
Auto-tuning of PID controllers for Robotic
Manipulators Using PSO and MOPSO

Ahmed Zidan, Svenja Tappe, and Tobias Ortmaier

Leibniz Universität Hannover, Institute of Mechatronic Systems, 30167 Hanover, Germany,
ahmed.zidan@imes.uni-hannover.de

Abstract. This work proposes two approaches to automatic tuning of PID posi-
tion controllers based on different global optimization strategies. The chosen op-
timization algorithms are PSO and MOPSO, i. e. the problem is handled as a sin-
gle objective problem in the first implementation and as a multiobjective problem
in the second one. The auto-tuning is performed without assuming any previous
knowledge of the robot dynamics. The objective functions are evaluated depend-
ing on real movements of the robot. Therefore, constraints guaranteeing safe and
stable robot motion are necessary, namely: a maximum joint torque constraint, a
maximum position error constraint and an oscillation constraint. Because of the
practical nature of the problem in hand, constraints must be observed online. This
requires adaptation of the optimization algorithm for reliable observance of the
constraints without affecting the convergence rate of the objective function. Fi-
nally, experimental results of a 3-DOF robot for different trajectories and with
different settings show the validity of the two approaches and demonstrate the
advantages and disadvantages of every method.

Keywords: Robotic Manipulators, PSO, MOPSO, PID Control, Automatic Tun-
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1 Introduction

PID control structures provide simple, robust and effective solutions for most applica-
tions of control engineering. As it was stated in [2], PID controller are with more than
95% share by far the most used controller in industrial processes. These good charac-
teristics of PID controllers is conditioned by accurate tuning of the controller gains.
However, it was shown in [6] that up to 80% of twenty six thousand PID controllers are
not performing perfectly, one of the most important reasons is the poor tuning of the
controllers.
Robotic manipulators are highly non linear, highly coupled, Multi-Input Multi-Output
(MIMO) dynamic systems. Although PID controllers are widely used to control robotic
manipulators, using the conventional tuning methods depending on manual or experi-
mental approaches do not necessarily give satisfactory results for such complex systems
[10].
The difficulty of using experimental and manual tuning methods rises in the application
fields, where the assigned task of a robot might constantly change or where a robot is
of variable configuration or geometry (e. g. modular robots). In such cases, the need for
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an auto-tuning method is urgent.
Recently, after the rapid increase in computing power, auto-tuning methods based on
optimization techniques have been applied to non linear systems in order to obtain an
increased performance with respect to predefined fitness functions, which depend on
the performed task. E. g. in tasks that involve trajectory tracking, the integral of the ab-
solute error IAE or the integral of the square error ISE are widely used.
In the field of robotic manipulators, a number of optimization methods (e. g. Genetic
Algorithms (GA) [12], Particle Swarm Optimization (PSO) [11]) has been used to au-
tomatically tune the PID controllers. Also, a number of researches introduced compar-
ative studies between different algorithms, e. g. genetic algorithm GA is compared to
simulated annealing SA in [13] and found to be giving the best tracking accuracy, while
in [17], a comparison study of GA, PSO, and DE (Differential Evolution) is performed
with respect to different performance-measuring functions and it is concluded that DE
surpasses the other two algorithms. However, theses results are taken from simplified
simulations of serial robots.
For some problems, optimizing with respect to only one objective function might not
be sufficient. For example in trajectory tracking control, the main objective is to achieve
the most possibly accurate tracking, but this accurate tracking might be associated with
relatively high variance in the control action (joint torque) or even with high oscillations
in the motion. Therefore, it might be helpful to take more than one objective function in
consideration and handle the problem as a multiobjective optimization problem. [2] pro-
posed an approach based on a multiobjective evolutionary algorithm (MOEA), which
aimed to tune the PID controller gains by taking two conflicting objective functions into
consideration: minimization of position errors and minimization of the control signal
variation (joint torques). In [19], a comparative study between different multiobjective
optimization techniques has been introduced and an improved multiobjective particle
swarm optimization (I-MOPSO) has been proposed.
Artificial intelligence techniques like fuzzy logic and neural networks have also been
implemented to build PID tuning systems for robotic manipulators. Examples for those
systems can be found in [3], [14], and [15]. Those systems give the PID gains variable
values depending on the online measurements of the robot joint positions and, there-
fore, turned the traditional controller into an adaptive controller.
Another approach has been proposed in [16]. Here a combination of both, the GA tech-
nique and the fuzzy logic, was used to form a hybrid tuning method for a PID regulator.
Regarding the optimization auto-tuning methods, the known and previously mentioned
research test the proposed optimization algorithms only on simplified simulations of
robots without considering the practical problems that rise from applying these algo-
rithms on real robots. From a practical point of view, more attention needs to be diverted
to the problem in hand, i. e. defining the necessary constraints, which guarantee a safe
movement of the robot, and adapting the optimization algorithms in order to handle
these constraints. Otherwise, these algorithms will not be practicable. We introduced
in a previous work [23] a practical auto-tuning method for a PD controller using PSO
algorithm. In this work, the previous approach is extended to PID controllers and is han-
dled from two different perspectives: Firstly as a single objective problem (minimizing
the tracking error) after considering sufficient constraints to avoid unwanted and/or un-
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stable movements, and secondly as a multiobjective problem, where a second objective
function (minimizing the variation of the control action) is introduced. Adding this ob-
jective function will restrict the gains from having very high values. These restrictions
can not be defined as additional constraints since it is hard to define the maximum lim-
its of gains in advance. The reminder of this paper is organized as follows. In Section
2, the optimization problem and the necessary constraints are defined, while Section 3
introduces the PSO and the MOPSO algorithms and the proposed method to handle the
defined constraints. The results of several experiments is presented in Section 4. Finally,
Section 5 discusses the conclusions of this work.

