of proteins and pathways have known roles in the regulation of virulence, there are
enzymes that contribute to a virulent phenotype by an unknown mechanism. The S-
adenosyl-l-methionine dependent peptide chain release factor methyltransferase PrmC
(synonym: HemK) belongs to the latter group. Its absence results in a reduction of
in vivo virulence—specifically the inability to produce pyocyanin—and an impaired
adaptation to challenging environments [6]. Its original role is to posttranslationally
methylate the release factors RF-1 and RF-2 (PrfA and PrfB in P. aeruginosa), thereby
facilitating translation termination and decreasing the rate of stop-codon readthrough
[7, 8]. Previous transcriptomic and proteomic analyses gave new insight and suggested
that PrmC activity alters mRNA-protein ratios depending on which stop codon is used
[6, 9]. In this study, we have applied metabolomics, the characterisation of the set
of small-molecule primary and secondary metabolites, as a complementary technology
to capture the effects of prmC deficiency in Pseudomonas aeruginosa PA14. The ex-
ometabolome, i. e., the metabolites secreted into and consumed from the growth media,
was recorded along with the cellular metabolome, i. e., the endometabolome). Further-
more, liquid chromatography–mass spectrometry (LC-MS) and gas chromatography–
mass spectrometry (GC-MS) were combined for advanced analytical coverage.

6.2. Materials and methods

To ensure comparability to previous research, the same bacterial strains as in Krueger
et al. were used [9]: The P. aeruginosa PA14 prmC transposon mutant from the Har-
vard PA14 mutant library [10] carrying an empty pUCP20 vector, abbreviated PA14
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tnprmC and the same strain complemented with the prmC gene on the vector, PA14
tnprmC ::prmC. In order to assure that all phenotypic effects are due to the absence
or presence of the prmC gene, and to exclude that effects are caused by secondary
mutations that might occur in addition to the inactivation of prmC in the transpo-
son mutant, the transposon mutant was not compared to the corresponding wildtype,
but to an equivalent, prmC -complemented transposon mutant. Five biological repli-
cates of each strain were cultivated in glass flasks in 60mL modified BM2 medium
supplemented with additional amino acids (7mM (NH4)2SO4, 40mM K2HPO4, 22mM
KH2PO4, 2mM MgSO4, 10 µM FeSO4 with 0.01% casamino acids) in a shaking incuba-
tor (approx. 150 rpm) at 37 °C. Blank samples (pure media without inoculation) were
prepared accordingly and processed like the bacterial samples throughout the experi-
ment. Bacteria were grown until an OD600 of 1.6–1.7 before harvesting. Each biological
replicate was split into two technical replicates for GC-MS analysis and two for LC-MS
analysis by transferring 20mL and 5mL, respectively, to pre-cooled tubes, which were
then immediately centrifuged at 9000× g for 10min at 4 °C. 1.5mL supernatant was
transferred from the LC-MS samples to fresh tubes and dried overnight in a centrifugal
evaporator at 20 °C and full vacuum until complete dryness as described before [11].
The cell pellets for both LC-MS and GC-MS samples were snap frozen in liquid N2.
Cell pellets for GC-MS analysis were resuspended in 1.5mL 75% (v/v) methanol with
2mg/L ribitol as an internal standard and supplemented with 1.5mL deionised water
and chloroform each, followed by vigorous shaking. The organic phase was discarded,
and 1mL of the aqueous phase was evaporated to dryness. Sample preparation, GC-MS
analysis, data pre-processing and metabolite identification were performed as described
by Berndt et al. [12]: Metabolite extracts were derivatised by methoxyamine/pyridine
and silylated using MSTFA to volatilise the analytes. The samples were separated on a
30m column with a stationary phase of 5% phenyl arylen and 95% dimethylpolysiloxane
material (ZB-5MS®, Phenomenex, Torrance, CA, USA) using a temperature gradient
from 70 °C to 330 °C over 32.5min. MS data was recorded in full scan mode by electron
impact ionisation in positive mode on an iontrap mass spectrometer (Thermo Scientific
ITQ 900™, Thermo Fisher Scientific, Waltham, MA, USA). A mix of alkanes (chain
length 10 to 36) was used to calibrate the retention index of the analytes. Spectral
deconvolution, alignment and annotation were achieved using the MetaboliteDetector
software [13] and an in-house spectral library. Directional fold changes were calculated
by comparison of the mean feature intensities of the two strains and p-values were cal-
culated using Welch’s t-test with Benjamini-Hochberg correction for multiple testing.
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Four replicates (two of tnprmC samples and two of tnprmC ::prmC samples) were lost
for data analysis due to a technical problem with the GC-MS instrument. Cell pellets
and dried supernatants for LC-MS analysis were extracted using 1mL and 500 µL 100%
methanol containing 0.1mg/L trimethoprim, 0.1mg/L nortriptyline and 0.3mg/L glip-
izide as internal standards, respectively, by vigorous shaking, followed by sonication in a
cooled ultrasonic bath for 15min. After centrifugation, 800 µL and 400µL, respectively,
were transferred to fresh tubes, evaporated to dryness and reconstituted in 80µL / 40 µL
50% acetonitrile containing 1mg/L caffeine and 8mg/L naproxen as internal standards,
respectively, sonicated and centrifuged again and then used as LC-MS samples. Pooled
samples containing aliquots of all samples were generated for quality control purposes.
LC-MS analysis, pre-processing using XCMSonline [14], metabolite identification and
statistical analysis were performed as described previously [11, 15]. In brief, the metabo-
lite extracts were separated by ultra-high perfomance liquid chromatography on a C18
reversed phase column by gradient elution with H2O plus 0.1% formic acid and acetoni-
trile plus 0.1% formic acid. The MS data was recorded by a quadrupole time-of-flight
mass spectrometer (maXis™HD QTOF, Bruker, Bremen, Germany) after electrospray
ionisation in positive mode. Pooled samples were additionally subjected to collision-
induced dissociation by Bruker’s data-dependent auto-MS/MS functionality to record
tandem mass spectra for metabolite identification by comparison to authentic chemical
standards and/or metabolite databases. Data pre-processing by XCMS used the same
parameters as an earlier study [15]. Further processing involved exclusion of features
eluting in the first 0.8min or after more than 20min, features with a standard devia-
tion below 20% over all samples and features with an intesity below 10000 counts. The
data was then normalised on the levels of the internal standards and differences in the
amount of biomaterial was accounted for by normalising on the OD600 of the respec-
tive samples. Isotopes and adducts identified by CAMERA [16] were also excluded.
Annotations were added and the resulting feature tables were used for all analyses.
Directional fold changes were and p-values were calculated as described for the GC-
MS data. Throughout data processing, intra- and inter-group variability were assessed
with the help of principal component analysis and by monitoring the levels of internal
standards.
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P. aeruginosa PA14 with and without a functional prmC gene showed various differ-
ences in their metabolic profiles (Figure 6.1). Differences were less pronounced in the
part of the metabolome accessible to GC-MS analysis. 24 of 116 features were sig-
nificantly differentially abundant with a directional fold change ≥ 1.5 or ≤ –1.5 and
a Benjamini-Hochberg corrected p-value ≤ 0.05. However, a substantial proportion
of the endo- and exometabolome measured by LC-MS was affected by the absence
of prmC. 291 of 763 features and 893 of 1780 features were significantly differentially
abundant, respectively. In both LC-MS data sets, decreased abundance upon loss of
prmC dominated over increased abundance (Figure 6.1), which is in concordance with
previous research showing that more proteins and transcripts were down-regulated than
up-regulated in prmC deficient strains [9].

The GC-MS metabolomics data, that generally represent primary and intermediary
metabolism, showed few consistent trends for metabolic pathways affected by prmC de-
ficiency. Nevertheless, a consistent finding was that aromatic compounds were depleted
in strains lacking prmC. For example, phenylalanine and tyrosine were significantly
less abundant, with directional fold changes of –2.5 and –4.4, respectively (Supplemen-
tary Table 1). Strikingly, shikimate and shikimate-3-phosphate, biogenic precursors
of most phenylic compounds, could not be detected in any of the tnprmC samples,
whereas they are present in tnprmC ::prmC. This could point towards a general down-
regulation of the shikimate pathway with downstream effects on secondary metabolite
production. Specifically, this seems to affect alkyl quinolones and phenazines whose
production relies on precursors derived from shikimate [17, 18]. Although other inter-
mediates from the pathway were not detected, 3-deoxyarabinoheptulosonate was found
to be 1.8 times less abundant in tnprmC. This feature could be a fragment or degra-
dation product of 3-deoxy-arabino-heptulosonate 7-phosphate (DAHP), a precursor of
shikimate. In the proteomic data of Krueger et al., the only enzyme involved in the
shikimate pathway with a significant difference between tnprmC and tnprmC ::prmC
was 3-phosphoshikimate-1-carboxyvinyl-transferase (PA14_23310) [9]. This enzyme
acts downstream of shikimate-3-phosphate and thus its downregulation cannot directly
explain shikimate and shikimate-3-phosphate depletion. On the mRNA level, the tran-
scripts for phzC1 and phzC2 were significantly downregulated in tnprmC [9]. The gene
product PhzC is a DAHP synthase that complements other DAHP synthases such as
AroF and is believed to control flux of precursors into phenazine biosynthesis [18].
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Figure 6.1.: Volcano plots of GC-MS metabolomics data (A), LC-MS endometabolomics data (B)
and LC-MS exometabolomics data (C). All features of the respective data sets are
plotted by their log2(fold change) and –log10(corrected p-value). Features are con-
sidered significantly differentially abundant if their fold change exceeds 1.5 or –1.5
and their corrected p-value is at most 0.05. While similar numbers of features dis-
played higher and lower abundance, respectively, in the GC-MS data, both endo- and
exometabolomics LC-MS data showed a higher proportion of significantly decreased
feature intensities, highlighting the dampening effect of PrmC deficiency on the pro-
duction of secondary metabolites. For the GC-MS data, only identified features and
reproducible unknowns were analysed, explaining the difference in overall feature num-
ber to the LC-MS data. Two features which were not detected in tnprmC, shikimate and
shikimate-3-phosphate, are missing in the GC-MS volcano plot since no fold changes
could be calculated.
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Depletion of aromatic compounds (i. a. phenylalanine, tyrosine, anthranilate) upon
absence of prmC was also observed in the LC-MS endo- and exometabolomics data
(Supplementary Tables 2 and 3). From their lower abundance in the spent media, it
might be concluded that reduced activity of the shikimate pathway is counteracted
by an increased uptake of aromatic amino acids from the medium, thereby ensuring a
near-normal growth phenotype.

The metabolomic effects of prmC deficiency were strongest on phenazine and alkyl-
quinolone (AQ) levels, which was expected from previous studies [6, 9]. It was found
that not only pyocyanin, but all phenazines were consistently less abundant both in
the cellular metabolome and in the exometabolome, if prmC was non-functional (Fig-
ure 6.2A). The same was true for AQs but to a lesser degree (Figure 6.2B). Consistent
with this phenomenon and the generally lower levels of aromatic metabolites, LC-MS
endometabolomics also showed decreased levels of anthranilate in tnprmC (directional
fold change –2.0, corrected p-value 3.4× 10–8), a direct precursor of alkyl quinolones.
The levels of the short or especially long alkyl chain AQs appeared to be more strongly
affected by prmC deficiency, whereas the effect on the medium chain lengths (C6 –
C9) was less pronounced. This is in accordance with recent findings on the substrate
specificity of the biosynthetic enzyme complex PqsBC, which prefers medium chain ac-
tivated fatty acids over long and short chain ones [19]. Krueger et al. demonstrated
lower levels of PqsB and PqsC in tnprmC [9]. Thus, the reduced abundance of PqsBC
might lead to higher relative consumption of the preferred substrates, while the less
favoured long and short chain substrates are neglected.
Rhamnolipids are other important components of pseudomonal small molecule me-

diated virulence. Members of this class of metabolites were not consistently affected
by prmC deficiency. In the extracellular metabolome, none of the features that were
annotated as a rhamnolipid met the significance criteria (directional fold change ≥ 1.5
or ≤ –1.5 and corrected p-value ≤ 0.05). In the endometabolome, only one of the rham-
nolipids was significantly differentially abundant. This feature was more abundant in
tnprmC. These findings contradict those of Pustelny et al., who found reduced rham-
nolipid levels in tnprmC [6]. The discrepancy might be explained by the later growth
phases at the time of measurement: Pustelny et al. quantified rhamnolipids after 48h of
growth. The effect of prmC on rhamnolipid production might be time and/or growth
phase dependent and might not manifest before stationary phase.
Interestingly, a significantly higher abundance of the two pyochelin isomers was de-

tected in tnprmC (fold changes +2.8 and +1.9 in the endometabolome and +2.6 and
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Figure 6.2.: Directional fold changes of phenazines (A) and AQs (B) in the LC-MS endo- and
exometabolomics data. All detected phenazines were much less abundant in tnprmC
with no clear difference between cellular and extracellular levels. AQs were consistently
less abundant in tnprmC. This trend was more pronounced for AQs with very long or
very short alkyl chains. Panel A is sorted by magnitude of directional fold change, panel
B by the length of the alkyl chain of the respective AQ. Panel B uses the nomenclature
of Depke et al. [11]. While technically not an AQ, 2,4-dihydroxyquinoline (DHQ)
has been added as a by-product of AQ biosynthesis. Only significantly differentially
abundant features (corrected p-value ≤ 0.05) are shown. C6-HQ and C9:2-HQ were
not significantly differentially abundant in the exometabolome.
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+1.8 in the exometabolome; all corrected p-values < 10–4). Pyochelins are low affinity
siderophores of P. aeruginosa, whose production is coordinated with pyoverdine, a high
affinity siderophore [20]. Unfortunately, pyoverdine was not detected by our analytical
methods, which complicates the interpretation of elevated pyochelin levels. Earlier re-
search has associated elevated pyochelin levels with a virulent phenotype [15, 21, 22],
and proteome and transcriptome data show the pchD transcript as being upregulated
in tnprmC [9].

Among the non-annotated features, it is particularly noteworthy that M187T7, a
metabolite with an m/z of 187.1230 and the putative sum formula C12H15N2, displays
a significantly differential abundance with approximately 5-fold lower levels in tnprmC
and a corrected p-value of 0.0001 in the cellular metabolomics data (fold change –2.8 and
corrected p-value 0.016 in the exometabolome). The ‘unknown’ metabolite has been
identified as a putative biomarker for virulent phenotypes in clinical P. aeruginosa
strains in a previous study [15]. Though its identity and function are unassigned,
this finding emphasises the potential importance of the metabolite for pseudomonal
virulence.
There is a substantial number of additional non-annotated features that show highly

significant differences in abundances between tnprmC and tnprmC::prmC, suggesting
an influence of prmC on other parts of pseudomonal metabolism. While the annotated
significantly affected metabolites in the endometabolome measured by LC-MS are al-
most exclusively directly or indirectly associated with virulence as described above,
the respective list for the exometabolome also comprises glutathion disulphide with a
directional fold change of +7,5 and a corrected p-value of 1.2× 10–8. This indicates
further consequences of prmC deficiency on the redox regulation of P. aeruginosa,
which could potentially be linked to the distorted phenazine production. In the GC-
MS metabolomics data, some features stand out by their low p-value and/or prominent
fold change, but their connections to prmC cannot be easily established. For instance,
succinate is depleted in prmC deficient bacteria (fold change –2.4, corrected p-value
2.2× 10–8), whereas acetylserine is significantly more abundant in tnprmC (fold change
+9.4, corrected p-value 0.0028). These findings show that the complexity of the me-
tabolic consequences of prmC deficiency is considerable and far from being completely
understood.
While this study consists of a comprehensive metabolomic profiling experiment, it

also comes with several limitations. Like many untargeted metabolomics investigations,
the data presented here suffers from incomplete metabolite annotation that leaves sev-
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eral interesting pathways underexplored. Furthermore, metabolic fluxes have not been
determined which hinders quantitative correlation with transcriptome data. Along with
the novel findings outlined above, most results obtained by means of untargeted meta-
bolomics are consistent with previous transcriptomic and proteomic studies [6, 9] and
support and complement their findings.

6.4. Conclusion

In conclusion, we present the first metabolomics study of the role of prmC in virulence
and metabolism of P. aeruginosa. The results support findings from earlier and com-
plementary –omics studies [6, 9]. In addition, they shed light on the importance of the
shikimate pathway on important AQ and phenazine virulence-mediating metabolites
at high molecular resolution and highlight the potential of the putative novel virulence
marker M187T7.

Author contributions

Conceptualization, T.D., S.H. and M.B.; methodology, T.D.; validation, T.D.; formal analysis,

T.D.; investigation, T.D.; resources, S.H. and M.B.; data curation, T.D.; writing–original draft

preparation, T.D.; writing–review and editing, S.H. and M.B.; visualization, T.D.; supervision,

S.H. and M.B.; project administration, T.D., S.H. and M.B.; funding acquisition, T.D., S.H.

and M.B. All authors have read and agreed to the published version of the manuscript.

Funding

T.D. received financial and non-material support through a PhD scholarship of the Studiens-

tiftung des deutschen Volkes. The research was funded by the President’s Initiative and Net-

working Funds of the Helmholtz Association of German Research Centres [VH-GS-202] and by

EMBRIC, the EU-funded European Marine Biological Research Infrastructure Cluster [654008].

Acknowledgements

The authors express gratitude for technical advice from Raimo Franke, Heike Overwin, Ulrike

Beutling and Michael Hensler. Tabea Linde is acknowledged for excellent work on a related

project during her bachelor’s thesis project that also helped this study.

224



6

Conflicts of interest

Conflicts of interest

The authors declare no conflict of interest. The funders had no role in the design of the study;

in the collection, analyses, or interpretation of data; in the writing of the manuscript, or in the

decision to publish the results.

Abbreviations
WHO World Health Organisation
RF release factor
LC-MS liquid chromatography-mass spectrometry
GC-MS gas chromatography-mass spectrometry
MSTFA N -methyl-N -(trimethylsilyl)trifluoracetamide
DAHP 3-deoxy-arabino-heptulosonate 7-phosphate
AQ alkylquinolone
DHQ 2,4-dihydroxyquinoline
Cn:m hydrocarbon of chain length n with m double bonds
HQ hydroxyquinoline
QNO quinolone-N -oxide

References
[1] J. B. Lyczak, C. L. Cannon, and G. B. Pier. “Establishment of Pseudomonas aeruginosa

infection: lessons from a versatile opportunist”. In: Microbes and infection 2.9 (2000),
pp. 1051–1060.

[2] E. Tacconelli, E. Carrara, A. Savoldi, S. Harbarth, M. Mendelson, D. L. Monnet, C.
Pulcini, G. Kahlmeter, J. Kluytmans, Y. Carmeli, M. Ouellette, K. Outterson, J. Pa-
tel, M. Cavaleri, E. M. Cox, C. R. Houchens, M. L. Grayson, P. Hansen, N. Singh,
U. Theuretzbacher, N. Magrini, A. O. Aboderin, S. S. Al-Abri, N. A. Jalil, N. Benzo-
nana, S. Bhattacharya, A. J. Brink, F. R. Burkert, O. Cars, G. Cornaglia, O. J. Dyar,
A. W. Friedrich, A. C. Gales, S. Gandra, C. G. Giske, D. A. Goff, H. Goossens, T.
Gottlieb, M. G. Blanco, W. Hryniewicz, D. Kattula, T. Jinks, S. S. Kanj, L. Kerr, M.-P.
Kieny, Y. S. Kim, R. S. Kozlov, J. Labarca, R. Laxminarayan, K. Leder, L. Leibovici,
G. Levy-Hara, J. Littman, S. Malhotra-Kumar, V. Manchanda, L. Moja, B. Ndoye, A.
Pan, D. L. Paterson, M. Paul, H. Qiu, P. Ramon-Pardo, J. Rodríguez-Ba no, M. San-
guinetti, S. Sengupta, M. Sharland, M. Si-Mehand, L. L. Silver, W. Song, M. Steinbakk,
J. Thomsen, G. E. Thwaites, J. W. van der Meer, N. V. Kinh, S. Vega, M. V. Villegas,
A. Wechsler-Fördös, H. F. L. Wertheim, E. Wesangula, N. Woodford, F. O. Yilmaz, and
A. Zorzet. “Discovery, research, and development of new antibiotics: the WHO priority
list of antibiotic-resistant bacteria and tuberculosis”. In: The Lancet Infectious Diseases
18.3 (Mar. 2018), pp. 318–327. doi: 10.1016/s1473-3099(17)30753-3.

225

https://doi.org/10.1016/s1473-3099(17)30753-3


6

Chapter 6: Publication 4:
The influence of PrmC on metabolism and virulence

[3] M. D. Obritsch, D. N. Fish, R. MacLaren, and R. Jung. “Nosocomial Infections Due to
Multidrug-Resistant Pseudomonas aeruginosa: Epidemiology and Treatment Options”.
In: Pharmacotherapy 25.10 (Oct. 2005), pp. 1353–1364. doi: 10.1592/phco.2005.25.
10.1353.

[4] S. de Bentzmann and P. Plésiat. “The Pseudomonas aeruginosa opportunistic pathogen
and human infections”. In: Environmental Microbiology 13.7 (Mar. 2011), pp. 1655–
1665. doi: 10.1111/j.1462-2920.2011.02469.x.

[5] P. N. Jimenez, G. Koch, J. A. Thompson, K. B. Xavier, R. H. Cool, and W. J. Quax.
“The Multiple Signaling Systems Regulating Virulence in Pseudomonas aeruginosa”.
In: Microbiology and Molecular Biology Reviews 76.1 (Mar. 2012), pp. 46–65. doi: 10.
1128/mmbr.05007-11.

[6] C. Pustelny, S. Brouwer, M. Müsken, A. Bielecka, A. Dötsch, M. Nimtz, and S. Häussler.
“The peptide chain release factor methyltransferase PrmC is essential for pathogenicity
and environmental adaptation of Pseudomonas aeruginosa PA14”. In: Environmental
Microbiology 15.2 (Dec. 2012), pp. 597–609. doi: 10.1111/1462-2920.12040.

[7] V. Heurgué-Hamard, S. Champ, Å. Engström, M. Ehrenberg, and R. H. Buckingham.
“The hemK gene in Escherichia coli encodes the N5-glutamine methyltransferase that
modifies peptide release factors”. In: The EMBO Journal 21.4 (2002), pp. 769–778. doi:
10.1093/emboj/21.4.769.

[8] K. Nakahigashi, N. Kubo, S.-i. Narita, T. Shimaoka, S. Goto, T. Oshima, H. Mori, M.
Maeda, C. Wada, and H. Inokuchi. “HemK, a class of protein methyl transferase with
similarity to DNA methyl transferases, methylates polypeptide chain release factors,
and hemK knockout induces defects in translational termination”. In: Proceedings of
the National Academy of Sciences 99.3 (Jan. 2002), pp. 1473–1478. doi: 10 . 1073 /
pnas.032488499.

[9] J. Krueger, S. Pohl, M. Preusse, A. Kordes, N. Rugen, M. Schniederjans, A. Pich, and S.
Häussler. “Unravelling post-transcriptional PrmC-dependent regulatory mechanisms in
Pseudomonas aeruginosa”. In: Environmental Microbiology 18.10 (July 2016), pp. 3583–
3592. doi: 10.1111/1462-2920.13435.

[10] N. T. Liberati, J. M. Urbach, S. Miyata, D. G. Lee, E. Drenkard, G. Wu, J. Villanueva, T.
Wei, and F. M. Ausubel. “An ordered, nonredundant library of Pseudomonas aeruginosa
strain PA14 transposon insertion mutants”. In: Proceedings of the National Academy of
Sciences 103.8 (Feb. 2006), pp. 2833–2838. doi: 10.1073/pnas.0511100103.

[11] T. Depke, R. Franke, and M. Brönstrup. “Clustering of MS2 spectra using unsupervised
methods to aid the identification of secondary metabolites from Pseudomonas aerugi-
nosa”. In: Journal of Chromatography B 1071 (Dec. 2017), pp. 19–28. doi: 10.1016/j.
jchromb.2017.06.002.

[12] V. Berndt, M. Beckstette, M. Volk, P. Dersch, and M. Brönstrup. “Metabolome and
transcriptome-wide effects of the carbon storage regulator A in enteropathogenic Es-
cherichia coli”. In: Scientific Reports 9.1 (Jan. 2019). doi: 10.1038/s41598- 018-
36932-w.

[13] K. Hiller, J. Hangebrauk, C. Jäger, J. Spura, K. Schreiber, and D. Schomburg. “Metabo-
liteDetector: Comprehensive Analysis Tool for Targeted and Nontargeted GC/MS Based
Metabolome Analysis”. In: Analytical Chemistry 81.9 (May 2009), pp. 3429–3439. doi:
10.1021/ac802689c.

[14] R. Tautenhahn, G. J. Patti, D. Rinehart, and G. Siuzdak. “XCMS Online: A Web-
Based Platform to Process Untargeted Metabolomic Data”. In: Analytical Chemistry
84.11 (June 2012), pp. 5035–5039. doi: 10.1021/ac300698c.

226

https://doi.org/10.1592/phco.2005.25.10.1353
https://doi.org/10.1592/phco.2005.25.10.1353
https://doi.org/10.1111/j.1462-2920.2011.02469.x
https://doi.org/10.1128/mmbr.05007-11
https://doi.org/10.1128/mmbr.05007-11
https://doi.org/10.1111/1462-2920.12040
https://doi.org/10.1093/emboj/21.4.769
https://doi.org/10.1073/pnas.032488499
https://doi.org/10.1073/pnas.032488499
https://doi.org/10.1111/1462-2920.13435
https://doi.org/10.1073/pnas.0511100103
https://doi.org/10.1016/j.jchromb.2017.06.002
https://doi.org/10.1016/j.jchromb.2017.06.002
https://doi.org/10.1038/s41598-018-36932-w
https://doi.org/10.1038/s41598-018-36932-w
https://doi.org/10.1021/ac802689c
https://doi.org/10.1021/ac300698c


6

Supporting Information

[15] T. Depke, J. G. Thöming, A. Kordes, S. Häussler, and M. Brönstrup. “Untargeted
LC-MS Metabolomics Differentiates Between Virulent and Avirulent Clinical Strains of
Pseudomonas aeruginosa”. In: Biomolecules 10.7 (July 2020), p. 1041. doi: 10.3390/
biom10071041.

[16] C. Kuhl, R. Tautenhahn, C. Böttcher, T. R. Larson, and S. Neumann. “CAMERA:
An Integrated Strategy for Compound Spectra Extraction and Annotation of Liquid
Chromatography/Mass Spectrometry Data Sets”. In: Analytical Chemistry 84.1 (Dec.
2011), pp. 283–289. doi: 10.1021/ac202450g.

[17] F. Bredenbruch, M. Nimtz, V. Wray, M. Morr, R. Muller, and S. Haussler. “Biosyn-
thetic Pathway of Pseudomonas aeruginosa 4-Hydroxy-2-Alkylquinolines”. In: Journal
of Bacteriology 187.11 (May 2005), pp. 3630–3635. doi: 10.1128/jb.187.11.3630-
3635.2005.

[18] M. Mentel, E. G. Ahuja, D. V. Mavrodi, R. Breinbauer, L. S. Thomashow, and W.
Blankenfeldt. “Of Two Make One: The Biosynthesis of Phenazines”. In: ChemBioChem
10.14 (Sept. 2009), pp. 2295–2304. doi: 10.1002/cbic.200900323.

[19] F. Witzgall, T. Depke, M. Hoffmann, M. Empting, M. Brönstrup, R. Müller, and W.
Blankenfeldt. “The Alkylquinolone Repertoire of Pseudomonas aeruginosa is Linked
to Structural Flexibility of the FabH-like 2-Heptyl-3-hydroxy-4(1H )-quinolone (PQS)
Biosynthesis Enzyme PqsBC”. In: ChemBioChem 19.14 (May 2018), pp. 1531–1544.
doi: 10.1002/cbic.201800153.

[20] P. Cornelis and J. Dingemans. “Pseudomonas aeruginosa adapts its iron uptake strate-
gies in function of the type of infections”. In: Frontiers in Cellular and Infection Micro-
biology 3 (2013). doi: 10.3389/fcimb.2013.00075.

[21] N. J. Hare, C. Z. Soe, B. Rose, C. Harbour, R. Codd, J. Manos, and S. J. Cordwell.
“Proteomics of Pseudomonas aeruginosa Australian Epidemic Strain 1 (AES-1) Cul-
tured under Conditions Mimicking the Cystic Fibrosis Lung Reveals Increased Iron Ac-
quisition via the Siderophore Pyochelin”. In: Journal of Proteome Research 11.2 (Dec.
2011), pp. 776–795. doi: 10.1021/pr200659h.

[22] C. D. Cox. “Effect of pyochelin on the virulence of Pseudomonas aeruginosa.” In: Infec-
tion and Immunity 36.1 (1982), pp. 17–23. doi: 10.1128/iai.36.1.17-23.1982.

Supporting Information

6.S1 Feature table of the GC-MS data. . . . . . . . . . . . . . . . . . . . . . 228
6.S2 Feature table of all annotated features of the LC-MS endometabolomics

data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233
6.S3 Feature table of all annotated features of the LC-MS exometabolomics

data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 236

227

https://doi.org/10.3390/biom10071041
https://doi.org/10.3390/biom10071041
https://doi.org/10.1021/ac202450g
https://doi.org/10.1128/jb.187.11.3630-3635.2005
https://doi.org/10.1128/jb.187.11.3630-3635.2005
https://doi.org/10.1002/cbic.200900323
https://doi.org/10.1002/cbic.201800153
https://doi.org/10.3389/fcimb.2013.00075
https://doi.org/10.1021/pr200659h
https://doi.org/10.1128/iai.36.1.17-23.1982


6

Chapter6:
Publication

4:
The

influence
ofPrm

C
on

m
etabolism

and
virulence

Table 6.S1.: Feature table of the GC-MS data.

metabolite library hit retention
index

retention
time (min)

directional
fold change

corrected
p-value

unknown Unknown#1031.8-pae-bth_008 1052.4 5.3 −1.04 0.952
2-hydroxypyridine Pyridine,_2-hydroxy-_(1TMS)_1032.4 1059.4 5.4 −1.41 0.462
lactate Lactic_acid_(2TMS)_1062.9 1078.4 5.7 6.67 4.65 × 10−3

glycolate Glycolic_acid_(2TMS)_1083 1084.9 5.8 1.91 0.451
alanine Alanine_(2TMS)_1106.8 1111.6 6.3 1.59 0.451
oxalate Oxalic_acid_(2TMS)_1139.3 1140.1 6.7 −1.09 0.870
glycine Glycine_(2TMS)_1126.6 1140.1 6.7 1.63 0.451
unknown Unknown#1169.8-pae-bth_013 1168.0 7.2 −1.25 0.483
leucine Leucine_(1TMS)_1162.15 1176.4 7.3 −1.45 0.563
monomethylphosphate Phosphoric_acid_monomethyl_ester_

(2TMS)_1177.5
1193.1 7.6 −1.60 0.554

valine Valine_(2TMS)_1214.5 1223.0 8.1 1.41 0.533
diethylenglycol Diethylenglycol_(2TMS)_1248 1253.3 8.6 1.01 0.959
benzoate Benzoic_acid,_(1TMS)_1249.7 1259.8 8.7 −3.02 0.533
unknown Unknown#1248.7-cgl-sst_008 1263.7 8.7 2.02 0.483
ethanolamine Ethanolamine_(3TMS)_1269.07 1267.2 8.8 1.11 0.714
glycerol Glycerol_(3TMS)_1282.1 1275.8 8.9 1.85 0.505
phosphate Phosphoric_acid_(3TMS)_1278.2 1282.3 9.0 1.08 0.828
nicotinate Nicotinic_acid_(1TMS)_1300.27 1314.5 9.5 −5.01 2.80 × 10−7

succinate Succinic_acid_(2TMS)_1325.4 1324.8 9.7 −2.38 2.18 × 10−8

glycerate Glyceric_acid_(3TMS)_1343.4 1336.6 9.9 1.63 0.195
lumichrome Lumichrome_(2MEOX)_1342.36 1341.0 10.0 −1.87 0.0386
uracil Uracil_(2TMS)_1346.9 1344.8 10.0 1.21 0.337
fumarate Fumaric_acid_(2TMS)_1362.4 1358.1 10.2 −1.27 0.390
nonanoate Nonanoic_acid_(1TMS)_1371.8 1368.2 10.4 1.32 0.462
unknown Unknown#1385.3-pae-bth_024 1385.9 10.7 1.09 0.834
thymine Thymine_(2TMS)_1408.4 1403.3 11.0 −1.16 0.725
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Table 6.S1.: Continued: Feature table of the GC-MS data.

metabolite library hit retention
index

retention
time (min)

directional
fold change

corrected
p-value

methionine Methionine_(1TMS)_1413.7 1416.5 11.2 1.11 0.819
unknown Unknown#1422-pae-bth_028 1422.1 11.3 1.72 0.403
aspartate Aspartic_acid_(2TMS)_1431.9 1427.0 11.4 −1.07 0.663
unknown NA102 1451.4 11.7 1.18 0.652
decanoate Decanoic_acid_(1TMS)_1463.1 1459.7 11.9 1.85 0.451
2-methyl-malate Malic_acid,_2-methyl-_(3TMS)_1473.53 1468.9 12.0 2.82 2.56 × 10−4

N-acetylserine Serine,_N-acetyl-_(2TMS)_1514.29 1506.5 12.6 9.36 2.83 × 10−3

pyroglutamate Pyroglutamic_acid_(1TMS)_1499.6 1509.9 12.7 1.57 0.129
aspartate Aspartic_acid_(3TMS)_1520.9 1518.8 12.8 1.24 0.578
pyroglutamate Pyroglutamic_acid_(2TMS)_1518.1 1522.0 12.8 1.04 0.868
cytosine Cytosine_(2TMS)_1523.1 1523.2 12.8 −1.09 0.870
4-aminobutanoate Butanoic_acid,_4-amino-_(3TMS)_1530.28 1528.5 12.9 −1.56 0.301
glutamate Glutamic_acid_(2TMS)_1532.7 1535.2 13.0 1.11 0.462
phenylalanine Phenylalanine_(1TMS)_1560 1549.9 13.2 −2.46 1.50 × 10−7

3-hydroxybenzoate Benzoic_acid,_3-hydroxy-_(2TMS)_1566.5 1568.0 13.5 −13.40 1.68 × 10−4

6-hydroxynicotinate Nicotinic_acid,_6-hydroxy-_(2TMS)_1583.98 1575.6 13.6 −3.98 4.88 × 10−4

proline Proline_[+CO2]_(2TMS)_1587.3 1583.6 13.7 −1.44 0.462
unknown Unknown#1586.9-pae-bth_039 1590.2 13.8 −1.21 0.653
phosphoenolpyruvate Phosphoenolpyruvic_acid_(3TMS)_1599.2 1600.0 13.9 −1.69 0.129
glutamate Glutamic_acid_(3TMS)_1628.5 1623.0 14.2 −1.45 0.602
4-hydroxybenzoate Benzoic_acid,_4-hydroxy-_(2TMS)_1631.79 1631.9 14.4 1.89 0.451
unknown Unknown#1638.3-cgl-sst_041 1633.4 14.4 −1.84 0.483
1,2-diaminopropane Propane,_1,2-diamino-_(4TMS)_1653.83 1644.3 14.5 −1.71 0.462
unknown NA149 1649.8 14.6 −1.40 0.129
3-hydroxydecanoate Decanoic_acid,_3-hydroxy-_(2TMS)_1659.8 1656.2 14.7 1.49 0.136
dodecanoate Dodecanoic_acid_(1TMS)_1659.25 1658.1 14.7 1.62 0.0386
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Table 6.S1.: Continued: Feature table of the GC-MS data.

metabolite library hit retention
index

retention
time (min)

directional
fold change

corrected
p-value

xylose/ribose/arabinose/. . . Xylose_(1MEOX)_(4TMS)_MP_1653.4
(ribose, arabinose, ...)

1660.8 14.8 −1.32 0.737

pyrophosphate Pyrophosphate_(4TMS)_1669.4 1662.3 14.8 −1.84 0.462
xylulose/ribulose/. . . Xylulose_(1MEOX)_(4TMS)_MP_1685.1

(ribulose, ...)
1678.2 15.0 −1.33 0.805

2-dodecenoate 2-Dodecenoic-acid_1TMS_1715.5 1713.9 15.5 1.12 0.779
glycerol-2-phosphate Glycerol-2-phosphate_(4TMS)_1732.4 1727.9 15.7 1.18 0.462
putrescine Putrescine_(4TMS)_1739.36 1737.4 15.8 1.02 0.955
dihydroxyacetone phosphate Dihydroxyacetone_phosphate_(1MEOX)_

(3TMS)_BP_1764.8
1753.1 16.0 1.62 0.554

glycerol-3-phosphate Glycerol-3-phosphate_(4TMS)_1767.8 1766.5 16.2 1.17 0.625
glucose Glucopyranose_[-H2O]_(4TMS)_1763.61 1769.4 16.3 1.34 0.338
glycerate-3-phosphate Glyceric_acid-2-phosphate_(4TMS)_1793.2 1779.3 16.4 −1.03 0.870
ethanolaminephosphate Ethanolaminephosphate_(4TMS)_1787 1783.2 16.5 −1.16 0.318
N-acetyl-glutamate Glutamic_acid,_N-acetyl-_(2TMS)_1788.4 1786.3 16.5 1.01 0.981
azelate Azelaic_Acid_(2TMS)_1798.42 1798.8 16.7 −1.62 0.722
glycerate-1-phosphate Glyceric_acid-3-phosphate_(4TMS)_1811 1808.1 16.8 −1.29 0.318
shikimate Shikimic_acid_(4TMS)_1815.3 1810.6 16.8 not detected in tnprmC
citrate Citric_acid_(4TMS)_1825.5 1817.5 16.9 1.35 0.0844
3,4-dihydroxybenzoate Benzoic_acid,_3,4-dihydroxy-_(3TMS)_1821.5 1818.5 17.0 −8.00 0.0111
fructose Fructose,_D-_(5TMS)_1845.5 1857.8 17.5 −1.06 0.790
tyrosine Tyrosine_(2TMS)_1882.5 1881.6 17.8 −4.43 7.66 × 10−3

mannitol/sorbitol/galactitol Mannitol_(6TMS)_1925.5 (sorbitol, galactitol,
...)

