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Abstract. An auto-tuning method for a Delta robot’s P/PI cascade mo-
tion controller using multi-objective optimization algorithm is proposed.
The implemented control structure consists of two controllers: A feedfor-
ward controller based on a model of the inverse dynamics of the robot,
and a cascade P/PI controller to compensate for unmodeled effects. The
auto-tuning is achieved in the sense of optimizing the control parameters
in three stages. In the first stage, the feedback control parameters are
optimized after neglecting the feedforward control term. The goal is to
minimize the position error in tracking an excitation trajectory, which
is used as well to identify the dynamic model parameters in the second
stage. After that, the feedforward compensation term is computed offline
based on the desired trajectory. In the final stage, the P/PI parameters
are optimized again after adding the feedforward controller. Experimen-
tal results on an industrial 3-dof Delta robot validates the efficiency of
the proposed method.

Keywords: Multi-objective optimization algorithms, P/PI control, Dy-
namics identification, Auto-tuning

1 Introduction

Parallel robots are implemented recently in a wide range of industrial applica-
tions. Their advantages over serial robots regarding high speed movements and
accurate motion control made them the favorable choice for tasks with high dy-
namical movements such as pick and place.
The mostly used control structure for robot manipulators (both parallel and se-
rial robots) consists of PID/PD controller combined with a compensation term,
which aims to linearize the dynamics of the robot based on previous knowledge
of robot dynamics. To add the compensation term, a partial or a full model of
the inverse dynamics is required. Based on this, the modeled robot dynamics can
be compensated in two different ways: In the first method, a simple feedforward
controller is determined based on the desired values of position, velocity, and
acceleration [7]. In the second method, a control structure known as computed
torque control is implemented, where the compensation term is determined us-
ing real measurements of the position and velocity and the desired value of
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the acceleration [8]. While the computed torque control is a more effective con-
trol structure in theory, it requires high computational power compared to the
feedforward controller, which can be defined offline and then added to the PID
controller.
Regardless of the chosen control structure, two steps are essential in design-
ing an adequate controller: Firstly, modeling the inverse dynamics of the robot
and, secondly, tuning the PID controller gains. Because of the complexity of the
robot’s dynamics, it is very hard to determine a perfect model that count for
all components affecting the robot movement, such as friction, joints and links
flexibilities and external loads. These model uncertainties are left for the PID
controller to compensate for.
PID controllers for robot manipulators are tuned in most cases manually by tri-
als and errors, which cannot guarantee having the best set of gains especially for
robots with high degree of freedom and significant coupling effects between its
links. Recently, global optimization methods are used to solve controller tuning
problems depending on iterative algorithms that optimize the controller parame-
ters with respect to a predefined objective function. In the field of robot manipu-
lators, several optimization algorithms have been implemented as an auto-tuning
method of PID controllers (e. g. Genetic Algorithms (GA) [4], Particle Swarm
Optimization (PSO) [13], Differential Evolution (DE) [9]). Controller optimiza-
tion in the given examples was done with respect to a single objective function,
such as the integral of the absolute tracking error. However, minimizing the
tracking error comes with the cost of generating control actions with extremely
high variations which have dangerous impact on the joint motors. This prob-
lem can be solved by handling the auto-tuning as a multi-objective optimization
problem. In this case, one objective function aims to minimize the trajectory
tracking error, while the other function aims to minimize the variations of the
controller output, and therefore, provide the controller with an additional sta-
bility margin. One of the works introducing this approach is [1], utilizing a
multi-objective evolutionary algorithm (MOEA). In [6], a comparative study
between different multi-objective optimization techniques has been introduced
and an improved multi-objective particle swarm optimization (I-MOPSO) has
been proposed. While in [14], a comparative study between multi-objective par-
ticle swarm optimization (MOPSO) and multi-objective cuckoo search (MOCS)
has been introduced. MOCS is found to be more effective in preforming the
auto-tuning task.
The inverse dynamics identification was a subject of many researches in the pre-
vious decades. Important contributions have been introduced regarding defining
the base parameter set of the model [5], and optimizing the excitation trajectory
of these parameters [3], among others. A general overview on dynamics identifi-
cations of robot manipulators can be found in [10].
In this work, an auto-tuning of a cascade P/PI controller in combination with
a feedforward controller for a 3-dof Delta robot is introduced. The main contri-
bution of this work is that the auto-tuning and the identification are combined
in one overall process, where the P/PI control parameters are optimized in two
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stages: First, neglecting the feedforward control, the goal is to achieve a rea-
sonably accurate tracking of the excitation trajectory, which leads in turn to an
accurate identification of the inverse dynamics. Secondly, the identified model is
implemented as a feedforward control and the auto-tuning is repeated in order to
achieve the optimal trajectory tracking under consideration of the feedforward
control.
The rest of the paper is organized as follows. The second section explains the
auto-tuning concept with a review of the chosen optimization algorithm. The
third section describes the dynamics identification process. The fourth section
introduces the proposed controller optimization method. Finally, the experimen-
tal results are demonstrated and final conclusions are given.

