
Specifying and Synthesizing Energy-Efficient Production System
Controllers that Exploit Braking Energy Recuperation

Daniel Gritzner1, Elias Knöchelmann2, Joel Greenyer1, Kai Eggers2, Svenja Tappe2 and Tobias Ortmaier2

Abstract— Reducing the energy consumption is a major
concern in industrial production systems. One approach is
recuperating the braking energy of robot axes. Ideally, their
acceleration and deceleration phases should be synchronized
so that the braking energy of one axis can be reused directly
to accelerate another. This requires a detailed alignment of
the axes’ trajectories, but also a careful design of the overall
discrete control. Finding an optimal control strategy manually,
however, is difficult, as also many functional and safety require-
ments must be considered. We therefore propose an automated
methodology that consists of three parts: (1) A scenario-based
language to flexibly specify the discrete production system
behavior, (2) an automated procedure to synthesize optimal
control strategies from such specifications, including PLC code
generation, and (3) a procedure for the detailed trajectory
optimization. We describe the methodology, focusing on parts
(1) and (2) in this paper, and present tool support and evaluation
results.

I. INTRODUCTION

Due to increased automation, it becomes more and more
important to optimize the energy consumption of production
processes. This can be done, for example, by reducing idle
times [1]–[3]. For production robots, it is possible to optimize
the axes’ trajectories for energy-efficiency [4]–[6]. Even
more energy saving potential lies in reusing the braking
energy of robot axes to accelerate other robot axes in the
same system [7], [8], instead of allowing the braking energy
to dissipate as heat, which is the usual practice today.

Recuperated braking energy can be exchanged between
robots via a common DC link. The challenge is, however, to
optimally synchronize the braking and acceleration phases
of robot axes to exploit the energy saving potential.

Optimally synchronizing the braking and acceleration
phases of robot axes is a challenge on two levels: First, the
overall discrete control of the system must be optimized to
maximize the times in which the acceleration and decelera-
tion phase of axes beneficially overlap. Usually, the order of
robot movements can be arranged in multiple ways, and some
control strategies offer more braking energy recuperation
potential than others. Then, for each set of braking and
acceleration phases that were brought to overlap by an
optimized control strategy, the trajectories of the involved
axes must be aligned in detail. For example, the braking

*This research is funded by the DFG project EffiSynth.
1Daniel Gritzner and Joel Greenyer are with the Software Engi-

neering Group, Leibniz Universität Hannover, 30167 Hanover, Germany
{daniel.gritzner|greenyer}@inf.uni-hannover.de

2Elias Knöchelmann, Kai Eggers, Svenja Tappe, and Tobias
Ortmaier are with the Institute of Mechatronic Systems,
Leibniz Universität Hannover, 30167 Hanover, Germany,
elias.knoechelmann@imes.uni-hannover.de

phase of one axis can be shifted, stretched, or compressed
to match the energy demand for accelerating another axis.
We call these two levels the sequential control optimization
(SCO) and detailed trajectory optimization (DTO). In this
paper, we focus on the SCO.

The SCO can be a complex task, as it could imply rethink-
ing the entire discrete control strategy and rewriting hundreds
or thousands of lines of PLC code. If, during DTO, it turns
out that a particular set of braking and acceleration phases
cannot be aligned as beneficially as expected during a first
SCO, even iterations of SCO/DTO steps may be necessary.
Doing this manually is very difficult and time-consuming, as
also many functional and safety-critical requirements must be
considered.

We therefore propose a methodology for specifying and
automatically synthesizing controllers for production systems
that reduce energy consumption by exploiting braking energy
recuperation. The process is shown in Fig. 1; it automates the
SCO/DTO steps and mainly consists of three parts:

(1) Scenario-based specification (À in Fig. 1): The
methodology offers engineers a flexible language for specify-
ing the discrete control behavior of a production system. This
language, called the Scenario Modeling Language (SML) [9]
is a scenario-based language that allows engineer to specify,
in a set of separate stories, how the system may, must,
or must not react to particular events. Assumptions on the
behavior of the physical/mechanical parts of the system can
also be specified, as well as assumptions on the energy
quantities consumed and produced by robot arm acceleration
resp. deceleration phases.