1925.5 18.4 3.23 2.02 × 10−11

3-deoxyarabinoheptulosonate Arabinoheptulosonic_acid_enol,_3-deoxy-
_(5TMS)_MP_1933.32

1935.3 18.5 −1.86 5.78 × 10−4

glucose Glucopyranose,_D-_(5TMS)_1981.6 1975.7 19.0 1.72 0.048

230



6

Supporting
Inform

ation

Table 6.S1.: Continued: Feature table of the GC-MS data.

metabolite library hit retention
index

retention
time (min)

directional
fold change

corrected
p-value

unknown Unknown#2018.7-pin-mhe_028 2016.0 19.5 1.36 0.143
unknown Unknown#2013.24-ypy-mse_018 2017.1 19.5 1.27 0.451
unknown NA321 2022.7 19.5 3.34 1.92 × 10−3

hexadecanoate Hexadecanoic_acid_(1TMS)_2047.1 2046.5 19.8 1.05 0.797
unknown Unknown#2051.8-cgl-sst_001 2049.6 19.8 2.75 1.91 × 10−3

N-acetyl-glucosamine Glucosamine,_N-acetyl-
_(1MEOX)_(4TMS)_2077

2071.3 20.1 1.19 0.663

xylulose-5-phosphate/ribose-5-
phosphate/. . .

Xylulose-5-phosphate_(1MEOX)_
(5TMS)_MP_2099.9 (ribose-5-phosphat, ...)

2100.1 20.4 1.30 0.625

unknown NA374 2126.0 20.7 1.02 0.981
glycerophosphoglycerol Glycerophosphoglycerol_(5TMS)_2190.4 2187.8 21.5 1.09 0.554
octadecenoate Octadecenoic_acid,_9-(E)-_(1TMS)_2220.6 2221.5 21.8 1.01 0.981
shikimate-3-phosphate Shikimic_acid-3-phosphate_(5TMS)_2216.26 2224.1 21.9 not detected in tnprmC
octadecenoate Octadecanoic_acid_(1TMS)_2250.63 2243.2 22.0 1.04 0.752
unknown NA_2276.1 2271.2 22.3 −12.10 5.69 × 10−8

fructose-1-phosphate Fructose-1-phosphate_(1MEOX)_
(6TMS)_MP_2292.4

2289.4 22.5 −1.13 0.834

fructose-6-phosphate Fructose-6-phosphate_(1MEOX)_
(6TMS)_MP_2308.33

2303.4 22.6 2.73 0.451

hexose-6-phosphate Mannose-6-phosphate_(1MEOX)_
(6TMS)_MP_2324.53 (hexose-6-phosphate)

2317.5 22.8 −1.27 0.073

hexose-6-phosphate Glucose-6-phosphate_(1MEOX)_
(6TMS)_BP_2340.2 (hexose-6-phosphate)

2337.3 23.0 −1.36 0.0508

unknown NA454 2364.7 23.2 2.56 0.451
gluconate-6-phosphate Gluconic_acid-6-phosphate_(7TMS)_2427.8 2423.2 23.8 −1.03 0.952
unknown Unknown#2454.7-pin-mhe_060 2454.2 24.1 2.13 7.66 × 10−3

myo-inositol-2-phosphate Inositol-2-phosphate,_myo-_(7TMS)_2465.95 2470.3 24.3 −4.12 3.49 × 10−4
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Table 6.S1.: Continued: Feature table of the GC-MS data.

metabolite library hit retention
index

retention
time (min)

directional
fold change

corrected
p-value

myo-inositol-1-phosphate Inositol-1-phosphate,_myo-_(7TMS)_2508.56 2513.5 24.7 2.42 0.462
unknown Unknown#2551.4-cgl-sst_119 2550.1 25.1 1.44 0.0844
sedoheptulose-7-phosphate Sedoheptulose-7-phosphate_

(xMeOX)_(yTMS)_2555.17
2562.2 25.2 1.47 0.162

unknown NA_2600.1 2594.7 25.5 1.39 0.382
unknown Unknown#2590.91-ypy-mse_037 2594.8 25.5 −1.61 0.602
unknown D260482_2610.31 2600.9 25.6 1.20 0.625
unknown Unknown#2635-cgl-sst_121 2631.7 25.9 1.61 1.37 × 10−4

unknown NA540 2661.6 26.2 1.76 0.0981
1-oleoyl-rac-glycerol 1-Oleoyl-rac-glycerol_(2TMS)_2757.9 2759.9 27.1 −1.14 0.834
disaccharide alpha-D-Galactopyranosyl-(1,4)-D-

galactopyranoside_
(1MEOX)_(8TMS)_BP_2790.07
(disaccharide)

2802.0 27.5 2.78 1.92 × 10−3

disaccharide Melibiose_(1MEOX)_(8TMS)_MP_2865.91
(disaccharide)

2859.5 28.0 1.33 0.474

UMP Uridine_5’-monophosphate_(5TMS)_2872.1 2871.2 28.1 1.01 0.983
disaccharide Melibiose_8TMS_2904.74 (disaccharide) 2898.3 28.3 4.35 0.170
AMP Adenosine-5-monophosphate_(4TMS)_

(Derivate_not_found)_3047.9
3052.9 29.6 1.14 0.760

AMP Adenosine-5-monophosphate_(5TMS)_3061.8 3064.1 29.7 1.15 0.554
GMP Guanosine-5-monophosphate_(6TMS)_3121.8 3116.8 30.1 1.36 0.451
unknown NA820 3522.3 33.2 1.23 0.834
unknown Unknown#3522.7-cgl-sst_133 3529.3 33.2 2.91 0.451
unknown NA824 3547.5 33.4 2.08 0.533
trisaccharide Cellotriose_(1MEOX)_(11TMS)_3649.07

(trisaccharide)
3641.0 34.1 2.00 0.462
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Table 6.S2.: Feature table of all annotated features of the LC-MS endometabolomics data.

identifier median
m/z

median retention
time (min)

annotation directional fold
change

corrected
p-value

M129T1 129.1385 1.0 spermidine (fragment) 1.07 0.760
M146T1 146.1651 1.0 spermidine 1.05 0.796
M179T1 179.0550 1.2 gluconolactone −1.57 9.75 × 10−5

M116T1 116.0705 1.2 proline −1.21 0.119
M130T1_1 130.0499 1.2 5-oxoproline −1.16 0.285
M148T1 148.0606 1.2 glutamate −1.10 0.446
M118T1 118.0863 1.3 betaine 1.50 7.44 × 10−7

M325T1_1 325.0430 1.3 UMP 1.25 0.113
M277T1_2 277.1031 1.3 Glu Glu −1.33 0.134
M324T1 324.0592 1.3 CMP 1.20 0.147
M428T1 428.0362 1.3 ADP 1.09 0.452
M124T1 124.0394 1.4 nicotinate −2.89 0.0190
M535T1 535.1883 1.4 Glu Glu Glu Glu 1.89 0.0523
M162T1 162.0760 1.4 N-methylglutamate 1.25 0.103
M307T1 307.0833 1.4 glutathion disulphide (2+) −2.37 0.104
M235T1_2 235.1189 1.4 His Pro (II) 1.05 0.491
M364T1 364.0651 1.4 GMP 1.07 0.504
M348T1 348.0706 1.4 AMP 1.08 0.612
M373T1_1 372.5449 1.4 NADP (2+) 1.04 0.701
M136T1 136.0617 1.4 adenine (AMP fragment) 1.06 0.697
M664T1_1 664.1165 1.4 NAD 1.06 0.794
M333T1_1 332.5619 1.4 NAD (2+) 1.02 0.894
M542T1 542.0680 1.4 NAD (fragment) 1.02 0.904
M123T1_2 123.0553 1.4 nicotinamide (NAD

fragment)
1.00 0.983

M332T1 332.0751 1.4 dAMP 1.01 0.953
M182T2 182.0809 2.0 tyrosine −3.40 2.14 × 10−4

M132T2 132.1017 2.0 Leucine / Isoleucine /
Norleucine

−1.12 0.447

M235T2 235.1187 2.1 His Pro (I) 1.11 0.0861
M193T2 193.0681 2.5 S-(5’-adenosyl)-

homocysteine
(2+)

−1.03 0.806

M166T3 166.0862 3.5 phenylalanine −2.91 5.11 × 10−3

M120T3 120.0807 3.5 phenylethanolamine (Phe
fragment)

−2.93 5.39 × 10−3

M254T4 254.1612 4.3 Pro Arg 1.11 0.469
M194T5 194.0788 5.2 C4-HSL 1.34 1.80 × 10−5

M220T5 220.1180 5.2 panthotenate 1.42 5.19 × 10−3

M188T6 188.0706 5.9 tryptophan (fragment) −1.19 0.274
M205T6 205.0972 5.9 tryptophan −1.17 0.365
M298T6 298.0969 6.3 5’-methylthioadenosine −1.00 0.973
M211T6 211.0869 6.4 pyocyanin −5.17 1.59 × 10−10

M187T7 187.1230 6.5 putative virulence marker −5.44 1.07 × 10−4
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Table 6.S2.: Continued: Feature table of all annotated features of the LC-MS endometabolomics
data.

identifier median
m/z

median retention
time (min)

annotation directional fold
change

corrected
p-value

M348T7 348.0702 6.9 AMP (FMN fragment) −1.09 0.0956
M786T7 786.1640 6.9 FAD −1.10 0.151
M120T7 120.0444 7.0 anthranilate (fragment) −1.95 3.45 × 10−8

M160T7 160.0760 7.1 C1-HQ −2.90 1.07 × 10−10

M457T7 457.1117 7.1 FMN −1.29 3.32 × 10−5

M328T7 328.2229 7.3 Pro Leu Val −1.11 0.253
M342T8 342.2386 7.8 Pro Ile Leu or isomer 1.03 0.718
M162T8 162.0552 8.3 DHQ −4.29 1.44 × 10−7

M245T9 245.1283 8.6 Phe Pro 1.09 0.173
M188T9 188.1071 8.8 C3-HQ −5.61 5.34 × 10−9

M243T9 243.0877 9.2 lumichrome 1.17 0.127
M224T11 224.0823 10.6 phenanzine-1-carboxamide −5.27 1.15 × 10−5

M207T11_2 207.0555 10.6 phenazine-1-carboxamide
(fragment)

−5.21 1.95 × 10−5

M197T11 197.0708 10.9 1-hydroxyphenazine −9.78 3.81 × 10−12

M214T11 214.1228 10.9 C5:1-HQ −3.46 4.94 × 10−11

M216T11 216.1386 11.0 C5-HQ −3.01 2.84 × 10−11

M232T11 232.1332 11.3 C5-QNO −1.73 8.28 × 10−9

M207T11_1 207.0554 11.4 phenazine-1-carboxylic
acid (fragment)

−21.20 1.19 × 10−8

M225T11_1 225.0661 11.4 phenazin-1-carboxylic acid −19.50 1.19 × 10−8

M269T12 269.0557 11.6 phenazin-1,6-dicarboxylic
acid

−2.22 5.36 × 10−9

M325T12_1 325.0681 11.6 pyochelin (II) 1.93 4.29 × 10−5

M230T12 230.1541 12.0 C6-HQ −1.52 6.50 × 10−5

M325T12_2 325.0682 12.3 pyochelin (I) 2.76 7.08 × 10−7

M270T13 270.1854 12.6 C9:1-HQ (I) −3.04 1.63 × 10−10

M288T13 288.1963 12.6 C9-QNO (I) −2.61 6.75 × 10−10

M258T13 258.1494 12.7 C7:1-QNO −2.04 4.88 × 10−9

M242T13 242.1544 13.0 C7:1-HQ −1.81 2.1 × 10−8

M159T13 159.0680 13.0 HHQ (fragment) −1.74 6.47 × 10−8

M244T13_1 244.1704 13.0 HHQ −1.22 3.30 × 10−6

M260T13 260.1651 13.1 C7-QNO −1.58 9.28 × 10−9

M519T13 519.3221 13.1 HQNO [2M+H]+ −2.26 1.81 × 10−8

M272T14_1 272.1646 13.5 C8:1-QNO −1.89 2.48 × 10−8

M314T14 314.2119 13.6 C11:1-QNO −4.02 3.05 × 10−9

M286T14_2 286.1806 13.9 C9:1-QNO (I) −1.77 1.80 × 10−7

M256T14_2 256.1700 13.9 C8:1-HQ −1.29 5.70 × 10−3

M274T14 274.1805 14.0 C8-QNO −2.32 2.54 × 10−10

M258T14 258.1857 14.0 C8-HQ −1.65 1.74 × 10−5

M320T14 320.1835 14.2 C12-HSL −1.53 1.65 × 10−5

M296T14 296.2010 14.3 C11:2-HQ (II) −1.91 2.58 × 10−7

M268T14 268.1702 14.3 C9:2-HQ −1.30 3.18 × 10−3
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Table 6.S2.: Continued: Feature table of all annotated features of the LC-MS endometabolomics
data.

identifier median
m/z

median retention
time (min)

annotation directional fold
change

corrected
p-value

M316T14_2 316.2277 14.4 C11-QNO −4.38 1.13 × 10−11

M286T14_1 286.1808 14.4 C9:1-QNO (II) −1.55 5.54 × 10−7

M284T15 284.2015 14.7 C10:1-HQ (II) −2.10 4.53 × 10−8

M300T15_1 300.1962 14.7 C10:1-QNO −1.82 6.82 × 10−7

M270T15_1 270.1864 14.8 C9:1-HQ (II) −1.26 1.51 × 10−5

M288T15 288.1964 14.9 C9-QNO (II) −1.28 5.94 × 10−8

M342T15 342.2430 15.0 C13:1-QNO −6.56 1.20 × 10−9

M452T15 452.2779 15.0 LPE(16:1) −1.09 0.418
M260T15 260.1652 15.2 PQS −2.46 0.0650
M286T15 286.1806 15.3 C9:1-PQS −1.15 0.516
M314T16_1 314.2121 15.5 C11:1-PQS (I) −1.82 7.23 × 10−11

M298T16_1 298.2173 15.5 C11:1-HQ (II) −1.77 1.49 × 10−6

M505T16 505.2532 15.6 LPE(16:1) +Na −1.01 0.965
M286T16 286.2171 15.7 C10-HQ −2.85 3.04 × 10−11

M296T16 296.2014 15.7 C11:2-HQ (I) −2.81 4.26 × 10−9

M302T16_2 302.2118 15.7 C10-QNO −2.78 1.13 × 10−9

M284T16 284.2014 15.7 C10:1-HQ (I) −2.16 1.48 × 10−8

M272T16_2 272.2011 15.7 C9-HQ −1.68 2.32 × 10−6

M673T16 673.3780 15.9 Rha-Rha-C10-C10+Na 1.09 0.114
M651T16 651.3960 15.9 Rha-Rha-C10-C10 1.13 0.217
M314T16_2 314.2120 16.0 C11:1-PQS (I) −2.19 4.82 × 10−9

M298T16_2 298.2171 16.2 C11:1-HQ (I) −2.41 5.82 × 10−9

M312T16_2 312.2326 16.3 C12:1-HQ (I) −3.77 1.84 × 10−11

M328T16 328.2275 16.3 C12:1-QNO −2.49 4.31 × 10−9

M454T16 454.2933 16.3 LPE(16:0) 1.08 0.186
M316T17 316.2278 16.5 C11-PQS −1.84 6.87 × 10−10

M298T17_1 298.2173 16.6 C11:1-HQ (III) −1.62 2.73 × 10−5

M527T17 527.3197 16.7 Rha-C10-C10+Na 1.26 2.30 × 10−3

M699T17_2 699.3933 16.7 Rha-Rha-C10-C12:1 /
Rha-Rha-C12:1-C10 +Na

1.11 0.0414

M677T17 677.4110 16.7 Rha-Rha-C10-C12:1 /
Rha-Rha-C12:1-C10

1.12 0.312

M326T17_1 326.2484 17.0 C13:1-HQ (I) −4.12 4.02 × 10−12

M502T17 502.2909 17.1 LPE(18:1) +Na 1.24 3.54 × 10−4

M480T17_1 480.3092 17.1 LPE(18:1) 1.20 5.39 × 10−3

M701T17_2 701.4089 17.2 Rha-Rha-C10-C12+Na 1.08 0.177
M679T17 679.4270 17.2 Rha-Rha-C10-C12 /

Rha-Rha-C12-C10
1.14 0.226

M312T17 312.2325 17.4 C12:1-HQ (II) −3.94 3.90 × 10−11

M553T17 553.3356 17.5 Rha-C10-C12:1+Na 1.10 0.294
M342T18 342.2430 17.7 C13:1-PQS −2.21 7.55 × 10−8

M727T18 727.4245 17.9 Rha-Rha-C12-C12:1+Na −1.10 0.336
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Table 6.S2.: Continued: Feature table of all annotated features of the LC-MS endometabolomics
data.

identifier median
m/z

median retention
time (min)

annotation directional fold
change

corrected
p-value

M705T18 705.4415 17.9 Rha-Rha-C12:1-C12 /
Rha-Rha-C12-C12:1

−1.06 0.644

M555T18_2 555.3511 18.1 Rha-C10-C12+Na (II) 1.01 0.877
M328T18 328.2641 18.3 C13-HQ −3.62 1.97 × 10−10

M326T18 326.2485 18.3 C13:1-HQ (II) −2.81 2.47 × 10−8

M370T19 370.2742 18.5 C15:1-QNO −2.69 3.8 × 10−10

M255T18 255.2320 18.5 palmitoleate 1.02 0.924
M707T19 707.4579 18.6 Rha-Rha-C12-C12 −1.06 0.319
M555T19 555.3571 18.9 Rha-C10-C12+Na (I) 1.58 1.69 × 10−6

M282T19_2 282.2792 19.1 petroselinate −1.00 0.996
M257T20 257.2476 19.6 palmitate −1.05 0.746
M327T20 327.2271 19.8 oleate 1.06 0.765

Table 6.S3.: Feature table of all annotated features of the LC-MS exometabolomics data.

identifier median
m/z

median retention
time (min)

annotation directional fold
change

corrected
p-value

M112T1_2 112.1119 1.0 spermidine (fragment) 2.07 4.06 × 10−4

M146T1_3 146.1651 1.0 spermidine 1.66 1.79 × 10−3

M129T1_2 129.1384 1.0 spermidine (fragment) 1.87 8.84 × 10−4

M179T1 179.0548 1.2 gluconolactone −2.26 7.69 × 10−6

M162T1 162.0758 1.2 N-methylglutamate 1.03 0.762
M130T1_1 130.0497 1.2 5-oxoproline −1.02 0.786
M118T1 118.0862 1.3 betaine 1.28 3.74 × 10−3

M219T1_3 219.0972 1.3 Glu Ala 1.26 2.40 × 10−3

M307T1 307.0831 1.4 glutathion disulphide (2+) 7.54 1.18 × 10−8

M136T1 136.0616 1.4 adenine (AMP fragment) 1.29 9.15 × 10−3

M137T1 137.0455 1.4 hypoxanthine −1.63 3.69 × 10−5

M110T1 110.0599 1.4 2-aminophenol −1.92 1.10 × 10−3

M235T1_2 235.1190 1.4 His Pro (II) −1.45 1.71 × 10−4

M333T1_1 332.5616 1.4 NAD (2+) −1.58 5.30 × 10−3

M664T1 664.1152 1.4 NAD −1.53 0.0248
M348T1_1 348.0700 1.4 AMP −1.37 0.039
M182T2 182.0807 2.0 tyrosine −9.42 8.9 × 10−8

M235T2 235.1189 2.1 His Pro (I) −1.62 9.42 × 10−5

M166T3 166.0860 3.4 phenylalanine −2.02 4.77 × 10−6

M120T3 120.0805 3.4 phenylethanolamine (Phe
fragment)

−2.06 1.39 × 10−5

M254T4 254.1612 4.3 Pro Arg −1.54 3.80 × 10−7

M194T5 194.0786 5.2 C4-HSL 1.12 7.66 × 10−3
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Table 6.S3.: Continued: Feature table of all annotated features of the LC-MS exometabolomics
data.

identifier median
m/z

median retention
time (min)

annotation directional fold
change

corrected
p-value

M220T5 220.1175 5.2 panthotenate −1.30 0.0101
M298T6_1 298.0965 6.3 5’-methylthioadenosine −1.05 0.398
M211T6 211.0867 6.4 pyocyanin (I) −5.91 5.04 × 10−8

M187T7 187.1228 6.6 putative virulence marker −2.81 0.0155
M378T7 378.2014 6.6 Pro Tyr Val −1.18 0.0753
M190T7 190.0495 6.7 kynurenate −1.32 2.77 × 10−3

M138T7 138.0547 6.9 anthranilate −3.00 1.36 × 10−8

M211T7_1 211.0866 7.0 pyocyanin (II) −5.77 7.20 × 10−8

M120T7 120.0443 7.0 anthranilate (fragment) −3.34 1.60 × 10−8

M160T7 160.0758 7.1 C1-HQ −2.78 4.31 × 10−9

M328T7_2 328.2228 7.3 Pro Leu Val −1.77 5.15 × 10−6

M211T7_2 211.0866 7.4 pyocyanin (III) −7.13 1.72 × 10−7

M342T8 342.2384 7.8 Pro Ile Leu or isomer −1.62 1.71 × 10−6

M211T8_2 211.1441 8.1 cyclo(Leu Pro) −1.20 4.51 × 10−3

M162T8 162.0550 8.4 DHQ −1.68 8.39 × 10−4

M245T9 245.1286 8.6 Phe Pro −1.21 4.23 × 10−3

M188T9 188.1070 8.8 C3-HQ −5.28 3.73 × 10−8

M243T9_2 243.0873 9.2 lumichrome 2.41 6.42 × 10−6

M224T11_2 224.0820 10.6 phenanzine-1-carboxamide −9.49 2.73 × 10−8

M260T11 260.1646 10.8 HQNO −2.36 3.73 × 10−8

M214T11 214.1227 10.9 C5:1-HQ −3.09 3.35 × 10−8

M197T11 197.0709 10.9 1-hydroxyphenazine −8.16 3.12 × 10−5

M216T11 216.1384 11.0 C5-HQ −2.62 2.02 × 10−8

M232T11 232.1332 11.3 C5-QNO −1.74 1.85 × 10−7

M225T11_1 225.0659 11.4 phenazin-1-carboxylic acid
(I)

−12.70 6.95 × 10−9

M207T11 207.0553 11.4 phenazine-1-carboxylic
acid (fragment) (I)

−15.70 4.38 × 10−8

M325T12_2 325.0678 11.6 pyochelin (II) 1.81 2.30 × 10−5

M269T12 269.0552 11.6 phenazin-1,6-dicarboxylic
acid

−6.79 5.32 × 10−7

M225T12 225.0658 11.9 phenazin-1-carboxylic acid
(II)

−16.70 1.30 × 10−8

M207T12_2 207.0552 11.9 phenazine-1-carboxylic
acid (fragment) (II)

−18.40 2.55 × 10−8

M286T12 286.1800 12.0 C9:1-QNO (I) −1.67 4.37 × 10−9

M230T12 230.1537 12.1 C6-HQ 1.11 0.0505
M325T12_1 325.0676 12.3 pyochelin (I) 2.63 1.21 × 10−8

M260T12 260.1645 12.4 C7-QNO (II) 1.50 0.086
M270T13 270.1852 12.7 C9:1-HQ (I) −2.59 6.57 × 10−10

M288T13 288.1960 12.7 C9-QNO (I) −2.41 4.19 × 10−9

M258T13 258.1490 12.7 C7:1-QNO −1.87 5.02 × 10−8

M242T13 242.1540 13.0 C7:1-HQ −1.31 1.64 × 10−5
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Table 6.S3.: Continued: Feature table of all annotated features of the LC-MS exometabolomics
data.

identifier median
m/z

median retention
time (min)

annotation directional fold
change

corrected
p-value

M244T13_1 244.1702 13.1 HHQ −1.27 2.23 × 10−7

M159T13 159.0678 13.1 HHQ (fragment) −1.45 8.96 × 10−8

M260T13_1 260.1648 13.2 C7-QNO (I) −1.24 2.30 × 10−6

M519T13 519.3218 13.2 HQNO [2M+H]+ −1.28 0.0104
M296T14_2 296.1997 13.6 C11:2-HQ (I) −6.00 1.22 × 10−10

M314T14_1 314.2115 13.6 C11:1-QNO −4.25 4.86 × 10−9

M272T14 272.1642 13.6 C8:1-QNO −1.46 3.41 × 10−5

M256T14_2 256.1694 14.0 C8:1-HQ 1.34 9.02 × 10−3

M258T14 258.1853 14.0 C8-HQ −1.17 0.0297
M274T14 274.1802 14.1 C8-QNO −1.62 2.09 × 10−3

M320T14 320.1832 14.2 C12-HSL 2.45 1.12 × 10−6

M296T14_1 296.2003 14.3 C11:2-HQ (III) −1.56 2.31 × 10−5

M316T14_2 316.2270 14.4 C11-QNO −4.99 3.12 × 10−8

M286T14 286.1802 14.4 C9:1-QNO (II) −1.55 2.51 × 10−4

M268T14 268.1696 14.4 C9:2-HQ −1.33 0.0616
M300T15 300.1955 14.7 C10:1-QNO −1.76 1.43 × 10−4

M260T15_1 260.1645 14.7 PQS (II) −1.13 0.208
M284T15 284.2009 14.8 C10:1-HQ −2.58 6.52 × 10−6

M272T15_2 272.2010 14.9 C9-HQ −1.37 3.80 × 10−5

M288T15_2 288.1959 14.9 C9-QNO (II) −1.21 0.0205
M270T15_1 270.1855 14.9 C9:1-HQ (II) −1.17 0.167
M342T15 342.2424 15.0 C13:1-QNO −7.70 2.69 × 10−7

M260T15_2 260.1647 15.3 PQS (I) −1.80 0.0105
M286T15 286.1799 15.3 C9:1-PQS −1.72 0.0468
M314T16_1 314.2116 15.5 C11:1-PQS (II) −2.41 3.66 × 10−5

M298T16 298.2167 15.6 C11:1-HQ (I) −4.16 1.93 × 10−7

M296T16 296.2009 15.7 C11:2-HQ (II) −3.89 2.55 × 10−7

M286T16 286.2163 15.8 C10-HQ −2.52 2.28 × 10−5

M302T16 302.2110 15.8 C10-QNO −2.12 2.86 × 10−3

M314T16_2 314.2114 16.1 C11:1-PQS (I) −2.76 1.35 × 10−5

M328T16 328.2266 16.3 C12:1-QNO −3.40 1.21 × 10−5

M312T16 312.2321 16.4 C12:1-HQ (I) −5.67 5.78 × 10−7

M677T17 677.4105 16.6 Rha-Rha-C10-C12:1 /
Rha-Rha-C12:1-C10

−1.34 1.90 × 10−7

M699T17_3 699.3926 16.6 Rha-Rha-C10-C12:1 /
Rha-Rha-C12:1-C10 +Na

−1.31 4.48 × 10−7

M316T17 316.2270 16.6 C11-PQS −2.22 1.07 × 10−3

M298T17_1 298.2166 16.7 C11:1-HQ (II) −2.87 1.07 × 10−5

M342T17_1 342.2424 17.0 C13:1-PQS −3.35 4.17 × 10−5

M326T17_1 326.2477 17.1 C13:1-HQ (I) −5.58 5.20 × 10−7

M679T17 679.4265 17.2 Rha-Rha-C10-C12 /
Rha-Rha-C12-C10

−1.15 6.83 × 10−3

M553T17 553.3348 17.4 Rha-C10-C12:1+Na −1.24 3.17 × 10−3
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Table 6.S3.: Continued: Feature table of all annotated features of the LC-MS exometabolomics
data.

identifier median
m/z

median retention
time (min)

annotation directional fold
change

corrected
p-value

M312T18 312.2318 17.5 C12:1-HQ (II) −2.19 2.65 × 10−4

M705T18 705.4404 17.9 Rha-Rha-C12:1-C12 /
Rha-Rha-C12-C12:1

−1.32 0.0595

M555T18 555.3506 18.0 Rha-C10-C12+Na −1.21 0.0119
M328T18 328.2635 18.4 C13-HQ −4.22 2.64 × 10−6

M326T18 326.2479 18.4 C13:1-HQ (II) −3.50 4.71 × 10−6

M707T19 707.4571 18.5 Rha-Rha-C12-C12 −1.05 0.719
M729T19 729.4394 18.5 Rha-Rha-C12-C12+Na −1.11 0.379
M370T19 370.2735 18.6 C15:1-QNO −2.89 5.15 × 10−4

M282T19_2 282.2788 19.1 petroselinate −1.07 0.551
M257T20 257.2472 19.6 palmitate −1.10 0.362
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7 Untargeted LC-MS Metabolomics
Differentiates Between Virulent and Avirulent
Clinical Strains of Pseudomonas aeruginosa

This Chapter has been published as peer-reviewed article in a scientific journal:

T. Depke, J. G. Thöming, A. Kordes, S. Häussler, and M. Brönstrup. “Untargeted LC-
MS Metabolomics Differentiates Between Virulent and Avirulent Clinical Strains of Pseu-
domonas aeruginosa”. In: Biomolecules 10.7 (July 2020), p. 1041. doi: 10 . 3390 /
biom10071041

Abstract

Pseudomonas aeruginosa is a facultative pathogen that can cause, inter alia, acute
or chronic pneumonia in predisposed individuals. The Gram-negative bacterium dis-
plays considerable genomic and phenotypic diversity that is also shaped by small
molecule secondary metabolites. The discrimination of virulence phenotypes is
highly relevant to the diagnosis and prognosis of P. aeruginosa infections. In order
to discover small molecule metabolites that distinguish different virulence pheno-
types of P. aeruginosa, 35 clinical strains were cultivated under standard conditions,
characterized in terms of virulence and biofilm phenotype, and their metabolomes
were investigated by untargeted liquid chromatography—mass spectrometry. The
data was both mined for individual candidate markers as well as used to construct
statistical models to infer the virulence phenotype from metabolomics data. We
found that clinical strains that differed in their virulence and biofilm phenotype
also had pronounced divergence in their metabolomes, as underlined by 332 fea-
tures that were significantly differentially abundant with fold changes greater than
1.5 in both directions. Important virulence-associated secondary metabolites like
rhamnolipids, alkyl quinolones or phenazines were found to be strongly upregulated
in virulent strains. In contrast, we observed little change in primary metabolism.
A hitherto novel cationic metabolite with a sum formula of C12H15N2 could be
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identified as a candidate biomarker. A random forest model was able to classify
strains according to their virulence and biofilm phenotype with an area under the
Receiver Operation Characteristics curve of 0.84. These findings demonstrate that
untargeted metabolomics is a valuable tool to characterize P. aeruginosa virulence,
and to explore interrelations between clinically important phenotypic traits and the
bacterial metabolome.

Keywords

Pseudomonas aeruginosa; virulence; untargeted metabolomics; LC-MS; Random
forest classification; biomarker; phenotyping

7.1. Introduction

The γ-proteobacterium Pseudomonas aeruginosa thrives in various aquatic and terres-
trial habitats [1], as well as in multiple niches in the human host such as the lungs,
eyes and ears [2–4]. Its affinity and ability to form biofilms on surfaces enables this
bacterium to colonize burn wounds and the surfaces of invasive medical devices such as
catheters and implants [5]. This wide niche variability, along with its ability to produce
various virulence factors and evade the immune system through numerous mechanisms
including biofilm formation renders it a clinically relevant, yet difficult-to-treat oppor-
tunistic pathogen [6]. P. aeruginosa belongs to the group of most dominant bacteria
involved in hospital-acquired infections, comprising an estimated 10% of nosocomial
infections in the EU [7]. In particular, P. aeruginosa is a major threat to artificially
ventilated patients [8] and those with cystic fibrosis (CF), of which roughly 60% are
chronically infected by P. aeruginosa [9].
P. aeruginosa displays high metabolic versatility, enabling it to infect and persist

in different human tissues and organs [2]. As an example, it has been found that
P. aeruginosa adapts its iron uptake strategies depending on the type of infection [10].
Nutrient availability in general differs between the various infection sites, and besides
metabolism in the narrower sense, strategies of pathogenicity and persistence also need
to be tailored to the specific infection situation. Many aspects of P. aeruginosa’s
adaptability to different infection sites and types have been studied on the genomic
level [11]. Genes coding for virulence factors are highly conserved among P. aeruginosa
strains; however, there is little correlation between genomic features and the type of
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infection [12]. Despite a high conservation of virulence factors between clinical and
environment samples [13], clinical P. aeruginosa strains have been demonstrated to
express variable metabolomic, transcriptomic and phenotypic signatures despite almost
identical genomes [14, 15]. With respect to pathogenicity, clinical isolates can have
vastly different phenotypes and elicit the full range of host responses [16, 17].

Due to the diversity of genotypic and phenotypic traits, it is of considerable clinical
interest to describe and differentiate the various metabolic and virulence properties of
P. aeruginosa clinical isolates. At present, our understanding of genomics is insufficient
to fully elucidate the metabolic and phenotypic variation of this bacterium at a clinically
relevant level. Transcriptome data can be indicative of virulence phenotypes, yet not
always sufficient, either, if used in isolation [18]. While numerous different phenotypic
traits, including, but not limited to, swimming motility have been proposed as virulence
markers for P. aeruginosa clinical strains [19], several studies have suggested investigat-
ing metabolomes as functional signatures that might be closer to the actual phenotype
[20–22]. In P. aeruginosa, many regulators and effectors of virulence are small-molecule
secondary metabolites [23] that are generally amenable to liquid chromatography—mass
spectrometry (LC-MS) [24–26]. Microbial metabolomics is becoming more prevalent in
many areas of microbiology and infection research [27, 28] and has demonstrated itself
to be a successful methodology to, e.g., discriminate between different Bacillus cereus
strains [29], to describe and differentiate drug susceptibility phenotypes in the parasite
Leishmania donovani [30] as well as in the γ-proteobacterium Acinetobacter baumannii
[31], to identify volatile metabolites in different P. aeruginosa strains [32] and to de-
scribe the metabolic adaptations of P. aeruginosa strains colonizing different niches in
CF lungs [33].

Hence, we tested whether the virulence properties of P. aeruginosa clinical strains
can be differentiated by untargeted LC-MS metabolomics. Metabolomics data for 35
clinical isolates recovered from diverse infection sites was acquired, stratified according
to in vivo virulence phenotypes in the Galleria mellonella infection model [34] and
biofilm phenotypes [15] and analyzed for discriminating markers. Data on the metabo-
lite level and metabolic profiles were investigated, and a statistical model was generated
to differentiate virulent and avirulent strains based solely on LC-MS data.
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7.2. Materials and methods

7.2.1. Bacterial strains

Bacterial strains were selected from a biobank of P. aeruginosa clinical isolates cu-
rated at the Helmholtz Centre for Infection Research in Braunschweig, Germany, which
is documented in the ‘Bactome’ database [35]. Strains were collected in clinical mi-
crobiology laboratories, private practice laboratories, or provided by strain collection
curators across Germany, Spain, Hungary and Romania. Clinical isolates used in this
study were previously characterized with regard to clinically relevant phenotypes [35–
37], including in vitro biofilm phenotypes [15] and an in vivo virulence infection model
using Galleria mellonella [34]. A list of strains and their phenotypic properties (biofilm
and virulence) can be found in Table 7.1.

7.2.2. Transcriptomics

Transcriptional profiles of all clinical isolates used in this study were produced for a
previous study [36]. Briefly, planktonic bacteria were cultivated to early stationary
phase (OD600 = 2) in 10ml LB under shaking conditions (37 °C, 180 rpm). Three in-
dependent cultures were pooled to obtain one transcriptional profile per strain. cDNA
libraries were generated using the ScriptSeq™ v2 RNA-seq Library Preparation Kit
(Illumina), and samples were sequenced in single end mode on an Illumina HiSeq
2500 device (1× 50 bp reads). The reads were mapped to the UCBPP-PA14 refer-
ence genome (NC_008463.1, available for download from the Pseudomonas Genome
database: http://v2.pseudomonas.com) using the stampy pipeline [38]. RNA-Seq data
of clinical isolates is uploaded at NCBI’s Gene Expression Omnibus (GSE123544). Dif-
ferential gene expression analysis was performed using the R package DESeq2 (v.1.18.1)
[39] with default settings to calculate the normalized reads per gene (nrpg). For the
identification of differentially expressed genes between virulent and avirulent strains, a
threshold of log2(fold change) ≥ 1 and ≤ –1 respectively with padj<0.05 was applied.
Only genes assigned to the core genes (according to Mathee et al. [40]) were considered
for the analysis to account for differences in strain backgrounds (PA14 vs. PAO1).
DESeq2 was used to generate a principal component analysis (PCA) plot from the
transcriptional profiles.
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Table 7.1.: Strains used in this study. Strains are listed by their identifier in the Bactome data base
[35]. The biofilm cluster corresponds to the biofilm morphology [15] and the survival
rate in a G. mellonella infection model (according to [34]) is given in percent survival
after 48 h. The infection or sampling site is indicated if available. nd – not determined.