2 Robot Controller Optimization

This work considers a robot manipulator controlled by an independent PID controller
for every individual joint. The traditional tuning methods (e. g. manual tuning, Ziegler-
Nichols...) are unable to obtain critical damping behavior [5] and, therefore, settle for
an overdamped one. Recently, more research is directed toward using global optimiza-
tion algorithms to solve identification and designing problems, especially for complex
nonlinear systems. The working principle of optimization methods is based on defining
a searching algorithm, which aims to find the optimal values of the parameters that min-
imize an objective function in a predefined search space. To perform an auto-tuning of
PID controllers using an optimization method, it is required to define the optimization
problem including the objective function and the optimization parameters. In the prob-
lem in hand, it is desired to find the control parameters that lead to the best trajectory
tracking accuracy of the robot. A widely known objective function to assess the tracking
performance is the integral of the absolute error IAE:

IAE =
∫ te

ts
|e(t)|dt =

∫ te

ts
|(qd(t)−q(t))|dt . (1)

The PID control law is given by the following equation:

τ = Kp(qd−q)+Kd(q̇d− q̇)+Ki

∫ te

ts
(qd−q)dt , (2)

where Kp, Kd and Ki are diagonal matrices with their diagonal elements being the pro-
portional, the derivative and the integral gains associated with the robot joints, qd is a
vector of the desired positions, q is a vector of the measured positions, q̇d is a vector of
the desired velocities, q̇ is a vector of the measured velocities, ts and te are the start and
the end time of the desired trajectory, respectively, and τ is a vector of the joint torques.
The optimization parameters are the diagonal elements of the matrices Kp, Kd and Ki.
The aim of this work is to implement a global optimization to auto-tune the PID con-
troller for robotic manipulators. The proposed method will depend on iterative real
movements of the robot along the desired trajectory to evaluate the objective function.
For this sake, it is inevitable to define the necessary constraints that ensure the safety
and the stability of the robot.
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2.1 Definition of Constraints for the Optimization