2 Auto-tuning of PID controller using a global
optimization algorithm

Optimization algorithms are a very effective techniques in performing tuning of
control parameters for complex nonlinear systems, where it is hard to obtain an
accurate model of the controlled plant and to estimate the control parameters
analytically. The main advantage of these algorithms is that they handle the sys-
tem as a black box, and perform the tuning through an iterative procedure. The
parameters are set depending on one or more objective functions that evaluate
the performance of the controller. The most important objective for a motion
controller is to achieve the accuracy in tracking the desired position, but it is also
essential to guarantee other factors related to the stability and the safety of the
controlled system. For this sake, searching for the optimal control parameters
must be done under a number of predefined constraints.
In the case of robot manipulators, the tuning requires setting the parameters,
performing the desired movement, evaluating the performance, and then repeat-
ing this procedure for a number of iterations. The constraints in this case are to
avoid generating torques on the joint motors higher than its saturation limits,
and also to avoid unstable movements that exceed a higher limit of position
error. It is also important to avoid exciting high oscillations, which can be am-
plified by inappropriate gain values. In [13], a practical approach is proposed to
handle these constraints, where the movement of the robot is observed in real
time and stopped immediately as soon as one of the constraints is violated.
In this work, the auto-tuning is handled as a multi-objective optimization prob-
lem with two objective functions. The first one is the integral of the absolute
error, which is obtained in practice as given by

IAE =
M∑

i=1

N∑

j=1

|ej(i)|∆T , (1)

with ej being the position error signal of joint j, ∆T being the sampling time,
M being the total number of measurement samples during the robot movement,
and N being the number of joints. The goal is to minimize this function in order
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to achieve the best accuracy of the trajectory tracking. The second objective is
defined to measure the variations of control action (i.e. motor torque) as given
by

CAV =
M−1∑

i=1

N∑

j=1

|τj(i+ 1)− τj(i)| , (2)

where τj is the motor torque of joint j. Minimizing this function helps the con-
troller to gain a stability margin and reduces the possibility of inducing high
oscillations. The two objective functions contradict each other in the sense that
reducing one leads most likely to increasing the other. Therefore, a set of op-
timal solutions is found at the end of the searching called the Pareto solutions
or the Pareto frontier. Among these solutions only one will be chosen to be
the controller gains. A reasonable choice is the solution that produces the best
compromise between the two objectives. This solution is given by

bcs = min

(
IAE(P ) + CAV (P )

2

)
, (3)

with P being the resulting set of Pareto solutions.
The auto-tuning is performed in this work using the cuckoo search algorithm,
which is briefly discussed in the next subsection.