Discovery data set
Strain Biofilm cluster Galleria survival (48 h) Infection/sampling site
CH2860 A 5 Respiratory tract
CH4528 A 0 Respiratory tract
ESP046 A 0 nd/other
ESP088 A 5 nd/other
F2030 A 0 Respiratory tract
MHH16798 A 20 Respiratory tract
ZG302383 A 0 nd/other
CH2682 B 95 Rectal swab
ESP027 B 100 nd/other
F1959 B 100 Respiratory tract
F2165 B 100 Respiratory tract
F2166 B 100 Respiratory tract
F2224 B 95 nd/other
MHH17767 B 100 Respiratory tract

Validation data set
Strain Biofilm cluster Galleria survival (48 h) Infection/sampling site
CH2690 A 0 Rectal swab
ESP058 A 0 nd/other
ESP067 A 5 nd/other
F1997 A 0 Rectal swab
MHH17704 A 5 nd/other
Psae1439 A 10 Respiratory tract
ZG8038581181 A 10 Respiratory tract
CH4681 B 90 Respiratory tract
F1764 B 95 Respiratory tract
F2020 B 95 Wound infection
MHH16050 B 60 nd/other
MHH16563 B 95 Respiratory tract
MHH17546 B 100 Respiratory tract
Psae1837 B 75 nd/other

Additional data set
Strain Biofilm cluster Galleria survival (48 h) Infection/sampling site
CH2706 C 0 Rectal swab
CH4591 C 0 Rectal swab
ESP083 C 0 nd/other
F1864 C 0 nd/other
F2059 C 0 Wound infection
ZG316717 C 5 Ear infection
ZG8510487 C 0 Urinary tract infection
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7.2.3. Untargeted metabolomics

All chemicals and analytical standards used in the metabolomics experiments in this
study correspond to those previously described [24]. Selected strains were cultivated
and measured in two distinct and independent batches, a discovery and a validation
batch (cf. Table 7.1). For data analysis, the validation batch was divided into two
sub-batches: the actual validation set containing strains with phenotypes that were also
present in the discovery batch, and an additional set of isolates with virulent phenotypes
containing the cluster C biofilm phenotype that was not present in the discovery batch.
With this setup, the actual validation set can gauge the performance and validity of
the applied statistical classification models (see below), because it contained strains
that should be classified into the same categories as the strains in the discovery data
set. As the phenotypes in the discovery data set are defined by virulence as well as
biofilm morphology, an additional set of strains with a different combination of these two
properties was needed to assess whether the model was able to differentiate solely the
virulence phenotype irrespective of biofilm morphology. Overnight precultures grown in
3mL LB medium in glass tubes were inoculated from plate cultures for each strain and
incubated for approximately 16 h at 37 °C and 140 rpm in a shaking incubator. Three
independent biological replicates were inoculated with a starting OD600 of 0.05 from
each preculture. Cultures were subsequently grown to an OD600 of approximately 2.
Measured OD600 values for each sample were later used for normalization and can be
found in Tables 7.S1, 7.S2 and 7.S3. 2mL of each sample was collected and immediately
centrifuged at 9000×g, at 4 °C for 5min. Cell pellets were snap-frozen in liquid nitrogen
and subsequently stored at –20 °C until all of the batch samples were processed to this
stage.
Metabolite extraction was performed as previously [24]. In brief, cell pellets were

extracted in 500 µL methanol containing 0.1mg/L trimethoprim, 0.1mg/L nortriptylin
and 0.3mg/L glipizide as internal standards through the use of vigorous shaking and
sonication. Extracts were separated from solid matter by centrifugation. 400 µL of each
extract was concentrated to dryness and resuspended in 40µL 50% (v/v) acetonitrile
with 0.1% formic acid containing 1mg/L caffeine and 8mg/L naproxen as internal
standards.
A 1 µL aliquot of each sample was analyzed by reversed phase ultra-high performance

liquid chromatography coupled to quadrupole time-of-flight mass spectrometry as previ-
ously [24, 41]. Tandem mass spectra were recorded from pooled quality control samples
and used for metabolite identification by comparison to authentic standards and/or
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metabolite databases as described in a previous study [24] (cf. Table 7.S4). LC-MS
data were exported to mzXML using Bruker Compass Xport, and preprocessed with
XCMSonline [42] with the parameters listed in Table 7.S5. Our discovery, validation
and additional data sets were all processed separately.

After preprocessing, the untargeted metabolomics data underwent further processing
using R/RStudio with ‘tidyverse’ packages as statistical software [43–45]. First, features
eluting at retention times ≤ 0.8min and ≥ 20min, those displaying a relative standard
deviation of ≤ 20% over all samples, and those with an intensity of ≤ 10000 counts
were removed. Subsequently, the data was consecutively normalized through the use of
internal standards; first with those added upon reconstitution (caffeine and naproxen),
and then with those added during extraction (trimethoprim and nortriptyline). The
data for each sample was further normalized through the use of the respective OD600 at
harvest as a proxy for cell number Tables 7.S1, 7.S2 and 7.S3). Annotations were added
and isotope peaks were identified using ‘CAMERA’ [46] (as part of the XCMSonline
workflow) and removed from the data sets. The resulting feature tables for the discovery
and the validation data sets were used for data analysis and model building.

Feature credentialing by means of stable isotope enriched growth medium [47] was
performed in a previous study [48] and used to verify the biological origin of a candidate
biomarker.

The Mass Spectrometry Search Tool (MASST) on the Global Natural Products Social
Molecular Networking (GNPS) repository was used to match unidentified spectra of
particular interest to previously reported MS2 data [49]. The standard parameters of
the search were used: MS2 fragment ions were excluded if their m/z difference to the
precursor ion was less than 17Da and spectra were filtered using an approach called
window filtering that keeps the 6 most abundant fragment ions within a ± 50Da window
throughout the spectrum. The m/z tolerance of the search was 2Da for the precursor
ion and 0.5Da for MS2 fragment ions. To be considered a match, the queried spectrum
and library spectra had to display a cosine similarity score of ≥ 0.7 and ≥ 6 matched
peaks.
The raw data was uploaded to MetaboLights [50] and can be accessed via the study

identifier MTBLS1749.

7.2.4. Data analysis and model building

PCA was used with centering and rotating of the variables, and PCA scores were
plotted for data exploration. Directional fold changes were calculated for all features
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with positive values signifying higher abundances in the virulent group and negative
values signifying higher abundances in the avirulent group. Statistical significance of
between-group differences was assessed by performing a Benjamini-Hochberg corrected
two-sided Welch’s t-test for each feature. The Mann–Whitney U -test (Wilcoxon rank-
sum test) was used to test for statistical significance for individual comparisons when
non-normality was suspected. Using the ‘vegan’ R package [51], permutational multi-
variate analysis of variance (PERMANOVA) of a Bray-Curtis distance matrix of the
metabolite abundance data was employed to test the correlation of metabolite profile to
the phenotypic group. The same package was used to calculate the Shannon index to
gauge differences in metabolome diversity between the samples of the different datasets.
Predictive models were built using random forest classification and the ‘randomFor-

est’ R package [52, 53] with 1000 trees per forest, and 500 randomly sampled variables
considered as candidates at each split. Feature importance was assessed by mean in-
crease of the Gini coefficient and mean increase of variable importance (VIP).
Model validation was performed by matching features of the discovery and validation

data set and subsequent prediction of the phenotypes for all samples of the validation
data set in the form of probabilities. The features were matched by comparing m/z
and retention time, using a tolerance of 5 ppm and 1min, respectively. Only features
present in the discovery data set that matched a feature in the validation data set
were considered in model building and validation. The same procedure was applied
for the additional data set. Model quality was assessed by calculation of the area
under the receiver operating characteristics (ROC) curve (AUC), using the ‘ROCR’ R
package [54], where 1 corresponds to a perfect model and 0.5 is equivalent to random
prediction. As the additional cluster C data set contains only one group of isolates, it
was not possible to construct a ROC curve. Instead, the frequency of correct predictions
for the strains in 100 independent constructions and predictions by the random forest
model was assessed. This was also done for the first validation set.

7.3. Results

Untargeted LC-MS metabolomics data were recorded and analysed for 35 P. aerugi-
nosa clinical strains differing in their virulence as determined by a G. mellonella sur-
vival model and their biofilm phenotype which was categorized into the three main
clusters A, B and C [15]. 14 strains, seven virulent strains with a cluster A biofilm
phenotype and seven avirulent cluster B strains constituted the discovery data set,
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that was analysed in depth for metabolomic differences between the phenotypes and
used to build a random forest classification model. Another 14 strains equally split
between the two phenotypic groups represented in the discovery group served as the
validation data set. These strains were used to test the model constructed from the dis-
covery data set. An additional seven virulent strains corresponding to a tertiary cluster
C biofilm phenotype—i.e. a phenotype which was not present in the discovery data
set—were used to investigate whether our classification model is capable of predicting
virulence in a biofilm phenotype independent manner. All strains were cultivated in
rich medium under standard planktonic conditions, extracted using a methanol-based
protocol, separated on a reversed-phase C18 column and detected using time-of-flight
mass spectrometry following electrospray ionization in positive mode (ESI-QTOF-MS).
The study design is visualized in Scheme 7.1.

7.3.1. Virulent cluster A and avirulent cluster B strains have different
metabolic profiles

Overall variation in the untargeted metabolomics dataset (differences of signal abun-
dances between and within groups after normalization and filtering with respect to all
detected signals) was assessed using PCA. As an unsupervised method, PCA does not
use class information, thereby preventing potential bias when judging separation be-
tween sample groups. Upon visual inspection, the PCA scores plot of the discovery
data set, i.e. the data from the set of P. aeruginosa strains used to generate the clas-
sification model, shows a good but not complete separation between virulent cluster A
and avirulent cluster B strains (Figure 7.1). Although the two phenotypes do not form
compact clusters, there is little overlap between virulent and avirulent strains. Clear
separation in an unsupervised analysis suggests that there is potential for a supervised
method to model the data in a superior manner. A PERMANOVA analysis further sup-
ports the notion that the metabolome differences are associated with the virulence and
biofilm phenotype (F =10.7, p=0.001). Moreover, the strains do not cluster according
to other parameters such as time to reach the specified OD600, or the hospital they were
originally isolated in (Figure 7.S1). These findings suggest that, among our available
metadata on the utilized P. aeruginosa isolates, virulence and biofilm phenotypes are
the main drivers of variation between metabolomes.
The discovery data set contains 2359 features, whereof 135 were structurally an-

notated that corresponded to 96 unique metabolites. 332 features were significantly
differentially abundant with fold changes greater than 1.5 in both directions as well
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discovery set
7 virulent cluster A strains

7 avirulent cluster B strains

validation set
7 virulent cluster A strains

7 avirulent cluster B strains

additional set
7 virulent cluster C strains

P. aeruginosa clinical strain collection

strain selection

cultivation under standard conditions in triplicates

two step methanol-based extraction of cell pellets

analysis of samples by UHPLC-ESI-QTOF-MS

preprocessing of raw data by XCMSonline and processing in R

discovery data set validation data set additional data set

identification of
group differences

analysis of
regulated

metabolites

biomarker
discovery and 
random forest
classification

model

biomarker and classification model
validation

Scheme 7.1.: Schematic of the experimental and data analysis workflow of the metabolomics part
of this study.
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Figure 7.1.: PCA scores plot of the discovery data set. A: All samples in the discovery data set
were subjected to a principal components analysis with centering and rotation of the
variables. The samples were plotted using principal components 1 and 2 as coordinates.
A good separation of the groups is visible, predominantly in principal component 1,
which explains 56% of the variation in the data set. textbfB: The data from the
triplicate samples was averaged per strain and subjected to a PCA as described above.
The separation is very similar to the data on the sample level. A clear separation can
be achieved by considering both principal components 1 and 2. Red – virulent cluster
A strains, blue – avirulent cluster B strains.

as with a Benjamini-Hochberg corrected p-value of less than 0.05. 299 of these fea-
tures were more abundant in the virulent group and 56 of the 332 (17%) have been
structurally annotated (cf. Figure 7.S2), corresponding to 40 unique metabolites.

Among the identified metabolites with differential abundance, secondary metabolites
are found along with lipids. Secondary metabolites were discovered at higher levels,
while lipids were less abundant, in the virulent strains (Figures 7.2 and 7.3). Virulent
and avirulent P. aeruginosa strains did not differ in their relative abundances of primary
metabolites. A PCA scores plot considering only identified metabolites provides good
separation between the groups that were tested (Figure 7.S3). Additionally, the PCA
loadings plot of the complete discovery set, to which degree features contribute to the
principal components, provides evidence that most features with high loadings have
been annotated (Figure 7.S4). These two observations demonstrate that most relevant
metabolites, or at least members of the most relevant metabolite families, have been
annotated. Interestingly, a PCA plot based on gene expression profiles did not show
any clustering of the isolates according to their affiliation to a particular virulence
phenotype (Figure 7.S5).
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Figure 7.2.: Regulation of identified metabolites in the discovery data set. The binary logarithm of
their (non-directional) fold change was plotted on the x-axis for all identified metabo-
lites. Features exhibiting a fold change ≥ 1.5 and a corrected p-value ≤ 0.05 were
coloured in green.
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Figure 7.3.: Box plots of identified metabolites in the discovery data set. Data distribution for all
identified metabolites with an absolute fold change of ≥ 1.5 is shown as box plots.
For each metabolite, one boxplot shows the abundances in each group. Red – virulent
cluster A strains, blue – avirulent cluster B strains.
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7.3.2. Metabolic differences between virulent cluster A and avirulent
cluster B strains manifest in differential abundance of
virulence-associated secondary metabolites

Phenazines, prominent pseudomonal secondary metabolites with well-studied roles in
pathogenesis and host cell damage, act as signaling molecules for the transcription factor
SoxR which promotes the production of efflux pumps and the depletion of glutathione
leading to redox instability of the host [55, 56]. In this study, two phenazines were
identified: pyocyanin and its congener phenazine-1-carboxylic acid. When comparing
our virulent strains to our avirulent strains, both metabolites exhibit large differences
in abundance with fold changes of +25 and +10, respectively. However, the difference
between our virulent and avirulent strains is not statistically significant if tested using
a Benjamini-Hochberg corrected Welch’s t-test due to the large variation within the
virulent group containing two high producing strains, while all of the other strains pro-
duced much more modest phenazine levels (Figure 7.S6). A non-parametric significance
assessment using the Mann–Whitney U -test yields p-values of 2.6×10−7 and 9.5×10−5

for pyocyanin and phenazine-1-carboxylic acid, respectively, thus suggesting significant
differences in the abundance of phenazines in the two groups. Phenazine biosynthe-
sis was also highly upregulated at the transcriptional level in virulent P. aeruginosa
strains in comparison to the avirulent clinical isolates tested (Table 7.S6), supporting
the notion that phenazine production is associated with a virulent phenotype.
Alkyl quinolones (AQ), important quorum sensing signaling molecules unique to

P. aeruginosa and closely related species, are involved in various virulence-associated
processes [23]. Transcriptional profiles tend to provide evidence of the elevated ex-
pression of genes involved in the AQ biosynthesis in virulent isolates, however, the
expression levels are not statistically significant (threshold log2(fold change) ≥ 1 and
≤ –1 with padj<0.05) between the two groups (Table 7.S7). Strikingly, the abundance
of AQs in the metabolome of virulent P. aeruginosa strains is much greater than in the
metabolome of the avirulent strains (Figure 7.2). For the highly abundant and impor-
tant AQs HHQ (C7-HQ) and HQNO (C7-QNO), directional fold changes of +2.5 and
+6.7 and corrected p-values of 0.0002 and 0.007, respectively, were observed. The most
differentially abundant AQ is C10:1-QNO (directional fold change +15, corrected p-
value 0.04), a metabolite with very low abundance (roughly 40× and 100× lower levels
than C7-QNO in virulent cluster A and avirulent cluster B strains, respectively). The
most significant difference was recorded for C9:1-HQ which was 3.2× more abundant
in virulent cluster A strains with a corrected p-value of 3.1 × 10−6. The various AQ
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congeners detected in this study consistently showed significantly higher levels in the
virulent group, had high loadings in the PCA and were good predictors in the random
forest classification models, thereby emphasizing their importance in the regulation of
virulence.

The largest fold changes between our virulent and avirulent strains were found in the
rhamnolipids, another class of virulence-associated secondary metabolites (Figure 7.S7).
These surface-active glycolipids play multiple roles in the establishment and mainte-
nance of infection, including the transition between biofilm and planktonic lifestyle [57]
and the impairment of the host airway epithelium [58]. Rhamnolipids enable the poorly
water-soluble Pseudomonas quinolone signal (PQS) to diffuse in aqueous environments,
as they enhance the solubility of PQS through their amphiphilic properties, thereby po-
tentiating PQS-driven effects on virulence [59]. Four different rhamnolipid structures
have been annotated; namely Rha-Rha-C10-C12, Rha-Rha-C10-C10, Rha-C10-C12 and
Rha-C10-C10 (Figure 7.S8), and all of them were significantly more abundant in the vir-
ulent group (fold changes of +386, +63, +46, +114, respectively and corrected p-values
of 0.001, 0.001, 0.01 and 0.02, respectively; always for Na adduct). In most avirulent
strains, rhamnolipids were practically absent; likewise, some virulent strains barely pro-
duced any rhamnolipids, while others produced highly elevated levels of this secondary
metabolite (Figure 7.S7): For Rha-Rha-C10-C12, all avirulent cluster B strains and
the virulent cluster A strains F2030, ESP088 and CH4528 showed a peak area in arbi-
trary units below 100, whereas the other virulent cluster A strains featured peak areas
ranging from approximately 3000 to 40,000.

The pseudomonal siderophore pyochelin exists in trans and cis isoforms [60], both of
which have been annotated. Interestingly, only one of the species is significantly regu-
lated, and more prevalent in the virulent strains (directional fold change +6.5, corrected
p-value 0.006). Pyochelin, an important player in iron acquisition and homeostasis, has
been linked to virulence, although it is not necessarily directly harmful to the host
[10]. Despite the significant differences in the amount of rhamnolipids and pyochelin
produced by virulent strains over avirulent strains, the corresponding genes for both
rhamnolipid and pyochelin biosynthesis were not differentially expressed between these
two groups (Table 7.S7).

Multiple primary and intermediate metabolites have been associated with pseu-
domonal virulence; however, no clear trends could be identified in the present study.
For instance, tryptophan and phenylalanine, both of which share biosynthetic path-
ways with alkylquinolones and phenazines through the common precursor chorismate
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Figure 7.4.: PCA scores plot of the discovery data set with only virulence-associated secondary
metabolites included into the calculation. The plot has been created analogously to
Figure 7.1 and shows a comparably good separation between the two phenotypes based
on virulence-associated secondary metabolites only. A: Data on sample level, B: data
on strain level (cf. Figure 7.1). Red – virulent cluster A strains, blue – avirulent cluster
B strains.

and are known inducers of PQS production [61], are not differentially abundant in
the two groups (directional fold changes +1.1 and ±1.0, corrected p-values 0.5 and
0.9, respectively). Anthranilic acid, which is closely connected to the biosynthesis of
phenazines, was also not significantly differentially abundant between our virulent and
avirulent strains (directional fold change –1.3, corrected p-value 0.4).
When only identified metabolites that are known to be virulence-associated–AQs,

DHQ, homoserine lactones, pyochelin, phenazines and rhamnolipids–are considered, a
good separation between cluster A and cluster B is still visible in the PCA scores plot
(Figure 7.4).
Figure 7.4 reveals that the metabolic profiles of one strain, F2030, differ from those

of the other strains of the virulent cluster A group. This strain produces even higher
AQ levels than the other virulent strains but displays lower levels of other virulence-
associated metabolites. Compared to the other samples of the same phenotype, F2030
sample harbour 2.1× more HHQ, 5.6× more C11-QNO and 3.6× more DHQ, but 2.2×
less C12-HSL, 20× less Rha-C10-C10 and 27× less pyocyanin. The trends for the
respective congeners are consistent.
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7.3.3. An unknown metabolite is a potential biomarker for virulent
phenotypes

In the search for classification biomarkers, the most interesting features are those that
enable a clear group separation. In the discovery data set, there were only two features
whose maximum levels in one group were lower than the minimum levels in the other
group, thus allowing for an intensity threshold for the respective features to separate
the groups completely (Figure 7.5). One is M314T14, putatively identified as C11:1-
QNO, a relatively low abundant AQ. As all other AQ congeners show overlapping levels,
M314T14 is most probably not a robust separator. The second feature, M187T6_2,
however, has a larger non-overlapping intensity space between the two groups and thus
appears to be a more promising separator. This feature exhibits a directional fold change
of +11.7 and a Benjamini-Hochberg corrected p-value of 0.003. Statistical significance
is also suggested by a p-value of 7.4× 10−12 determined by the non-parametric Mann–
Whitney U -test.
Despite considerable efforts, the identity of the feature could not be revealed by an-

notation strategies from the mixture, and efforts to purify the compound from raw
extracts failed due to its very low abundance. Nonetheless, it could be demonstrated
by means of feature credentialing [47] that the feature represents a metabolite produced
by P. aeruginosa as it incorporated 13C from 13C6-glucose if supplied to the growth
medium (Figure 7.S9) [48]. Exact m/z and isotopic pattern analysis suggested the sum
formula C12H15N2 for the positively charged ion. The MS2 spectrum of the feature
is rather uninformative due to very weak fragmentation (Figure 7.S10). However, the
most dominant fragment peaks (relative intensity compared to bas peak >5%) display
m/z ratios that support the aforementioned sum formula, with an m/z of 145.076 corre-
sponding to C9H9N2, an m/z of 144.068 to C9H8N2, and an m/z of 91.054 to C7H7 – all
possible fragments of C12H15N2. This formula is consistent with a reduced phenazine
structure, namely hexahydrophenazine. A MASST search for similar MS2 with the
same precursor in the GNPS data base [49] revealed that the feature has been detected
in three other mass spectrometry studies that examined P. aeruginosa samples or bacte-
rial samples from patients infected with CF (data sets MSV000080397, MSV000080337,
MSV000080251, and MSV000079680, accessible at https://gnps.ucsd.edu/). Al-
though none of studies found a meaningful annotation for the feature in question, its
presence in other P. aeruginosa related data sets further supports the notion that it is
an actual pseudomonal metabolite rather than an artifact.
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Figure 7.5.: Levels of the two non-overlapping features in the discovery data set. A, B: Peak
area in arbitrary units is plotted on the x-axis for the two perfectly separating fea-
tures M187T6_2 (A) and M314T14 (B). Full range of the x-axis is shown in the
top panels and an enlarged region of the lower x-axis range is depicted in the lower
panels. Non-overlapping spaces are marked by dashed lines and grey shading. The
difference between the lowest level in the virulent cluster A group und the highest level
in the avirulent cluster B group is a lot more pronounced for M187T6_2. C: Peak
area in arbitrary units is plotted on the y-axis for the two perfectly separating features
M187T6_2 and M314T14 as box plots to visualize data distribution. Red – virulent
cluster A strains, blue – avirulent cluster B strains.

The feature’s intensity levels do not correlate with those of pyocyanin or phenazine-
1-carboxylic acid and correlate only weakly or insignificantly with rhamnolipids, C12-
HSL or aromatic amino acids like phenylalanine, tryptophan or anthranilic acid. How-
ever, they do display a strong and significant correlation with AQs and pyochelin (Fig-
ure 7.S11). The strongest (positive) correlation to an annotated feature is with DHQ
(Pearson’s correlation coefficient of +0.93), suggesting a potential link to AQ biosynthe-
sis. The strongest negative correlation to an annotated feature, in turn, was observed
for adenosine, but appears uninformative with a weak Pearson’s correlation coefficient
of –0.47 despite its statistical significance.
M187T6_2 was tested as a potential marker for the differentiation of virulent and

avirulent strains using a validation data set of another 14 clinical isolates—7 virulent
and 7 avirulent, displaying the same biofilm phenotype as those in the discovery data
set—that was processed and analyzed analogously to the discovery data set. The fea-
ture corresponding to M187T6_2 in the validation set was significantly differentially
abundant between the two virulence phenotype groups with a directional fold change
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of +3.6 and a p-value of 0.005 (Welch’s t-test) and 0.002 (Mann–Whitney U -test);
however, it was unable to perfectly separate the groups (Figure 7.S12). This is in con-
cordance with higher metabolome diversity of the clinical strains (mean Shannon index
of the samples in the discovery and validation data set: 5.93 and 6.25, respectively;
p<10–17), as illustrated by a more diffuse distribution of the virulent and avirulent
strains in the PCA of the validation data set (Figure 7.S13). A univariate model using
the abundance of M187T6_2 as a separator for virulent and avirulent phenotypes yields
a fair area under the ROC curve of 0.75 (Figure 7.S14). The feature in question does
not display an intra-group correlation with the surrogate parameter used for in vivo
virulence in this study – the survival of infected Galleria mellonella larvae after 48h
(Figure 7.S15).

7.3.4. Virulent and avirulent strains with distinct biofilm phenotypes can
be differentiated based on untargeted metabolomics data by
machine learning

Since neither the single putative marker M187T6_2, nor any other metabolite could
achieve a perfect group separation in the validation set, we tested whether a multi-
metabolite classification model is able to reliably discriminate virulent and avirulent
strains with their respective biofilm phenotypes. Random forest classification was se-
lected from the plethora of machine learning classification models [62] as it does not
require data to be on the same scale, and allows for easy interpretation of the features’
contribution to the model. Random forest classification has also been shown to be
a powerful method for phenotype discrimination based on clinical metabolomics data
[63].
A random forest model was trained using the discovery data set, regarding only

features that have been found and integrated both in the validation and discovery data
set. The model is able to discriminate the groups in the discovery data set very clearly
(Figure 7.S16). Unsurprisingly, the M187T6_2 feature described above is the most
important feature in the model. Among the ten most important features were also C9-
QNO and two isomers of C9:1-HQ, placing three AQ features in the top ten of separating
markers in the model. The remaining six of the most important features could not be
identified. These include features with low m/z (M85T1_1 and M126T1_1), features
in the m/z range of AQs and other secondary metabolites (M231T7_3, M246T3_1 and
M228T12) and a slightly larger one (M464T9_3) (Figure 7.S17). In a model based only
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Figure 7.6.: ROC curve for random forest classification model based on all features (green) and on
identified features only (grey). The area under the Receiver Operation Characteristics
curve is used as a quality metric for classification models and shows a good classification
for a random forest classification model that uses all features in the data set, compared
to a slightly weaker performance for a model that only considers identified features.

on identified features, AQ congeners make up eight of the ten most important features
along with Rha-Rha-C10-C12 and pyocyanin.
The classification model was applied to the validation data set to gauge its capacity

to correctly predict virulence phenotypes from new metabolomics data obtained from
P. aeruginosa clinical strains. The model shows a good prediction performance—espe-
cially regarding the larger heterogeneity of the validation data set—as signified by
an area under the ROC curve of 0.84 (Figure 7.6). If only identified features are
regarded, the area under the ROC curve of 0.76 is still fair, but including unknown
features improves the prediction performance of the model. Remarkably, some strains
are systematically misclassified (their metabolomes do not correspond to their virulence
and biofilm phenotype in the way the classification model connects these two types of
data) (Figure 7.S18).
As the isolates of the discovery and validation data set differ in two phenotypes,

virulence and biofilm phenotype, we analysed a third group consisting of isolates that
have a virulent phenotype in the G. mellonella model but a different (cluster C) biofilm
morphology (Figure 7.S19). Applying the random forest model to this group of isolates
resulted in a true positive rate of only 47% (Figure 7.S20) suggesting that despite a
similar virulence phenotype, cluster A and cluster C isolates differ significantly in their
metabolome.
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7.4. Discussion

The present study provides evidence of systematic differences in the virulence-associated
metabolome of several clinical P. aeruginosa strains isolated from several different types
of infections in different hospitals across Europe. The metabolic profiles of virulent
and avirulent strains with cluster A and cluster B biofilm phenotypes, respectively, in
the discovery data set were sufficiently different to identify a separation between the
two groups, even with an unsupervised method such as PCA, while other strain or
cultivation-related properties were unable to separate these two groups.

Very few primary metabolites were significantly differentially abundant between the
virulent cluster A and the avirulent cluster B groups, corroborating data from previous
studies demonstrating that the primary metabolome of P. aeruginosa strongly depends
on growth conditions, and weakly on the strain or genetic background [64]. Of the
43 identified distinct primary metabolites (cf. Table 7.S8), only 11 had significantly
different levels in the two groups in the discovery data set (with an adjusted p-value
of ≤ 0.05), and only palmitoleic acid and lyso-PE-18:1 met the additional criterion of
having a fold change ≥ 1.5 or ≤ –1.5. Furthermore, the rich growth medium used in
this study may have left some anabolic pathways inactivated, potentially excluding a
group of metabolites that correlate with the virulence phenotype under different growth
conditions.
In contrast to the primary metabolome, the secondary metabolome was substantially

different between the two groups. The variance between the secondary metabolomes of
the two groups enabled a group separation based solely on the abundances of identified
virulence-associated secondary metabolites (Figure 7.4). The ability to detect all ma-
jor groups of virulence-associated secondary metabolites in P. aeruginosa in a single
LC-MS method underlines the usefulness of this technology in gauging pseudomonal vir-
ulence and its relation to metabolism. The strong upregulation of virulence-associated
metabolites is responsible for the asymmetry in the volcano plot (Figure 7.S2), that ex-
hibits a substantially larger number of upregulated features compared to downregulated
features. The most important differentially abundant secondary metabolites discovered
were AQs, which are known to regulate virulence in several ways [23]. In a recent study
using Rapid Evaporative Ionisation Mass Spectrometry to differentiate CF and non-CF
P. aeruginosa isolates, Bardin et al. identified AQs and rhamnolipids as important fea-
tures for phenotype classification, with lower AQ levels in mucoid isolates [65]; thereby
highlighting the notion that AQ profiles are an integral part of strain-specific metabolic
profiles in P. aeruginosa. The abundance of quorum sensing signaling molecules in
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clinical isolates have been investigated in depth. Despite their role in the regulation
of virulence, low to non-existant levels have been observed in infectious clinical iso-
lates [66], correlating with the low AQ levels measured in our avirulent clinical strains.
Furthermore, Davenport et al. demonstrated that roughly 1/3 of the P. aeruginosa
metabolome is linked to quorum sensing, with primary and secondary metabolite levels
affected by lack of quorum sensing signaling molecules [67]. Accordingly, AQs are among
the most relevant features of our random forest classification model that successfully
differentiates between virulent and avirulent strains.
Recent research on the CF sputum microbiome and metabolome highlights the im-

portance of AQs, rhamnolipids and phenazines in the in vivo virulence in the human
host and suggests a correlation of the abundance of these secondary metabolites and
clinical disease severity [68, 69]. In line with findings by Quinn et al. the prominent AQ
PQS was not among the most important metabolites associated with infection and vir-
ulence [68], whereas a rhamnolipid (Rha-Rha-C10-C10 in their case) was [69]. The fact
that the same molecules we identified as virulence-associated in our cultivation-based
approach or closely related ones are also connected to virulence in a clinical human
setting further supports the validity of our findings.
Furthermore, our search for discriminatory markers of virulence and biofilm pheno-

types pointed towards several features that could not be identified. Our random forest
classification model included seven ‘unknowns’ in the group of the ten most important
features. These were within a broad m/z range from 85Da to 464Da, suggesting that
they belong to different metabolite classes (Figure 7.S17).
The most important feature in our model is an ‘unknown’ feature that clearly sep-

arates the two groups in our discovery data set and performs acceptably in our vali-
dation data set. Its putative identity is speculative; a sum formula of C12H15N2 for
the cation points towards a phenazine-like structure, and the correlation with other
features suggests a link to AQ biosynthesis. However, caution needs to be taken in
the interpretation of unknowns in LC-MS metabolomics, as they may actually derive
from other metabolites or represent artifacts [70, 71] and AQ and phenazine levels are
of course not independent of each other due to multiple direct and indirect regulatory
effects [23]. The fact that an unknown P. aeruginosa metabolite is a putative virulence
biomarker demonstrates the value of studying the secondary metabolites of pathogenic
bacteria, including those produced by highly studied species. Further efforts are needed
to elucidate the structure of the feature in question and study its role in pseudomonal
virulence.
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As with any in vitro model, the work presented here comes with limitations. Quinn
et al. have shown that significant differences exist between cultured P. aeruginosa
strains and those in the host environment [68]. Important factors such as interspecies
relations [72], and the duration of infection before the sampling and isolation of the
strains [73] were outside the scope of this study. The virulence assessment in G. mel-
lonella presents an additional limitation as it might not fully reflect virulence properties
in the human host. Differences in metabolite diversity as measured by the Shannon in-
dex have been observed, but the current dataset is insufficient to conclude whether and
how strain-specific metabolite diversity is related to the virulence phenotype; this as-
pect remains to be investigated in future studies. However, the combination of known
metabolites and unannotated features in a random forest classification model achieves
an area under the ROC curve of > 0.8 for the validation data set, achieving a good dis-
crimination of virulent and avirulent P. aeruginosa strains. The model is, at present,
not suitable for virulence prediction of strains with different biofilm morphologies. The
inference of virulence phenotypes of P. aeruginosa clinical strains cannot be achieved
from genomics data alone [14], and are difficult to construe from transcriptomics data
[18, 19]. Thus, the strength of LC-MS metabolomics in classifying P. aeruginosa strains
is a logical reflection of the high relevance of secondary metabolites for infection pro-
cesses in this pathogen.

7.5. Conclusions

P. aeruginosa clinical strains with different virulence and biofilm phenotypes have dif-
ferent metabolic profiles. A large portion of these differences can be attributed to known
virulence-associated secondary metabolites; however, structurally unidentified features
are important separators and putative virulence biomarkers. Using machine learning
on the complete metabolome dataset, we obtained a classification model that differ-
entiates virulent and avirulent P. aeruginosa clinical strains with good accuracy (area
under the ROC curve of > 0.8). We have demonstrated that metabolomics can play
an important role in the discovery of reliable virulence biomarkers or biomarker panels
that are applicable in the clinic to gauge virulence and provide invaluable information
on the potential clinical course of an infection.
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Abbreviations
AQ alkyl quinolone
AUC area under the curve
CF cystic fibrosis
DHQ 2,4-dihydroxyquinoline
ESI-QTOF-MS electrospray ionisation quadrupole time-of-flight mass spectrometry
GNPS Global Natural Product Social Molecular Networking
HSL homeserine lactone
LC-MS liquid chromatography–mass spectrometry
MASST Mass Spectrometry Search Tool
m/z mass-to-charge ratio
nd not determined
nrpg normalized reads per gene
OD600 optical density at 600 nm
padj adjusted p-value
PCA principal component analysis
PE phosphatidylethanolamine
PERMANOVA Permutational multivariate analysis of variation
PQS Pseudomonas quinolone signal
QNO quinoline-N -oxide
Rha rhamnose, rhamnosyl
ROC receiver operating characteristics
VIP variable importance in projection
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Figure 7.S1.: PCA scores plot of the discovery data set. Data points are coloured according to A)
timepoint of harvest, i.e. duration of cultivation (red, 4 h; brown, 4.5 h; green, 5 h;
cyan, 5.5 h; blue, 6 h; pink, 6.5 h), and B) geographical origin of the sample (red,
Berlin (Germany); brown, Frankfurt am Main (Germany); green, Görlitz (Germany);
blue, Hannover (Germany); pink, Palma de Mallorca (Spain)). No separation or
grouping according to timepoint of harvest or geographical origin of the sample can
be observed.
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Figure 7.S2.: Volcano plot of the discovery data set. All features were plotted with the binary log-
arithm of their (non-directional) fold change on the x-axis and the negative decadic
logarithm of their corrected p-value on the y-axis. Thresholds for significantly differ-
entially abundant features are indicated by dashed lines (fold change ≥ 1.5, corrected
p-value ≤ 0.05) and data points were colour coded according to these thresholds
(green – significantly differentially abundant features, grey – other features). Di-
amonds signify identified features whereas unknowns are indicated by crosses. It
is apparent that the majority of significantly differentially abundant features have
higher levels in the virulent cluster A group which is consistent with the high number
of virulence-associated secondary metabolites in the data set.
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Figure 7.S3.: PCA scores plot with only annotated features considered in the analysis. The plot
was generated analogously to Figure 1 in the main text. It suggests that the overall
group separation is maintained if unknown features are ignored, indicating that the
main drivers of separation or features correlated to them have been annotated. Red
– virulent cluster A strains, blue – avirulent cluster B strains.
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Figure 7.S4.: PCA loadings plot of the discovery data set. Green points symbolize annotated
features and grey points features that could not be annotated. Most features with
high loadings, i.e. a strong contribution to the first two principal components, have
been annotated.