This approach has several advantages. First, the scenarios
in a specification are loosely coupled; each scenario can
extend as well as restrict certain aspects of the system’s
behavior. Using this paradigm, in contrast to programming
sequential PLC code, does not encourage the engineer to
introduce an order among the events in the system where
such an order is not strictly dictated by the requirements. As
a consequence, this naturally leaves a larger space of control
strategy choices that can be exploited for SCO later on.
Second, the scenarios are executable, which means that the
engineer can simulate and validate the behavior that unfolds
from the interplay of the scenarios. Third, the scenarios have
a formal semantics, and can be used for formal analysis,
e.g., to find inconsistencies in the specification, or for formal
controller synthesis, i.e. the automatic construction of a state-
based model that is a correct-by-construction implementation
of the specification. This brings us to the second component
of our methodology.

This is the author’s version of an article that has been published in the CASE 2018 proceedings.
Changes were made to this version by the publisher prior to publication.

The final version of record is available at https://dx.doi.org/10.1109/COASE.2018.8560544

Copyright (c) 2018 IEEE. Personal use of this material is permitted. For any other purposes,
permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Institutionelles Repositorium der Leibniz Universität Hannover

https://core.ac.uk/display/395673289?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


model scenario-based 
specification

production system
behavioral requirements

Sequetial control 
optimization (SCO), 

via controller synthesis

SML specification, incl. 
assumptions on energy 

consumed/produced by robot 
arm movement phases

system‘s PLC code

implementation of 
component actions 

in PLC (e.g. detailed 
robot movement)

Detailed trajectory 
optimization (DTO)

optimized robot axis 
motion parameters

measure energy 
consumption via 

simulation and feed 
results back to SML 

specification

robot dynamics and
energy model

(not focus
of this paper)

1

2

3

4

Fig. 1. Overview of our proposed engineering methodology.

(2) Automated SCO via Energy-Optimal Controller
Synthesis (Á in Fig. 1): All possible executions of the
scenarios in a specification can be captured in a graph where
the edges are labeled with environment events, representing
sensor inputs, and system events, representing output signals
to actuators, e.g. to move a robot arm. This graph can be seen
as a two-player game between the system and its environment
where the objective of the system is, first, to choose system
steps in a way that the specification is satisfied no matter
what steps the environment takes. Second, the system should
choose steps such that the resulting execution consumes
minimal energy.

In order to compute a strategy for this objective, we
applied an algorithm for computing strategies in infinite
games [10], and extended it to determine the most energy-
efficient strategy [11]. This extension is based on a function
to determine the overall energy cost of path fragments
where energy-consuming processes take place and possibly
overlap with energy-producing processes, for example, a path
fragment between starting and stopping the acceleration of
robot A that may overlap with starting and stopping the
deceleration of robot B. Based on this function, we determine
which strategy has minimal energy cost per processed work
item.

The resulting strategy can be compiled to PLC code [12].
Combined with manually implemented PLC components
that control the detailed robot arm movement actions (cf.
[12]), the resulting PLC code can be executed to drive the
final system or to simulate the system. With a detailed
dynamics model of the robot arms, including energy con-
sumption/production profiles, a detailed assessment of the
energy consumption of the production process is possible
via simulation (Â in Fig. 1).

(3) Trajectory optimization (Ã in Fig. 1): From the
synthesized control strategy, it is possible to derive which
robot arm’s acceleration and deceleration phases overlap,
which is the input for DTO. Based on the DTO results, the
SCO/DTO process can be carried out iteratively.

In this paper we focus on explaining the SCO part of
the proposed methodology. The DTO technique is already
worked out [13], but the integration of SCO and DTO is
still ongoing work. The novel contribution of this paper is

feed arm

deposit armdeposit belt

feed belt

c:Controller

worker arm

sensor

Fig. 2. Example of a production cell with three robot arms and three
conveyor belts. Two arms transport the work items between the conveyor
belts while the third arm modifies the work items, e.g., by adding screws.

that we introduce scenario-based specifications and formal
controller synthesis to production systems in a way that con-
trollers that maximize energy recuperation can be computed
automatically.