The ideal approach to define the problem constraints is by modeling the dynamics of
the system and designing the controller in order to keep the system stable and achieve
a good tracking accuracy. For the proposed method, it is assumed that no knowledge
of the system dynamics is available and, therefore, a model-free approach is required.
From a practical point of view, one can determine the necessary constraints by mon-
itoring the robot movement while searching for the optimal gains and stopping the
movement if any unstable situation is detected. First constraint that comes into mind
is to avoid big deviations from the desired trajectory. Similarly, it is helpful to restrict
the controller output by allowing a maximum torque limit in order to avoid actuators
saturation. Another important constraint is to avoid exciting dangerous oscillations by
high gain values.
Detecting violations of the error and the torque constraints can be done simply by com-
paring the absolute values of the position errors and the motor torques to predefined
maximum limits emax and τmax respectively. A bigger challenge, however, is to detect
oscillations in the robot movement. This can not be done analytically because no model
of the robot dynamics is available. Besides, oscillations must be detected online, in or-
der to stop the robot directly and avoid any possible damages.
We introduced in [23] a method to detect oscillations, which is basically based on the
indexes introduced in [8] and [9]. The general concept will be summarized here, further
description can be found in [23]. The main idea to detect oscillations is to divide the
signal into positive and negative regions separated by zero-crossing points. If the signal
is oscillating, then the regions between the zero-crossings will show some form of sim-
ilarity between each other regrading their IAE values and the time intervals between
the zero-crossings. Besides, the IAE values will be high enough to form the oscillat-
ing movement as shown in Figure 1. From this perspective, one can define an index to
detect oscillations based on the following equations:

hA(Nzc) = #
{

i <
Nzc

2
;Ai < Ai,max∧α <

Ai+1

Ai
<

1
α
∧ γ <

δi+1

δi
<

1
γ

}
, (3)

hB(Nzc) = #
{

i <
Nzc

2
;Bi < Bi,max∧α <

Bi+1

Bi
<

1
α
∧ γ <

εi+1

εi
<

1
γ

}
, (4)

h(Nzc) =
hA(Nzc)+hB(Nzc)

Nzc
, (5)

where #S denotes the number of elements in the set S. Ai is the IAE of the positive area
i of the error signal, Bi is the IAE of the negative area i of the error signal. δi and εi
are the time durations of the positive and the negative areas i, respectively. Nzc is the
number of the considered successive zero-crossings. 0 < α < 1 and 0 < γ < 1 are tuning
parameters define the degree of similarity. Amax and Bmax are maximum limits of IAE of
the regions between the zero-crossings. Theses limits are defined as follows:

Amax,i,Bmax,i =
∫ ∆tzc,i

0
0.01emaxsin(

πt
∆tzc,i

)dt =
0.02∆tzc,iemax

π
, (6)

with ∆tzc,i being the time between the zero-crossings i and i+1, and emax is the previ-
ously defined limit of the position error. It was suggested in [8] to chose α = 0.5−0.7
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Fig. 1: The Proposed Oscillation Detection Method from [23] and Based on [8]

and γ = 0.7−0.8.
In order to guarantee that the error signal will oscillate around the zero value, it is cho-
sen to use the difference between the error signal and its mean value e(t)−mean(e(t))
instead of using the error signal itself. Subtracting the mean value will rescale the os-
cillating signal around the zero axis.
The proposed procedure to detect oscillations is then achieved by the following steps:

1. After the beginning of the robot movement, record the values of the position error
through a long enough period ∆T . A reasonable value of ∆T is 0.1Ttot− 0.2Ttot,
where Ttot is the total duration of the robot movement.

2. Calculate the function ezc(t) = e(t)−mean(e(t)) along the period ∆T .
3. Determine and count the zero-crossing points within ∆T , and calculate the values

A, B, δ, ε between these points.
4. For every Nzc successive zero-crossings, calculate hA, hB and h.
5. If h > hmax, oscillations exist and the movement must be stopped immediately. Oth-

erwise, record the values of the position error for the next period ∆T and repeat the
previous steps until reaching the end position of the robot.

It was suggested in [8] to choose hmax ∈ [0.4−0.8] and Nzc ≥ 20.