274



7

Supporting Information

CH2690
CH2860

CH4528

ESP046

ESP058

ESP067
ESP088

F1997

F2030

MHH16798

MHH17704

PSAE1439

ZG302383ZG8038581181

CH2682

CH4681

ESP027F1764F1959

F2020

F2165

F2166F2224 MHH16050

MHH16563

MHH17546
MHH17767

PSAE1837

−40

0

40

80

−40 −20 0 20
PC1: 17.8 % variation explained

P
C

2:
 1

5.
9 

%
 v

ar
ia

tio
n 

ex
pl

ai
ne

d

Figure 7.S5.: Transcriptional profiles reveal no gene expression pattern associated with the vir-
ulence phenotype. The principal component analysis (PCA) plot of transcriptional
profiles recorded for clinical isolates grown under planktonic conditions does not clus-
ter according to the observed in vivo virulence phenotype in the G. mellonella infection
model. Each data point represents the transcriptional profile of an individual clinical
isolate. Red – virulent cluster A strains, blue – avirulent cluster B strains.
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Figure 7.S6.: Levels of the two phenazines pyocyanin and phenazine-1-carboxylic acid, in the
different strains of the discovery data set. Box plots of the peak areas in arbitrary units
in the two phenotypic groups (A). A section of the y-scale with logarithmic scaling
is shown to better visualize group differences (B). Both phenazine-1-carboxylic acid
and pyocyanin have higher levels in the virulent strains, although there is significant
overlap and both groups harbor one high producer strain each. Red – virulent cluster
A strains, blue – avirulent cluster B strains.
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Figure 7.S7.: Rhamnolipid levels in the different strains of the discovery data set. Box plots of the
peak areas of four annotated rhamnolipids in arbitrary units in the two phenotypic
groups. Red – virulent cluster A strains, blue – avirulent cluster B strains.
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Figure 7.S9.: Credentialed peak pair of M187T6_2 and its 13C-labeled derivative. Magnified sec-
tion of a full scan MS spectrum with the peak corresponding to M187T6_2 marked
in green and the one corresponding to its 13C-labeled derivative marked in yellow.
The measured m/z difference of 12.0395 is in accordance with the expected m/z dif-
ference between C12H15N2

+ (the assumed formula of M187T6_2) and 13C12H15N2
+

(theoretical m/z difference 12.0403). The incorporation of stable isotope labeled
carbon from 13C6-glucose in the growth medium provides evidence that the feature
is a metabolite of biological origin rather than an artifact. The figure was adapted
from [1].
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Figure 7.S10.: Full scan and MS2 spectrum of the feaure M187T6_2 in the discovery data set. A:
Full scan MS spectrum of the fullm/z range from 0 to 1000. B: Same as A magnified
to the relevant m/z range from 150 to 300. C: MS2 spectrum of the 187.123 ion
of M187T6_2. Peaks for the 187.123 ion are marked in green. The M187T6_2
feature displays a low abundance and its MS2 spectrum is rather uninformative as
the ion hardly shows fragmentation.
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Figure 7.S11.: Pearson’s correlation of selected feature intensities to those of M187T6_2. The
peak area in arbitrary units of the feature M187T6_2 is plotted on the x-axis and
the peak area of the respective metabolite in the sub-diagram title on the y-axis.
Each data point corresponds to a biological replicate of a strain in the discovery
data set. Pearson’s correlation coefficient between the two respective peak areas is
inserted as text in each sub-diagram with asterisks denoting statistical significance
of the correlation (***, p-value≤ 0.001; **, p-value≤ 0.01; *, p-value≤ 0.05; no
asterisk, p-value>0.05). Significant and strongly positive correlations can be found
with AQs and the related DHQ as well as with pyochelin.
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Figure 7.S12.: Boxplots of feature intensities for M187T6_2 in the discovery and validation data
set. Due to automatic naming of the features during preprocessing by XCMS on-
line, the respective feature has the identifier M187T7_1 in the validation data set.
Peak areas in arbitrary units are used as a metric for the metabolite levels. While
M187T6_2 is a perfect separator in the discovery data set, there is some overlap
in the validation data set, i. e. the highest levels in the avirulent group exceed
the lowest levels in the virulent group. The abundances in virulent cluster A and
avirulent cluster B strains are significantly different. Red – virulent cluster A strains,
blue – avirulent cluster B strains.
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Figure 7.S13.: PCA scores plot of the validation data set. The plot was generated analogously to
Figure 1 in the main text. Group separation appears to be weaker in the validation
data set but is still possible. Red – virulent cluster A strains, blue – avirulent cluster
B strains.
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Figure 7.S14.: Area under the ROC curve for a logistic regression model using the feature intensity
of M187T6_2 to discriminate virulence phenotypes in the validation data set. The
Receiver Operating Characteristics curve was generated analogously to Figure 5 in
the main text. An AUC of 0.75 signifies a decent classification performance, but is
not sufficient for reliable differentiation of the phenotypes.
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Figure 7.S15.: Intra-group correlation of M187T6_2 with 48h survival in the Galleria mellonella
assay. The peak area in arbitrary units of M187T6_2 was plotted against the 48h
survival in the Galleria mellonella assay. No clear correlation between the abundance
of the candidate marker and the extent of virulence in the model could be identified.
Red – virulent cluster A strains, blue – avirulent cluster B strains.
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Figure 7.S16.: Multidimensional scaling plot visualizing tree distances between the samples of the
discovery data set. Red – virulent cluster A strains, blue – avirulent cluster B strains.
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Figure 7.S17.: Variable importance plot displaying mean decrease in accuracy and mean decrease in
impurity (Gini impurity) of the random forest model constructed from the discovery
data set. The ten most important features are shown (identifiers are from the
discovery data set): F0142 = M187T6_2, F0163 = M231T7_3, F0126 = C9-
QNO, F0002 = M85T1_1, F0007 = C9:1-HQ, F0001 = M126T1_1, F0415 =
M464T9_3, F0008 = C9:1-HQ , F0004 = M246T3_1, F0227 = M228T12.
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Figure 7.S18.: Percentage of correctly predicted virulence phenotype in the validation set if run
100 times independently. While eight strains are reliably assigned to the correct
phenotype, three strains appear to be systematically misclassified. Red – virulent
cluster A strains, blue – avirulent cluster B strains.
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Figure 7.S19.: PCA scores plot of the cluster C data set. The plot was generated analogously to
Figure 1 in the main text.
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Figure 7.S20.: Percentage of correctly predicted virulence phenotype in the validation set if run
100 times independently (cf. Figure 7.S18). Only three out of seven strains are
reliably assigned to the correct virulence phenotype if the biofilm phenotype differs
from those in the discovery data set.
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Table 7.S1.: Harvesting data for discovery batch. Each strain was cultivated in three biological
replicates and the biomass of all three replicates was harvested at an OD600 of approx-
imately 2. The exact OD600 and the timepoint of harvesting in hours after the start
of cultivation is for each strain and replicate.

strain OD600 at harvesting for individual replicates timepoint/h
A B C

CH2860 2.22 2.16 2.12 4.0
CH4528 1.71 1.76 1.52 6.5
ESP046 2.08 2.00 2.29 4.0
ESP088 2.01 1.88 1.84 6.5
F2030 2.05 2.08 1.99 6.5
MHH16798 2.01 1.84 2.10 4.5
ZG302383 1.95 1.99 1.94 4.5
CH2682 2.00 2.07 2.18 4.5
ESP027 2.42 2.23 2.33 6.0
F1959 2.10 1.85 1.98 4.5
F2165 2.85 2.16 2.39 5.0
F2166 2.04 2.50 2.58 6.0
F2224 2.33 2.32 2.25 5.0
MHH17767 1.68 1.77 2.45 5.5
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Table 7.S2.: Harvesting data for the validation batch. The table is analogous to Table 7.S1.

strain OD600 at harvesting for individual replicates timepoint/h
A B C

CH2690 1.88 1.73 1.74 5.5
ESP058 1.90 2.08 1.84 6.5
ESP067 1.83 2.01 1.87 5.5
F1997 1.99 1.98 1.78 6.5
MHH17704 1.88 1.86 2.05 6.0
Psae1439 1.91 1.70 1.90 5.0
ZG8038581181 1.93 2.02 1.84 5.5
CH4681 2.13 2.00 1.87 5.0
F1764 2.05 1.85 2.07 6.5
F2020 2.50 1.28 1.46 5.0
MHH16050 2.03 2.00 2.40 6.0
MHH16563 1.64 1.58 1.60 7.5
MHH17546 2.22 1.92 1.96 7.0
Psae1837 1.82 1.95 1.69 5.5

Table 7.S3.: Harvesting data for the additional batch. The table is analogous to Table 7.S1.

strain OD600 at harvesting for individual replicates timepoint/h
A B C

CH2706 1.89 2.07 2.33 4.0
CH4591 1.92 1.98 2.56 4.0
ESP083 1.79 2.06 1.69 4.0
F1864 1.60 2.12 1.94 4.5
F2059 0.85 1.22 2.30 4.5
ZG316717 1.73 2.04 2.11 5.5
ZG8510487 2.40 2.36 2.49 4.5
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Table 7.S4.: Metabolite identifications. Annotated features in the discovery data set as identified by their median m/z and median retention time. All
annotations are assigned to a metabolite or metabolite class. The identification level is given according to the Metabolomics Standards
Initiative [2]: 1, identified by comparison of at least two orthogonal characteristics to an authentic standard; 2, annotated as a distinct
compound by comparison with a compound database or the scientific literature; 3, annotated as member of a distinct compound class.
The last column states by the use of which properties the compound was identified/annotated: RT, retention time; MS, full scan MS
spectrum (exact m/z, (in-source) fragmentation, isotopic pattern); MSMS, tandem MS fragmentation pattern.

Identifier in
the discovery
data set

Median
m/z

Median
retention
time [min]

Annotation Metabolite Comment Identification
Level

Identified by

M112T1_4 112.1118 0.96 spermidine (fragment) (I) spermidine (in-source) fragment 1 RT, MS, MSMS
M129T1_4 129.1385 0.96 spermidine (fragment)

(II)
spermidine (in-source) fragment 1 RT, MS, MSMS

M146T1_5 146.1651 0.98 spermidine spermidine 1 RT, MS, MSMS
M89T1 89.1071 0.98 putrescine putrescine 1 RT, MS
M175T1_6 175.1190 1.09 arginine arginine 1 RT, MS, MSMS
M156T1_5 156.0766 1.10 histidine histidine 1 RT, MS
M130T1_4 130.0497 1.12 5-oxoproline (I) 5-oxoproline 1 RT, MS, MSMS
M104T1_3 104.1070 1.12 choline choline 1 RT, MS, MSMS
M148T1_2 148.0604 1.13 glutamic acid glutamic acid 1 RT, MS, MSMS
M176T1_2 176.1031 1.14 citrullline citrullline 1 RT, MS, MSMS
M365T1_4 365.1057 1.14 sugar undetermined sugar various possibilities 3 MS, MSMS
M191T1_5 191.1017 1.18 2,6-diaminoheptanedioic

acid
2,6-diaminoheptanedioic
acid

1 RT, MS

M116T1_3 116.0705 1.18 proline (I) proline 1 RT, MS
M219T1_4 219.0975 1.19 Glu Ala Glu Ala 2 MS, MSMS
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M147T1_3 147.1126 1.26 lysine lysine 1 RT, MS
M146T1_3 146.0921 1.34 4-guanidinobutyric acid 4-guanidinobutyric acid 1 RT, MS
M535T1_2 535.1880 1.34 Glu Glu Glu Glu (I) Glu Glu Glu Glu 2 MS, MSMS
M106T1 106.0489 1.34 serine serine 1 RT, MS
M124T1_2 124.0391 1.34 nicotinic acid (I) nicotinic acid 1 RT, MS
M136T1_3 136.0615 1.34 adenine adenine 1 RT, MS
M308T1_2 308.0906 1.35 glutathione glutathione double positive charge 1 RT, MS
M130T1_5 130.0499 1.36 5-oxoproline (II) 5-oxoproline 1 RT, MS, MSMS
M123T1_3 123.0550 1.36 nicotinamide (I) nicotinamide 2 MS, MSMS
M137T1_2 137.0456 1.37 hypoxanthine (I) hypoxanthine 1 RT, MS
M124T2_1 124.0390 1.54 nicotinic acid (II) nicotinic acid 1 RT, MS
M190T2_1 190.0707 1.59 N-acetylglutamate N-acetylglutamate 2 MS, MSMS
M116T2 116.0703 1.61 proline (II) proline 1 RT, MS
M123T2_2 123.0548 1.65 nicotinamide (II) nicotinamide 2 MS, MSMS
M118T2 118.0860 1.66 betaine betaine 1 RT, MS, MSMS
M130T2 130.0498 1.67 5-oxoproline (III) 5-oxoproline 1 RT, MS, MSMS
M169T2 169.0353 1.68 uric acid uric acid 1 RT, MS
M333T2_1 332.5617 1.76 NAD (2+) NAD double positive charge 2 MS, MSMS
M153T2_2 153.0403 1.77 xanthine (I) xanthine 1 RT, MS
M664T2 664.1162 1.77 NAD NAD 2 MS, MSMS
M137T2_1 137.0456 1.79 hypoxanthine (II) hypoxanthine 1 RT, MS
M535T2 535.1877 1.81 Glu Glu Glu Glu (II) Glu Glu Glu Glu 2 MS, MSMS
M348T2_1 348.0699 1.88 adenosine-5’-

monophosphate
adenosine-5’-
monophosphate

1 RT, MS, MSMS
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Identifier in
the discovery
data set

Median
m/z

Median
retention
time [min]

Annotation Metabolite Comment Identification
Level

Identified by

M132T2_2 132.1019 1.88 Leucine / Isoleucine /
Norleucine

Leucine / Isoleucine /
Norleucine

the three species
could not be
distinguished in the
experimental setting

3 RT, MS, MSMS

M364T2 364.0649 2.02 guanosine-5’-
monophosphate

guanosine-5’-
monophosphate

1 RT, MS

M330T2_1 330.0595 2.03 adenosine-2’,3’-cyclic
monophosphate

adenosine-2’,3’-cyclic
monophosphate

1 RT, MS

M153T2_1 153.0404 2.04 xanthine (II) xanthine 1 RT, MS
M164T2 164.0562 2.33 pterine pterine 2 MS, MSMS
M268T3_1 268.1041 2.68 adenosine adenosine 1 RT, MS, MSMS
M137T3_2 137.0456 2.74 hypoxanthine (III) hypoxanthine 1 RT, MS
M140T3 140.0341 2.82 6-hydroxynicotinic acid 6-hydroxynicotinic acid 1 RT, MS
M182T3_2 182.0809 2.98 tyrosine tyrosine 1 RT, MS, MSMS
M166T3_1 166.0862 3.46 phenylalanine phenylalanine 1 RT, MS, MSMS
M120T3_2 120.0807 3.46 phenylalanine (fragment)

(I)
phenylalanine (in-source) fragment 1 RT, MS, MSMS

M103T3 103.0542 3.46 phenylalanine (fragment)
(III)

phenylalanine (in-source) fragment 1 RT, MS, MSMS

M219T5 219.1337 5.24 Ser Leu Ser Leu 2 MS, MSMS
M220T5_2 220.1179 5.28 D-pantothenic acid D-pantothenic acid 1 RT, MS, MSMS
M598T5_1 597.6777 5.44 UDP-muramyl-

pentapeptide
UDP-muramyl-
pentapeptide

2 MS, MSMS

M360T6_6 360.2127 5.68 Ile Val Glu / Val Ile Glu
(I)

Ile Val Glu / Val Ile Glu possibly structural
isomer

3 MS, MSMS
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M188T6_2 188.0707 5.93 tryptophan (fragment) (I) tryptophan 1 RT, MS
M205T6_1 205.0972 5.93 tryptophan tryptophan 1 RT, MS
M160T6_1 160.0754 5.93 indole-3-acetaldehyde indole-3-acetaldehyde 1 RT, MS
M144T6_3 144.0807 5.93 tryptamine (I) tryptamine 1 RT, MS
M298T6_4 298.0968 6.26 5’-methylthioadenosine 5’-methylthioadenosine 1 RT, MS, MSMS
M211T6_3 211.0865 6.30 pyocyanin pyocyanin 1 RT, MS, MSMS
M188T6_1 188.0703 6.35 tryptophan (fragment)

(II)
tryptophan 1 RT, MS

M360T6_7 360.2123 6.36 Ile Val Glu / Val Ile Glu
(II)

Ile Val Glu / Val Ile Glu possibly structural
isomer

3 MS, MSMS

M378T7_3 378.2023 6.56 Pro Tyr Val Pro Tyr Val 2 MS, MSMS
M295T7_4 295.1290 6.56 Glu Phe Glu Phe 2 MS, MSMS
M144T7_1 144.0806 6.71 tryptamine (II) tryptamine 1 RT, MS
M328T7_7 328.2233 6.81 Pro Leu Val (I) Pro Leu Val 2 MS, MSMS
M263T7_2 263.1389 7.01 Pro Phe (I) Pro Phe 2 MS, MSMS
M138T7 138.0548 7.09 anthranilic acid anthranilic acid 1 RT, MS
M120T7 120.0444 7.09 anthranilic acid

(fragment)
anthranilic acid (in-source) fragment 1 RT, MS

M328T7_8 328.2233 7.24 Pro Leu Val (II) Pro Leu Val 2 MS, MSMS
M263T7_3 263.1385 7.29 Pro Phe (II) Pro Phe 2 MS, MSMS
M342T8_7 342.2389 7.79 Pro Ile Leu or isomer Pro Ile Leu or isomer possibly structural

isomer
3 MS, MSMS

M344T8_10 344.2540 8.21 Leu Leu Val or isomer Leu Leu Val or isomer possibly structural
isomer

3 MS, MSMS

M162T8 162.0550 8.35 DHQ DHQ 1 RT, MS, MSMS
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m/z

Median
retention
time [min]

Annotation Metabolite Comment Identification
Level

Identified by

M243T9_3 243.0875 9.19 lumichrome lumichrome possible riboflavin
fragment

2 MS, MSMS

M216T11 216.1382 11.04 C5-HQ C5-HQ 2 MS, MSMS
M232T11 232.1330 11.30 C5-QNO C5-QNO 2 MS, MSMS
M225T11 225.0658 11.45 phenazin-1-carboxylic

acid
phenazin-1-carboxylic
acid

1 RT, MS, MSMS

M325T12_2 325.0674 11.69 pyochelin (I) pyochelin 1 RT, MS, MSMS
M230T12 230.1537 12.10 C6-HQ C6-HQ 2 MS, MSMS
M325T12_1 325.0672 12.34 pyochelin (II) pyochelin 1 RT, MS, MSMS
M288T13 288.1959 12.66 C9-QNO (I) C9-QNO 2 MS, MSMS
M258T13 258.1487 12.70 C7:1-QNO C7:1-QNO 2 MS, MSMS
M242T13 242.1541 13.05 C7:1-HQ C7:1-HQ 2 MS, MSMS
M244T13_1 244.1697 13.10 HHQ HHQ 1 RT, MS, MSMS
M286T13 286.1798 13.11 C9:1-QNO (I) C9:1-QNO 2 MS, MSMS
M159T13 159.0676 13.11 HHQ (fragment) HHQ (in-source) fragment 1 RT, MS, MSMS
M260T13 260.1647 13.18 C7-QNO C7-QNO 1 RT, MS, MSMS
M314T14 314.2112 13.64 C11:1-QNO C11:1-QNO 2 MS, MSMS
M256T14 256.1695 14.01 C8:1-HQ C8:1-HQ 2 MS, MSMS
M258T14 258.1854 14.04 C8-HQ C8-HQ 2 MS, MSMS
M274T14 274.1800 14.06 C8-QNO C8-QNO 2 MS, MSMS
M286T14 286.1802 14.24 C9:1-QNO (II) C9:1-QNO 2 MS, MSMS
M320T14 320.1833 14.28 C12-HSL C12-HSL 1 RT, MS, MSMS
M270T14 270.1854 14.33 C9:1-HQ (I) C9:1-HQ 2 MS, MSMS
M316T14 316.2268 14.40 C11-QNO C11-QNO 2 MS, MSMS
M268T14 268.1694 14.43 C9:2-HQ C9:2-HQ 2 MS, MSMS
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M270T15_2 270.1854 14.57 C9:1-HQ (II) C9:1-HQ 2 MS, MSMS
M300T15_1 300.1955 14.74 C10:1-QNO (I) C10:1-QNO 2 MS, MSMS
M284T15 284.2008 14.86 C10:1-HQ (I) C10:1-HQ 2 MS, MSMS
M288T15 288.1960 14.92 C9-QNO (II) C9-QNO 2 MS, MSMS
M270T15_1 270.1855 14.94 C9:1-HQ (III) C9:1-HQ 2 MS, MSMS
M272T15_2 272.2012 14.96 C9-HQ C9-HQ 2 MS, MSMS
M300T15_2 300.1956 15.27 C10:1-QNO (II) C10:1-QNO 2 MS, MSMS
M296T16_2 296.2009 15.51 C11:2-HQ (I) C11:2-HQ 2 MS, MSMS
M314T16_1 314.2116 15.57 C11:1-PQS (I) C11:1-PQS 2 MS, MSMS
M298T16_1 298.2167 15.61 C11:1-HQ (I) C11:1-HQ 2 MS, MSMS
M284T16 284.2009 15.67 C10:1-HQ (II) C10:1-HQ 2 MS, MSMS
M302T16 302.2113 15.76 C10-QNO C10-QNO 2 MS, MSMS
M296T16_1 296.2010 15.80 C11:2-HQ (II) C11:2-HQ 2 MS, MSMS
M314T16_3 314.2113 15.84 C11:1-PQS (II) C11:1-PQS 2 MS, MSMS
M286T16 286.2166 15.84 C10-HQ C10-HQ 2 MS, MSMS
M298T16_2 298.2166 15.90 C11:1-HQ (II) C11:1-HQ 2 MS, MSMS
M673T16 673.3766 15.91 Rha-Rha-C10-C10+Na Rha-Rha-C10-C10 Na adduct 2 MS, MSMS
M454T16_2 454.2929 16.06 PE(16:0/0:0) (I) PE(16:0/0:0) 1 RT, MS, MSMS
M314T16_2 314.2116 16.12 C11:1-PQS (III) C11:1-PQS 2 MS, MSMS
M298T16_3 298.2166 16.32 C11:1-HQ (III) C11:1-HQ 2 MS, MSMS
M328T16 328.2269 16.38 C12:1-QNO C12:1-QNO 2 MS, MSMS
M454T16_1 454.2930 16.41 PE(16:0/0:0) (II) PE(16:0/0:0) 1 RT, MS, MSMS
M312T16 312.2321 16.47 C12:1-HQ C12:1-HQ 2 MS, MSMS
M316T17 316.2273 16.64 C11-PQS C11-PQS 2 MS, MSMS
M298T17_1 298.2167 16.74 C11:1-HQ (IV) C11:1-HQ 2 MS, MSMS
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Median
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time [min]

Annotation Metabolite Comment Identification
Level

Identified by

M300T17 300.2323 16.75 C11-HQ C11-HQ 2 MS, MSMS
M527T17 527.3190 16.76 Rha-C10-C10+Na Rha-C10-C10 Na adduct 2 MS, MSMS
M480T17 480.3087 16.76 PE(18:1/0:0) PE(18:1/0:0) 1 RT, MS, MSMS
M502T17 502.2904 16.76 PE(18:1/0:0) +Na PE(18:1/0:0) Na adduct 1 RT, MS, MSMS
M342T17 342.2429 17.06 C13:1-PQS C13:1-PQS 2 MS, MSMS
M326T17_1 326.2480 17.17 C13:1-HQ (I) C13:1-HQ 2 MS, MSMS
M701T17 701.4080 17.29 Rha-Rha-C10-C12+Na Rha-Rha-C10-C12 Na adduct 2 MS, MSMS
M326T17_2 326.2475 17.41 C13:1-HQ (II) C13:1-HQ 2 MS, MSMS
M555T18 555.3506 18.17 Rha-C10-C12+Na Rha-C10-C12 Na adduct 2 MS, MSMS
M326T18 326.2477 18.49 C13:1-HQ (III) C13:1-HQ 2 MS, MSMS
M328T19 328.2635 18.51 C13-HQ C13-HQ 2 MS, MSMS
M255T19 255.2316 18.60 palmitoleic acid palmitoleic acid 1 RT, MS
M260T20 260.1646 19.93 PQS PQS 1 MS, MSMS
M327T20 327.2269 19.93 oleic acid oleic acid 1 RT, MS
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Table 7.S5.: XCMS online parameters. The LC-MS data set was (pre-)processed using XCMS online
[3]. The parameters were chosen to fit the analytical machinery used to generate the
data and partly modified on an empirical basis.

preprocessing step parameter value explanation
feature detection method centWave peak finding algorithm based on

continuous wavelet transformation
ppm 15 allowable m/z deviation in consecutive

scans, expressed in parts per million
minimum peak width 10.9 chromatographic peak widths in s
maximum peak width 31.12
signal/noise threshold 10 minimum signal-to-noise ratio
mzdiff 0.0155 minimum absolute m/z difference for

overlapping chromatographic peaks
integration method 1 based on Mexican hat filtered data
prefilter peaks 3 minimum number of peaks with at least

“prefilter intensity” to be retained after
prefiltering

prefilter intensity 100 minimum intensity of “prefilter peaks”
(see above)

noise filter 0 not necessary for centroided data
retention time correction method obiwarp chromatographic alignment by “Ordered

Bijective Interpolated Warping”
profStep 1 m/z step size for profile generation

alignment mzwid 0.026 m/z width of overlapping m/z slices used
to group peaks across samples

bw 5 maximum deviation of retention times in s
minfrac 1 fraction of samples of one of the sample

groups that have to display a group for it
to be valid

minsamp 1 number of samples of one of the sample
groups that have to display a group for it
to be valid

max 50 upper threshold for the number of groups
in one m/z slice

annotation search for isotopes
+
adducts

CAMERA considers both isotope peaks
and possible adducts

ppm 5 allowable relative m/z deviation between
detected and expected peak, expressed in
parts per million

m/z absolute error 0.015 allowable absolute m/z deviation between
detected and expected peak
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Table 7.S6.: Transcriptomic fold changes of proteins associated with phenazine production. Most
phenazine biosynthesis enzymes are significantly upregulated in virulent strains.

PA14 ID Gene
name

Product log2(fold
change)

adjusted
p-value

PA14_09400 phzS hypothetical protein 2.59 0.0170
PA14_09410 phzG1 pyrodoxamine 5’-phosphate oxidase 2.33 0.0274
PA14_09420 phzF1 phenazine biosynthesis protein 2.47 0.0216
PA14_09440 phzE1 phenazine biosynthesis protein PhzE 2.32 0.0338
PA14_09450 phzD1 phenazine biosynthesis protein PhzD 2.68 0.0503
PA14_09460 phzC1 phenazine biosynthesis protein PhzC 2.96 0.0105
PA14_09470 phzB1 phenazine biosynthesis protein 2.46 0.1104
PA14_09480 phzA1 phenazine biosynthesis protein 4.04 0.0001
PA14_09490 phzM putative phenazine-specific methyltransferase 1.37 0.2548
PA14_39880 phzG2 pyridoxamine 5’-phosphate oxidase 2.33 0.0326
PA14_39890 phzF2 phenazine biosynthesis protein 2.56 0.0156
PA14_39910 phzE2 phenazine biosynthesis protein PhzE 2.36 0.0373
PA14_39925 phzD2 phenazine biosynthesis protein PhzD 2.31 0.0772
PA14_39945 phzC2 phenazine biosynthesis protein PhzC 2.68 0.0242
PA14_39960 phzB2 phenazine biosynthesis protein 3.22 0.0002
PA14_39970 phzA2 phenazine biosynthesis protein 3.47 0.0007
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Table 7.S7.: Transcriptomic fold changes of proteins associated with pyochelin, rhamnolipid and
alkylquinolone production. While corresponding metabolites are significantly more
abundant in virulent strains, this difference is not reflected in the transcriptome data.

PA14 ID Gene
name

Product log2(fold
change)

adjusted
p-value

PA14_09210 pchA salicylate biosynthesis isochorismate synthase 1.08 0.3191
PA14_09220 pchB isochorismate-pyruvate lyase 1.43 0.1719
PA14_09230 pchC pyochelin biosynthetic protein PchC 1.31 0.2339
PA14_09240 pchD pyochelin biosynthesis protein PchD 1.22 0.2412
PA14_09270 pchE dihydroaeruginoic acid synthetase 1.50 0.1283
PA14_09280 pchF pyochelin synthetase 1.24 0.2170
PA14_09290 pchG pyochelin biosynthetic protein PchG 1.07 0.3105
PA14_09300 pchH putative ATP-binding component of ABC transporter 1.16 0.2256
PA14_09320 pchI putative ATP-binding component of ABC transporter 1.11 0.2530
PA14_09700 pqsL putative monooxygenase 0.81 0.2270
PA14_19100 rhlA rhamnosyltransferase chain A 1.54 0.2571
PA14_19110 rhlB rhamnosyltransferase chain B 1.41 0.1992
PA14_19120 rhlR transcriptional regulator RhlR 0.84 0.4892
PA14_19130 rhlI autoinducer synthesis protein RhlI 0.79 0.6093
PA14_30630 pqsH putative FAD-dependent monooxygenase 0.86 0.4270
PA14_49760 rhlC rhamnosyltransferase 2 1.23 0.0833
PA14_51340 mvfR Transcriptional regulator MvfR 0.55 0.2235
PA14_51350 phnB anthranilate synthase component II 1.16 0.2558
PA14_51360 phnA anthranilate synthase component I 1.45 0.1544
PA14_51380 pqsE Quinolone signal response protein 1.10 0.3316
PA14_51390 pqsD 3-oxoacyl-(acyl carrier protein) synthase III 1.18 0.3168
PA14_51410 pqsC PqsC 1.16 0.3356
PA14_51420 pqsB PqsB 0.99 0.4767
PA14_51430 pqsA coenzyme A ligase 1.37 0.2418
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Table 7.S8.: Primary metabolites annotated in this study (cf. Table 7.S4). Directional fold change and corrected p-value refer to the difference in
abundance between virulent cluster A and avirulent cluster B isolates in the discovery data set.

Identifier in the
discovery data
set

Median
m/z

Median
retention time
[min]

Directional
fold
change

Corrected
p-value

Annotation Metabolite

M191T1_5 191.1017 1.18 1.04 0.862 2,6-diaminoheptanedioic
acid

2,6-diaminoheptanedioic
acid

M146T1_3 146.0921 1.34 −1.26 0.423 4-guanidinobutyric acid 4-guanidinobutyric acid
M298T6_4 298.0968 6.26 −2.89 0.148 5’-methylthioadenosine 5’-methylthioadenosine
M130T1_4 130.0497 1.12 −1.11 0.643 5-oxoproline (I) 5-oxoproline
M130T1_5 130.0499 1.36 1.08 0.756 5-oxoproline (II) 5-oxoproline
M130T2 130.0498 1.67 1.12 0.646 5-oxoproline (III) 5-oxoproline
M140T3 140.0341 2.82 1.37 0.013 6-hydroxynicotinic acid 6-hydroxynicotinic acid
M136T1_3 136.0615 1.34 1.06 0.847 adenine adenine
M268T3_1 268.1041 2.68 −1.41 0.297 adenosine adenosine
M330T2_1 330.0595 2.03 1.23 0.040 adenosine-2’,3’-cyclic

monophosphate
adenosine-2’,3’-cyclic
monophosphate

M348T2_1 348.0699 1.88 −1.17 0.674 adenosine-5’-
monophosphate

adenosine-5’-
monophosphate

M138T7 138.0548 7.09 −1.33 0.390 anthranilic acid anthranilic acid
M120T7 120.0444 7.09 −1.32 0.398 anthranilic acid (fragment) anthranilic acid
M175T1_6 175.1190 1.09 1.21 0.578 arginine arginine
M118T2 118.0860 1.66 1.19 0.206 betaine betaine
M104T1_3 104.1070 1.12 −1.41 0.010 choline choline
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Identifier in the
discovery data
set

Median
m/z

Median
retention time
[min]

Directional
fold
change

Corrected
p-value

Annotation Metabolite

M176T1_2 176.1031 1.14 −1.44 0.179 citrullline citrullline
M220T5_2 220.1179 5.28 1.28 0.009 D-pantothenic acid D-pantothenic acid
M148T1_2 148.0604 1.13 −1.14 0.598 glutamic acid glutamic acid
M308T1_2 308.0906 1.35 1.20 0.265 glutathione glutathione
M364T2 364.0649 2.02 1.19 0.063 guanosine-5’-

monophosphate
guanosine-5’-
monophosphate

M156T1_5 156.0766 1.10 −1.06 0.516 histidine histidine
M137T1_2 137.0456 1.37 1.52 0.125 hypoxanthine (I) hypoxanthine
M137T2_1 137.0456 1.79 1.45 0.153 hypoxanthine (II) hypoxanthine
M137T3_2 137.0456 2.74 1.15 0.840 hypoxanthine (III) hypoxanthine
M160T6_1 160.0754 5.93 1.06 0.527 indole-3-acetaldehyde indole-3-acetaldehyde
M132T2_2 132.1019 1.88 1.20 0.041 Leucine / Isoleucine / Nor-

leucine
Leucine / Isoleucine / Nor-
leucine

M243T9_3 243.0875 9.19 1.27 0.003 lumichrome lumichrome
M147T1_3 147.1126 1.26 1.16 0.098 lysine lysine
M190T2_1 190.0707 1.59 −1.16 0.444 N-acetylglutamate N-acetylglutamate
M664T2 664.1162 1.77 1.13 0.178 NAD NAD
M333T2_1 332.5617 1.76 1.14 0.225 NAD (2+) NAD (2+)
M123T1_3 123.0550 1.36 1.07 0.455 nicotinamide (I) nicotinamide
M123T2_2 123.0548 1.65 1.12 0.495 nicotinamide (II) nicotinamide
M124T1_2 124.0391 1.34 −1.13 0.735 nicotinic acid (I) nicotinamide
M124T2_1 124.0390 1.54 −1.08 0.834 nicotinic acid (II) nicotinamide
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Identifier in the
discovery data
set

Median
m/z

Median
retention time
[min]

Directional
fold
change

Corrected
p-value

Annotation Metabolite

M327T20 327.2269 19.93 −1.32 0.040 oleic acid oleic acid
M255T19 255.2316 18.60 −1.92 0.006 palmitoleic acid palmitoleic acid
M454T16_2 454.2929 16.06 1.01 0.910 PE(16:0/0:0) (I) PE(16:0/0:0)
M454T16_1 454.2930 16.41 −1.31 0.025 PE(16:0/0:0) (II) PE(16:0/0:0)
M480T17 480.3087 16.76 −1.62 0.006 PE(18:1/0:0) PE(18:1/0:0)
M502T17 502.2904 16.76 −1.62 0.004 PE(18:1/0:0) +Na PE(18:1/0:0)
M166T3_1 166.0862 3.46 1.02 0.904 phenylalanine phenylalanine
M120T3_2 120.0807 3.46 1.02 0.899 phenylalanine (fragment)

(I)
phenylalanine

M103T3 103.0542 3.46 1.02 0.918 phenylalanine (fragment)
(III)

phenylalanine

M116T1_3 116.0705 1.18 −1.00 0.969 proline (I) proline
M116T2 116.0703 1.61 1.03 0.867 proline (II) proline
M89T1 89.1071 0.98 −1.02 0.939 putrescine putrescine
M106T1 106.0489 1.34 1.16 0.238 serine serine
M146T1_5 146.1651 0.98 1.20 0.105 spermidine spermidine
M112T1_4 112.1118 0.96 1.18 0.232 spermidine (fragment) (I) spermidine
M129T1_4 129.1385 0.96 1.18 0.216 spermidine (fragment) (II) spermidine
M365T1_4 365.1057 1.14 1.18 0.057 sugar unidentified sugar
M144T6_3 144.0807 5.93 1.06 0.525 tryptamine (I) tryptamine
M144T7_1 144.0806 6.71 1.07 0.542 tryptamine (II) tryptamine
M205T6_1 205.0972 5.93 1.07 0.469 tryptophan tryptophan
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Annotation Metabolite

M188T6_2 188.0707 5.93 1.07 0.484 tryptophan (fragment) (I) tryptophan
M188T6_1 188.0703 6.35 1.11 0.665 tryptophan (fragment) (II) tryptophan
M182T3_2 182.0809 2.98 1.16 0.092 tyrosine tyrosine
M169T2 169.0353 1.68 1.36 0.001 uric acid uric acid
M153T2_2 153.0403 1.77 1.22 0.330 xanthine (I) xanthine
M153T2_1 153.0404 2.04 1.22 0.305 xanthine (II) xanthine
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8 General Discussion and Outlook

8.1. Discussion

Understanding and characterising phenotypes of microbial pathogens is a prerequisite
for mechanistic understanding of infection processes and therefore represents an impor-
tant element in infection research [1], especially with regard to virulence factors [2].
Along with other –omics methods, microbial metabolomics is a very versatile tool to
describe, analyse and scrutinise bacterial phenotypes [3].

The study presented here examined the Pseudomonas aeruginosa metabolome and
its interplay with pseudomonal virulence on multiple levels, ranging from the annota-
tion of specific metabolites of interest to the study of virulence-associated metabolic
pathways and investigations of defined genetically modified organisms as well as clin-
ical P. aeruginosa strains on the whole-metabolome level (Figure 8.1). It produced a
number of interesting insights into the biosynthesis of virulence-associated secondary
metabolites in P. aeruginosa, described several hitherto unknown compounds and gen-
erated novel knowledge on the interdependence of the pseudomonal metabolome and
in vivo virulence that enabled the setup of a predictive model for virulence based on
untargeted metabolomics data.
The individual subprojects had different foci in terms of content and methodology,

but together they led to an overall picture that allows a better metabolome-based under-
standing of virulence factors in P. aeruginosa, as outlined in the following paragraphs.

8.1.1. Chemical inventorying and extended coverage of the P. aeruginosa
metabolome

The main obstacle on the way towards a meaningful description and interpretation of
phenotypes based on untargeted metabolomics data is feature annotation and metabo-
lite identification [4]. Although over the decades, numerous researchers have engaged in
the discovery of P. aeruginosa secondary metabolites, specifically alkylquinolones [5–
7], phenazines [8–10] and rhamnolipids [11, 12], untargeted metabolomics experiments
on P. aeruginosa extracts still revealed a multitude of unassigned compounds. This
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metabolite level

pathway level

laboratory
strain level

clinical
strain level

Figure 8.1.: Circle of research scope in this study. While the research focus in this study started at
the metabolite level with endeavours to annotate more structures in the P. aerugonisa
metabolome, it gradually moved towards higher organisational levels: The mechanistic
and phenotypic examination of AQ biosynthesis and specifically the substrate specificity
of PqsBC provide metabolomics data on a pathway level. Subsequently, the global role
of PrmC in metabolism and virulence was studied on a laboratory strain level without
the restriction to a defined pathway. The untargeted metabolomics project with clinical
P. aerugonisa isolates then looked at metabolome differences at a clinical strain level
using bacteria sampled from human infections. Finally, the identification of a putative
biomarker for virulence brought the research back to the metabolite level. Further
research could include re-iterating this circle by examining the biosynthetic origin and
the regulatory functions of this newly discovered virulence-associated metabolite.

is reflected by the fact that in the dataset presented in Chapter 3, only 150 of 518
MS2 consensus spectra could be matched to a spectrum in an in-house library and/or
online databases. This corresponds to an annotation rate of less than 30% and does
not take into account the numerous features that did not produce an MS2 spectrum in
data-dependent fragmentation. Since non-annotated features potentially held valuable
information, considerable effort needed to be invested in their annotation.
Software tools to aid metabolite identification that existed at the time, such as ‘Met-

Frag’ [13], ‘CSI:FingerID’ [14] and ‘Molecular Networking’ [15], were of limited use for
our data set, which prompted the development of a custom tool named CluMSID (see
section 8.1.5).
The application of CluMSID led to the annotation of 27 novel members of the alkyl-

quinolone family of quorum sensing signalling molecules. In addition to canonical
AQs, several short chain congeners and AQs with two double bonds in the alkyl chain
have been annotated. Furthermore, alternative structures have been proposed for AQs
with an additional oxygen atom that have been assigned as 3-alkyl-2,3-dihydroxy-4-
quinolones by Lépine et al. [6]: The fragmentation patterns seen in our study suggest

302



8

8.1. Discussion

that the respective features are better explained by side chain oxidation products of
unsaturated QNOs. These findings represent significant advances in the inventory of
the chemodiversity of AQs, which are a very interesting group of secondary metabolites
as they are involved in the regulation of various virulence-associated processes, e. g.
biofilm formation, toxin production and many other via activation of the PqsR (MvfR)
receptor [16] and also act directly in the acquisition of iron [17] and in interspecies re-
lations [18]. These multiple roles underline their significance for pseudomonal virulence
and the importance to study these compounds in detail. For instance, an unsatu-
rated alkylquinolone-N -oxide has recently been described as bactericidal for Staphylo-
coccus aureus [19]. Interestingly, Szamosvári and Böttcher were able to demonstrate
a 20-fold higher activity of trans-Δ1-2-(non-1-enyl)-4-quinolone-N -oxide compared to
its saturated congeners, emphasising the importance of a thorough knowledge of the
different AQ species. Since the publication of our work, even more non-canonical AQs
have been discovered, e. g. by Li et al. who described AQ congeners with side chains
containing sulphur atoms or phenyl groups [20]. Knowing the various AQs in detail is
also of interest as the pqs system is a promising target for pathoblockers, i. e. drugs that
inhibit bacterial virulence instead of exerting bactericidal or bacteriostatic effects [21].