We illustrate the methodology using an example of a pro-
duction cell presented in Sect. II. In Sect. III, we describe the
specification approach and synthesis procedure. In Sect. IV
we describe the energy model, which allows us to simulate
the overall energy consumption of a production process. We
report on evaluation results in Sect. V, discuss related work
in Sect. VI, and conclude in Sect. VII.

II. EXAMPLE

As a running example we use a production cell as illus-
trated in Fig. 2. Our example consists of three robot arms and
three conveyor belts. Work items arrive via the feed belt and,
after they have been detected by a sensor, they are transported
to the next belt by the feed arm. A worker robot then modifies
the work items by adding screws. Finally, the deposit arm
transports the work items to the deposit belt. This process is
driven by a single controller, which receives all sensor events
and sends appropriate instructions to all actuators.

III. SCENARIO-BASED SPECIFICATION AND SYNTHESIS

The Scenario Modeling Language (SML) [9] is a text-
based variant of Life Sequence Charts [14]. With SML, a
formal behavior specifications can be modeled as collections
of short scenarios. An SML specification partitions the com-
ponents of the system into controllable and uncontrollable
components. Controllable components are usually software
controllers (the central controller in our example). Uncon-
trollable components are the controlled physical/mechanical
parts of the system (the other components in our example).

The scenarios are either guarantee scenarios or assump-
tion scenarios. Guarantee scenarios describe how software
controllers may, must, or must not react to events, and
assumption scenarios describe what may, will, or will not
happen in the controlled system, or how the controlled
system, in turn, reacts to controller signals. Listing 1 shows
an excerpt of an SML specification which models the process
shown in Fig. 2.

This is the author’s version of an article that has been published in the CASE 2018 proceedings.
Changes were made to this version by the publisher prior to publication.

The final version of record is available at https://dx.doi.org/10.1109/COASE.2018.8560544

Copyright (c) 2018 IEEE. Personal use of this material is permitted. For any other purposes,
permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



1 [...]
2 guarantee scenario FeedRobotDeliversItem {
3 feedRobot -> controller.pickedUpItem()
4 eventually controller -> feedRobot.moveTo(workBelt)
5 feedRobot -> controller.arrivedAt(workBelt)
6 wait eventually [workerRobot.location
7 == workerRobot.idleLocation]
8 urgent controller -> feedRobot.releaseItem()
9 feedRobot -> controller.releasedItem()
10 eventually controller -> feedRobot.moveTo(feedBelt)
11 }
12 [...]
13 assumption scenario ArmMovesToLocation {
14 controller -> robot.moveTo(bind targetLocation)
15 committed robot -> controller.accelerate()
16 eventually robot -> controller.movingAtConstantVelocity()
17 eventually robot -> controller.decelerate()
18 eventually robot -> controller.arrivedAt(targetLocation)
19 }
20 assumption scenario FeedRobot_Acceleration cost [1.0] {
21 feedRobot -> controller.accelerate()
22 feedRobot -> controller.movingAtConstantVelocity()
23 }
24 [...]

Listing 1. Excerpt of a SML specification for our example cell

We assume that an execution of a system is an infinite se-
quence of message events. A message event is a synchronous
messages sent between two components. A message event
sent from an uncontrollable component is an uncontrollable
event, for example a signal sent from a robot or a sensor
to the controller (e.g., lines 3, 5, 9). A message event sent
from a controllable component is a controllable event, for
example a signal sent from the controller to a robot (e.g.,
lines 4, 8, 10).

Each scenario formulates rules over sequences of message
events, and, by interweaving the scenarios based on common
events (e.g. line 4 and 14), they yield a coherent system
behavior model. The system components are represented in
the scenarios by roles (e.g., controller and robot). Roles can
either refer to a specific component, such as controller or
feedRobot, or to any component of a certain type, such as
robot. The latter means that a scenario applies for multiple
components that share the specified aspects of behavior.