3 Particle Swarm Optimization

After defining the optimization problem and the necessary constraints, it is possible to
choose one of the global optimization algorithms to find the optimal gains. The chosen
algorithm in this work is the particle swarm optimization (PSO).
The PSO, first introduced in [7], is a population-based algorithm simulating the move-
ment of a swarm of particles in a predefined space. After a number of iterations, the
particles are attracted towards the best location which represents in the ideal case the
global optimum.
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The PSO has many features that make it efficient in solving optimization problems, e. g.
it has less parameters to be identified in comparison with other optimization algorithms
and has a very high success rate in finding the global minimum [20], and it has also a
relatively high convergence speed to a near optima [1].
PSO has attracted a lot of research efforts, where also different versions and modifica-
tions have been proposed. Recently, optimization problems with multiobjectives have
been taken into account and different approaches are proposed to form a multiobjective
PSO (MOPSO).
The problem in hand is complicated, and performing the optimization with respect to
only one objective function (IAE) may not achieve the desired task (trajectory tracking)
perfectly. For example, an oscillating error signal around the zero-axis could have lower
IAE than a signal with a steady-state error. However, it might be more desirable to toler-
ate a small steady-state error than to allow oscillations in the movement. This work gives
two possible approaches to address the problem. In the first approach, the auto-tuning
is performed by considering only IAE as an objective function, while trying to avoid
undesirable oscillations by defining an oscillation constraint. In the second approach,
a second objective function is added to the first one. The second objective function is
the sum of the variations in the controller output and is defined in Subsection 3.2. The
two objective functions contradict each other and, therefore, the optimization problem
becomes multiobjective and is solved by finding a set of Pareto-front positions.

3.1 Optimization Using PSO

In the first implementation, only one objective function is considered which is the inte-
gral of the absolute error IAE. For every iteration of the PSO algorithm, every particle
of the swarm will have a new position and velocity assigned to it based on the following
equations:

V j(i+1) = ωV j(i)+ c1γ1(P j(i)−X j(i))+ c2γ2(G(i)−X j(i)) , (7)
X j(i+1) = X j(i)+V j(i+1) , (8)

where i indicates the current iteration, j indicates a particle of the swarm, X j(i) is
the position vector of the particle j, V j(i) is the velocity vector of the particle j, c1 and
c2 are the cognitive and the social acceleration coefficients respectively, ω is the inertia
factor and γ1 and γ2 ∈ [0 1] are random variables with uniformly distributed values.
There is no standard way to choose the swarm size and the maximum number of iter-
ations. However, both parameters must be high enough in order to guarantee a conver-
gence of the objective value toward the global minimum.
The inertia weight is defined to be a linear decreased function as follows:

ω = ωmax−
(ωmax−ωmin)Ni

Nmax
, (9)

where Nmax is the maximum number of iterations, Ni is the current number of iterations,
ωmax and ωmin are the maximum and the minimum values of the inertia weight respec-
tively. The chosen values in this work are ωmax = 0.9 and ωmin = 0.4 as it was suggested
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in [21].
Based on the stability conditions that was introduced in [18], it is possible to define
the parameters c1 and c2 in a way that guaranties a convergence toward an equilibrium
point eventually. These conditions are:

0 < c1+ c2 < 4 , (10)

(c1+ c2)
2

−1 < ω < 1 . (11)

Considering that ω ∈ [0.4−0.9], choosing c1 = c2 = 1 is suitable.

3.2 Optimization Using MOPSO

In the second implementation, a second objective function beside IAE is considered.
This function is meant to limit the variation of the control action, which may change
rapidly if the controller gains have very high values. This function is defined as follows:

f2(i) =
i=M

∑
i=1
|τi− τi−1|=

i=M

∑
i=1
|∆τi| , (12)

with τi being the torque vector of the robot’s joints, M being the total number of mea-
surement samples during the robot movement, and i an index of the samples.
In this work, the MOPSO algorithm defined in [4] is applied. The only modification
made here is to ignore the mutation step which is used to prevent the fast convergence
of the algorithm. An external repository is used to store the nondominated solutions
and an adaptive grid is constructed to produce well-distributed Pareto-fronts. The main
contribution of this work is to adapt both PSO and MOPSO to form a practical auto-
tuning mechanism for PID controller. The unusual form of the considered constraints
requires a special method of handling for these constraints, which is introduced in the
next subsection.