In addition to new discoveries in the AQ family, novel phenazine compounds have been
found by CluMSID using hierarchical clustering, namely the putative identifications of
tetrahydropyocyanin and pyocyanin carboxylic acid. Phenazines play a vital role in
pseudomonal virulence by acting as redox-active toxicants to the human host and other
microorganisms [22–27] but also as signalling molecules [28], in biofilm formation and
antibiotic tolerance [29–31] as well as in anaerobic survival [32]. Despite the significance
of these metabolites, the differential functions of the various phenazine metabolites and
the reasons and consequences of phenazine chemodiversity in P. aeruginosa remain
underexplored [8, 10]. However, broad analytical coverage of pseudomonal phenazines
was important to the study presented here, as Publication 4 deals with a P. aeruginosa
transposon mutant deficient—or rather severely impaired—in pyocyanin production.

Besides generating new knowledge about the composition of the pseudomonal meta-
bolome, CluMSID also enabled the identification of artifact features, e. g. a proton-
bound dimer of HQNO and a proton-bound mixed dimer of HHQ and HQNO which
could have been mistaken for novel metabolites—especially as their abundance is ex-
pected to vary in relation to virulence-associated factors like HQNO and HHQ them-
selves. While tools like CAMERA are able to detect many common adducts [33], these
specific adducts are more difficult to capture. A recent article by Sindelar and Patti
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pointed out how crucial it is to uncover such artifacts in untargeted metabolomics data
early in the data analysis process to avoid the investment of unnecessary efforts in
further examination of a seemingly novel metabolites [34].
Taken together, this subproject contributed significantly to the exploration of the

chemodiversity of P. aeruginosa virulence-associated secondary metabolites and was
a necessary and beneficial groundwork for further metabolome-based studies of pseu-
domonal virulence factors as it improved the feature annotation process and supported
metabolite identification, the key for biological interpretation of metabolomics data
[35].

8.1.2. Mechanistic insights into P. aeruginosa virulence factor biosynthesis

Building on the descriptive data on the chemodiversity of AQs gained in Publication 1,
the Thesis aimed at answering the question how P. aeruginosa produces such a variety of
similar yet distinct AQ species. It became clear early on that this problem was difficult
to tackle using MS-based metabolomics alone. Therefore, the AQ biosynthesis steps
performed by the enzyme complex PqsBC, which condenses the anthranilate-derived
aromatic part of the AQ with an activated fatty acid to form a bicyclic compound with
an alkyl side chain, were studied in cooperation with structural biologists and experts
in protein bioanalysis. This combination of complementary approaches has provided
significant mechanistic insights into AQ biosynthesis.
The studies resulted in the finding that the FabH-like heterodimeric enzyme complex

PqsBC exhibits a substrate promiscuity that allows it to produce AQs of different side
chain lengths depending on the fatty acyl-CoA used in the reaction. By integrating
structural and bioanalytical data it could be demonstrated that the spectrum of AQ
side chain lengths found in vivo is a function of the availability of fatty acid substrates
and the relative substrate specificity of PqsBC that prefers medium-chain fatty acids.
Furthermore, we produced evidence that unsaturated AQs are directly biosynthesised
by PqsBC using unsaturated fatty acids as substrates. Finally, an intricate structural
model of the catalytic cycle of PqsBC was developed based on structural biology data.
The results touch on the highly complex topic of fatty acid metabolism in P. aerug-

inosa which is involved in many biochemical processes, including the production of
virulence-associated secondary metabolites: Besides AQs, also rhamnolipids [36] and
HSLs [37] contain fatty acyl moieties. It is known in the literature [12, 37, 38] and
can also be seen in the untargeted metabolomics data of the other subprojects [39–41]
that rhamnolipids and HSLs show a lot less chemodiversity than AQs, with rhamno-
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lipids using C10 and C12 fatty acids and HSLs being produced exclusively from C4 and
3-oxo-C12 fatty acids in P. aeruginosa. If one also considers fatty acid biosynthesis
and degradation by Fab and Fad enzymes, respectively, PqsBC competes for substrates
with various other fatty acid metabolising enzymes and presumably profits from its sub-
strate promiscuity by being able to process longer and shorter fatty acyl-CoA molecules
when its preferred substrates, octanoyl-CoA and decanoyl-CoA, are scarce. Thereby,
sufficient precursor supply for AQ biosynthesis is ensured even if for instance significant
amounts of octanoate are channelled into rhamnolipid biosynthesis by condensation with
malonyl-ACP to β-ketodecanoyl-ACP that is used to biosynthesise C10-rhamnolipids
[36].
The notion that unsaturated AQs are directly produced by PqsBC from unsaturated

fatty acid precursors is particularly interesting as the closely related species Burkholde-
ria thailandensis uses a specific enzyme named HmqF to introduce double bonds into
4-hydroxy-3-methyl-2-alkylquinolines [42]. As P. aeruginosa does not possess a HmqF
homologue—the hmqABCDEFG operon is homologous to the pqsABCDE operon but
contains two additional genes coding for HmqF and HmqG [43, 44]—there had to be an
alternative biosynthetic route towards unsaturated AQs. As highlighted by the work
of Szamosvári and Böttcher mentioned above [19] and further work based on it [45],
saturated and unsaturated AQs can have different biological activities. Therefore, an
augmented understanding of the biosynthesis of unsaturated AQs holds promise for
further insights into the various biological functions of AQs.
This work on PqsBC illustrates how metabolomics can evolve from a descriptive view

of the chemical composition of a biological system to inspire and support research on
biochemical mechanisms—a key task in the advancement of the field [4]. It added
mechanistic understanding of AQ biosynthesis to the chemical inventorying endeavours
of the preceding subproject by leveraging cooperations with scientists from other fields
and thereby contributed significantly to the overall project aim of gaining a deeper
understanding of the interplay of metabolism and virulence in P. aeruginosa.

8.1.3. Exploration of the interplay of metabolism and virulence in a
genetically modified laboratory strain

On the basis of the findings of the first subprojects, the next parts examined the inter-
connections of metabolism and virulence at a higher organisational level: First, meta-
bolic effects of a virulence-associated enzyme with a partially unexplained mechanism
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were studied, and then metabolism–virulence relationships were revealed in different
clinical P. aeruginosa strains.
In the sophisticated regulatory network that controls pseudomonal virulence, there

are several important players whose effects have already been demonstrated, while it
is not entirely clear how these effects are achieved mechanistically [16]. Due to their
close relationship with the biosynthesis of alkyl quinolones and phenazines, PqsE and
PrmC are the two enzymes that were of the highest interest to this project. PqsE, that
has been shown to function as a thioesterase directly involved in the alkyl quinolone
biosynthesis pathway soon after the onset of this Thesis project [46], is heavily stud-
ied by several groups [47–51]. In contrast, the contribution of PrmC towards virulent
phenotypes is still underexplored, making it a suitable object of investigation for an
untargeted metabolomics study. Moreover, additional complementary –omics data for
prmC deficient P. aeruginosa PA14 strains was available [52, 53] which allowed to con-
duct multiomics analyses of the untargeted metabolomics data gained in the subproject.
By using both GC-MS and LC-MS and by additionally analysing the exometabolome,

a comprehensive data set was generated that described the effect of PrmC on the
pseudomonal metabolome for the first time. The most striking outcome was a depletion
of various organic metabolites in the prmC deficient strain that could be traced back
to an impaired shikimate pathway whose key metabolites shikimate and shikimate-3-
phosphate were below the level of detection in the tnprmC strain. With regard to
secondary metabolites, results from previous research [52, 53], including a significantly
lower production of AQs and phenazines were confirmed and extended, so that the
effects on the individual members of these metabolite classes could be quantified. The
lower levels of these metabolites and the decreased activity of the shikimate pathway
are assumed to be connected: as both AQs and phenazines are biosynthesised from
shikimate-derived educts, a limited precursor supply would explain the lower abundance
of those metabolites. This hypothesis is supported by the fact that the phzC1 and phzC2
transcripts are significantly down-regulated in prmC deficient P. aeruginosa [53]. They
code for PhzC which is involved in the shikimate pathway and has been discussed as a
regulator of precursor flux into the biosynthesis of phenazines [9].
The higher level of detail concerning virulence-associated secondary metabolites en-

abled the observation that medium chain AQs are less affected by prmC deficiency than
long chain and short chain congeners. A possible explanation for this phenomenon es-
tablishes a link to the PqsBC subproject: It can be assumed that when less aromatic
precursors and less enzyme are present—PqsBC was shown to be less abundant in
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tnprmC by Krueger et al. [53]—the availability of medium-chain fatty acyl-CoAs might
be less rate limiting for the enzymatic reaction, whereby the preferred fatty acyl-CoA
substrates are used more extensively resulting in an increased percentage of medium
chain AQs. Another interconnection to a different subproject is that a putative molec-
ular biomarker for virulent phenotypes identified in P. aeruginosa clinical isolates (vide
infra) was also found to be less abundant in the prmC deficient strain. These in-
terrelationships within the Thesis project further emphasise the impact of a better
metabolome-level understanding for different aspects of P. aeruginosa virulence.

8.1.4. Exploration of the interplay of metabolism and virulence in clinical
P. aeruginosa strains

The analytical approach of the previous two subprojects mainly consisted of investi-
gating individual biological processes important for virulence at the metabolome level,
which resulted in important contributions to comprehending the relationship between
the metabolome and virulence in P. aeruginosa. However, the dissertation project
presented here also aims to leverage the possibilities of metabolomics as a systems biol-
ogy discipline to understand the interconnections between metabolomic characteristics
and overall in vivo virulence. This global view of virulence is intended to complement
and validate the knowledge gained through reductionist approaches and open up the
possibility of generating clinically significant results.
To this end, clinical P. aeruginosa strains isolated from patients with different types

of infections and from different hospitals were subjected to untargeted metabolomics
profiling experiments. The strains have been collected by the ‘Molecular Bacteriology’
group of the Helmholtz Centre for Infection Research, and many of them had already
undergone a characterisation process that includes genomics, transcriptomics as well
as several phenotyping experiments and have been documented in the ‘BACTOME’
database [54].
Generally, the quantification of bacterial virulence is not trivial [55]. Given the fact

that P. aeruginosa is an opportunistic pathogen that predominantly infects patients
with a pre-existing disease such as CF [56] and is often found in co-infections with
other bacteria [57], the clinical course of infection does not seem a promising metric for
in vivo virulence in most cases. Instead, animal experiments are used to quantitatively
investigate virulence, and a Galleria mellonella-based system is available for P. aerug-
inosa, which correlates well with the effect in the mouse model [58]. Because biofilm
formation and specifically the biofilm morphology represent important factors in pseu-
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domonal virulence [59], in vivo virulence in G. mellonella and the biofilm phenotype
cluster were used as target variables and surrogates for P. aeruginosa virulence in this
study.
The choice of analytical methodology for this study was based on the findings of the

previous subprojects: The chemical inventorying endeavours described in Chapter 3
proved that untargeted metabolomics using reversed phase chromatography and pos-
itive mode electrospray ionisation in combination with QTOF mass spectrometry is
an appropriate technology to capture a broad yet detailed picture of many virulence-
associated metabolites in P. aeruginosa, whose annotation was facilitated by CluMSID.
The research on PrmC laid out in Chapter 6 demonstrated that GC-MS metabolomics
to uncover changes in primary metabolism and LC-MS exometabolomics to study me-
tabolic footprints are useful additions to the analytical toolbox but also showed that
LC-MS endometabolomics is the central approach with the highest information density.
Moreover, reports in the literature suggest that the genetic background has a less pro-
nounced effect on the pseudomonal primary metabolome than the cultivation conditions
[60]. On these grounds and owing to the number of samples and complexity of data
analysis, it was decided to limit this study to the analysis of the cellular metabolome
by means of LC-MS.
In total, 35 P. aeruginosa clinical strains with three different phenotypes or pheno-

type combinations have been studied, grouped into a discovery set used for hypothesis
generation and model building and two validation sets to test theses hypotheses and
models. Unsupervised statistical methods enabled a separation of virulent Cluster A
and avirulent Cluster B strains based exclusively on their metabolomic profile, which
emphasises the power of untargeted metabolomics in unravelling interconnections of
virulence and the metabolome. This is further supported by the notion that transcrip-
tomic profiles were not indicative of the two phenotypes.
In line with other recent reports [61–63] and with the results of the other subprojects,

metabolome differences between the virulence phenotypes were mostly reflected in dif-
ferential abundance of secondary metabolites that are known to be directly involved in
virulence, namely AQs, phenazines and rhamnolipids.
While no clear trends could be detected in the abundance of primary metabolites, it

is striking that a number of very important features—judged both by their fold change
and p-value as well as by their contribution to the random forest classification model—
were ‘unknowns’. Most prominently, a featured named M187T6_2 with the putative
sum formula C12H15N2 for the cation, was identified as a potential biomarker for viru-
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lence, as it perfectly separated virulent Cluster A from avirulent Cluster B isolates in
the discovery data set. Certainly, caution must be exercised when looking at unknown
features as they might well be artifacts [34]. Therefore, considerable effort was invested
to verify that the feature is a metabolite produced by P. aeruginosa by leveraging ana-
lytical technologies such as the verification of the sum formula through isotopic pattern
analysis using Bruker’s SmartFormula [64] and by demonstrating that the molecule is
generated in labelled form when the bacteria are fed with 13C labelled glucose [65, 66].
Moreover, the feature was detected in P. aeruginosa by other researchers which was
confirmed by MASST searching [67]. Besides the details mentioned in the publication,
extensive work was put into purifying the molecule in the laboratory. The experiments
included up-scaling of the cultivation volume followed by liquid-liquid extraction or solid
phase extraction and also tuning the cultivation conditions to stimulate the production
of the metabolite of interest but in the end, these attempts remained unsuccessful due
to the very low abundance of M187T6_2 and because of the difficulty of handling large
quantities of pathogenic bacteria. This failure is a major shortcoming of the study, as
the annotation of putative biomarkers is a key step towards clinical applicability [68].
Still, it was possible to construct a statistical model using random forest classifica-

tion based on the complete metabolome data which discriminated virulent Cluster A
and avirulent Cluster B isolates even better than the putative biomarker M187T6_2
alone. Random forest classification models have been used in the metabolomics field in
applications as diverse as Alzheimer’s disease [69], Zika virus screening [70], dairy cow
conditioning [71], and Drosophila melanogaster metabolism [72]. The work presented
here demonstrate that it is also a useful data analysis tool for microbial metabolomics
and the investigation of P. aeruginosa virulence.
The fact that a model that was trained with two phenotypes—high virulence with

Cluster A biofilm morphology and low virulence with Cluster B biofilm morphology—
performs rather poorly on a third phenotype that exhibits a high virulence in the
G. mellonella model and a Cluster C biofilm morphology is not necessarily surprising
as generalisation of the classification performance to unseen cases (i.e. cases whose class
was not present in the training or discovery data set) is a major problem for classification
algorithms [73]. This is particularly true if properties are partly linked to each other
as is the case for virulence and the biofilm phenotype in P. aeruginosa: Thoeming
et al. have shown that different correlations of biofilm phenotypes and virulence traits
exist and that Cluster C isolates share some properties with Cluster A isolates, e.g.
twitching motility, and others with Cluster B strains, such as pyocyanin production
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[59]. It stands to reason that these differences that exist despite identical virulence
results in the G. mellonella model are also reflected in the metabolome. Thus, the
existing model is not yet applicable to predict pseudomonal virulence as such from
metabolomics data alone, while it is successful and superior to transcriptomic data
in the discrimination of the two virulence and biofilm phenotypes represented in the
discovery data set.
Hence, the research in this subproject provided evidence for the notion that un-

targeted LC-MS metabolomics is a useful tool for the study of virulence factors in
P. aeruginosa as it enabled various interesting discoveries concerning the interplay of
virulence and metabolism in this versatile pathogen. The identification of a putative
virulence biomarker and the construction of a classification model for two distinct vir-
ulence phenotypes is a valuable advancement in the understanding of pseudomonal
virulence and integrates well with the results of the other subprojects to refine the
picture of virulence-associated metabolites in P. aeruginosa.

8.1.5. Contribution of a feature annotation tool for the metabolomics and
natural product chemistry community

This Thesis also includes the presentation of a software tool for feature annotation in
untargeted metabolomics and other non-targeted MS data. As detailed above, the pro-
gramme named CluMSID arose from the need to improve the metabolite identification
rate in P. aeruginosa extracts and hence is tightly connected to the other subprojects
described here. It has, however, evolved into an independent software package which
can be used for various types of samples and help researchers tackle the highly demand-
ing challenge of metabolite annotation.

Already the prototype of the tool included as an R script in Publication 1 was widely
received in the community as reflected in the inclusion of the tool in several review
article on metabolomics processing and data analysis software [74–77]. It therefore
seemed worthwhile to transform the programme into a more user-friendly and quality-
assured version, namely as an R package in the Bioconductor repository. Bioconductor
assures high quality standards, considerably improves visibility for other researchers and
integrates the tool in an existing ecosystem of other metabolomics-related packages [78].
It is particularly noteworthy that CluMSID is interfaceable with one of the community
standard software suites, the ‘xcms’ family of R packages [79] which makes the package
particularly convenient for a large number of scientist already working with ‘xcms’.
Even if no concrete applications have been published yet, the personal feedback and the
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download statistics (accessible at http://bioconductor.org/packages/stats/bioc/
CluMSID/) allow the conclusion that with CluMSID, a value-added contribution to the
community-based software landscape for the analysis of metabolomics data could be
accomplished.

8.2. Conclusions

The sum of the subprojects that make up this dissertation gives a more detailed ac-
count of the diverse and complex relationships between virulence and metabolism in
P. aeruginosa and opens a comprehensive new perspective on the possibilities of using
metabolomics to study bacterial virulence on the metabolite, pathway, organism and
strain level.

Significant improvements in the analytical coverage and annotation of pseudomonal
small-molecule virulence factors were achieved by advanced data analysis methods
with the annotation of i.a. 27 previously undescribed alkylquinolones. These bio- and
chemoinformatic efforts were developed into an easy-to-use R package that enables
researchers to apply unsupervised clustering methods based on similarity of MS2 spec-
tra to aid the annotation of ‘unknown’ features in untargeted metabolomics data sets.
Building on the extended description of the chemodiversity of AQs, the biosynthetic
mechanism leading to the observed diversity of these metabolites was investigated and
it was found that the AQ spectrum produced in vivo is determined by both the sub-
strate specificity of the relevant enzyme PqsBC and the availability of fatty acid pre-
cursors. In the course of these experiments, it could also be shown that unsaturated
AQs are synthesised by PqsBC from unsaturated fatty acid substrates. An important
virulence-associated enzyme not directly involved in virulence factor production, the
peptide chain release factor methyltransferase PrmC, was characterised with respect to
influences on the metabolome of P. aeruginosa and it was revealed that its dampening
effect on virulence includes the depletion of aromatic precursor molecules needed for the
biosynthesis of both AQs and phenazines. Finally, the findings were integrated to study
interrelations of metabolomic features and in vivo virulence in different P. aeruginosa
clinical strains which led to the discovery of a putative virulence biomarker and allowed
for the construction of a random forest classification model based on untargeted meta-
bolomics data that is able to discriminate clinical strains that have distinct virulence
and biofilm morphology phenotypes.
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In conclusion, this Thesis demonstrates the considerable potential of targeted and
untargeted metabolomics for the study of P. aeruginosa virulence factors and thereby
made important contributions towards the comprehension of the complex interplay of
metabolism and virulence in this fascinating pathogen.

8.3. Outlook

In addition to the experiments and findings described in this Thesis, the metabolome-
based study of virulence factors in P. aeruginosa offers other possibilities to discover
novel insights, since the interconnections of metabolism and virulence are numerous
and highly complex. With respect to metabolome coverage and chemical inventorying,
many features in the P. aeruginosa metabolome remain unassigned even after extensive
annotation efforts. While the current version of CluMSID has proven to be very effec-
tive in aiding annotation of metabolites from classes with many homologous members
such as AQs, there appears to be considerable potential for the detection of metabolites
that do not show spectral similarities to known metabolites. A limitation of CluMSID
is its lack of automatic interfaceability with online MS2 spectral databases—a feature
that is, for instance, offered by the GNPS ‘Molecular Networking’ web tool [15]. Future
development of the software package should therefore include similarity comparisons
with MS2 spectra deposited in such databases to enable the exploration of clusters
that do not contain known metabolites and thereby increase its usefulness for metabo-
lite annotation. Moreover, the extension of analytical coverage of the P. aeruginosa
metabolome requires ongoing efforts supported by software other than CluMSID, since
not all annotation problems can be solved by means of spectral similarity. Beyond
improving data analysis strategies, the bioanalytical arsenal leveraged to explore the
chemical inventory of P. aeruginosa can certainly be extended to include polar separa-
tions, negative mode ionisation and other detection principles as shown for Staphylococ-
cus aureus [80]. A comprehensive feature credentialing [65] would additionally support
the metabolite annotations and thus benefit the scientific quality of the results despite
considerable operating expense. A shift of focus away from metabolites known to be
involved more or less directly in virulence regulation or exertion might have beneficial
effects for metabolome coverage, as well. For instance, in the PrmC subproject, many
metabolites involved in the shikimate pathway and subsequent or preceding metabolic
reactions have not been detected. Better coverage of metabolites relevant for this part
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of primary and intermediary metabolism would contribute to a more concise picture of
the influence of PrmC on pseudomonal metabolism.

In the PqsBC subproject, the biosynthesis of mono-unsaturated AQs was studied by
means of feeding and labelling experiments. However, AQ species with two double bonds
have also been detected and annotated with the help of CluMSID in the P. aeruginosa
metabolome. The biosynthesis of these AQ congeners was outside the scope of this
project although very interesting—especially given that researchers are only beginning
to gauge the differential effects of saturated and unsaturated AQs [45].

The groundwork laid in this Thesis along with technical progress in sample prepa-
ration, separation, mass spectrometry and data analysis will enable the investigation
of a higher number of clinical P. aeruginosa strains by means of untargeted metabol-
omics in order to validate and extend the insights into the interplay of metabolism and
in vivo virulence and classification models to predict virulence properties. Of particular
importance will be further experiments on the putative virulence marker M187T6_2.
Even if its structure may not be elucidated by purification and NMR, its biological role
is completely unclear. The fact there might still be unknown metabolites involved in
pseudomonal virulence is a huge motivation for further research on the function of this
compound. With a broader data basis comprising more isolates and more defined vir-
ulence phenotypes, new classification models could be built and potentially developed
towards clinical applicability. Although this is a fairly remote prospect, the ability to
predict virulence of clinical P. aeruginosa isolates based on their metabolomic profile
holds promise to help clinicians assess the clinical course of a P. aeruginosa infection
and thus might contribute to therapeutic progress in this important area of clinical
infectiology.
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Appendix A: Supplementary Tables for Publication 1

Table 3.S1.: List of theoretical m/z of alkyl quinolone from C1 to C21 with saturated, mono-
unsaturated and doubly unsaturated side chain used as preferred mass list in the
semi-targeted LC-MS/MS run.

mass species mass species mass species

146.0601 C0-HQ 284.1645 C9:2-QNO 370.2741 C15:1-QNO
160.0757 C1-HQ 284.2009 C10:1-HQ 370.3105 C16-HQ
162.0550 C0-QNO 286.1802 C9:1-QNO 372.2897 C15-QNO
174.0914 C2-HQ 286.2166 C10-HQ 380.2948 C17:2-HQ
176.0706 C1-QNO 288.1958 C9-QNO 382.2741 C16:2-QNO
186.0914 C3:1-HQ 296.2009 C11:1-HQ 382.3105 C17:1-HQ
188.1070 C3-HQ 298.1802 C10:2-QNO 384.2897 C16:1-QNO
190.0863 C2-QNO 298.2166 C11:1-HQ 384.3261 C17-HQ
200.1070 C4:1-HQ 300.1958 C10:1-QNO 386.3054 C16-QNO
202.0863 C3:1-QNO 300.2322 C11-HQ 394.3105 C18:2-HQ
202.1227 C4-HQ 302.2115 C10-QNO 396.2897 C17:2-QNO
204.1019 C3-QNO 310.2166 C12:2-HQ 396.3261 C18:1-HQ
214.1227 C5:1-HQ 312.1958 C11:2-QNO 398.3054 C17:1-QNO
216.1019 C4:1-QNO 312.2322 C12:1-HQ 398.3418 C18-HQ
216.1383 C5-HQ 314.2115 C11:1-QNO 400.3210 C17-QNO
218.1176 C4-QNO 314.2479 C12-HQ 408.3261 C19:2-HQ
228.1383 C6:1-HQ 316.2271 C11-QNO 410.3054 C18:2-QNO
230.1176 C5:1-QNO 324.2322 C13:2-HQ 410.3418 C19:1-HQ
230.1540 C6-HQ 326.2115 C12:2-QNO 412.3210 C18:1-QNO
232.1332 C5-QNO 326.2479 C13:1-HQ 412.3574 C19-HQ
240.1383 C7:2-HQ 328.2271 C12:1-QNO 414.3367 C18-QNO
242.1540 C7:1-HQ 328.2635 C13-HQ 422.3418 C20:2-HQ
244.1332 C6:1-QNO 330.2428 C12-QNO 424.3210 C19:2-QNO
244.1696 C7-HQ 338.2479 C14:2-HQ 424.3574 C20:1-HQ
246.1489 C6-QNO 340.2271 C13:2-QNO 426.3367 C19:1-QNO
254.1540 C8:2-HQ 340.2635 C14:1-HQ 426.3731 C20-HQ
256.1332 C7:2-QNO 342.2428 C13:1-QNO 428.3523 C19-QNO
256.1696 C8:1-HQ 342.2792 C14-HQ 436.3574 C21:2-HQ
258.1489 C7:1-QNO 344.2584 C13-QNO 438.3367 C20:2-QNO
258.1853 C8-HQ 352.2635 C15:2-HQ 438.3731 C21:1-HQ
260.1645 C7-QNO 354.2428 C14:2-QNO 440.3523 C20:1-QNO
268.1696 C9:2-HQ 354.2792 C15:1-HQ 440.3887 C21-HQ
270.1489 C8:2-QNO 356.2584 C14:1-QNO 442.6963 C20-QNO
270.1853 C9:1-HQ 356.2948 C15-HQ 452.3523 C21:2-QNO
272.1645 C8:1-QNO 358.2741 C14-QNO 454.3680 C21:1-QNO
272.2009 C9-HQ 366.2792 C16-HQ 456.3836 C21-QNO
274.1802 C8-QNO 368.2584 C15:2-QNO
282.1853 C10:2-HQ 368.2948 C16:1-HQ
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Table 3.S2.: List of features that have been identified by comparison of exact mass, retention time
and MS2 fragmentation to our in-house library or putatively annotated by comparison
of exact mass and MS2 fragmentation to metabolite databases.

feature ID med.mz med.rt library annotation putative annotation

M146.17T59.35 146.1653 59.4 spermidine NA
M129.14T58.57 129.1387 58.6 spermidine (fragment) NA
M112.11T57.8 112.1119 57.8 spermidine (fragment) NA
M251.16T60.64 251.1603 60.6 NA NA
M212.85T65.02 212.8519 65.0 NA NA
M290.85T64.76 290.8472 64.8 NA NA
M148.06T69.65 148.0605 69.6 glutamate NA
M130.05T69.64 130.0500 69.6 glutamate (fragment) NA
M179.06T71.32 179.0550 71.3 NA gluconolactone
M197.07T71.57 197.0656 71.6 NA NA
M116.07T73.51 116.0706 73.5 NA proline
M242.08T74.02 242.0787 74.0 NA NA
M324.06T75.32 324.0591 75.3 CMP NA
M301.11T76.88 301.1141 76.9 NA NA
M219.1T77.65 219.0974 77.7 NA Glu Ala
M325.04T78.94 325.0429 78.9 CMP NA
M428.04T80.88 428.0363 80.9 ADP NA
M162.08T82.05 162.0761 82.1 NA NA
M191.05T84.37 191.0483 84.4 NA NA
M308.06T84.63 308.0636 84.6 dCMP NA
M189.12T85.8 189.1231 85.8 NA NA
M85.06T86.7 85.0586 86.7 NA NA
M372.55T88.26 372.5456 88.3 NADP (2+) NA
M348.07T90.34 348.0707 90.3 AMP NA
M136.06T90.6 136.0617 90.6 AMP (fragment) NA
M695.13T91.88 695.1331 91.9 AMP (2+) NA
M316.16T94.47 316.1622 94.5 NA NA
M338.14T94.98 338.1439 95.0 NA NA
M364.07T97.19 364.0659 97.2 GMP NA
M299.14T96.54 299.1355 96.5 NA NA
M99.09T97.84 99.0916 97.8 NA NA
M254.09T100.71 254.0882 100.7 NA NA
M110.06T100.45 110.0599 100.4 2-aminophenol NA
M123.06T103.31 123.0553 103.3 nicotinamide NA
M159.11T102.26 159.1127 102.3 NA NA
M317.14T103.57 317.1448 103.6 NA NA
M290.13T105.39 290.1344 105.4 NA NA
M332.56T107.48 332.5621 107.5 NAD (2+) NA
M664.12T108.26 664.1161 108.3 NAD NA
M542.07T108.52 542.0682 108.5 NAD (fragment) NA
M278.57T112.67 278.5725 112.7 NA NA
M137.05T112.16 137.0457 112.2 hypoxanthine NA
M332.08T113.21 332.0753 113.2 NA dAMP
M179.07T114.5 179.0672 114.5 NA NA
M202.18T115.29 202.1798 115.3 NA NA
M190.07T117.36 190.0708 117.4 N-acetylglutamate NA
M535.19T118.41 535.1876 118.4 NA Glu Glu Glu Glu
M180.05T120.87 180.0513 120.9 NA (iso)xanthopterine
M132.1T122.82 132.1021 122.8 leucine / isoleucine / norleucine NA
M307.08T126.2 307.0838 126.2 NA glutathion disulphide (2+)
M182.08T125.93 182.0812 125.9 tyrosine NA
M613.16T127.23 613.1591 127.2 glutathion disulfide NA
M322.11T131.92 322.1068 131.9 NA NA
M304.06T132.18 304.0595 132.2 NA NA
M323.06T135.83 323.0641 135.8 NA dTMP
M143.08T138.17 143.0812 138.2 NA NA
M98.98T141.84 98.9839 141.8 NA NA
M182.07T141.05 182.0672 141.1 NA NA
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M388.11T146.83 388.1100 146.8 NA NA
M164.06T147.09 164.0567 147.1 NA pterine
M193.07T150.49 193.0683 150.5 NA S-(5’-adenosyl)-homocysteine