The guarantee scenario FeedRobotDeliversItem, for ex-
ample, describes how the the feed robot shall deliver a work
item: after the feed robot picks up an item, the controller
commands the robot to move to the work belt. When the
robot arrives there and the worker robot is idle, i.e., ready to
process the next item, the feed robot releases the item. After
it has done so, the controller instructs the robot to move
back to its original position. The keyword eventually marks
message events that the scenario requires to occur at some
point in the future. The keyword urgent says that the event is
required to occur before the next environment event occurs.

The assumption scenario ArmMovesToLocation models
how we assume that robot arm movements take place: when a
robot is instructed to move to a location, it will immediately
start accelerating. The keyword committed means that the
event should occur immediately, and before any other event
takes place. After accelerating, the robot will eventually
reach a constant velocity, then eventually starts decelerating,
and then eventually it arrives at its destination.

Line 20 in Listing 1 shows how we model the energy
consumption of an action. The example shows an annotation

of a scenario modeling the acceleration phase of a robot’s
movement. The cost annotation indicates that the assumed
energy consumption of this movement phase is 1 unit. In
later iterations of our engineering process (Fig. 1) this value
is replaced by measured energy values. The annotated values
may be negative to indicate that braking energy is generated.

The interweaving of the scenarios can be done via the
play-out algorithm [9], [14]. Play-out describes how the
scenarios are executed in reaction to a sequence of uncontrol-
lable events. We refer to [9] for details. Play-out can often
make many non-deterministic choices to execute different
events requested by the different scenarios. When events are
annotated with the eventually modality, play-out can also
choose to delay the execution of an event.

All possible play-out executions for a system can be
captured in a so-called play-out graph. It contains all the
different choices of the play-out algorithm to pick events
or to delay them. An excerpt of the play-out graph of our
example specification is shown in Fig. 3. Each state in this
graph is defined by the state of all components in the system
and a set of active scenarios in their current state of progress.
Edges labeled with uncontrollable events have a dashed line,
and a solid line when labeled with a controllable event. States
have either only outgoing edges labeled with controllable
events (including a wait event), or they have only outgoing
edges labeled with uncontrollable events. The states are then
also called controllable resp. uncontrollable.

To generate executable code from an SML specification
we must first compute a deterministic strategy of how to
select events in controllable states so that, no matter what
choices are made in uncontrollable states, the resulting
execution fulfills all guarantee scenarios or violates at least
one assumption scenario. Scenarios can be violated either by
choosing an event that the scenario forbids, or by not sending
an event that the scenario requires. This strategy computation
is called controller synthesis.

We adopted a game solving algorithm [10] to do this for
SML specifications.

From a resulting strategy, PCL code can be generated [12].
We extended the synthesis algorithm to extract a strategy

where the energy cost per item processed is minimal [11].
This extension is based on a function to determine the overall
energy cost of an execution sequence, which is the energy
consumed by all the components minus the recuperated
braking energy. Given a sequence of events on a path in
the play-out graph, we can deduce which acceleration and
braking phases overlap, which then allows us to sum up the
energy values annotated on the scenarios that are progressed
along that path. This calculation makes the assumption that
the overlapping acceleration and braking phases can always
be aligned so that all braking energy is recuperated, but this
may not be the case in reality. Thus, the consumption of a
control strategy must always be determined by a simulation
that takes into account the detailed robot dynamics and their
energy model. Based on the simulation results, the energy
value annotations on the scenarios can be updated and SCO
process repeated.

This is the author’s version of an article that has been published in the CASE 2018 proceedings.
Changes were made to this version by the publisher prior to publication.

The final version of record is available at https://dx.doi.org/10.1109/COASE.2018.8560544

Copyright (c) 2018 IEEE. Personal use of this material is permitted. For any other purposes,
permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



112

113

247
feedRobot->
controller.pickedUpItem()

controller->
feedRobot.moveTo(workBelt)

wait for environment
depositRobot->controller.arrivedAt(workBelt)

depositRobot->
controller.arrivedAt(workBelt)

feedRobot->
controller.accelerate()

114

feedRobot->
controller.movingAtCV()

Fig. 3. Excerpt of a state graph induced by Listing 1. The nodes represent states and the labeled edges represent events. Solid arrows indicate that an
event is a controllable system event, whereas dashed arrows indicate than an event is an environment event.