3.3 Constraints Handling

The mostly used methods to handle constraints in traditional optimization problems are
either penalty-based methods, where a penalty value is added to the objective function
depending on the violation of the constraints, or methods that try to define the feasible
regions in the search space and restrict the optimization parameters to be always inside
these regions. Unfortunately, the practical nature of the optimization problem in this
work makes both methods unsuitable. As it was mentioned before, if one of the con-
straints is violated, the movement of the robot must be stopped immediately, whereas
the objective function must be calculated along the entire trajectory for comparability,
therefore, no penalty-based method can be used. Besides, the feasible region cannot be
defined theoretically in advance and the only way to detect a violation of constraints is
by performing the movement that results according to the particle position.
The here proposed method to handle the constraints is inspired by the work in [22],
where some modifications of the optimization algorithm are suggested. The handling
method is done after considering the following simplifications:
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– Assuming that the coupling effects between the robot links can be ignored, one can
state, that only the gains Kl

p, Kl
d and Kl

i of the corresponding controller of link l
are responsible if a violation occurs and, therefore, only these must be modified,
i. e. handling the constraints can be done by modifying the particle position in only
three dimensions.

– There is only one continuous feasible region inside the search space, i. e. if a particle
moves in a direction that leads to a constraint violation, continuing to move the
particle in the same direction will also lead to a constraint violation.

– Most of the initial swarm positions are located inside the feasible region.

Figure 2 demonstrates the case of a particle outside the feasible regions. For the sake of
simplicity, the third dimension corresponding to Kl

i is not shown.
Based on the introductory simplifications, a proper method to bring the particles back
to the feasible region can be achieved as follows:
If one of the constraints of the link l is violated, the exploration term (ωVl) for the
corresponding dimensions are set to zero, which will restrict the next movement to be
only influenced by the personal and the global best positions. Off course these positions
are located in the feasible region, therefore, the resulted velocity vector will bring the
particle back to the feasible region.
The assumption of having only one feasible region is a reasonable assumption, because

Fig. 2: Constraints Handling Method From [23]

it indicates that if a gain value violated one of the constraints after it was increased, then
continuing to increase it (while keeping the other gains with the same values) will keep
violating this constraint. The same applies for when the gain is decreased.
Based on the foregoing, it is now only required to locate the initial swarm inside
the feasible region. A simple strategy is to define only one suitable position K0 =
{Kp,0,Kd,0 Ki,0} (e. g. by tuning the controller through trails and errors). For the other
particles, one can define an interval ±∆k in the neighborhood of this position, let it
be for example [K0−∆K;K0 +∆K]. Finally, random initial positions can be allocated
with a unified distribution in this interval. It is possible that some of the initial positions
may violate one or more of the constraints (if the chosen interval is too large), however,
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they will return in the following iterations to the feasible region thanks to the proposed
method.

4 Experimental Results

The proposed tuning method is tested on a 7-DOF robot, which is built of specially
designed modules called PowerCube from the company “Schunk”. To validate the effi-
ciency of the proposed auto-tuning method, several experiments are performed. In these
experiments, PID controllers are used to control the joints (3, 4, 6) which are shown in
Figure 3. All the joints here are rotational and actuated by brushless dc-motors. In the

Fig. 3: PowerCube Robot from [23]

first experiment, point-to-point trajectories with sinusoidal velocity profiles are chosen
as desired trajectories, see Figure 4a. Only one objective function is defined as follows:

f1(i) = IAE =
M

∑
i=1
|e3(i)|∆T +

M

∑
i=1
|e4(i)|∆T +

M

∑
i=1
|e6(i)|∆T , (13)