(2+)
M385.13T151.52 385.1290 151.5 S-(5’-adenosyl)-homocysteine NA
M250.14T156.21 250.1412 156.2 NA NA
M125.57T156.99 125.5742 157.0 NA NA
M664.23T165.1 664.2311 165.1 NA NA
M332.62T165.35 332.6200 165.4 NA NA
M351.59T166.13 351.5930 166.1 NA NA
M268.1T171.87 268.1043 171.9 adenosine NA
M314.09T175.26 314.0913 175.3 NA NA
M245.18T210.61 245.1762 210.6 NA NA
M251.15T228.5 251.1504 228.5 NA NA
M166.09T233.22 166.0864 233.2 phenylalanine NA
M120.08T233.48 120.0808 233.5 phenylalanine (fragment) NA
M340.06T231.65 340.0627 231.6 NA NA
M320.17T232.69 320.1711 232.7 NA NA
M103.05T235.3 103.0542 235.3 phenylalanine (fragment) NA
M397.14T289.26 397.1418 289.3 NA NA
M793.27T273.95 793.2749 273.9 NA NA
M416.12T271.35 416.1156 271.3 NA NA
M174.06T277.59 174.0554 277.6 NA NA
M262.16T278.37 262.1556 278.4 NA NA
M276.11T276.54 276.1088 276.5 NA NA
M254.16T280.46 254.1618 280.5 NA NA
M244.11T293.5 244.1118 293.5 NA NA
M323.07T305.37 323.0706 305.4 NA NA
M256.18T309.56 256.1765 309.6 NA NA
M911.28T323.37 911.2844 323.4 NA NA
M727.21T324.67 727.2052 324.7 NA NA
M1235.4T324.66 1235.3957 324.7 NA NA
M461.66T328.59 461.6627 328.6 NA NA
M922.32T329.89 922.3165 329.9 NA NA
M480.64T329.62 480.6359 329.6 NA NA
M479.19T333.77 479.1887 333.8 NA NA
M472.65T332.73 472.6535 332.7 NA NA
M597.68T335.59 597.6785 335.6 NA UDP-muramyl-pentapeptide
M219.13T335.84 219.1344 335.8 NA Ser Leu
M382.65T337.93 382.6472 337.9 NA NA
M220.12T336.88 220.1182 336.9 NA panthotenate
M568.14T338.32 568.1385 338.3 NA NA
M194.08T340.15 194.0788 340.1 NA NA
M526.18T342.1 526.1834 342.1 NA NA
M1051.36T342.36 1051.3583 342.4 NA NA
M363.77T343.13 363.7746 343.1 NA NA
M194.07T346.78 194.0676 346.8 NA NA
M217.1T347.04 217.1050 347.0 NA NA
M472.85T348.87 472.8508 348.9 NA NA
M708.77T349.12 708.7715 349.1 NA NA
M590.7T351.59 590.7044 351.6 NA NA
M525.18T352.51 525.1832 352.5 NA NA
M1180.4T351.98 1180.4000 352.0 NA NA
M367.64T355.63 367.6418 355.6 NA NA
M360.21T355.1 360.2133 355.1 NA Ile Val Glu / Val Ile Glu
M734.27T356.41 734.2747 356.4 NA NA
M235.07T357.45 235.0665 357.5 NA NA
M655.23T359.27 655.2268 359.3 NA NA
M686.76T358.74 686.7596 358.7 NA NA
M666.22T359.78 666.2163 359.8 NA NA
M174.06T360.96 174.0554 361.0 NA NA
M679.29T361.61 679.2916 361.6 NA NA
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M243.08T362.4 243.0771 362.4 NA NA
M215.08T362.66 215.0815 362.7 NA NA
M331.18T363.96 331.1775 364.0 NA NA
M693.77T367.08 693.7669 367.1 NA NA
M719.75T366.82 719.7471 366.8 NA NA
M462.85T367.6 462.8479 367.6 NA NA
M359.64T368.9 359.6449 368.9 NA NA
M188.07T371.25 188.0710 371.3 tryptophan (fragment) NA
M205.1T370.99 205.0975 371.0 tryptophan NA
M270.19T371.24 270.1926 371.2 NA NA
M304.18T373.32 304.1769 373.3 NA NA
M784.27T374.37 784.2691 374.4 NA NA
M795.26T374.75 795.2586 374.8 NA NA
M694.26T376.97 694.2594 377.0 NA NA
M358.2T377.48 358.1985 377.5 NA Ile Pro Glu / Leu Pro Glu
M195.11T378.66 195.1130 378.7 NA NA
M848.79T380.87 848.7917 380.9 NA NA
M211.09T382.17 211.0874 382.2 pyocyanin NA
M578.85T381.64 578.8462 381.6 NA NA
M732.26T383.07 732.2604 383.1 NA NA
M298.1T385.29 298.0978 385.3 5’-methylthioadenosine NA
M261.13T385.55 261.1317 385.6 NA NA
M913.31T388.16 913.3134 388.2 NA NA
M187.12T391.55 187.1235 391.6 NA NA
M204.12T389.98 204.1234 390.0 NA NA
M243.18T392.85 243.1839 392.8 NA NA
M258.58T397.4 258.5822 397.4 NA NA
M977.84T395.18 977.8352 395.2 NA NA
M516.16T395.97 516.1560 396.0 NA NA
M364.62T397.4 364.6189 397.4 NA NA
M728.23T398.3 728.2285 398.3 NA NA
M188.12T399.72 188.1199 399.7 NA NA
M254.09T400.89 254.0930 400.9 NA NA
M295.13T406.65 295.1293 406.7 NA Glu Phe
M350.62T409.24 350.6212 409.2 folic acid (fragment) NA
M268.66T408.73 268.6585 408.7 NA NA
M145.08T410.28 145.0764 410.3 NA NA
M190.05T411.45 190.0504 411.4 kynurenate NA
M214.13T411.31 214.1342 411.3 NA NA
M378.2T412.48 378.2037 412.5 NA Pro Tyr Val
M316.22T413.91 316.2235 413.9 NA Val Val Val
M328.22T437.8 328.2236 437.8 NA Pro Leu Val
M326.21T414.96 326.2080 415.0 NA NA
M336.19T415.21 336.1920 415.2 NA Phe Val Ala / Val Phe Ala
M295.19T417.02 295.1883 417.0 NA NA
M289.12T417.28 289.1191 417.3 NA NA
M261.12T419.11 261.1239 419.1 NA NA
M197.13T423.26 197.1289 423.3 NA NA
M786.17T426.25 786.1663 426.3 FAD NA
M316.21T430.54 316.2128 430.5 NA NA
M231.11T430.8 231.1133 430.8 NA NA
M160.08T433.66 160.0762 433.7 NA NA
M457.11T433.91 457.1121 433.9 NA FMN
M204.1T435.6 204.1025 435.6 NA NA
M195.09T436.77 195.0882 436.8 caffeine ISTD NA
M291.15T444.85 291.1461 444.8 trimethoprim ISTD NA
M275.11T445.88 275.1141 445.9 NA NA
M263.14T447.96 263.1396 448.0 NA Pro Phe
M257.15T449.13 257.1456 449.1 NA NA
M120.04T450.56 120.0447 450.6 anthranilate (fragment) NA
M138.06T451.33 138.0551 451.3 anthranilate NA
M243.13T457.64 243.1345 457.6 NA NA
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M360.19T459.98 360.1930 460.0 NA NA
M300.2T461.28 300.1994 461.3 NA NA
M399.26T461.02 399.2608 461.0 NA NA
M291.09T462.05 291.0946 462.1 trimethoprim ISTD NA
M176.07T465.7 176.0708 465.7 NA NA
M159.09T464.27 159.0916 464.3 NA NA
M277.15T466.47 277.1540 466.5 NA NA
M159.07T466.73 159.0678 466.7 NA NA
M418.14T474.32 418.1393 474.3 NA NA
M231.17T475.37 231.1701 475.4 NA Leu Val
M491.29T496.41 491.2857 496.4 NA NA
M344.25T476.52 344.2541 476.5 NA Leu Leu Val or isomer
M255.08T482.73 255.0761 482.7 NA NA
M211.14T497.45 211.1437 497.5 NA cyclo(Leu Pro)
M342.24T486.25 342.2386 486.2 NA Pro Ile Leu or isomer
M427.29T485.86 427.2907 485.9 NA NA
M245.59T495.11 245.5915 495.1 NA NA
M232.13T495.36 232.1331 495.4 NA NA
M145.08T508.11 145.0762 508.1 NA NA
M439.29T506.82 439.2913 506.8 NA NA
M831.14T503.95 831.1424 504.0 NA NA
M187.09T505 187.0865 505.0 NA NA
M163.09T512.64 163.0866 512.6 NA NA
M473.3T511.21 473.2970 511.2 NA NA
M441.31T516.66 441.3069 516.7 NA NA
M245.13T525.64 245.1278 525.6 NA cyclo(Phe Pro)
M246.13T525.63 246.1308 525.6 NA NA
M505.3T526.66 505.3001 526.7 NA NA
M311.14T527.97 311.1390 528.0 NA NA
M530.13T538.67 530.1333 538.7 NA NA
M186.09T531.62 186.0911 531.6 NA NA
M188.11T535.78 188.1070 535.8 NA C3-HQ
M275.03T536.04 275.0306 536.0 NA NA
M321.1T537.6 321.1014 537.6 NA NA
M202.09T545.21 202.0858 545.2 NA NA
M265.57T546.37 265.5707 546.4 NA NA
M243.09T558.67 243.0876 558.7 lumichrome NA
M204.1T564.12 204.1021 564.1 NA NA
M260.16T583.7 260.1640 583.7 NA C7-QNO
M775.9T572.93 775.9025 572.9 NA NA
M392.25T573.83 392.2541 573.8 NA Phe Leu Leu or isomer
M263.12T576.07 263.1178 576.1 NA NA
M200.11T578.31 200.1066 578.3 NA NA
M202.12T578.44 202.1224 578.4 NA NA
M136.08T584.09 136.0755 584.1 NA NA
M118.06T585.64 118.0647 585.6 NA NA
M323.09T586.42 323.0880 586.4 NA NA
M485.11T612.66 485.1122 612.7 NA NA
M215.12T626.24 215.1175 626.2 NA NA
M263.12T624.79 263.1177 624.8 NA NA
M224.08T640.69 224.0815 640.7 phenanzine-1-carboxamide NA
M207.05T641.72 207.0547 641.7 phenazine-1-carboxamide (fragment) NA
M393.12T645.89 393.1224 645.9 NA NA
M289.14T649.01 289.1381 649.0 NA NA
M213.07T652.92 213.0657 652.9 NA NA
M260.16T651.62 260.1642 651.6 HQNO NA
M297.14T656.95 297.1358 657.0 NA NA
M186.13T666.88 186.1308 666.9 NA NA
M214.12T663.32 214.1225 663.3 NA C5:1-HQ
M216.14T670.01 216.1384 670.0 NA C5-HQ
M227.08T670.26 227.0815 670.3 NA NA
M264.18T675.46 264.1750 675.5 nortriptyline ISTD NA
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M233.13T676.23 233.1326 676.2 nortriptyline ISTD (fragment) NA
M191.09T676.49 191.0857 676.5 nortriptyline ISTD (fragment) NA
M276.16T680.26 276.1590 680.3 nortriptyline ISTD +Na NA
M232.13T683.77 232.1333 683.8 NA C5-QNO
M1012.42T688.19 1012.4196 688.2 NA NA
M1012.54T689.35 1012.5450 689.3 NA NA
M1157.05T687.92 1157.0497 687.9 NA NA
M900.15T689.22 900.1518 689.2 NA NA
M1156.91T690.64 1156.9069 690.6 NA NA
M1012.29T689.74 1012.2926 689.7 NA NA
M900.04T690 900.0408 690.0 NA NA
M1156.76T690.25 1156.7629 690.3 NA NA
M1012.67T693.51 1012.6712 693.5 NA NA
M225.07T698.07 225.0660 698.1 phenazine-1-carboxylic acid NA
M207.06T699.1 207.0556 699.1 phenazine-1-carboxylic acid (fragment) NA
M257.06T704.3 257.0558 704.3 NA NA
M226.18T703.76 226.1800 703.8 NA NA
M288.2T705.59 288.1953 705.6 NA C9-QNO
M269.06T708.74 269.0559 708.7 phenazine-1,6-dicarboxylic acid NA
M325.07T739.09 325.0676 739.1 NA pyochelin
M304.19T717.91 304.1904 717.9 NA NA
M206.03T721.29 206.0268 721.3 NA NA
M286.18T728.73 286.1799 728.7 NA C9:1-QNO
M181.08T724.14 181.0761 724.1 NA NA
M330.19T724.4 330.1930 724.4 NA NA
M185.1T729.78 185.0960 729.8 NA naproxen (fragment)
M307.02T733.71 307.0208 733.7 NA NA
M404.23T734.62 404.2337 734.6 NA NA
M230.15T735.39 230.1536 735.4 NA C6-HQ
M255.08T740.91 255.0762 740.9 NA NA
M317.09T742.2 317.0915 742.2 NA NA
M446.19T745.32 446.1867 745.3 glipizide ISTD NA
M468.17T744.02 468.1683 744.0 glipizide ISTD +Na NA
M321.1T746.09 321.1019 746.1 NA NA
M913.35T747.39 913.3464 747.4 NA NA
M891.36T747.39 891.3640 747.4 NA NA
M328.19T781.65 328.1907 781.7 NA NA
M929.31T750.51 929.3113 750.5 NA NA
M344.19T754.17 344.1859 754.2 NA NA
M231.1T763.28 231.1017 763.3 naproxen ISTD NA
M185.1T763.53 185.0961 763.5 naproxen ISTD (fragment) NA
M250.08T762.76 250.0754 762.8 NA NA
M288.2T765.88 288.1962 765.9 NA C9-QNO
M258.15T768.47 258.1493 768.5 NA C7:1-QNO
M270.19T766.9 270.1851 766.9 NA C9:1-HQ
M274.27T767.94 274.2741 767.9 NA NA
M328.14T772.12 328.1425 772.1 NA NA
M655.28T772.63 655.2753 772.6 NA NA
M242.15T789.6 242.1542 789.6 NA C7:1-HQ
M309.13T780.23 309.1310 780.2 NA NA
M353.16T780.48 353.1571 780.5 NA NA
M113.06T779.69 113.0596 779.7 NA NA
M304.19T786.75 304.1907 786.8 NA NA
M184.08T792.48 184.0755 792.5 NA NA
M260.16T796.66 260.1648 796.7 HQNO NA
M244.17T796.4 244.1700 796.4 HHQ NA
M312.2T794.57 312.1951 794.6 NA NA
M159.07T795.61 159.0681 795.6 HHQ (fragment) NA
M503.33T797.17 503.3271 797.2 NA NA
M519.32T799.12 519.3229 799.1 HQNO [2M+H]+ NA
M161.1T800.82 161.0960 800.8 NA NA
M302.17T804.83 302.1749 804.8 NA NA
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M201.09T806.25 201.0909 806.3 NA NA
M286.18T808.85 286.1804 808.9 NA C9:1-QNO
M276.16T811.73 276.1598 811.7 NA NA
M172.17T813.55 172.1698 813.6 NA NA
M432.26T815.37 432.2650 815.4 NA NA
M325.07T819.96 325.0675 820.0 NA pyochelin
M272.16T822.08 272.1648 822.1 NA C8:1-QNO
M314.21T825.99 314.2121 826.0 NA C11:1-QNO
M288.2T824.42 288.1956 824.4 NA C9-QNO
M284.16T840.09 284.1648 840.1 NA NA
M326.18T833.85 326.1758 833.8 NA NA
M358.2T834.1 358.2022 834.1 NA NA
M274.18T842.43 274.1806 842.4 NA C8-QNO
M358.2T835.92 358.2016 835.9 NA NA
M258.19T853.38 258.1855 853.4 NA C8-HQ
M330.21T844.12 330.2068 844.1 NA NA
M286.18T864.03 286.1808 864.0 NA C9:1-QNO
M270.19T873.15 270.1858 873.2 NA C9:1-HQ
M268.17T875.49 268.1697 875.5 NA NA
M256.17T851.43 256.1699 851.4 NA C8:1-HQ
M310.18T853.38 310.1806 853.4 NA NA
M250.12T856.23 250.1189 856.2 NA NA
M437.19T860.52 437.1947 860.5 NA NA
M415.21T859.73 415.2126 859.7 NA NA
M324.16T867.42 324.1574 867.4 NA NA
M178.05T867.16 178.0500 867.2 NA NA
M302.18T879.54 302.1751 879.5 NA NA
M316.23T869.51 316.2265 869.5 NA C11-QNO
M316.23T871.07 316.2276 871.1 NA C11-QNO
M571.35T875.76 571.3534 875.8 NA NA
M198.09T874.45 198.0914 874.5 NA NA
M346.2T881.21 346.2014 881.2 NA NA
M452.28T896.1 452.2779 896.1 NA NA
M170.1T885.9 170.0967 885.9 NA NA
M332.22T890.1 332.2219 890.1 NA NA
M314.21T892.19 314.2112 892.2 NA C11:1-QNO
M300.2T925.27 300.1960 925.3 NA C10:1-QNO
M288.2T902.1 288.1965 902.1 NA C9-PQS
M300.2T894.8 300.1969 894.8 NA C10:1-QNO
M474.26T899.22 474.2600 899.2 NA NA
M284.2T904.43 284.2014 904.4 NA C10:1-HQ
M575.38T904.16 575.3850 904.2 NA NA
M184.08T908.6 184.0759 908.6 NA NA
M292.17T907.81 292.1676 907.8 NA NA
M272.2T910.42 272.2017 910.4 NA C9-HQ
M541.38T909.89 541.3787 909.9 NA NA
M543.4T910.68 543.3952 910.7 NA NA
M563.36T910.94 563.3616 910.9 NA NA
M342.24T912.12 342.2433 912.1 NA C13:1-QNO
M646.36T912.5 646.3562 912.5 NA NA
M312.2T929.44 312.1963 929.4 NA NA
M327.34T917.18 327.3378 917.2 NA NA
M304.19T921.87 304.1914 921.9 NA NA
M286.18T921.6 286.1808 921.6 NA C9:1-PQS
M360.22T923.7 360.2170 923.7 NA NA
M358.24T929.17 358.2375 929.2 NA NA
M672.37T930.21 672.3713 930.2 NA NA
M499.29T936.54 499.2879 936.5 NA NA
M314.21T944.87 314.2119 944.9 NA C11:1-PQS
M296.2T958.11 296.2015 958.1 NA NA
M627.42T945.38 627.4163 945.4 NA NA
M298.22T984.33 298.2171 984.3 NA C11:1-HQ

328



A

Table 3.S2.: Continued.

feature ID med.mz med.rt library annotation putative annotation

M454.29T963.69 454.2938 963.7 NA PE(16:0/0:0)
M595.43T950.84 595.4256 950.8 NA NA
M289.15T954.48 289.1541 954.5 NA NA
M267.17T955.25 267.1722 955.3 NA NA
M302.21T956.81 302.2120 956.8 NA C10-QNO
M284.2T959.42 284.2006 959.4 NA C10:1-HQ
M330.21T962.26 330.2069 962.3 NA NA
M673.38T966.68 673.3776 966.7 NA Rha-Rha-C10-C10 +Na
M359.28T966.42 359.2799 966.4 NA NA
M480.31T982.77 480.3095 982.8 NA PE(18:1/0:0)
M500.22T974.72 500.2174 974.7 NA NA
M304.19T977.83 304.1893 977.8 NA NA
M303.19T979.65 303.1860 979.7 NA NA
M505.25T982.5 505.2540 982.5 NA PG(16:1/0:0) +Na
M483.27T981.33 483.2721 981.3 NA PG(16:1/0:0)
M502.29T985.62 502.2911 985.6 NA PE(18:1/0:0) +Na
M959.61T986.65 959.6091 986.7 NA NA
M361.24T989 361.2357 989.0 NA NA
M328.23T993.95 328.2275 993.9 NA C12:1-QNO
M99.51T1040.17 99.5123 1040.2 NA NA
M312.23T1001.35 312.2327 1001.4 NA C12:1-HQ
M340.23T1007.62 340.2276 1007.6 NA NA
M316.23T1007.37 316.2276 1007.4 NA C11-PQS
M310.22T1008.4 310.2166 1008.4 NA NA
M324.23T1025.79 324.2327 1025.8 NA NA
M699.39T1013.83 699.3932 1013.8 NA Rha-Rha-C10-C12:1 /

Rha-Rha-C12:1-C10 +Na
M385.3T1014.61 385.2956 1014.6 NA NA
M677.41T1014.86 677.4117 1014.9 NA Rha-Rha-C10-C12:1 /

Rha-Rha-C12:1-C10
M239.66T1017.2 239.6648 1017.2 NA NA
M496.34T1018.23 496.3400 1018.2 NA PC(16:0/0:0)
M527.32T1021.62 527.3199 1021.6 NA Rha-C10-C10 /Rha-C12-C8 +Na
M359.28T1022.4 359.2802 1022.4 NA NA
M1031.65T1023.18 1031.6490 1023.2 NA NA
M292.66T1025.52 292.6600 1025.5 NA NA
M326.38T1031.82 326.3786 1031.8 NA NA
M342.24T1034.94 342.2436 1034.9 NA NA
M314.21T1034.15 314.2120 1034.2 NA NA
M312.2T1037.01 312.1960 1037.0 NA NA
M326.25T1043.73 326.2486 1043.7 NA C13:1-HQ
M522.36T1043.6 522.3553 1043.6 NA NA
M701.41T1049.33 701.4089 1049.3 NA Rha-Rha-C10-C12 /

Rha-Rha-C12-C10 +Na
M387.31T1049.58 387.3113 1049.6 NA NA
M679.43T1051.39 679.4271 1051.4 NA Rha-Rha-C10-C12 /

Rha-Rha-C12-C10
M459.23T1054.91 459.2286 1054.9 NA NA
M341.27T1084.63 341.2667 1084.6 NA NA
M553.34T1072.25 553.3355 1072.3 NA Rha-C10-C12:1 / Rha-C12:1-C10

+Na
M385.29T1079.09 385.2944 1079.1 NA NA
M1083.68T1073.79 1083.6806 1073.8 NA NA
M381.26T1078.47 381.2624 1078.5 NA NA
M342.24T1078.72 342.2433 1078.7 NA C13:1-PQS
M359.28T1078.46 359.2801 1078.5 NA NA
M727.42T1093.9 727.4246 1093.9 NA Rha-Rha-C12:1-C12 /

Rha-Rha-C12-C12:1 +Na
M473.35T1082.31 473.3455 1082.3 NA NA
M429.32T1084.63 429.3193 1084.6 cholesteryl acetate NA
M507.27T1100.59 507.2703 1100.6 NA NA
M485.29T1092.08 485.2888 1092.1 NA NA
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Table 3.S2.: Continued.

feature ID med.mz med.rt library annotation putative annotation

M413.33T1095.83 413.3265 1095.8 NA NA
M705.44T1095.83 705.4419 1095.8 NA Rha-Rha-C12:1-C12 /

Rha-Rha-C12-C12:1
M326.25T1125.41 326.2481 1125.4 NA C13:1-HQ
M397.26T1099.57 397.2573 1099.6 NA NA
M311.26T1103.98 311.2565 1104.0 NA NA
M555.35T1108.39 555.3508 1108.4 NA Rha-C10-C12 / Rha-C12-C10

+Na
M387.31T1109.17 387.3115 1109.2 NA NA
M577.33T1107.35 577.3310 1107.3 NA NA
M1087.71T1109.95 1087.7120 1109.9 NA NA
M487.36T1112.82 487.3602 1112.8 NA NA
M443.34T1115.66 443.3351 1115.7 NA NA
M399.31T1118.65 399.3089 1118.7 NA NA
M355.28T1117.75 355.2825 1117.8 NA NA
M99.51T1121.65 99.5125 1121.6 NA NA
M124.09T1369.75 124.0871 1369.8 NA NA
M328.26T1127.63 328.2637 1127.6 NA C13-HQ
M533.29T1139.9 533.2856 1139.9 NA NA
M729.44T1131.57 729.4401 1131.6 NA Rha-Rha-C12-C12 +Na
M415.34T1132.34 415.3423 1132.3 NA NA
M707.46T1132.6 707.4579 1132.6 NA Rha-Rha-C12-C12
M511.3T1137.29 511.3033 1137.3 NA NA
M581.37T1153.59 581.3668 1153.6 NA NA
M282.14T1145.42 282.1367 1145.4 NA NA
M555.36T1151.77 555.3583 1151.8 NA Rha-C10-C12 / Rha-C12-C10

+Na
M278.18T1152.3 278.1836 1152.3 NA NA
M387.31T1159.58 387.3111 1159.6 NA NA
M409.29T1159.84 409.2935 1159.8 NA NA
M755.46T1159.83 755.4555 1159.8 NA NA
M413.32T1163.6 413.3241 1163.6 NA NA
M369.3T1166.6 369.2980 1166.6 NA NA
M282.22T1185.24 282.2221 1185.2 NA NA
M287.19T1183.15 287.1880 1183.2 NA NA
M583.38T1189.9 583.3816 1189.9 NA NA
M415.34T1190.29 415.3413 1190.3 NA NA
M559.13T1193.82 559.1303 1193.8 NA NA
M354.32T1200.38 354.3185 1200.4 NA NA
M257.25T1211.04 257.2478 1211.0 NA NA
M757.47T1212.99 757.4701 1213.0 NA NA
M705.51T1214.43 705.5122 1214.4 NA NA
M661.49T1220.54 661.4856 1220.5 NA NA
M617.46T1226.29 617.4587 1226.3 NA NA
M573.43T1232.94 573.4323 1232.9 NA NA
M354.32T1236.97 354.3178 1237.0 NA NA
M529.41T1240.64 529.4065 1240.6 NA NA
M283.22T1239.08 283.2167 1239.1 NA NA
M485.38T1248.74 485.3810 1248.7 NA NA
M123.09T1250.04 123.0917 1250.0 NA NA
M284.29T1262.26 284.2949 1262.3 NA NA
M441.36T1259.15 441.3555 1259.2 NA NA
M633.15T1261.75 633.1491 1261.7 NA NA
M532.36T1262.01 532.3577 1262.0 NA NA
M397.33T1269.79 397.3293 1269.8 NA NA
M488.33T1270.83 488.3318 1270.8 NA NA
M136.11T1272.39 136.1118 1272.4 NA NA
M466.32T1274.46 466.3194 1274.5 NA NA
M122.1T1276.28 122.0965 1276.3 NA NA
M865.62T1277.85 865.6232 1277.8 NA NA
M353.3T1282.53 353.3029 1282.5 NA NA
M821.6T1283.04 821.5964 1283.0 NA NA
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feature ID med.mz med.rt library annotation putative annotation

M353.29T1284.86 353.2862 1284.9 NA NA
M325.07T1285.12 325.0679 1285.1 NA NA
M777.57T1286.67 777.5715 1286.7 NA NA
M609.34T1288.22 609.3412 1288.2 NA NA
M733.54T1292.1 733.5447 1292.1 NA NA
M413.27T1297.03 413.2671 1297.0 NA Bis(2-ethylhexyl)phthalate CONT
M393.3T1294.68 393.2979 1294.7 NA NA
M149.02T1295.98 149.0235 1296.0 NA NA
M391.29T1297.28 391.2850 1297.3 NA NA
M689.52T1298.05 689.5180 1298.1 NA NA
M645.49T1301.45 645.4914 1301.4 NA NA
M601.46T1307.16 601.4649 1307.2 NA NA
M144.98T1409.56 144.9824 1409.6 NA NA
M265.96T1330.45 265.9630 1330.4 NA NA
M557.44T1313.67 557.4387 1313.7 NA NA
M146.98T1316.52 146.9808 1316.5 NA NA
M513.41T1320.44 513.4136 1320.4 NA NA
M469.39T1328.01 469.3872 1328.0 NA NA
M284.3T1328.91 284.2958 1328.9 NA NA
M324.33T1331.38 324.3270 1331.4 NA NA
M311.25T1335.27 311.2494 1335.3 NA NA
M542.42T1359.88 542.4209 1359.9 NA NA
M338.34T1339.43 338.3423 1339.4 NA NA
M425.36T1338.38 425.3602 1338.4 NA NA
M502.35T1343.85 502.3487 1343.8 NA NA
M121.97T1381.09 121.9663 1381.1 NA NA
M146.98T1381.23 146.9807 1381.2 NA NA
M394.35T1366.24 394.3475 1366.2 NA NA
M122.1T1374.68 122.0965 1374.7 NA NA
M136.11T1448.2 136.1123 1448.2 NA NA
M133.96T1397.35 133.9596 1397.4 NA NA
M122.1T1460.79 122.0966 1460.8 NA NA
M123.09T1417.81 123.0921 1417.8 NA NA
M146.98T1450.82 146.9805 1450.8 NA NA
M469.38T1466.95 469.3779 1467.0 NA NA
M121.97T1468.13 121.9661 1468.1 NA NA

Table 3.S3.: List of cluster ID assignments resulting from density based clustering using the OPTICS
algorithm along with the colour coding used in Figure 4.

feature ID cluster ID colour code

M146.17T59.35 - spermidine 1 red
M129.14T58.57 - spermidine (fragment) 1 red
M112.11T57.8 - spermidine (fragment) 1 red
M148.06T69.65 - glutamate 1 red
M130.05T69.64 - glutamate (fragment) 1 red
M116.07T73.51 - (proline) 1 red
M301.11T76.88 1 red
M162.08T82.05 1 red
M316.16T94.47 1 red
M299.14T96.54 1 red
M317.14T103.57 1 red
M290.13T105.39 1 red
M278.57T112.67 1 red
M190.07T117.36 - N-acetylglutamate 1 red
M535.19T118.41 - (Glu Glu Glu Glu) 1 red
M132.1T122.82 - leucine / isoleucine / norleucine 1 red
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Table 3.S3.: Continued.

feature ID cluster ID colour code

M307.08T126.2 - (glutathion disulphide (2+)) 1 red
M182.08T125.93 - tyrosine 1 red
M613.16T127.23 - glutathion disulfide 1 red
M304.06T132.18 1 red
M388.11T146.83 1 red
M664.23T165.1 1 red
M332.62T165.35 1 red
M351.59T166.13 1 red
M314.09T175.26 1 red
M166.09T233.22 - phenylalanine 1 red
M120.08T233.48 - phenylalanine (fragment) 1 red
M103.05T235.3 - phenylalanine (fragment) 1 red
M397.14T289.26 1 red
M793.27T273.95 1 red
M416.12T271.35 1 red
M174.06T277.59 1 red
M262.16T278.37 1 red
M276.11T276.54 1 red
M323.07T305.37 1 red
M461.66T328.59 1 red
M922.32T329.89 1 red
M480.64T329.62 1 red
M472.65T332.73 1 red
M219.13T335.84 - (Ser Leu) 1 red
M382.65T337.93 1 red
M220.12T336.88 - (panthotenate) 1 red
M526.18T342.1 1 red
M1051.36T342.36 1 red
M363.77T343.13 1 red
M590.7T351.59 1 red
M1180.4T351.98 1 red
M367.64T355.63 1 red
M360.21T355.1 - (Ile Val Glu / Val Ile Glu) 1 red
M235.07T357.45 1 red
M655.23T359.27 1 red
M666.22T359.78 1 red
M174.06T360.96 1 red
M243.08T362.4 1 red
M215.08T362.66 1 red
M331.18T363.96 1 red
M719.75T366.82 1 red
M359.64T368.9 1 red
M270.19T371.24 1 red
M784.27T374.37 1 red
M795.26T374.75 1 red
M848.79T380.87 1 red
M578.85T381.64 1 red
M913.31T388.16 1 red
M258.58T397.4 1 red
M977.84T395.18 1 red
M364.62T397.4 1 red
M728.23T398.3 1 red
M295.13T406.65 - (Glu Phe) 1 red
M350.62T409.24 - folic acid (fragment) 1 red
M268.66T408.73 1 red
M316.22T413.91 - (Val Val Val) 1 red
M328.22T437.8 - (Pro Leu Val) 1 red
M326.21T414.96 1 red
M336.19T415.21 - (Phe Val Ala / Val Phe Ala) 1 red
M295.19T417.02 1 red
M289.12T417.28 1 red
M261.12T419.11 1 red
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feature ID cluster ID colour code

M263.14T447.96 - (Pro Phe) 1 red
M257.15T449.13 1 red
M243.13T457.64 1 red
M360.19T459.98 1 red
M399.26T461.02 1 red
M277.15T466.47 1 red
M231.17T475.37 - (Leu Val) 1 red
M491.29T496.41 1 red
M344.25T476.52 - (Leu Leu Val or isomer) 1 red
M211.14T497.45 - (cyclo(Leu Pro)) 1 red
M342.24T486.25 - (Pro Ile Leu or isomer) 1 red
M439.29T506.82 1 red
M831.14T503.95 1 red
M473.3T511.21 1 red
M441.31T516.66 1 red
M245.13T525.64 - (cyclo(Phe Pro)) 1 red
M246.13T525.63 1 red
M505.3T526.66 1 red
M311.14T527.97 1 red
M265.57T546.37 1 red
M775.9T572.93 1 red
M392.25T573.83 - (Phe Leu Leu or isomer) 1 red
M289.14T649.01 1 red
M297.14T656.95 1 red
M1012.42T688.19 1 red
M1012.54T689.35 1 red
M1157.05T687.92 1 red
M900.15T689.22 1 red
M1156.91T690.64 1 red
M1012.29T689.74 1 red
M900.04T690 1 red
M1156.76T690.25 1 red
M1012.67T693.51 1 red
M288.2T705.59 - (C9-QNO) 1 red
M304.19T717.91 1 red
M286.18T728.73 - (C9:1-QNO) 1 red
M288.2T765.88 - (C9-QNO) 1 red
M270.19T766.9 - (C9:1-HQ) 1 red
M304.19T786.75 1 red
M286.18T808.85 - (C9:1-QNO) 1 red
M288.2T824.42 - (C9-QNO) 1 red
M284.16T840.09 1 red
M286.18T864.03 - (C9:1-QNO) 1 red
M270.19T873.15 - (C9:1-HQ) 1 red
M268.17T875.49 1 red
M571.35T875.76 1 red
M288.2T902.1 - (C9-PQS) 1 red
M284.2T904.43 - (C10:1-HQ) 1 red
M575.38T904.16 1 red
M272.2T910.42 - (C9-HQ) 1 red
M541.38T909.89 1 red
M543.4T910.68 1 red
M286.18T921.6 - (C9:1-PQS) 1 red
M289.15T954.48 1 red
M284.2T959.42 - (C10:1-HQ) 1 red
M459.23T1054.91 1 red
M287.19T1183.15 1 red
M284.29T1262.26 1 red
M284.3T1328.91 1 red
M428.04T80.88 - ADP 2 green
M372.55T88.26 - NADP (2+) 2 green
M348.07T90.34 - AMP 2 green
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Table 3.S3.: Continued.

feature ID cluster ID colour code

M136.06T90.6 - AMP (fragment) 2 green
M695.13T91.88 - AMP (2+) 2 green
M123.06T103.31 - nicotinamide 2 green
M332.56T107.48 - NAD (2+) 2 green
M664.12T108.26 - NAD 2 green
M542.07T108.52 - NAD (fragment) 2 green
M332.08T113.21 - (dAMP) 2 green
M193.07T150.49 - (S-(5’-adenosyl)-homocysteine (2+)) 2 green
M385.13T151.52 - S-(5’-adenosyl)-homocysteine 2 green
M268.1T171.87 - adenosine 2 green
M340.06T231.65 2 green
M298.1T385.29 - 5’-methylthioadenosine 2 green
M786.17T426.25 - FAD 2 green
M321.1T537.6 3 blue
M393.12T645.89 3 blue
M446.19T745.32 - glipizide ISTD 3 blue
M321.1T746.09 3 blue
M891.36T747.39 3 blue
M525.18T352.51 4 cyan
M120.04T450.56 - anthranilate (fragment) 4 cyan
M138.06T451.33 - anthranilate 4 cyan
M188.07T371.25 - tryptophan (fragment) 5 pink
M205.1T370.99 - tryptophan 5 pink
M163.09T512.64 5 pink
M118.06T585.64 5 pink
M245.18T210.61 6 yellow
M145.08T410.28 6 yellow
M214.13T411.31 6 yellow
M145.08T508.11 6 yellow
M202.09T545.21 7 grey
M184.08T792.48 7 grey
M184.08T908.6 7 grey
M260.16T583.7 - (C7-QNO) 8 orange
M260.16T651.62 - HQNO 8 orange
M242.15T789.6 - (C7:1-HQ) 8 orange
M260.16T796.66 - HQNO 8 orange
M244.17T796.4 - HHQ 8 orange
M503.33T797.17 8 orange
M519.32T799.12 - HQNO [2M+H]+ 8 orange
M232.13T495.36 9 red
M232.13T683.77 - (C5-QNO) 9 red
M176.07T465.7 10 green
M159.09T464.27 10 green
M159.07T466.73 10 green
M159.07T795.61 - HHQ (fragment) 10 green
M161.1T800.82 10 green
M342.24T912.12 - (C13:1-QNO) 11 blue
M324.23T1025.79 11 blue
M342.24T1034.94 11 blue
M326.25T1043.73 - (C13:1-HQ) 11 blue
M342.24T1078.72 - (C13:1-PQS) 11 blue
M326.25T1125.41 - (C13:1-HQ) 11 blue
M328.26T1127.63 - (C13-HQ) 11 blue
M312.2T794.57 12 cyan
M314.21T825.99 - (C11:1-QNO) 12 cyan
M330.21T844.12 12 cyan
M316.23T869.51 - (C11-QNO) 12 cyan
M316.23T871.07 - (C11-QNO) 12 cyan
M332.22T890.1 12 cyan
M314.21T892.19 - (C11:1-QNO) 12 cyan
M312.2T929.44 12 cyan
M314.21T944.87 - (C11:1-PQS) 12 cyan
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M296.2T958.11 12 cyan
M627.42T945.38 12 cyan
M298.22T984.33 - (C11:1-HQ) 12 cyan
M595.43T950.84 12 cyan
M316.23T1007.37 - (C11-PQS) 12 cyan
M276.16T811.73 13 pink
M178.05T867.16 13 pink
M302.18T879.54 13 pink
M304.19T921.87 13 pink
M330.21T962.26 13 pink
M170.1T885.9 14 yellow
M314.21T1034.15 14 yellow
M312.2T1037.01 14 yellow
M325.07T739.09 - (pyochelin) 15 grey
M325.07T819.96 - (pyochelin) 15 grey
M325.07T1285.12 15 grey
M211.09T382.17 - pyocyanin 16 orange
M255.08T482.73 16 orange
M330.19T724.4 16 orange
M324.06T75.32 - CMP 17 red
M325.04T78.94 - CMP 17 red
M308.06T84.63 - dCMP 17 red
M317.09T742.2 18 green
M358.2T834.1 18 green
M358.2T835.92 18 green
M185.1T729.78 - (naproxen (fragment)) 19 blue
M231.1T763.28 - naproxen ISTD 19 blue
M185.1T763.53 - naproxen ISTD (fragment) 19 blue
M250.08T762.76 19 blue
M264.18T675.46 - nortriptyline ISTD 20 cyan
M233.13T676.23 - nortriptyline ISTD (fragment) 20 cyan
M304.19T977.83 20 cyan
M303.19T979.65 20 cyan
M359.28T966.42 21 pink
M385.3T1014.61 21 pink
M677.41T1014.86 - (Rha-Rha-C10-C12:1 / Rha-Rha-C12:1-C10) 21 pink
M359.28T1022.4 21 pink
M387.31T1049.58 21 pink
M679.43T1051.39 - (Rha-Rha-C10-C12 / Rha-Rha-C12-C10) 21 pink
M385.29T1079.09 21 pink
M359.28T1078.46 21 pink
M413.33T1095.83 21 pink
M387.31T1109.17 21 pink
M415.34T1132.34 21 pink
M707.46T1132.6 - (Rha-Rha-C12-C12) 21 pink
M387.31T1159.58 21 pink
M415.34T1190.29 21 pink
M338.34T1339.43 21 pink
M136.11T1272.39 22 yellow
M136.11T1448.2 22 yellow
M133.96T1397.35 22 yellow
M224.08T640.69 - phenanzine-1-carboxamide 23 grey
M207.05T641.72 - phenazine-1-carboxamide (fragment) 23 grey
M225.07T698.07 - phenazine-1-carboxylic acid 23 grey
M207.06T699.1 - phenazine-1-carboxylic acid (fragment) 23 grey
M226.18T703.76 23 grey
M206.03T721.29 23 grey
M672.37T930.21 24 orange
M480.31T982.77 - (PE(18:1/0:0)) 24 orange
M959.61T986.65 24 orange
M511.3T1137.29 24 orange
M646.36T912.5 25 red
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feature ID cluster ID colour code

M454.29T963.69 - (PE(16:0/0:0)) 25 red
M485.29T1092.08 25 red
M487.36T1112.82 25 red
M452.28T896.1 26 green
M483.27T981.33 - (PG(16:1/0:0)) 26 green
M311.26T1103.98 26 green
M99.09T97.84 27 blue
M98.98T141.84 27 blue
M267.17T955.25 27 blue
M393.3T1294.68 28 cyan
M149.02T1295.98 28 cyan
M391.29T1297.28 28 cyan
M186.13T666.88 29 pink
M354.32T1200.38 29 pink
M354.32T1236.97 29 pink
M124.09T1369.75 30 yellow
M123.09T1250.04 30 yellow
M122.1T1276.28 30 yellow
M121.97T1381.09 30 yellow
M122.1T1374.68 30 yellow
M122.1T1460.79 30 yellow
M123.09T1417.81 30 yellow
M121.97T1468.13 30 yellow
M144.98T1409.56 31 grey
M146.98T1316.52 31 grey
M146.98T1381.23 31 grey
M146.98T1450.82 31 grey
M251.16T60.64 0 black
M212.85T65.02 0 black
M290.85T64.76 0 black
M179.06T71.32 - (gluconolactone) 0 black
M197.07T71.57 0 black
M242.08T74.02 0 black
M219.1T77.65 - (Glu Ala) 0 black
M191.05T84.37 0 black
M189.12T85.8 0 black
M85.06T86.7 0 black
M338.14T94.98 0 black
M364.07T97.19 - GMP 0 black
M254.09T100.71 0 black
M110.06T100.45 - 2-aminophenol 0 black
M159.11T102.26 0 black
M137.05T112.16 - hypoxanthine 0 black
M179.07T114.5 0 black
M202.18T115.29 0 black
M180.05T120.87 - ((iso)xanthopterine) 0 black
M322.11T131.92 0 black
M323.06T135.83 - (dTMP) 0 black
M143.08T138.17 0 black
M182.07T141.05 0 black
M164.06T147.09 - (pterine) 0 black
M250.14T156.21 0 black
M125.57T156.99 0 black
M251.15T228.5 0 black
M320.17T232.69 0 black
M254.16T280.46 0 black
M244.11T293.5 0 black
M256.18T309.56 0 black
M911.28T323.37 0 black
M727.21T324.67 0 black
M1235.4T324.66 0 black
M479.19T333.77 0 black
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M597.68T335.59 - (UDP-muramyl-pentapeptide) 0 black
M568.14T338.32 0 black
M194.08T340.15 0 black
M194.07T346.78 0 black
M217.1T347.04 0 black
M472.85T348.87 0 black
M708.77T349.12 0 black
M734.27T356.41 0 black
M686.76T358.74 0 black
M679.29T361.61 0 black
M693.77T367.08 0 black
M462.85T367.6 0 black
M304.18T373.32 0 black
M694.26T376.97 0 black
M358.2T377.48 - (Ile Pro Glu / Leu Pro Glu) 0 black
M195.11T378.66 0 black
M732.26T383.07 0 black
M261.13T385.55 0 black
M187.12T391.55 0 black
M204.12T389.98 0 black
M243.18T392.85 0 black
M516.16T395.97 0 black
M188.12T399.72 0 black
M254.09T400.89 0 black
M190.05T411.45 - kynurenate 0 black
M378.2T412.48 - (Pro Tyr Val) 0 black
M197.13T423.26 0 black
M316.21T430.54 0 black
M231.11T430.8 0 black
M160.08T433.66 0 black
M457.11T433.91 - (FMN) 0 black
M204.1T435.6 0 black
M195.09T436.77 - caffeine ISTD 0 black
M291.15T444.85 - trimethoprim ISTD 0 black
M275.11T445.88 0 black
M300.2T461.28 0 black
M291.09T462.05 - trimethoprim ISTD 0 black
M418.14T474.32 0 black
M427.29T485.86 0 black
M245.59T495.11 0 black
M187.09T505 0 black
M530.13T538.67 0 black
M186.09T531.62 0 black
M188.11T535.78 - (C3-HQ) 0 black
M275.03T536.04 0 black
M243.09T558.67 - lumichrome 0 black
M204.1T564.12 0 black
M263.12T576.07 0 black
M200.11T578.31 0 black
M202.12T578.44 0 black
M136.08T584.09 0 black
M323.09T586.42 0 black
M485.11T612.66 0 black
M215.12T626.24 0 black
M263.12T624.79 0 black
M213.07T652.92 0 black
M214.12T663.32 - (C5:1-HQ) 0 black
M216.14T670.01 - (C5-HQ) 0 black
M227.08T670.26 0 black
M191.09T676.49 - nortriptyline ISTD (fragment) 0 black
M276.16T680.26 - nortriptyline ISTD +Na 0 black
M257.06T704.3 0 black
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Table 3.S3.: Continued.