IV. DETAILED POWER CONSUMPTION MODEL

This section describes the detailed power consumption
model for the DTO and measurement of energy values via
simulation. The model provides motion-dependent power
and energy consumption for each component. The following
equations depict the power consumption model for a single
industrial robot. Assuming that the trajectory is predefined
by the task, the calculation starts with determining the vector
of motor torques τ (t). In general, the model of inverse
dynamics is given by

τ (t) =diag(
1

uG,1
, ...,

1

uG,n
)(M(q)q̈ + c(q, q̇) + g(q))

+ h(q, q̇), (1)

where q, q̇, q̈ are time-dependent joint angles, velocities,
and accelerations given by the trajectory planning algo-
rithm. The term uG,i represents the gear factor of joint i
while vector τ contains the respective motor torques τi.
M contains moments of inertia, c Coriolis effects, and g
gravitational effects. h summarizes non-linear effects which
in our regarded case is merely friction. In [15], a commonly
used friction model including Coulomb friction and viscous
damping (coefficients fc,i and fv,i, respectively) is presented.
It is applied to this model, expressing friction torque τf,i of
joint i as

τf,i(t) = hi(t) = fc,i sign(ϕ̇i(t)) + fv,i ϕ̇i(t), (2)

Fig. 4. Electrical substitute circuit diagram for an industrial robot and the
DC bus.

where ϕ̇i is the angular motor velocity of motor i which
can be determined as

ϕ̇i(t) = uG,i q̇i(t). (3)

Most robotic manufacturers utilize an inverse dynamics
model within the robot control system for implementation
of feed forward control. Thus, it can be assumed that the
system friction parameters are known. If not, they can be
obtained using established identification methods [16], [17].
Equations (1) and (3) are used to obtain the mechanical
power Pmech,i(t) of each motor i:

Pmech,i(t) = τi(t) ϕ̇i(t). (4)

The DC bus power PDC that describes the power flow
between DC bus and robot (see Fig. 4) is obtained by
summing up the mechanical power of the n individual
motors:

PDC,Robot(t) =

n∑

i=1

Pmech,i(t). (5)

The calculation is repeated for every DC bus participant
j = 1..m. The resulting DC bus powers PDC,j are summed
up to gain total DC bus power PDC:

PDC(t) =
m∑

j=1

PDC,j(t). (6)

Further, the rectifiers in industrial robot cabinets are
usually not able to recuperate. Hence, negative values of
PDC need to be partly corrected. Excess power in generator
operating phases can cover constant losses P`,DC within
the DC bus, but grid side losses P`,grid (such as controller,
cooling fans, actively lifted motor brakes, etc.) will remain.
This behaviour is considered as follows:

PDC(t) + P`,DC ≥ 0 :

Pgrid(t) = PDC(t) + P`,DC + P`,grid

PR(t) = 0,

PDC(t) + P`,DC < 0 :

Pgrid(t) = P`,grid,

PR(t) = −(PDC(t) + P`,DC),

where PR(t) is the power dissipated via the brake resistor.
The time integral of grid power demand over process time
(first package drops (tstart) to completion of the tenth (tend)).

This is the author’s version of an article that has been published in the CASE 2018 proceedings.
Changes were made to this version by the publisher prior to publication.

The final version of record is available at https://dx.doi.org/10.1109/COASE.2018.8560544

Copyright (c) 2018 IEEE. Personal use of this material is permitted. For any other purposes,
permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



Egrid =

∫ tend

tstart

Pgrid(t) dt (7)

equals the grid energy demand of the system of a given
process.
The energy consumption model is validated [13] and has a
remaining model deviation of approx. 5 % over the whole
spectrum of operating temperatures [18].