where ek(i) is the measured position error of the joint k, ∆T is the sample time, M is
the total number of measurement samples during the robot movement and i is an in-
dex of the samples. To define the constraints for the chosen joints, the value emax =
π
90 ≈ 0.035rad is chosen as the maximum limit for the position error. The PowerCube
modules provide the user with current measurements for every motor instead of torque
measurements, that is why a maximum current constraints is used in the experiment
instead of a maximum torque. The maximum allowed current in all the modules equals
15A, but to insure more safety conditions, only the half of this value is defined as the
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current limit (Imax = 7.5A). Oscillations detection is performed as described previously
by determining every 20 consecutive zero-crossings (Nzc = 20) from the rescaled er-
ror signal ezc(t) and calculating the oscillation index value h(Nzc). if h(Nzc) > 0.6
then oscillations are considered to be occurred and the movement of the robot must be
stopped.
For this first experiment, PSO algorithm is applied with a swarm size of 10 particles
and a maximum number of generations equals 20. To define initial positions for the
particle swarm, an acceptable set of gain values are defined through trials and errors
which are kp,0 = [90,60,120], kd,0 = [5,2,8] and ki,0 = [2,1,1]. Based on these values,
three intervals for the initial gains are defined as follows: [kp,0− kp,0/2;kp,0 + kp,0/2],
[kd,0−kd,0/2;kd,0 +kd,0/2] and [ki,0−ki,0/2;ki,0 +ki,0/2].
The initial positions were then determined randomly from inside these intervals with

a uniform distribution. The search space for the kp gains is defined to be [1;500] and
for the kd and ki gains [0;50]. I. e. the maximum gain limits are chosen to be relatively
high compared to the initial gains in order to give the particles enough space to find
the optimal gains. However, the maximum velocity value Vmax is set to be equal 20% of
these maximum limits in order to avoid big leaps in particle movement.
After applying the search algorithm, the following optimal gain values have been found:
kp = [249.1,109.9,312.9], kd = [0.2,1.1,12.4] and ki = [2.1,2.4,4.8] with the minimal
objective value of IAE = 0.0255rad s.
The convergence of the objective value during the searching procedure is shown in Fig-
ure 4b, while Figure 4c shows the position error diagram according to the optimal gain
values in comparison with the position error of the initial gains. The accuracy of the
tracking is clearly improved after the optimization. However, low-amplitude oscilla-
tions started to appear on the third joints.
In the second experiment, different desired trajectories are applied, which are shown

in Figure 5a. These trajectories generate a circular movement of the end effector. The
same setup of the first experiment (constraint limits, swarm size and maximum num-
ber of generations) is applied here. The initial gains are defined based on trials and
errors to be: kp,0 = [140,120,140], kd,0 = [1,2,2] and ki,0 = [1,1,1]. The initial posi-
tions of the particles are then determined using the same previous interval. After doing
the search for 20 generations, the objective value converged as it is shown in Figure
5b and reached the value: IAE = 0.0692rad s which indicates a good improvement
compared to the initial gains as shown in Figure 5c. The resulted optimal gains are:
kp = [286.9,121.9,371.2], kd = [0.4,0.1,1.5] and ki = [2.2,1.3,1.6]. It is noticeable
that low amplitude oscillations still exist despite the used oscillation constraints. This
indicates that the search algorithm pushed the gains (especially the proportional gains)
to the limits where it excite oscillations under the tolerated limits. In order to demon-
strate the effect of the oscillation index on the oscillations, a lower maximum limit is
defined in the third experiment to be (hmax(Nzc) = 0.4. I. e. the conditions to detect os-
cillations will be more restrictive with respect to the tolerated oscillations. After that,
the search for the optimal gains is repeated by keeping the other settings exactly the
same as in the second experiment. After 20 generations, the following optimal gains
resulted: kp = [188.8,144.5,246.7], kd = [2.1,0.8,1.7] and ki = [0.9,0.6,1.1]. As ex-
pected, the final value of the objective function IAE = 0.0869rad s is higher compared
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(a) Desired Trajectories (b) Convergence of IAE

(c) Position Errors

Fig. 4: Optimization of PID Controller for a Point-to-Point Movement Using PSO, with
a): the Desired Trajectories of the Point-to-Point Movement, b): the Convergence of
IAE after 20 Generations and c): the Position Errors Corresponding to the Optimal PID
Gains in Comparison to the Position Errors of the initial Gains
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(a) Desired Trajectories (b) Convergence of IAE