3 Cuckoo search and Multi-Objective Cuckoo search

Cuckoo search (CS) is an optimization algorithm first introduced in [11]. It
imitates the brood parasitism behavior of some cuckoo species. These cuckoo
birds lay their eggs in the nests of other birds. The hosts nests are represented
as the population of the algorithm, where the number of hosts will be fixed
through the search. The cuckoo birds are represented by the new individuals
generated in every iteration assuming that every cuckoo bird lays only one egg
at a time. The new egg replaces the original egg in the host nest if it shows a
better evaluation (cost value). In addition, the host nest has the ability to detect
the intruder egg and get rid of it, which is modeled by a probability factor pa ∈ [0
1]. This factor is actually the only parameter that needs to be tuned manually
for the algorithm.
In addition, CS algorithm uses a strong tool in generating new eggs based on
the concept of Lévy flights [2], as follows:

xi(t+ 1) = xi(t) + α⊕ Lévy(β) , (4)

where α depends on the difference between solution qualities, the product ⊕ is
an entry-wise multiplication, and Lévy(β) is a function providing a random walk
as follows:

Lévy ∼ u = t−1−β , (0 < β ≤ 2) . (5)

In [12], the single objective CS algorithm is extended to handle optimization
problems with multiple objectives. In order to achieve that, the analogy to the
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cuckoo behavior is modified in which every objective function is represented by
an egg in the nest, i.e. in k objectives problem, every nest will have k eggs, and
each egg has its own quality (cost value). This approach is the one used in this
work to perform the auto-tuning method.

4 Modeling and identification of the inverse dynamics

Modeling the dynamics of a parallel robot requires dividing it into separated
kinematic chains and a moving platform. After that, the dynamical model of
each of these subsystems is determined using one of the known methods such as
Newton-Euler method or Lagrange method.
The resulting model can be simplified to a linear model with respect to a vector
of base parameters P as given by:

τ = Φ · P , (6)

with τ being a vector of the measured joint torques, and Φ being the regression
matrix, whose elements are functions to the desired position, velocity, and ac-
celeration.
Identifying the base parameters in this model can be done using the least squares
method. The solution is given by:

P = Φ† · τ (7)

with Φ† being the pseudo-inverse of the regression matrix. This pseudo-inverse
can only be determined if the regression matrix is well conditioned. Therefore,
the desired trajectory must be chosen in a way that excites all the dynamical
components of the robot and generates a well conditioned regression matrix. In
this work, the excitation trajectory is defined using a Fourier series. The Fourier
coefficients are defined with help of an optimization algorithm aims to minimize
the condition number of the regression matrix as described in [3].

5 Optimization of P/PI cascade motion control with
feedforward compensation

P/PI cascade motion control is an advanced PID position control. The main
advantage of this controller is that it has two control loops, an outer loop to
control the position, and an inner loop to control the velocity, which makes it
more effective in compensating disturbances. This controller can be described
by the following equations:

vd = Kp · (qd − q) , (8)

τc = Kv · (vd − q̇) +Ki ·
∫ T

0

(vd − q̇)dt. (9)
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With Kp, Kv, and Ki being diagonal matrices of controller gains, qd and q
being vectors of the desired and actual joint angles, q̇ being a vector of the
actual angular velocities, and T being the total time duration of the movement.
The actual velocity is estimated from the actual position using a first order filter.
In this work, the cascade controller is combined with a feedforward compensation
term based on the inverse dynamics model as shown in Fig. 1. For complex

Fig. 1. Motion controller of the Delta robot

nonlinear systems such as robot manipulators, it is hard to obtain an accurate
model of the inverse dynamics that counts for all dynamical forces affecting
the robot motion. Which in turn complicates the procedure of tuning the P/PI
cascade controller. The main contribution of this work is to propose a practical
approach for optimizing this motion controller for a 3-dof Delta robot. However,
it is justifiable to declare that this method can be applied to industrial robot
manipulators in general. The auto-tuning procedure is performed in three steps:

1. Optimization of the P/PI controller using MOCS neglecting the feedforward
controller as described in section 2. The desired trajectory used here is ad-
ditionally used as excitation trajectory for the next step.

2. Identification of the inverse dynamics using the torques measurements of
the joints as described in section 3. In this stage, the previously tuned P/PI
controller is implemented.

3. Optimization of the P/PI controller as done in the first step but after adding
the feedforward controller.

6 Experimental results

The proposed auto-tuning method is applied on a 3-dof Delta robot controlled
by previously introduced motion controller. The used kinematic is an industrial
Codian D4-1100 Delta robot designed for high dynamic pick and place appli-
cations (Fig. 2). The controller is applied using a standard industrial PLC and
servo inverters. The MOCS algorithm is set with the following parameters:
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Fig. 2. Experimental setup with 3-dof Delta robot

– Number of nests = 10

– Maximal number of iterations = 15

– Searching space dimension = 9 (3 control parameters to be tuned for each
of the 3 axes of the Delta robot). The optimization parameters are normal-
ized depending on the maximum and the minimum gains provided from the
manufacturer.