feature ID cluster ID colour code

M269.06T708.74 - phenazine-1,6-dicarboxylic acid 0 black
M181.08T724.14 0 black
M307.02T733.71 0 black
M404.23T734.62 0 black
M230.15T735.39 - (C6-HQ) 0 black
M255.08T740.91 0 black
M468.17T744.02 - glipizide ISTD +Na 0 black
M913.35T747.39 0 black
M328.19T781.65 0 black
M929.31T750.51 0 black
M344.19T754.17 0 black
M258.15T768.47 - (C7:1-QNO) 0 black
M274.27T767.94 0 black
M328.14T772.12 0 black
M655.28T772.63 0 black
M309.13T780.23 0 black
M353.16T780.48 0 black
M113.06T779.69 0 black
M302.17T804.83 0 black
M201.09T806.25 0 black
M172.17T813.55 0 black
M432.26T815.37 0 black
M272.16T822.08 - (C8:1-QNO) 0 black
M326.18T833.85 0 black
M274.18T842.43 - (C8-QNO) 0 black
M258.19T853.38 - (C8-HQ) 0 black
M256.17T851.43 - (C8:1-HQ) 0 black
M310.18T853.38 0 black
M250.12T856.23 0 black
M437.19T860.52 0 black
M415.21T859.73 0 black
M324.16T867.42 0 black
M198.09T874.45 0 black
M346.2T881.21 0 black
M300.2T925.27 - (C10:1-QNO) 0 black
M300.2T894.8 - (C10:1-QNO) 0 black
M474.26T899.22 0 black
M292.17T907.81 0 black
M563.36T910.94 0 black
M327.34T917.18 0 black
M360.22T923.7 0 black
M358.24T929.17 0 black
M499.29T936.54 0 black
M302.21T956.81 - (C10-QNO) 0 black
M673.38T966.68 - (Rha-Rha-C10-C10 +Na ) 0 black
M500.22T974.72 0 black
M505.25T982.5 - (PG(16:1/0:0) +Na) 0 black
M502.29T985.62 - (PE(18:1/0:0) +Na) 0 black
M361.24T989 0 black
M328.23T993.95 - (C12:1-QNO) 0 black
M99.51T1040.17 0 black
M312.23T1001.35 - (C12:1-HQ) 0 black
M340.23T1007.62 0 black
M310.22T1008.4 0 black
M699.39T1013.83 - (Rha-Rha-C10-C12:1 / Rha-Rha-C12:1-C10 +Na) 0 black
M239.66T1017.2 0 black
M496.34T1018.23 - (PC(16:0/0:0)) 0 black
M527.32T1021.62 - (Rha-C10-C10 /Rha-C12-C8 +Na) 0 black
M1031.65T1023.18 0 black
M292.66T1025.52 0 black
M326.38T1031.82 0 black
M522.36T1043.6 0 black
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M701.41T1049.33 - (Rha-Rha-C10-C12 / Rha-Rha-C12-C10 +Na) 0 black
M341.27T1084.63 0 black
M553.34T1072.25 - (Rha-C10-C12:1 / Rha-C12:1-C10 +Na) 0 black
M1083.68T1073.79 0 black
M381.26T1078.47 0 black
M727.42T1093.9 - (Rha-Rha-C12:1-C12 / Rha-Rha-C12-C12:1 +Na) 0 black
M473.35T1082.31 0 black
M429.32T1084.63 - cholesteryl acetate 0 black
M507.27T1100.59 0 black
M705.44T1095.83 - (Rha-Rha-C12:1-C12 / Rha-Rha-C12-C12:1) 0 black
M397.26T1099.57 0 black
M555.35T1108.39 - (Rha-C10-C12 / Rha-C12-C10 +Na) 0 black
M577.33T1107.35 0 black
M1087.71T1109.95 0 black
M443.34T1115.66 0 black
M399.31T1118.65 0 black
M355.28T1117.75 0 black
M99.51T1121.65 0 black
M533.29T1139.9 0 black
M729.44T1131.57 - (Rha-Rha-C12-C12 +Na) 0 black
M581.37T1153.59 0 black
M282.14T1145.42 0 black
M555.36T1151.77 - (Rha-C10-C12 / Rha-C12-C10 +Na) 0 black
M278.18T1152.3 0 black
M409.29T1159.84 0 black
M755.46T1159.83 0 black
M413.32T1163.6 0 black
M369.3T1166.6 0 black
M282.22T1185.24 0 black
M583.38T1189.9 0 black
M559.13T1193.82 0 black
M257.25T1211.04 0 black
M757.47T1212.99 0 black
M705.51T1214.43 0 black
M661.49T1220.54 0 black
M617.46T1226.29 0 black
M573.43T1232.94 0 black
M529.41T1240.64 0 black
M283.22T1239.08 0 black
M485.38T1248.74 0 black
M441.36T1259.15 0 black
M633.15T1261.75 0 black
M532.36T1262.01 0 black
M397.33T1269.79 0 black
M488.33T1270.83 0 black
M466.32T1274.46 0 black
M865.62T1277.85 0 black
M353.3T1282.53 0 black
M821.6T1283.04 0 black
M353.29T1284.86 0 black
M777.57T1286.67 0 black
M609.34T1288.22 0 black
M733.54T1292.1 0 black
M413.27T1297.03 - (Bis(2-ethylhexyl)phthalate CONT) 0 black
M689.52T1298.05 0 black
M645.49T1301.45 0 black
M601.46T1307.16 0 black
M265.96T1330.45 0 black
M557.44T1313.67 0 black
M513.41T1320.44 0 black
M469.39T1328.01 0 black
M324.33T1331.38 0 black
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M311.25T1335.27 0 black
M542.42T1359.88 0 black
M425.36T1338.38 0 black
M502.35T1343.85 0 black
M394.35T1366.24 0 black
M469.38T1466.95 0 black

Table 3.S4.: List of cluster ID assignments resulting from hierarchical clustering with average link-
age of product ion spectra similarities.

feature ID cluster ID

M146.17T59.35 - spermidine 1
M129.14T58.57 - spermidine (fragment) 1
M112.11T57.8 - spermidine (fragment) 1
M251.16T60.64 1
M212.85T65.02 2
M290.85T64.76 3
M148.06T69.65 - glutamate 4
M130.05T69.64 - glutamate (fragment) 4
M179.06T71.32 - (gluconolactone) 5
M197.07T71.57 5
M116.07T73.51 - (proline) 6
M242.08T74.02 4
M324.06T75.32 - CMP 5
M301.11T76.88 4
M219.1T77.65 - (Glu Ala) 4
M325.04T78.94 - CMP 5
M428.04T80.88 - ADP 7
M162.08T82.05 4
M191.05T84.37 8
M308.06T84.63 - dCMP 5
M189.12T85.8 8
M85.06T86.7 9
M372.55T88.26 - NADP (2+) 7
M348.07T90.34 - AMP 7
M136.06T90.6 - AMP (fragment) 7
M695.13T91.88 - AMP (2+) 7
M316.16T94.47 4
M338.14T94.98 10
M364.07T97.19 - GMP 11
M299.14T96.54 4
M99.09T97.84 12
M254.09T100.71 13
M110.06T100.45 - 2-aminophenol 14
M123.06T103.31 - nicotinamide 7
M159.11T102.26 15
M317.14T103.57 4
M290.13T105.39 4
M332.56T107.48 - NAD (2+) 7
M664.12T108.26 - NAD 7
M542.07T108.52 - NAD (fragment) 7
M278.57T112.67 4
M137.05T112.16 - hypoxanthine 7
M332.08T113.21 - (dAMP) 7
M179.07T114.5 16
M202.18T115.29 17
M190.07T117.36 - N-acetylglutamate 4
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M535.19T118.41 - (Glu Glu Glu Glu) 4
M180.05T120.87 - ((iso)xanthopterine) 18
M132.1T122.82 - leucine / isoleucine / norleucine 6
M307.08T126.2 - (glutathion disulphide (2+)) 4
M182.08T125.93 - tyrosine 6
M613.16T127.23 - glutathion disulfide 4
M322.11T131.92 4
M304.06T132.18 4
M323.06T135.83 - (dTMP) 4
M143.08T138.17 1
M98.98T141.84 12
M182.07T141.05 11
M388.11T146.83 4
M164.06T147.09 - (pterine) 6
M193.07T150.49 - (S-(5’-adenosyl)-homocysteine (2+)) 7
M385.13T151.52 - S-(5’-adenosyl)-homocysteine 7
M250.14T156.21 1
M125.57T156.99 19
M664.23T165.1 4
M332.62T165.35 4
M351.59T166.13 4
M268.1T171.87 - adenosine 7
M314.09T175.26 4
M245.18T210.61 20
M251.15T228.5 21
M166.09T233.22 - phenylalanine 6
M120.08T233.48 - phenylalanine (fragment) 6
M340.06T231.65 7
M320.17T232.69 22
M103.05T235.3 - phenylalanine (fragment) 23
M397.14T289.26 4
M793.27T273.95 4
M416.12T271.35 4
M174.06T277.59 14
M262.16T278.37 1
M276.11T276.54 4
M254.16T280.46 6
M244.11T293.5 12
M323.07T305.37 4
M256.18T309.56 6
M911.28T323.37 5
M727.21T324.67 5
M1235.4T324.66 5
M461.66T328.59 4
M922.32T329.89 4
M480.64T329.62 4
M479.19T333.77 4
M472.65T332.73 4
M597.68T335.59 - (UDP-muramyl-pentapeptide) 4
M219.13T335.84 - (Ser Leu) 6
M382.65T337.93 4
M220.12T336.88 - (panthotenate) 6
M568.14T338.32 4
M194.08T340.15 24
M526.18T342.1 4
M1051.36T342.36 4
M363.77T343.13 4
M194.07T346.78 25
M217.1T347.04 26
M472.85T348.87 6
M708.77T349.12 27
M590.7T351.59 4
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M525.18T352.51 14
M1180.4T351.98 4
M367.64T355.63 4
M360.21T355.1 - (Ile Val Glu / Val Ile Glu) 6
M734.27T356.41 28
M235.07T357.45 4
M655.23T359.27 4
M686.76T358.74 29
M666.22T359.78 4
M174.06T360.96 14
M679.29T361.61 30
M243.08T362.4 31
M215.08T362.66 31
M331.18T363.96 1
M693.77T367.08 32
M719.75T366.82 4
M462.85T367.6 6
M359.64T368.9 4
M188.07T371.25 - tryptophan (fragment) 33
M205.1T370.99 - tryptophan 33
M270.19T371.24 34
M304.18T373.32 33
M784.27T374.37 4
M795.26T374.75 4
M694.26T376.97 32
M358.2T377.48 - (Ile Pro Glu / Leu Pro Glu) 6
M195.11T378.66 6
M848.79T380.87 4
M211.09T382.17 - pyocyanin 35
M578.85T381.64 4
M732.26T383.07 36
M298.1T385.29 - 5’-methylthioadenosine 7
M261.13T385.55 37
M913.31T388.16 4
M187.12T391.55 20
M204.12T389.98 38
M243.18T392.85 17
M258.58T397.4 4
M977.84T395.18 4
M516.16T395.97 4
M364.62T397.4 4
M728.23T398.3 14
M188.12T399.72 20
M254.09T400.89 35
M295.13T406.65 - (Glu Phe) 6
M350.62T409.24 - folic acid (fragment) 4
M268.66T408.73 6
M145.08T410.28 20
M190.05T411.45 - kynurenate 39
M214.13T411.31 20
M378.2T412.48 - (Pro Tyr Val) 6
M316.22T413.91 - (Val Val Val) 1
M328.22T437.8 - (Pro Leu Val) 6
M326.21T414.96 6
M336.19T415.21 - (Phe Val Ala / Val Phe Ala) 6
M295.19T417.02 6
M289.12T417.28 6
M261.12T419.11 6
M197.13T423.26 6
M786.17T426.25 - FAD 7
M316.21T430.54 17
M231.11T430.8 40
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M160.08T433.66 33
M457.11T433.91 - (FMN) 41
M204.1T435.6 39
M195.09T436.77 - caffeine ISTD 21
M291.15T444.85 - trimethoprim ISTD 42
M275.11T445.88 42
M263.14T447.96 - (Pro Phe) 6
M257.15T449.13 6
M120.04T450.56 - anthranilate (fragment) 14
M138.06T451.33 - anthranilate 14
M243.13T457.64 6
M360.19T459.98 6
M300.2T461.28 17
M399.26T461.02 6
M291.09T462.05 - trimethoprim ISTD 42
M176.07T465.7 43
M159.09T464.27 43
M277.15T466.47 6
M159.07T466.73 43
M418.14T474.32 44
M231.17T475.37 - (Leu Val) 6
M491.29T496.41 6
M344.25T476.52 - (Leu Leu Val or isomer) 6
M255.08T482.73 35
M211.14T497.45 - (cyclo(Leu Pro)) 6
M342.24T486.25 - (Pro Ile Leu or isomer) 6
M427.29T485.86 1
M245.59T495.11 35
M232.13T495.36 43
M145.08T508.11 20
M439.29T506.82 6
M831.14T503.95 6
M187.09T505 31
M163.09T512.64 33
M473.3T511.21 6
M441.31T516.66 6
M245.13T525.64 - (cyclo(Phe Pro)) 6
M246.13T525.63 6
M505.3T526.66 6
M311.14T527.97 6
M530.13T538.67 45
M186.09T531.62 39
M188.11T535.78 - (C3-HQ) 43
M275.03T536.04 46
M321.1T537.6 23
M202.09T545.21 43
M265.57T546.37 4
M243.09T558.67 - lumichrome 41
M204.1T564.12 43
M260.16T583.7 - (C7-QNO) 43
M775.9T572.93 6
M392.25T573.83 - (Phe Leu Leu or isomer) 6
M263.12T576.07 33
M200.11T578.31 43
M202.12T578.44 43
M136.08T584.09 33
M118.06T585.64 33
M323.09T586.42 47
M485.11T612.66 45
M215.12T626.24 35
M263.12T624.79 33
M224.08T640.69 - phenanzine-1-carboxamide 48
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M207.05T641.72 - phenazine-1-carboxamide (fragment) 48
M393.12T645.89 23
M289.14T649.01 4
M213.07T652.92 49
M260.16T651.62 - HQNO 43
M297.14T656.95 43
M186.13T666.88 50
M214.12T663.32 - (C5:1-HQ) 43
M216.14T670.01 - (C5-HQ) 43
M227.08T670.26 51
M264.18T675.46 - nortriptyline ISTD 33
M233.13T676.23 - nortriptyline ISTD (fragment) 33
M191.09T676.49 - nortriptyline ISTD (fragment) 33
M276.16T680.26 - nortriptyline ISTD +Na 43
M232.13T683.77 - (C5-QNO) 43
M1012.42T688.19 6
M1012.54T689.35 6
M1157.05T687.92 6
M900.15T689.22 6
M1156.91T690.64 6
M1012.29T689.74 6
M900.04T690 6
M1156.76T690.25 6
M1012.67T693.51 6
M225.07T698.07 - phenazine-1-carboxylic acid 48
M207.06T699.1 - phenazine-1-carboxylic acid (fragment) 48
M257.06T704.3 52
M226.18T703.76 48
M288.2T705.59 - (C9-QNO) 43
M269.06T708.74 - phenazine-1,6-dicarboxylic acid 48
M325.07T739.09 - (pyochelin) 53
M304.19T717.91 43
M206.03T721.29 48
M286.18T728.73 - (C9:1-QNO) 43
M181.08T724.14 35
M330.19T724.4 35
M185.1T729.78 - (naproxen (fragment)) 54
M307.02T733.71 55
M404.23T734.62 43
M230.15T735.39 - (C6-HQ) 43
M255.08T740.91 35
M317.09T742.2 43
M446.19T745.32 - glipizide ISTD 23
M468.17T744.02 - glipizide ISTD +Na 23
M321.1T746.09 23
M913.35T747.39 23
M891.36T747.39 23
M328.19T781.65 43
M929.31T750.51 56
M344.19T754.17 43
M231.1T763.28 - naproxen ISTD 54
M185.1T763.53 - naproxen ISTD (fragment) 54
M250.08T762.76 54
M288.2T765.88 - (C9-QNO) 43
M258.15T768.47 - (C7:1-QNO) 43
M270.19T766.9 - (C9:1-HQ) 43
M274.27T767.94 57
M328.14T772.12 58
M655.28T772.63 59
M242.15T789.6 - (C7:1-HQ) 43
M309.13T780.23 60
M353.16T780.48 61
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M113.06T779.69 62
M304.19T786.75 43
M184.08T792.48 43
M260.16T796.66 - HQNO 43
M244.17T796.4 - HHQ 43
M312.2T794.57 43
M159.07T795.61 - HHQ (fragment) 43
M503.33T797.17 43
M519.32T799.12 - HQNO [2M+H]+ 43
M161.1T800.82 43
M302.17T804.83 43
M201.09T806.25 58
M286.18T808.85 - (C9:1-QNO) 43
M276.16T811.73 36
M172.17T813.55 17
M432.26T815.37 43
M325.07T819.96 - (pyochelin) 53
M272.16T822.08 - (C8:1-QNO) 43
M314.21T825.99 - (C11:1-QNO) 43
M288.2T824.42 - (C9-QNO) 43
M284.16T840.09 43
M326.18T833.85 43
M358.2T834.1 43
M274.18T842.43 - (C8-QNO) 43
M358.2T835.92 43
M258.19T853.38 - (C8-HQ) 43
M330.21T844.12 43
M286.18T864.03 - (C9:1-QNO) 43
M270.19T873.15 - (C9:1-HQ) 43
M268.17T875.49 43
M256.17T851.43 - (C8:1-HQ) 43
M310.18T853.38 43
M250.12T856.23 63
M437.19T860.52 64
M415.21T859.73 33
M324.16T867.42 53
M178.05T867.16 36
M302.18T879.54 36
M316.23T869.51 - (C11-QNO) 43
M316.23T871.07 - (C11-QNO) 43
M571.35T875.76 43
M198.09T874.45 43
M346.2T881.21 14
M452.28T896.1 12
M170.1T885.9 14
M332.22T890.1 43
M314.21T892.19 - (C11:1-QNO) 43
M300.2T925.27 - (C10:1-QNO) 43
M288.2T902.1 - (C9-PQS) 43
M300.2T894.8 - (C10:1-QNO) 43
M474.26T899.22 65
M284.2T904.43 - (C10:1-HQ) 43
M575.38T904.16 43
M184.08T908.6 43
M292.17T907.81 66
M272.2T910.42 - (C9-HQ) 43
M541.38T909.89 43
M543.4T910.68 43
M563.36T910.94 67
M342.24T912.12 - (C13:1-QNO) 43
M646.36T912.5 12
M312.2T929.44 43
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M327.34T917.18 1
M304.19T921.87 36
M286.18T921.6 - (C9:1-PQS) 43
M360.22T923.7 43
M358.24T929.17 43
M672.37T930.21 12
M499.29T936.54 68
M314.21T944.87 - (C11:1-PQS) 43
M296.2T958.11 43
M627.42T945.38 43
M298.22T984.33 - (C11:1-HQ) 43
M454.29T963.69 - (PE(16:0/0:0)) 12
M595.43T950.84 43
M289.15T954.48 43
M267.17T955.25 12
M302.21T956.81 - (C10-QNO) 43
M284.2T959.42 - (C10:1-HQ) 43
M330.21T962.26 36
M673.38T966.68 - (Rha-Rha-C10-C10 +Na ) 69
M359.28T966.42 63
M480.31T982.77 - (PE(18:1/0:0)) 12
M500.22T974.72 70
M304.19T977.83 33
M303.19T979.65 33
M505.25T982.5 - (PG(16:1/0:0) +Na) 71
M483.27T981.33 - (PG(16:1/0:0)) 12
M502.29T985.62 - (PE(18:1/0:0) +Na) 71
M959.61T986.65 12
M361.24T989 72
M328.23T993.95 - (C12:1-QNO) 43
M99.51T1040.17 73
M312.23T1001.35 - (C12:1-HQ) 43
M340.23T1007.62 43
M316.23T1007.37 - (C11-PQS) 43
M310.22T1008.4 43
M324.23T1025.79 43
M699.39T1013.83 - (Rha-Rha-C10-C12:1 / Rha-Rha-C12:1-C10 +Na) 74
M385.3T1014.61 63
M677.41T1014.86 - (Rha-Rha-C10-C12:1 / Rha-Rha-C12:1-C10) 63
M239.66T1017.2 75
M496.34T1018.23 - (PC(16:0/0:0)) 6
M527.32T1021.62 - (Rha-C10-C10 /Rha-C12-C8 +Na) 69
M359.28T1022.4 63
M1031.65T1023.18 69
M292.66T1025.52 5
M326.38T1031.82 76
M342.24T1034.94 43
M314.21T1034.15 14
M312.2T1037.01 14
M326.25T1043.73 - (C13:1-HQ) 43
M522.36T1043.6 6
M701.41T1049.33 - (Rha-Rha-C10-C12 / Rha-Rha-C12-C10 +Na) 69
M387.31T1049.58 63
M679.43T1051.39 - (Rha-Rha-C10-C12 / Rha-Rha-C12-C10) 63
M459.23T1054.91 43
M341.27T1084.63 77
M553.34T1072.25 - (Rha-C10-C12:1 / Rha-C12:1-C10 +Na) 74
M385.29T1079.09 63
M1083.68T1073.79 74
M381.26T1078.47 69
M342.24T1078.72 - (C13:1-PQS) 43
M359.28T1078.46 63
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M727.42T1093.9 - (Rha-Rha-C12:1-C12 / Rha-Rha-C12-C12:1 +Na) 78
M473.35T1082.31 79
M429.32T1084.63 - cholesteryl acetate 80
M507.27T1100.59 71
M485.29T1092.08 12
M413.33T1095.83 63
M705.44T1095.83 - (Rha-Rha-C12:1-C12 / Rha-Rha-C12-C12:1) 63
M326.25T1125.41 - (C13:1-HQ) 43
M397.26T1099.57 81
M311.26T1103.98 12
M555.35T1108.39 - (Rha-C10-C12 / Rha-C12-C10 +Na) 69
M387.31T1109.17 63
M577.33T1107.35 82
M1087.71T1109.95 69
M487.36T1112.82 12
M443.34T1115.66 83
M399.31T1118.65 84
M355.28T1117.75 85
M99.51T1121.65 73
M124.09T1369.75 86
M328.26T1127.63 - (C13-HQ) 43
M533.29T1139.9 71
M729.44T1131.57 - (Rha-Rha-C12-C12 +Na) 87
M415.34T1132.34 63
M707.46T1132.6 - (Rha-Rha-C12-C12) 63
M511.3T1137.29 12
M581.37T1153.59 88
M282.14T1145.42 89
M555.36T1151.77 - (Rha-C10-C12 / Rha-C12-C10 +Na) 90
M278.18T1152.3 91
M387.31T1159.58 63
M409.29T1159.84 69
M755.46T1159.83 92
M413.32T1163.6 93
M369.3T1166.6 94
M282.22T1185.24 95
M287.19T1183.15 43
M583.38T1189.9 87
M415.34T1190.29 63
M559.13T1193.82 96
M354.32T1200.38 50
M257.25T1211.04 25
M757.47T1212.99 97
M705.51T1214.43 98
M661.49T1220.54 99
M617.46T1226.29 100
M573.43T1232.94 101
M354.32T1236.97 50
M529.41T1240.64 102
M283.22T1239.08 103
M485.38T1248.74 104
M123.09T1250.04 86
M284.29T1262.26 43
M441.36T1259.15 83
M633.15T1261.75 105
M532.36T1262.01 106
M397.33T1269.79 84
M488.33T1270.83 107
M136.11T1272.39 108
M466.32T1274.46 109
M122.1T1276.28 86
M865.62T1277.85 110
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Table 3.S4.: Continued.

feature ID cluster ID

M353.3T1282.53 85
M821.6T1283.04 111
M353.29T1284.86 85
M325.07T1285.12 53
M777.57T1286.67 112
M609.34T1288.22 113
M733.54T1292.1 114
M413.27T1297.03 - (Bis(2-ethylhexyl)phthalate CONT) 93
M393.3T1294.68 115
M149.02T1295.98 115
M391.29T1297.28 115
M689.52T1298.05 116
M645.49T1301.45 117
M601.46T1307.16 118
M144.98T1409.56 86
M265.96T1330.45 119
M557.44T1313.67 120
M146.98T1316.52 86
M513.41T1320.44 121
M469.39T1328.01 119
M284.3T1328.91 43
M324.33T1331.38 122
M311.25T1335.27 103
M542.42T1359.88 14
M338.34T1339.43 63
M425.36T1338.38 123
M502.35T1343.85 124
M121.97T1381.09 86
M146.98T1381.23 86
M394.35T1366.24 95
M122.1T1374.68 86
M136.11T1448.2 108
M133.96T1397.35 108
M122.1T1460.79 86
M123.09T1417.81 86
M146.98T1450.82 86
M469.38T1466.95 125
M121.97T1468.13 86

Table 3.S5.: List of cluster ID assignments resulting from hierarchical clustering with average link-
age of neutral loss pattern similarities.

feature ID cluster ID

M146.17T59.35 - spermidine 1
M129.14T58.57 - spermidine (fragment) 2
M112.11T57.8 - spermidine (fragment) 3
M251.16T60.64 4
M212.85T65.02 5
M290.85T64.76 6
M148.06T69.65 - glutamate 7
M130.05T69.64 - glutamate (fragment) 7
M179.06T71.32 - (gluconolactone) 7
M197.07T71.57 7
M116.07T73.51 - (proline) 7
M242.08T74.02 8
M324.06T75.32 - CMP 9
M301.11T76.88 10
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Table 3.S5.: Continued.

feature ID cluster ID

M219.1T77.65 - (Glu Ala) 11
M325.04T78.94 - CMP 9
M428.04T80.88 - ADP 12
M162.08T82.05 7
M191.05T84.37 13
M308.06T84.63 - dCMP 14
M189.12T85.8 1
M85.06T86.7 15
M372.55T88.26 - NADP (2+) 16
M348.07T90.34 - AMP 9
M136.06T90.6 - AMP (fragment) 2
M695.13T91.88 - AMP (2+) 17
M316.16T94.47 18
M338.14T94.98 1
M364.07T97.19 - GMP 9
M299.14T96.54 19
M99.09T97.84 20
M254.09T100.71 4
M110.06T100.45 - 2-aminophenol 11
M123.06T103.31 - nicotinamide 11
M159.11T102.26 4
M317.14T103.57 18
M290.13T105.39 10
M332.56T107.48 - NAD (2+) 21
M664.12T108.26 - NAD 22
M542.07T108.52 - NAD (fragment) 23
M278.57T112.67 24
M137.05T112.16 - hypoxanthine 11
M332.08T113.21 - (dAMP) 14
M179.07T114.5 25
M202.18T115.29 26
M190.07T117.36 - N-acetylglutamate 27
M535.19T118.41 - (Glu Glu Glu Glu) 28
M180.05T120.87 - ((iso)xanthopterine) 25
M132.1T122.82 - leucine / isoleucine / norleucine 7
M307.08T126.2 - (glutathion disulphide (2+)) 29
M182.08T125.93 - tyrosine 7
M613.16T127.23 - glutathion disulfide 10
M322.11T131.92 10
M304.06T132.18 11
M323.06T135.83 - (dTMP) 30
M143.08T138.17 31
M98.98T141.84 11
M182.07T141.05 32
M388.11T146.83 33
M164.06T147.09 - (pterine) 2
M193.07T150.49 - (S-(5’-adenosyl)-homocysteine (2+)) 34
M385.13T151.52 - S-(5’-adenosyl)-homocysteine 35
M250.14T156.21 2
M125.57T156.99 36
M664.23T165.1 28
M332.62T165.35 37
M351.59T166.13 38
M268.1T171.87 - adenosine 39
M314.09T175.26 40
M245.18T210.61 41
M251.15T228.5 42
M166.09T233.22 - phenylalanine 7
M120.08T233.48 - phenylalanine (fragment) 2
M340.06T231.65 43
M320.17T232.69 44
M103.05T235.3 - phenylalanine (fragment) 45
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Table 3.S5.: Continued.

feature ID cluster ID

M397.14T289.26 46
M793.27T273.95 28
M416.12T271.35 38
M174.06T277.59 32
M262.16T278.37 47
M276.11T276.54 48
M254.16T280.46 49
M244.11T293.5 50
M323.07T305.37 51
M256.18T309.56 49
M911.28T323.37 52
M727.21T324.67 53
M1235.4T324.66 54
M461.66T328.59 37
M922.32T329.89 28
M480.64T329.62 55
M479.19T333.77 56
M472.65T332.73 57
M597.68T335.59 - (UDP-muramyl-pentapeptide) 58
M219.13T335.84 - (Ser Leu) 7
M382.65T337.93 59
M220.12T336.88 - (panthotenate) 60
M568.14T338.32 61
M194.08T340.15 62
M526.18T342.1 46
M1051.36T342.36 28
M363.77T343.13 63
M194.07T346.78 2
M217.1T347.04 64
M472.85T348.87 65
M708.77T349.12 66
M590.7T351.59 37
M525.18T352.51 28
M1180.4T351.98 28
M367.64T355.63 37
M360.21T355.1 - (Ile Val Glu / Val Ile Glu) 10
M734.27T356.41 67
M235.07T357.45 68
M655.23T359.27 46
M686.76T358.74 69
M666.22T359.78 70
M174.06T360.96 71
M679.29T361.61 72
M243.08T362.4 32
M215.08T362.66 73
M331.18T363.96 74
M693.77T367.08 75
M719.75T366.82 37
M462.85T367.6 65
M359.64T368.9 76
M188.07T371.25 - tryptophan (fragment) 27
M205.1T370.99 - tryptophan 19
M270.19T371.24 49
M304.18T373.32 49
M784.27T374.37 46
M795.26T374.75 77
M694.26T376.97 78
M358.2T377.48 - (Ile Pro Glu / Leu Pro Glu) 79
M195.11T378.66 80
M848.79T380.87 37
M211.09T382.17 - pyocyanin 81
M578.85T381.64 82
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Table 3.S5.: Continued.

feature ID cluster ID

M732.26T383.07 28
M298.1T385.29 - 5’-methylthioadenosine 83
M261.13T385.55 84
M913.31T388.16 85
M187.12T391.55 86
M204.12T389.98 60
M243.18T392.85 87
M258.58T397.4 88
M977.84T395.18 89
M516.16T395.97 10
M364.62T397.4 90
M728.23T398.3 91
M188.12T399.72 92
M254.09T400.89 93
M295.13T406.65 - (Glu Phe) 10
M350.62T409.24 - folic acid (fragment) 94
M268.66T408.73 95
M145.08T410.28 96
M190.05T411.45 - kynurenate 7
M214.13T411.31 86
M378.2T412.48 - (Pro Tyr Val) 97
M316.22T413.91 - (Val Val Val) 98
M328.22T437.8 - (Pro Leu Val) 98
M326.21T414.96 79
M336.19T415.21 - (Phe Val Ala / Val Phe Ala) 99
M295.19T417.02 100
M289.12T417.28 47
M261.12T419.11 80
M197.13T423.26 32
M786.17T426.25 - FAD 101
M316.21T430.54 39
M231.11T430.8 25
M160.08T433.66 81
M457.11T433.91 - (FMN) 102
M204.1T435.6 11
M195.09T436.77 - caffeine ISTD 103
M291.15T444.85 - trimethoprim ISTD 60
M275.11T445.88 102
M263.14T447.96 - (Pro Phe) 104
M257.15T449.13 105
M120.04T450.56 - anthranilate (fragment) 32
M138.06T451.33 - anthranilate 11
M243.13T457.64 106
M360.19T459.98 107
M300.2T461.28 108
M399.26T461.02 42
M291.09T462.05 - trimethoprim ISTD 109
M176.07T465.7 7
M159.09T464.27 110
M277.15T466.47 42
M159.07T466.73 111
M418.14T474.32 112
M231.17T475.37 - (Leu Val) 98
M491.29T496.41 113
M344.25T476.52 - (Leu Leu Val or isomer) 98
M255.08T482.73 114
M211.14T497.45 - (cyclo(Leu Pro)) 42
M342.24T486.25 - (Pro Ile Leu or isomer) 106
M427.29T485.86 113
M245.59T495.11 88
M232.13T495.36 11
M145.08T508.11 2
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Table 3.S5.: Continued.

feature ID cluster ID

M439.29T506.82 79
M831.14T503.95 115
M187.09T505 116
M163.09T512.64 25
M473.3T511.21 98
M441.31T516.66 98
M245.13T525.64 - (cyclo(Phe Pro)) 80
M246.13T525.63 117
M505.3T526.66 118
M311.14T527.97 80
M530.13T538.67 10
M186.09T531.62 107
M188.11T535.78 - (C3-HQ) 119
M275.03T536.04 120
M321.1T537.6 121
M202.09T545.21 4
M265.57T546.37 88
M243.09T558.67 - lumichrome 31
M204.1T564.12 122
M260.16T583.7 - (C7-QNO) 102
M775.9T572.93 123
M392.25T573.83 - (Phe Leu Leu or isomer) 106
M263.12T576.07 124
M200.11T578.31 125
M202.12T578.44 119
M136.08T584.09 11
M118.06T585.64 31
M323.09T586.42 126
M485.11T612.66 4
M215.12T626.24 127
M263.12T624.79 124
M224.08T640.69 - phenanzine-1-carboxamide 25
M207.05T641.72 - phenazine-1-carboxamide (fragment) 73
M393.12T645.89 128
M289.14T649.01 129
M213.07T652.92 32
M260.16T651.62 - HQNO 11
M297.14T656.95 130
M186.13T666.88 19
M214.12T663.32 - (C5:1-HQ) 119
M216.14T670.01 - (C5-HQ) 131
M227.08T670.26 11
M264.18T675.46 - nortriptyline ISTD 132
M233.13T676.23 - nortriptyline ISTD (fragment) 133
M191.09T676.49 - nortriptyline ISTD (fragment) 134
M276.16T680.26 - nortriptyline ISTD +Na 11
M232.13T683.77 - (C5-QNO) 26
M1012.42T688.19 135
M1012.54T689.35 136
M1157.05T687.92 137
M900.15T689.22 138
M1156.91T690.64 139
M1012.29T689.74 140
M900.04T690 141
M1156.76T690.25 142
M1012.67T693.51 143
M225.07T698.07 - phenazine-1-carboxylic acid 11
M207.06T699.1 - phenazine-1-carboxylic acid (fragment) 32
M257.06T704.3 11
M226.18T703.76 144
M288.2T705.59 - (C9-QNO) 11
M269.06T708.74 - phenazine-1,6-dicarboxylic acid 11
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Table 3.S5.: Continued.

feature ID cluster ID

M325.07T739.09 - (pyochelin) 145
M304.19T717.91 11
M206.03T721.29 73
M286.18T728.73 - (C9:1-QNO) 146
M181.08T724.14 147
M330.19T724.4 148
M185.1T729.78 - (naproxen (fragment)) 148
M307.02T733.71 149
M404.23T734.62 150
M230.15T735.39 - (C6-HQ) 151
M255.08T740.91 11
M317.09T742.2 152
M446.19T745.32 - glipizide ISTD 153
M468.17T744.02 - glipizide ISTD +Na 153
M321.1T746.09 121
M913.35T747.39 154
M891.36T747.39 154
M328.19T781.65 155
M929.31T750.51 154
M344.19T754.17 156
M231.1T763.28 - naproxen ISTD 7
M185.1T763.53 - naproxen ISTD (fragment) 148
M250.08T762.76 157
M288.2T765.88 - (C9-QNO) 11
M258.15T768.47 - (C7:1-QNO) 26
M270.19T766.9 - (C9:1-HQ) 158
M274.27T767.94 159
M328.14T772.12 152
M655.28T772.63 39
M242.15T789.6 - (C7:1-HQ) 26
M309.13T780.23 160
M353.16T780.48 161
M113.06T779.69 162
M304.19T786.75 11
M184.08T792.48 163
M260.16T796.66 - HQNO 155
M244.17T796.4 - HHQ 26
M312.2T794.57 164
M159.07T795.61 - HHQ (fragment) 165
M503.33T797.17 150
M519.32T799.12 - HQNO [2M+H]+ 150
M161.1T800.82 166
M302.17T804.83 155
M201.09T806.25 27
M286.18T808.85 - (C9:1-QNO) 167
M276.16T811.73 155
M172.17T813.55 26
M432.26T815.37 150
M325.07T819.96 - (pyochelin) 145
M272.16T822.08 - (C8:1-QNO) 26
M314.21T825.99 - (C11:1-QNO) 11
M288.2T824.42 - (C9-QNO) 11
M284.16T840.09 26
M326.18T833.85 155
M358.2T834.1 146
M274.18T842.43 - (C8-QNO) 155
M358.2T835.92 146
M258.19T853.38 - (C8-HQ) 164
M330.21T844.12 11
M286.18T864.03 - (C9:1-QNO) 155
M270.19T873.15 - (C9:1-HQ) 167
M268.17T875.49 26
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Table 3.S5.: Continued.