(c) Position Errors (d) Position Errors after Changing hmax

Fig. 5: Optimization of PID Controller for a Circular Movement Using PSO, With a):
the Desired Trajectories of the Circular Movement, b): Convergence of IAE After 20
Generations, c): Position Errors Corresponding to the Optimal PID Gains in Compari-
son to the Position Errors of the initial Gains and d): Position Errors Corresponding to
hmax(Nzc) = 0.4 in Comparison to the Position Errors of hmax(Nzc) = 0.6
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(a) Pareto-Front Solutions (b) Current Signals

(c) Position Errors

Fig. 6: Optimization of PID Controller for a Circular Movement Using MOPSO, With
a) the Pareto-Front Solutions After 30 Generations, b): Current Signals Corresponding
to the Optimal Gains from MOPSO in Comparison to the Current Signals from PSO and
c): Position Errors Corresponding to the Optimal Gains from MOPSO in Comparison
to the Position Errors from PSO
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to the previous value. However, the oscillations are clearly reduced after changing the
oscillation index as shown in Figure 5d.
In the fourth experiment, the auto-tuning is handled as a multiobjective optimization
problem. The second objective function is calculated as follows:

f2(i) =
N

∑
i=2
|I3(i)− I3(i−1)|+

N

∑
i=2
|I4(i)− I4(i−1)|+

N

∑
i=2
|I6(i)− I6(i−1)| . (14)

Again, a swarm of 10 particles is generated with same configuration as in the previous
experiments. The main difference here is that not only one global optimum is searched
but a group of solutions being called the Pareto-front solutions. Finding sufficient num-
ber of the Pareto-front solutions usually require more swarm generations compared to
the normal PSO algorithm. Therefore, the maximum number of generations is increased
to 30 which means that the robot performs the movement 300 times. After finishing
all the iterations, a set of Pareto-front solutions is determined as shown in Figure 6a.
To compare the results from this method with the results of the last experiment, the
Pareto-front position that achieved the best tracking accuracy (lower IAE value) is cho-
sen as the best solution, because improving the accuracy is still considered the main
and the most important objective. The optimal gains corresponding to this position are:
kp = [97.8,115.48,131.47], kd = [2.3,2.3,2.1] and ki = [2.9,2.7,3.1]. Figure 6b shows
the controller output of this Pareto solution compared to the output of the optimal gains
in the third experiment. Adding the second objective function reduced the variation in
the controller action. However, it also led to much lower accuracy (IAE = 0.1559rad s)
as shown in Figure 6c. This is expected because of the trade-off between the two objec-
tive functions. So on one hand, taking the variance of the controller action into consid-
eration makes the searching algorithms safer and stabler, because the algorithms does
not push the gains to the limits of the feasible regions, and at the end it gives a group of
solutions with different accuracies. On the other hand, using only one objective function
led to better accuracy (two times better than MOPSO), but also led to higher oscillations
and more variations in the controller output. A suggestion to get the best results might
be to combine the two methods. First applying the MOPSO will show the boundaries
between the two objective functions. Then one can define a maximum value of f2(i)
based on the Pareto-fronts and set it as an additional constraints for PSO, then PSO can
be implemented to get the best possible accuracy under this new constraint.

5 Conclusion

In this paper, an auto-tuning method of PID-controllers for robotic manipulators has
been proposed. The suggested approach includes two implementations of a global op-
timization algorithm. In the first one, the particle swarm optimization is applied to find
the optimal control parameters, while in the second one, a multiobjective PSO is ap-
plied. The main contribution of this work was to address the challenges arising, when
using real experimental data for auto-tuning of PID controls. This includes necessary
methods for guaranteeing stability and safety. Therefore, approaches for applying con-
strains, such as the maximum position error, the maximum joint torque and the oscilla-
tion constraint, have been proposed and tested. Additionally, a suitable way to handle
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these constraints has been suggested. Finally, the proposed approach has been exper-
imented successfully on a real robot by applying different trajectories and different
settings of the tuning method. Using PSO has improved the tracking accuracy but also
led to low-amplitude oscillations and to high variation of the control action. Adding a
second objective function and performing the tuning through a MOPSO algorithm gen-
erated a set of Pareto-front solutions with lower variation of the control action but also
led to a lower accuracy in comparison to PSO.
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