The whole number of executions of the desired movement is limited by the pa-
rameters of the MOCS to a total number of 150 for every tuning process. This
equals about 1 hour of measurement time. After the first auto-tuning stage, the
trajectory tracking is improved compared to the default control settings. The
resulting position error signals are shown in Fig. 3. Measurements of the joints
torques corresponding to the best achieved tracking accuracy in stage 1 are used
to identify the inverse dynamics. Fig. 4 shows that the torque estimation gen-
erated by the inverse dynamics model is very close to the actual torque values.
Finally, the determined model is implemented as a feedforward control, and the
auto-tuning is performed again. A significant improvement is achieved compared
to the first stage, which validates the efficiency of the proposed method. The po-
sition error signals after the final stage are shown in Fig. 5. At the end of the first
and the last tuning stage, three Pareto solutions are generated. These solutions
are given in Table 1. This number of solutions is relatively low compared to
traditional multi-objective optimization problems. The main reason is that the
effects of the control gains on the second objective function (variations of control
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Fig. 3. Position error signals after the first auto-tuning stage

Fig. 4. Estimated torque signals compared to the actual torques

action) is relatively small. As a result, the Pareto frontier is narrow with respect
to this objective function. However in general, controller gains may have higher
impact on the motor torques variations if a larger search space is employed,
therefore, it is essential to take the second objective function into consideration.
In addition, choosing the controller gains based on the best compromise solu-
tions enabled the optimization algorithm to obtain an accurate tracking and to
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Fig. 5. Position error signals after the final auto-tuning stage

Table 1. Pareto Solutions for the first and final stage

Pareto Solutions
P/PI controller

Pareto Solutions
P/PI with Feedforward

Solution 1 Solution 2 Solution 3 Solution 1 Solution 2 Solution 3

IAE 0.7066 0.5054 0.6253 0.445 0.3527 0.3469

CAV 0.9807 0.9888 0.9812 0.9788 0.9876 0.9877

Table 2. Optimal normalized controller gains for the first and final stage

Kp1 Kv1 Ki1 Kp2 Kv2 Ki2 Kp3 Kv3 Ki3

Stage 1 0.61 0.98 0.24 0.44 1 0.19 0.91 0.87 0.77

Stage 2 0.51 1 0.78 1 1 0.43 0.73 0.96 0.82

avoid exciting dangerous oscillations at the same time.The solutions that give
the best compromise between the two objective functions are “Solution 2” for
the first tuning stage and “Solution 3” for the final stage. The values of IAE cor-
responding to these two solutions indicates a 30% improvement of the tracking
accuracy after adding the feedforward controller and repeating the optimization
procedure. The optimal normalized gains are given in Table 2 for the first and
the last tuning stage.

7 Conclusion

A novel auto-tuning method for a P/PI cascade motion controller of a 3-dof
Delta robots was proposed. The auto-tuning is achieved with the help of a

This is the author’s version of an article that has been published in the MHI 2019 proceedings.
Changes were made to this version by the publisher prior to publication.

The final version of record is available at https://dx.doi.org/10.1007/978-3-662-59317-2_22

Copyright (c) 2019 Springer-Verlag GmbH Deutschland. Personal use of this material is permitted.
For any other purposes, permission must be obtained from Springer Nature.



10 Ahmed Zidan et. al.

global optimization algorithm. The problem is described as a multi-objective
optimization problem and solved with multi-objective cuckoo search algorithm
(MOCS). Auto-tuning is combined with a dynamic identification method to ob-
tain an accurate model of the inverse dynamics. This model is implemented as
a feedforward controller added to the P/PI control loop. The auto-tuning of
the control parameters combined with the dynamics identification improves the
trajectory tracking performance significantly, which is proved by the presented
experimental results.
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