feature ID cluster ID

M256.17T851.43 - (C8:1-HQ) 26
M310.18T853.38 146
M250.12T856.23 10
M437.19T860.52 168
M415.21T859.73 169
M324.16T867.42 167
M178.05T867.16 7
M302.18T879.54 170
M316.23T869.51 - (C11-QNO) 171
M316.23T871.07 - (C11-QNO) 11
M571.35T875.76 150
M198.09T874.45 148
M346.2T881.21 172
M452.28T896.1 8
M170.1T885.9 173
M332.22T890.1 102
M314.21T892.19 - (C11:1-QNO) 174
M300.2T925.27 - (C10:1-QNO) 164
M288.2T902.1 - (C9-PQS) 174
M300.2T894.8 - (C10:1-QNO) 164
M474.26T899.22 175
M284.2T904.43 - (C10:1-HQ) 167
M575.38T904.16 176
M184.08T908.6 152
M292.17T907.81 177
M272.2T910.42 - (C9-HQ) 167
M541.38T909.89 178
M543.4T910.68 178
M563.36T910.94 178
M342.24T912.12 - (C13:1-QNO) 4
M646.36T912.5 179
M312.2T929.44 155
M327.34T917.18 180
M304.19T921.87 174
M286.18T921.6 - (C9:1-PQS) 181
M360.22T923.7 182
M358.24T929.17 11
M672.37T930.21 179
M499.29T936.54 170
M314.21T944.87 - (C11:1-PQS) 174
M296.2T958.11 167
M627.42T945.38 183
M298.22T984.33 - (C11:1-HQ) 174
M454.29T963.69 - (PE(16:0/0:0)) 8
M595.43T950.84 184
M289.15T954.48 185
M267.17T955.25 186
M302.21T956.81 - (C10-QNO) 187
M284.2T959.42 - (C10:1-HQ) 167
M330.21T962.26 11
M673.38T966.68 - (Rha-Rha-C10-C10 +Na ) 188
M359.28T966.42 189
M480.31T982.77 - (PE(18:1/0:0)) 8
M500.22T974.72 190
M304.19T977.83 41
M303.19T979.65 41
M505.25T982.5 - (PG(16:1/0:0) +Na) 191
M483.27T981.33 - (PG(16:1/0:0)) 8
M502.29T985.62 - (PE(18:1/0:0) +Na) 175
M959.61T986.65 192
M361.24T989 193
M328.23T993.95 - (C12:1-QNO) 182
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M99.51T1040.17 194
M312.23T1001.35 - (C12:1-HQ) 186
M340.23T1007.62 174
M316.23T1007.37 - (C11-PQS) 174
M310.22T1008.4 195
M324.23T1025.79 174
M699.39T1013.83 - (Rha-Rha-C10-C12:1 / Rha-Rha-C12:1-C10 +Na) 188
M385.3T1014.61 189
M677.41T1014.86 - (Rha-Rha-C10-C12:1 / Rha-Rha-C12:1-C10) 196
M239.66T1017.2 197
M496.34T1018.23 - (PC(16:0/0:0)) 198
M527.32T1021.62 - (Rha-C10-C10 /Rha-C12-C8 +Na) 170
M359.28T1022.4 189
M1031.65T1023.18 199
M292.66T1025.52 200
M326.38T1031.82 201
M342.24T1034.94 202
M314.21T1034.15 155
M312.2T1037.01 155
M326.25T1043.73 - (C13:1-HQ) 186
M522.36T1043.6 203
M701.41T1049.33 - (Rha-Rha-C10-C12 / Rha-Rha-C12-C10 +Na) 188
M387.31T1049.58 189
M679.43T1051.39 - (Rha-Rha-C10-C12 / Rha-Rha-C12-C10) 204
M459.23T1054.91 47
M341.27T1084.63 205
M553.34T1072.25 - (Rha-C10-C12:1 / Rha-C12:1-C10 +Na) 206
M385.29T1079.09 189
M1083.68T1073.79 196
M381.26T1078.47 170
M342.24T1078.72 - (C13:1-PQS) 202
M359.28T1078.46 189
M727.42T1093.9 - (Rha-Rha-C12:1-C12 / Rha-Rha-C12-C12:1 +Na) 188
M473.35T1082.31 207
M429.32T1084.63 - cholesteryl acetate 208
M507.27T1100.59 198
M485.29T1092.08 8
M413.33T1095.83 189
M705.44T1095.83 - (Rha-Rha-C12:1-C12 / Rha-Rha-C12-C12:1) 204
M326.25T1125.41 - (C13:1-HQ) 186
M397.26T1099.57 209
M311.26T1103.98 210
M555.35T1108.39 - (Rha-C10-C12 / Rha-C12-C10 +Na) 170
M387.31T1109.17 189
M577.33T1107.35 170
M1087.71T1109.95 204
M487.36T1112.82 211
M443.34T1115.66 212
M399.31T1118.65 213
M355.28T1117.75 214
M99.51T1121.65 215
M124.09T1369.75 216
M328.26T1127.63 - (C13-HQ) 217
M533.29T1139.9 203
M729.44T1131.57 - (Rha-Rha-C12-C12 +Na) 188
M415.34T1132.34 189
M707.46T1132.6 - (Rha-Rha-C12-C12) 204
M511.3T1137.29 8
M581.37T1153.59 206
M282.14T1145.42 152
M555.36T1151.77 - (Rha-C10-C12 / Rha-C12-C10 +Na) 171
M278.18T1152.3 218
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feature ID cluster ID

M387.31T1159.58 189
M409.29T1159.84 170
M755.46T1159.83 219
M413.32T1163.6 220
M369.3T1166.6 221
M282.22T1185.24 131
M287.19T1183.15 222
M583.38T1189.9 170
M415.34T1190.29 189
M559.13T1193.82 223
M354.32T1200.38 180
M257.25T1211.04 186
M757.47T1212.99 224
M705.51T1214.43 225
M661.49T1220.54 226
M617.46T1226.29 227
M573.43T1232.94 228
M354.32T1236.97 180
M529.41T1240.64 229
M283.22T1239.08 174
M485.38T1248.74 230
M123.09T1250.04 231
M284.29T1262.26 232
M441.36T1259.15 233
M633.15T1261.75 234
M532.36T1262.01 235
M397.33T1269.79 236
M488.33T1270.83 237
M136.11T1272.39 148
M466.32T1274.46 238
M122.1T1276.28 239
M865.62T1277.85 240
M353.3T1282.53 241
M821.6T1283.04 242
M353.29T1284.86 243
M325.07T1285.12 145
M777.57T1286.67 244
M609.34T1288.22 245
M733.54T1292.1 246
M413.27T1297.03 - (Bis(2-ethylhexyl)phthalate CONT) 222
M393.3T1294.68 247
M149.02T1295.98 32
M391.29T1297.28 222
M689.52T1298.05 248
M645.49T1301.45 249
M601.46T1307.16 250
M144.98T1409.56 251
M265.96T1330.45 252
M557.44T1313.67 253
M146.98T1316.52 251
M513.41T1320.44 254
M469.39T1328.01 255
M284.3T1328.91 256
M324.33T1331.38 257
M311.25T1335.27 186
M542.42T1359.88 258
M338.34T1339.43 180
M425.36T1338.38 259
M502.35T1343.85 260
M121.97T1381.09 19
M146.98T1381.23 251
M394.35T1366.24 261
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feature ID cluster ID

M122.1T1374.68 262
M136.11T1448.2 133
M133.96T1397.35 263
M122.1T1460.79 262
M123.09T1417.81 1
M146.98T1450.82 251
M469.38T1466.95 264
M121.97T1468.13 19

Table 3.S6.: List of cluster ID assignments resulting from hierarchical clustering with average link-
age of product ion spectra similarities of the spectra acquired in the alkyl quinolone-
biased semi-targeted analysis.

feature ID cluster ID

M623.03T1.85 1
M146.17T62 - spermidine 2
M129.14T59.08 - spermidine (fragment) 2
M112.11T59.58 - spermidine (fragment) 2
M251.16T62.63 2
M212.85T65.69 3
M272.98T67.98 4
M268.16T71.04 2
M258.11T71.54 5
M244.09T73.32 6
M232.12T73.82 6
M258.15T76.24 6
M244.13T77.38 6
M162.08T82.86 7
M146.09T82.86 7
M278.57T80.94 7
M316.16T83.6 7
M348.07T90.6 - AMP 7
M535.19T105.08 - (glutamyl-glutamyl-glutamyl-glutamate) 7
M317.15T90.72 7
M307.08T124.25 - (glutathion disulphide (2+)) 7
M695.14T92.88 - AMP (2+) 7
M160.12T94.16 2
M228.1T97.33 8
M286.15T99.5 7
M613.16T127.81 - glutathion disulfide 7
M190.07T111.57 7
M664.12T108.26 - NAD 7
M332.56T110.04 - NAD (2+) 7
M214.09T110.18 9
M332.08T114.24 7
M388.11T112.96 7
M179.07T114.74 10
M202.18T118.3 11
M132.1T120.95 - leucine / isoleucine / norleucine 6
M182.08T124.39 - tyrosine 12
M165.06T124.26 12
M664.23T160.49 7
M332.62T150.95 7
M182.07T141.54 9
M143.08T140.01 2
M322.09T141.4 7
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Table 3.S6.: Continued.

feature ID cluster ID

M164.06T146.64 13
M388.11T146.24 7
M314.09T175.36 7
M193.07T151.1 7
M170.07T151.6 7
M385.13T152.99 - S-(5’-Adenosyl)-L-Homocysteine 7
M250.14T157.33 10
M125.57T157.83 10
M233.12T158.33 10
M226.16T166.32 6
M351.59T169.88 7
M268.11T172.44 - adenosine 7
M270.11T172.44 7
M292.17T179.56 14
M343.1T179.67 6
M100.11T183.91 5
M166.09T229.79 - phenylalanine 13
M344.18T191.66 6
M254.16T206.28 6
M228.17T205.89 6
M397.14T212.12 7
M793.28T213.9 7
M416.12T214.39 7
M388.14T214.4 7
M409.12T217.95 7
M245.18T219.37 15
M340.06T226.34 7
M246.18T223.56 15
M146.08T224.06 15
M114.58T224.56 15
M251.15T246.65 16
M120.08T234.08 13
M103.05T235.22 13
M320.17T239.4 14
M190.11T243.09 17
M100.08T265.58 5
M199.11T252.49 6
M397.14T266.07 7
M125.07T254.76 18
M793.28T267.35 7
M276.11T261.88 7
M408.13T268.99 7
M416.12T270.77 7
M388.14T273.44 7
M254.16T280.72 6
M309.1T283.5 19
M174.06T290.61 20
M262.16T288.83 2
M244.11T292.28 15
M176.06T288.33 20
M115.04T300.3 21
M245.15T303.96 6
M246.15T305.63 6
M323.07T306.13 7
M397.14T307.91 7
M256.18T310.97 22
M138.06T311.47 7
M169.1T311.97 6
M561.21T315.52 7
M793.28T314.52 7
M344.18T316.8 6
M461.66T325.19 7
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feature ID cluster ID

M922.32T325.7 7
M597.68T324.42 - (UDP-muramyl-pentapeptide) 7
M311.12T328.86 12
M479.19T334.2 7
M382.65T337.51 7
M316.19T338.55 6
M219.14T338.66 6
M174.06T351.23 20
M526.19T343.1 7
M218.11T347.55 23
M194.07T347.54 24
M242.19T348.32 6
M525.19T352.37 20
M590.71T353.51 7
M537.1T354.65 7
M367.64T357.96 7
M667.31T357.96 7
M326.17T359.88 6
M218.1T358.6 15
M655.23T361.27 7
M664.18T361.77 7
M232.12T363.05 25
M216.09T364.18 26
M326.21T370.56 6
M302.2T371.31 11
M270.19T369.77 6
M312.19T376.01 6
M204.07T380.34 13
M694.26T379.56 6
M549.08T381.98 7
M195.11T381.34 6
M211.09T384.65 - pyocyanin 27
M256.18T385.68 24
M240.15T386.18 24
M214.1T384.9 27
M204.12T389.24 17
M186.11T389.74 15
M298.1T390.24 - 5’-methylthioadenosine 7
M188.13T392.8 15
M254.09T397.99 6
M243.18T393.79 11
M244.19T397.35 11
M424.31T396.35 12
M258.58T398.62 7
M364.62T399.12 7
M302.17T401.7 6
M188.12T402.2 15
M333.18T405.75 6
M308.56T406.25 7
M316.19T408.81 6
M260.14T419.09 7
M214.13T411.09 15
M190.05T411.59 - kynurenate 13
M328.22T437.8 6
M300.2T412.87 24
M284.18T413.37 24
M316.22T416.42 2
M302.18T415.15 24
M326.21T421.26 6
M296.19T420.87 6
M286.18T421.37 24
M197.13T424.18 6

359



A

Appendix A: Supplementary Tables for Publication 1

Table 3.S6.: Continued.

feature ID cluster ID

M415.26T424.68 6
M279.14T426.45 28
M298.18T426.6 2
M209.07T427.59 27
M138.06T429.38 - anthranilate 7
M316.21T431.95 11
M232.12T432.45 25
M214.09T432.95 25
M232.12T444.26 25
M344.23T436.41 24
M324.2T437.16 15
M204.1T438.3 29
M195.09T441.85 - caffeine ISTD 16
M542.14T443.63 30
M272.19T444.41 31
M244.14T457.75 6
M230.12T446.3 29
M258.11T447.33 29
M246.11T447.83 6
M310.17T451.14 6
M326.18T450.64 6
M300.16T450.74 13
M258.15T453.8 6
M257.15T456.08 6
M159.09T457.86 12
M240.15T460.03 6
M360.19T459.64 6
M160.1T463.19 12
M340.22T470.45 6
M300.2T465.86 11
M232.1T467.53 25
M176.07T468.67 - [C1-QNO] 29
M160.07T468.52 - [C1-HQ] 12
M159.07T469.81 12
M514.33T470.3 6
M220.1T472.09 29
M498.15T474.75 32
M344.26T479.98 6
M215.08T480.98 15
M174.09T482.9 - [C2-HQ] 29
M347.13T482.75 33
M211.14T485.83 6
M216.07T486.47 6
M183.09T486.33 27
M342.24T491.56 6
M427.29T489 6
M394.24T492.31 12
M327.2T491.67 6
M258.19T493.84 6
M418.11T492.96 7
M328.22T495.62 6
M232.13T497.65 - [C5-QNO] 29
M214.08T498.79 22
M146.08T513.91 15
M491.29T500.57 6
M146.06T503.24 15
M354.24T505.8 6
M342.2T509.6 6
M188.09T506.55 26
M246.13T524.47 6
M230.12T508.96 - [C5:1-QNO] 29
M204.07T510.24 13
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feature ID cluster ID

M162.06T511.63 12
M190.09T514.94 - [C2-QNO] 29
M163.09T517.22 12
M441.31T519.14 6
M242.11T522.69 34
M497.24T525.47 35
M245.13T526.75 6
M439.29T527.24 6
M246.19T528.91 6
M188.11T533.2 - [C3-HQ] 29
M505.3T529.02 6
M311.14T530.79 13
M246.11T531.57 6
M232.13T533.84 - [C5-QNO] 29
M186.09T533.45 29
M190.11T538.04 29
M275.03T539.68 36
M321.1T539.68 13
M214.16T538.68 2
M186.12T542.24 29
M185.12T544.52 29
M342.24T546.7 6
M288.16T548.09 37
M286.13T549.37 37
M530.14T549.86 38
M265.57T550.36 7
M412.22T552.14 13
M279.17T555.2 13
M453.31T556.48 6
M243.09T556.98 - lumichrome 13
M244.09T559.4 13
M230.08T561.04 6
M244.09T561.82 13
M215.21T565.23 2
M247.14T564.59 13
M204.1T566.76 - [C3-QNO] 29
M657.4T570.71 6
M260.17T585.83 - [C7-QNO] 29
M225.06T573.87 20
M392.26T576.54 13
M846.35T577.04 6
M258.15T607.57 - [C7:1-QNO] 29
M202.12T581.87 - [C4-HQ] 29
M264.12T578.82 12
M240.08T580.6 39
M274.14T612.9 29
M485.28T583.01 40
M323.09T587.23 20
M118.07T585.43 12
M202.09T586.73 - [C3:1-QNO] 29
M638.36T587.73 6
M428.25T591.43 6
M489.31T591.28 6
M276.16T592.57 29
M227.18T593.07 20
M464.19T596.62 41
M552.38T600.18 6
M228.18T601.46 6
M187.09T603.23 26
M230.08T608.07 6
M878.42T610.35 13
M485.12T627.62 38
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Table 3.S6.: Continued.

feature ID cluster ID

M288.16T618.24 37
M213.07T623.07 27
M879.35T623.57 6
M781.64T624.08 6
M215.12T624.84 27
M263.12T625.34 12
M210.06T627.62 20
M216.12T627.76 27
M297.14T633.98 29
M733.07T631.17 6
M260.17T652.4 - [C7-QNO] 29
M467.1T635.51 38
M240.08T636.01 39
M224.08T641.73 - phenanzine-1-carboxamide 42
M259.11T639.56 29
M275.18T640.07 43
M207.06T642.73 42
M393.12T646.18 13
M415.11T647.18 44
M214.12T652.01 - [C5:1-HQ] 27
M289.14T651.37 29
M394.13T650.73 13
M242.15T653.79 - [C7:1-HQ] 29
M298.14T659.11 29
M230.12T657.83 - [C5:1-HQ] 29
M224.04T660.39 20
M297.64T661.39 29
M120.04T664.06 20
M288.2T682.62 - [C9-QNO] 29
M216.14T667.11 - [C5-HQ] 29
M222.02T668.5 20
M227.08T671.17 2
M218.14T672.2 29
M264.18T680.95 - nortriptyline ISTD 12
M233.13T673.84 - nortriptyline ISTD (fragment) 12
M286.18T733.29 - [C9:1-QNO] 29
M218.11T678.04 29
M204.09T679.17 12
M284.16T676.9 - [C9:2-QNO] 29
M232.13T684.65 - [C5-QNO] 12
M276.16T682.73 29
M208.04T684.01 15
M190.03T684.51 12
M186.13T687.18 45
M423.18T689.35 46
M900.04T689.85 6
M228.14T693.4 - [C6:1-HQ] 42
M274.14T692.9 29
M258.15T696.46 - [C7:1-PQS] 29
M225.07T700.4 - phenazine-1-carboxylic acid 42
M207.06T701.4 - phenazine-1-carboxylic acid (fragment) 42
M244.19T704.46 47
M266.17T703.57 12
M257.06T704.07 48
M256.12T705.35 48
M269.06T707.12 - phenazine-1,6-dicarboxylic acid 42
M325.07T711.18 - (pyochelin) 15
M270.06T710.68 42
M226.07T732.51 42
M302.18T770.02 29
M260.17T714.88 - [C7-QNO] 29
M146.03T716.52 15
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M230.15T725.8 - [C6-HQ] 42
M181.08T724.27 2
M206.03T723.63 42
M330.19T726.2 27
M225.07T729.59 42
M185.1T728.95 - (naproxen ISTD (fragment)) 49
M186.1T730.23 49
M256.08T738.23 29
M242.15T764.53 - [C7:1-HQ] 29
M258.15T759.2 - [C7:1-PQS] 29
M246.15T740.92 - [C6-QNO] 29
M328.19T744.87 29
M314.21T750.7 - [C11:1-QNO] 29
M302.18T743.2 29
M288.2T766.31 - [C9-QNO] 29
M256.11T746.25 29
M240.11T746.75 27
M260.17T748.53 - [C7-PQS] 29
M330.2T757.31 29
M325.07T754.75 - (pyochelin) 15
M146.03T755.14 15
M316.21T758.2 29
M312.2T757.81 29
M330.2T769.77 29
M330.21T773.32 29
M284.16T827.44 - [C9:2-QNO] 29
M274.14T769.87 43
M260.16T771.8 29
M328.14T771.17 50
M515.29T771.67 29
M270.22T773.83 51
M309.13T780.55 52
M330.2T784.89 29
M256.17T785.39 - [C8:1-HQ] 29
M244.17T785.89 - HHQ 29
M328.19T786.68 29
M326.17T789.35 29
M244.16T792.51 29
M184.08T793.01 29
M316.23T812.44 - [C11-QNO] 29
M246.18T794.28 29
M312.2T797.34 - [C11:2-QNO] 29
M260.16T800.1 - HQNO 29
M300.16T820.96 29
M202.09T806.33 50
M288.2T839.88 - [C9-PQS] 29
M298.14T811.8 53
M288.19T810.28 - [C9-PQS] 29
M272.16T816.11 54
M326.17T832.92 29
M330.21T842.8 29
M314.21T821.35 - [C11:1-QNO] 29
M316.22T827.57 - [C11-QNO] 29
M296.2T827.18 - [C11:2-HQ] 29
M270.12T828.57 54
M270.19T832.13 - [C9:1-HQ] 29
M274.18T838.74 - [C8-QNO] 29
M328.18T835.58 29
M300.18T835.19 55
M258.19T837.46 - [C8-HQ] 29
M268.17T862.37 - [C9:2-HQ] 29
M456.34T842.69 56
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M344.24T842.3 57
M312.2T889.43 - [C11:2-QNO] 29
M288.19T864.53 29
M312.2T847.63 - [C11:2-QNO] 29
M310.18T851.58 29
M312.19T855.14 29
M260.19T857.02 29
M312.16T858.31 29
M437.19T858.8 58
M302.18T881.92 43
M178.05T865.03 43
M270.19T868.98 - [C9:1-HQ] 29
M324.16T869.48 59
M316.23T870.25 - [C11-QNO] 29
M272.19T885.48 29
M316.23T873.17 - [C11-QNO] 29
M296.2T874.81 - [C11:2-HQ] 29
M342.21T873.81 29
M326.16T880.92 59
M314.21T915.2 - [C11:1-QNO] 29
M310.18T888.04 29
M539.36T889.04 29
M332.22T890.32 29
M300.2T918.12 - [C10:1-QNO] 29
M352.24T896.04 60
M302.2T897.04 29
M312.26T898.71 55
M284.2T904.14 29
M246.12T899.71 29
M314.18T901.62 29
M288.2T905.42 - [C9-QNO] 29
M274.21T910.5 29
M270.19T912.14 - [C9:1-HQ] 29
M186.09T910.36 29
M342.24T912.03 - [C13:1-QNO] 29
M342.24T914.7 - [C13:1-QNO] 29
M328.18T920.94 29
M326.17T922.08 29
M296.2T950.38 - [C11:2-HQ] 29
M302.21T942.76 - [C10-QNO] 29
M358.24T928.92 29
M314.2T931.21 - [C11:1-QNO] 29
M672.37T932.34 61
M518.21T933.48 62
M499.29T935.65 63
M331.25T936.15 64
M350.17T938.82 59
M316.22T943.14 29
M330.21T962.73 43
M298.21T943 29
M284.16T945.04 - [C9:2-QNO] 29
M298.21T945.43 29
M300.22T949.63 29
M286.22T952.15 - [C10-HQ] 29
M595.43T951.65 29
M454.29T960.16 - (PE(16:0/0:0)) 55
M617.41T953.04 65
M298.22T954.32 - [C11:1-HQ] 29
M286.18T957 - [C9:1-QNO] 29
M284.2T956.6 - [C10:1-HQ] 29
M272.2T958.39 - [C9-HQ] 29
M310.22T962.84 - [C12:2-HQ] 29
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M452.31T965.4 55
M342.27T966.79 64
M314.28T969.7 29
M326.21T970.34 66
M340.29T989 61
M270.19T972.62 - [C9:1-HQ] 29
M314.24T1002.33 - [C12-HQ] 29
M358.26T976.07 64
M316.22T979.73 29
M302.18T983.43 12
M300.22T993.94 29
M328.23T993.45 - [C12:1-QNO] 43
M312.23T998.78 - [C12:1-HQ] 29
M340.23T1000.06 - [C13:2-QNO] 29
M304.19T1002.83 29
M342.21T1004.49 29
M316.23T1005.88 - [C11-QNO] 29
M342.23T1009.83 29
M316.23T1008.8 - [C11-QNO] 29
M310.22T1008.16 - [C12:2-HQ] 29
M338.21T1010.32 29
M324.23T1028.97 - [C13:2-HQ] 29
M386.3T1014.28 64
M326.24T1016.54 29
M260.16T1204.08 - PQS 29
M300.23T1017.04 - [C11-HQ] 29
M302.24T1020.09 29
M298.22T1019.7 - [C11:1-HQ] 29
M342.27T1022.75 64
M452.31T1022.25 64
M300.19T1024.13 - [C10:1-QNO] 29
M328.23T1027.83 43
M314.21T1033.02 - [C11:1-QNO] 29
M388.25T1031.24 20
M342.24T1032.02 - [C13:1-QNO] 29
M330.21T1035.19 20
M344.25T1036.47 29
M316.22T1034.8 29
M314.16T1038.36 29
M326.38T1040.78 29
M301.17T1041.91 29
M326.25T1042.69 - [C13:1-HQ] 29
M312.26T1043.19 55
M328.25T1046.75 29
M312.26T1045.47 55
M370.3T1051.59 64
M459.23T1054.36 29
M286.18T1089.93 - [C9:1-PQS] 29
M270.19T1056.78 - [C9:1-HQ] 29
M300.2T1056.92 - [C10:1-QNO] 29
M314.28T1063.15 55
M507.27T1060.59 61
M300.16T1063.65 29
M342.24T1067.59 - [C13:1-QNO] 29
M386.3T1072.93 64
M312.2T1069.87 55
M312.23T1072.54 - [C12:1-HQ] 55
M382.27T1076.99 64
M414.33T1080.04 64
M342.27T1085.24 29
M344.25T1081.18 29
M326.25T1097.04 - [C13:1-HQ] 29
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M314.21T1083.71 55
M312.26T1091.61 55
M298.24T1088.79 29
M533.29T1092.6 61
M298.15T1094.77 29
M398.26T1097.81 67
M338.25T1098.31 61
M368.26T1100.73 29
M288.2T1101.87 29
M270.19T1102.37 - [C9:1-HQ] 29
M286.16T1110.12 29
M370.3T1109.37 64
M344.26T1112.05 - [C13-QNO] 29
M344.26T1115.61 29
M272.16T1118.53 - [C8:1-QNO] 29
M543.32T1120.16 29
M408.28T1122.72 64
M352.26T1122.58 - [C15:2-HQ] 29
M386.3T1123.22 64
M328.26T1127.17 - [C13-HQ] 29
M416.28T1129.06 20
M398.34T1132.5 67
M370.27T1132.11 68
M414.33T1154.68 64
M288.2T1193.17 - [C9-PQS] 29
M581.37T1145.93 56
M312.26T1140.51 55
M282.14T1141.5 69
M282.14T1143.65 69
M354.28T1145.81 - [C15:1-HQ] 29
M278.18T1150.74 29
M410.3T1158.24 56
M256.26T1157.46 29
M457.35T1173.22 70
M545.34T1162.8 29
M286.18T1167.63 - [C9:1-PQS] 29
M571.35T1166.36 71
M282.15T1189.47 72
M282.22T1177.03 72
M370.3T1186.31 68
M370.27T1181.36 68
M282.15T1182.36 72
M284.23T1187.7 72
M326.27T1189.61 73
M583.38T1192.53 56
M452.3T1193.81 74
M837.59T1198.37 75
M278.18T1200.78 29
M758.57T1200.14 29
M793.57T1202.55 29
M300.2T1205.35 - [C10:1-PQS] 29
M314.21T1209.8 29
M705.51T1214.75 76
M700.56T1215.63 24
M757.47T1216.13 29
M661.49T1216.91 77
M656.53T1217.91 24
M617.46T1225.42 78
M612.51T1224.53 24
M300.25T1226.31 79
M398.31T1227.59 67
M384.32T1228.97 80
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M573.44T1233.42 81
M568.48T1234.81 24
M356.3T1236.48 - [C15-HQ] 29
M284.22T1238.76 55
M529.41T1240.78 82
M452.37T1240.04 24
M286.18T1240.54 - [C9:1-PQS] 29
M524.45T1242.81 24
M408.34T1248.04 24
M382.31T1249.42 - [C17:1-HQ] 29
M436.4T1256.04 24
M438.41T1257.82 24
M310.31T1260.6 64
M270.19T1266.82 - [C9:1-HQ] 29
M282.15T1264.15 83
M398.33T1269.37 67
M314.21T1285.47 - [C11:1-PQS] 29
M392.37T1269.48 24
M466.32T1272.54 84
M458.33T1273.04 20
M298.22T1274.31 - [C11:1-HQ] 29
M441.36T1276.58 24
M354.31T1283.2 85
M865.62T1280.14 86
M338.29T1283.7 72
M733.54T1291.2 87
M728.59T1292.59 24
M394.3T1294.76 88
M413.27T1295.4 - (Bis(2-ethylhexyl)phthalate CONT) 89
M689.52T1297.42 90
M684.56T1297.93 24
M645.49T1300.98 91
M640.54T1302.37 24
M601.47T1306.82 92
M596.51T1308.61 24
M365.3T1310.39 93
M557.44T1313.44 94
M552.49T1313.94 24
M521.32T1315.21 29
M298.31T1317.63 29
M513.41T1321.04 95
M508.46T1319.27 24
M288.2T1332.99 - [C9-PQS] 29
M535.33T1322.96 96
M271.26T1323.71 29
M330.28T1323.6 20
M469.39T1327.66 97
M297.28T1326.38 29
M284.3T1328.8 29
M270.18T1331.71 - [C9:1-HQ] 29
M314.21T1333.38 55
M426.36T1337.83 98
M312.25T1336.55 55
M338.34T1340.11 64
M360.32T1340.61 93
M428.31T1339.61 93
M675.68T1342.38 99
M502.35T1344.54 100
M733.54T1344.15 87
M480.34T1347.2 101
M382.34T1349.62 102
M344.3T1350.12 20
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Table 3.S6.: Continued.

feature ID cluster ID

M286.18T1349.48 - [C9:1-PQS] 29
M849.63T1353.92 103
M805.6T1356.46 104
M761.58T1359.12 105
M756.62T1360.12 24
M717.55T1363.18 106
M394.35T1365.35 72
M673.52T1369.02 107
M396.35T1368.02 72
M342.3T1369.15 79
M629.5T1372.71 108
M585.47T1377.79 109
M358.31T1378.18 20
M133.96T1384.9 110
M541.44T1383.51 111
M486.36T1389.48 20
M701.43T1389.98 93
M497.42T1393.29 93
M550.39T1393.68 20
M131.96T1394.67 110
M428.26T1397.24 93
M512.37T1404.63 20
M699.41T1405.27 112
M553.39T1407.68 113
M355.31T1411.24 79
M356.31T1414.3 79
M568.44T1417.36 93
M133.96T1425.52 110
M442.28T1430.26 114
M339.28T1433.6 55
M629.37T1436.79 115
M121.97T1440.85 110
M131.96T1445.03 110
M469.38T1459.31 116
M608.42T1458.17 116
M456.29T1464.28 70
M369.33T1465.67 79
M512.37T1465.28 20
M500.38T1491.86 20
M133.96T1480.41 110
M353.3T1491.47 55
M121.97T1495.28 110
M131.96T1498.6 110
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Table 3.S7.: List of putatively identified features, their sum formula and isotopic pattern fit in
mSigma as determined by the SmartFormula functionality of the Bruker DataAnaly-
sis software. Isotopic pattern fit is an additional way of validating sum formulae of
putatively identified compounds. 50 mSigma is a conventional threshold.

feature ID putative annotation ion sum formula isotopic
pattern fit
(mSigma)

comment

M179.06T71.32 gluconolactone C6H11O6+ 4.2
M116.07T73.51 proline C5H10NO2+ 6.3
M219.1T77.65 Glu Ala C8H15N2O5+ 10.5
M332.08T113.21 dAMP C10H15N5O6P+ 26.2
M535.19T118.41 Glu Glu Glu Glu C20H31N4O13+ 6.2
M180.05T120.87 (iso)xanthopterine C6H6N5O2+ 13.8
M307.08T126.2 glutathion disulphide (2+) C20H34N6O12S2++ 4.8
M323.06T135.83 dTMP C10H16N2O8P+ 6.5
M193.07T150.49 S-(5’-adenosyl)-homocysteine (2+) C14H22N6O5S++ 5.2
M597.68T335.59 UDP-muramyl-pentapeptide C41H67N9O28P2++ 34.9
M219.13T335.84 Ser Leu C9H19N2O4+ 9.8
M220.12T336.88 panthotenate C9H18NO5+ 3
M360.21T355.1 Ile Val Glu / Val Ile Glu C16H30N3O6+ 25.5
M358.2T377.48 Ile Pro Glu / Leu Pro Glu C16H28N3O6+ n.d. signal too weak
M254.09T400.89 aeruginosin A C14H12N3O2+ 23.3
M295.13T406.65 Glu Phe C14H19N2O5+ 10.6
M378.2T412.48 Pro Tyr Val C19H28N3O5+ 13.3
M316.22T413.91 Val Val Val C15H30N3O4+ n.d. signal too weak
M328.22T437.8 Pro Leu Val C16H30N3O4+ 3.4
M336.19T415.21 Phe Val Ala / Val Phe Ala C17H26N3O4+ n.d. signal too weak
M457.11T433.91 FMN C17H22N4O9P+ 11.2
M263.14T447.96 Pro Phe C14H19N2O3+ 19.3
M231.17T475.37 Leu Val C11H23N2O3+ 26.3
M344.25T476.52 Leu Leu Val or isomer C17H34N3O4+ 13.8
M255.08T482.73 pyocyanin carboxylic acid C14H10N2O3+ 5.9
M211.14T497.45 cyclo(Leu Pro) C11H19N2O2+ 14.4
M342.24T486.25 Pro Ile Leu or isomer C17H32N3O4+ 8.0
M245.13T525.64 cyclo(Phe Pro) C14H17N2O2+ 6.1
M188.11T535.78 C3-HQ C12H14NO+ 15.0
M260.16T583.7 C7-QNO C16H22NO2+ n.d. signal too weak
M392.25T573.83 Phe Leu Leu or isomer C21H34N3O4+ 18.4
M200.11T578.31 C4:1-HQ C13H14NO+ 17.0
M202.12T578.44 C4-HQ C13H16NO+ 15.7
M215.12T626.24 tetrahydropyocyanin C13H15N2O+ 18.4
M214.12T663.32 C5:1-HQ C14H16NO+ 10.5
M216.14T670.01 C5-HQ C14H18NO+ 4.7
M232.13T683.77 C5-QNO C14H18NO2+ 4.8
M288.2T705.59 C9-QNO C18H26NO2+ 25.7
M325.07T739.09 pyochelin C14H17N2O3S2+ 16.7
M304.19T717.91 C9-QNO side chain oxidation product C18H26NO3+ 16.1
M286.18T728.73 C9:1-QNO C18H24NO2+ 23.2
M185.1T729.78 naproxen (fragment) C13H13O+ 6.0
M230.15T735.39 C6-HQ C15H20NO+ 3.0
M288.2T765.88 C9-QNO C18H26NO2+ 25.7
M258.15T768.47 C7:1-QNO C16H20NO2+ 3.8
M270.19T766.9 C9:1-HQ C18H24NO+ 5.3
M242.15T789.6 C7:1-HQ C16H20NO+ 2.7
M304.19T786.75 C9-QNO side chain oxidation product C18H26NO3+ 33.5
M312.2T794.57 C11:2-QNO C20H26NO2+ 17.1
M503.33T797.17 HHQ/HQNO mixed dimer C32H43N2O3+ 37.4
M286.18T808.85 C9:1-QNO C18H24NO2+ 17.7
M325.07T819.96 pyochelin C14H17N2O3S2+ 10.5
M272.16T822.08 C8:1-QNO C17H22NO2+ 22.2
M314.21T825.99 C11:1-QNO C20H28NO2+ 22.9
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Table 3.S7.: Continued.

feature ID putative annotation ion sum formula isotopic
pattern fit
(mSigma)

comment

M288.2T824.42 C9-QNO C18H26NO2+ 3.4
M274.18T842.43 C8-QNO C17H24NO2+ 15.0
M258.19T853.38 C8-HQ C17H24NO+ 19.8
M330.21T844.12 C11:1-QNO side chain oxidation

product
C20H28NO3+ 25.6

M286.18T864.03 C9:1-QNO C18H24NO2+ 7.7
M270.19T873.15 C9:1-HQ C18H24NO+ 5.5
M256.17T851.43 C8:1-HQ C17H22NO+ 146.3 low signal, no other sum

formula possible
M316.23T869.51 C11-QNO C20H30NO2+ 13.3
M316.23T871.07 C11-QNO C20H30NO2+ 6.2
M314.21T892.19 C11:1-QNO C20H28NO2+ 22.9
M300.2T925.27 C10:1-QNO C19H26NO2+ 23.7
M288.2T902.1 C9-PQS C18H26NO2+ 23.3
M300.2T894.8 C10:1-QNO C19H26NO2+ 17.4
M284.2T904.43 C10:1-HQ C19H26NO+ 34.3
M272.2T910.42 C9-HQ C18H26NO+ 10.9
M342.24T912.12 C13:1-QNO C22H32NO2+ 35.3
M286.18T921.6 C9:1-PQS C18H24NO2+ 25.5
M358.24T929.17 C13:1-QNO side chain oxidation

product
C22H32NO3+ 10.0

M314.21T944.87 C11:1-PQS C20H28NO2+ 2.7
M298.22T984.33 C11:1-HQ C20H28NO+ 31.9
M454.29T963.69 PE(16:0/0:0) C21H45NO7P+ 6.6
M302.21T956.81 C10-QNO C19H28NO2+ 20.4
M284.2T959.42 C10:1-HQ C19H26NO+ 13.5
M673.38T966.68 Rha-Rha-C10-C10 +Na C32H58NaO13+ 13.7
M480.31T982.77 PE(18:1/0:0) C23H47NO7P+ 7.4
M505.25T982.5 PG(16:1/0:0) +Na C22H43NaO9P+ 11.8
M483.27T981.33 PG(16:1/0:0) C22H44O9P+ 26.9
M502.29T985.62 PE(18:1/0:0) +Na C23H46NNaO7P+ 49.4
M328.23T993.95 C12:1-QNO C21H30NO2+ 40.6
M312.23T1001.35 C12:1-HQ C21H30NO+ 8.4
M316.23T1007.37 C11-PQS C20H30NO2+ 3.5
M699.39T1013.83 Rha-Rha-C10-C12:1 /

Rha-Rha-C12:1-C10 +Na
C34H60NaO13+ 34.8

M677.41T1014.86 Rha-Rha-C10-C12:1 /
Rha-Rha-C12:1-C10

C34H61O13+ 49.8

M496.34T1018.23 PC(16:0/0:0) C24H51NO7P+ 16.3
M527.32T1021.62 Rha-C10-C10 /Rha-C12-C8 +Na C26H48NaO9+ 8.4
M326.25T1043.73 C13:1-HQ C22H32NO+ 6.5
M701.41T1049.33 Rha-Rha-C10-C12 /

Rha-Rha-C12-C10 +Na
C34H62NaO13+ 13.3

M679.43T1051.39 Rha-Rha-C10-C12 /
Rha-Rha-C12-C10

C34H63O13+ 27.3

M553.34T1072.25 Rha-C10-C12:1 / Rha-C12:1-C10
+Na

C28H50NaO9+ 17.6

M342.24T1078.72 C13:1-PQS C22H32NO2+ 25.9
M727.42T1093.9 Rha-Rha-C12:1-C12 /

Rha-Rha-C12-C12:1 +Na
C36H64NaO13+ 43.2

M705.44T1095.83 Rha-Rha-C12:1-C12 /
Rha-Rha-C12-C12:1

C36H65O13+ 16.9

M326.25T1125.41 C13:1-HQ C22H32NO+ 96.3 low signal, no other sum
formula possible

M555.35T1108.39 Rha-C10-C12 / Rha-C12-C10 +Na C28H52NaO9+ 23.5
M328.26T1127.63 C13-HQ C22H34NO+ 17.3
M729.44T1131.57 Rha-Rha-C12-C12 +Na C36H66NaO13+ 15.3
M707.46T1132.6 Rha-Rha-C12-C12 C36H67O13+ 39.5
M555.36T1151.77 Rha-C10-C12 / Rha-C12-C10 +Na C28H52NaO9+ 7.2
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