V. EVALUATION RESULTS

In order to evaluate our methodology, we specified and
modeled the production cell example shown in Fig. 2.
We evaluate the results obtained by the SCO, but not the
integration with DTO, which is ongoing work.

For evaluation purposes we modeled the process described
in Sect. II in SML. The model includes costs (= consumed
energy) associated with the movement of the robots:

• feed robot moves from feed belt to work belt
• feed robot moves from work belt back to feed belt
• work robot moves back into idle/ready position after

performing its work
• deposit robot moves from work belt to deposit belt
• deposit robot moves from deposit belt back to work belt

Each movement was divided into three phases: acceleration,
movement at constant velocity, and deceleration. Addition-
ally, we added costs for the work performed by the work
robot. However, we only used a single value for this instead
of subdividing it into separate steps (align with work item,
track item, perform work). In total, we generated three
controllers from this SML specification via synthesis. We
generated (1) a random, unoptimized strategy, ignoring costs,
(2) an optimized strategy using fictive values (-1 for deceler-
ation, 1 for every other action/phase), and (3) an optimized
strategy using energy values measured in a simulation driven
by strategy (2). The two optimized strategies (2)+(3) are
the result of applying our engineering process with two
iterations. Since the DTO is still missing, the measured
energy values did not change when driving the simulation
with the PLC code obtained from the second iteration. Thus,
no additional iterations were necessary in this experiment.

For each strategy, we generated a full PLC program and
used it to drive a simulation of the production cell from
Fig. 2. We measured the energy consumed or dissipated by
each robot when processing 10 work items. The work items
arrived at fixed intervals. We varied this interval length to
simulate different work load situations. The simulation does
not contain any random factors, thus we ran each experiment
(combination of strategy and interval length) only once.

Table I shows the total energy EGrid consumed by the
robots after processing all 10 work items based on equation
7. Table II shows how much braking energy was actually
dissipated as heat instead of being recuperated.

The results show that SCO can reduce the overall energy
consumption, but the energy savings are relatively small.
However, SCO still produced a significant effect—the main
purpose of SCO is to order the robot movements in such

TABLE I
TOTAL ENERGY IN KJ, CONSUMED BY ALL THE ROBOTS

interval length 5.0 s 6.5 s 8.0 s
unoptimized strategy 26.02 25.98 25.95

optimized strategy 25.47 25.21 25.17
with fictive energy values

optimized strategy 25.47 25.22 25.16
including robot cell model

TABLE II
AVAILABLE BRAKING ENERGY IN KJ, WHICH IS NOT RECUPERATED IN

OUR EXPERIMENTS

interval length 5.0 s 6.5 s 8.0 s
unoptimized strategy 9.15 9.16 9.18

optimized strategy 8.62 8.41 8.40
with fictive energy values

optimized strategy 8.62 8.40 8.41
including robot cell model

a way that braking and acceleration phased overlap, but
only integrating DTO may align the braking and acceleration
phases so that the energy reuse exploited to a larger extent.

Table III shows what fractions of the braking energy that
is dissipated as heat (see Table II) is actually lost due to
poor alignment of the braking and acceleration phase. For
example, the 61.5% in the bottom right cell of Table III
means that in the scenario where 10 work items arrive in an
interval of 8 second, and where the system is controlled by
an optimized strategy, 61.5% of the braking energy is lost
in an interval of the discrete control strategy where in fact
an acceleration phase takes place—however, not optimally
aligned. That means, due to timing issues, only a fraction
of the braking energy may be reused. It is important to note
that the optimized control strategies create higher amounts
of braking energy that may yet be exploited by integrating
DTO. Validating that DTO can in fact exploit the remaining
energy saving potential is our next step, but we do not have
results at the time of writing this paper.

Another interesting insight is that the total energy con-
sumption for the optimization with fictive energy values
(SCO iteration one, row 3 of Table I) and the one based on
the detailed energy model of the robot cell (SCO iteration
one, row 4 of Table I) is almost equivalent. This means
that by choosing the fictive values (+1/-1) for acceleration
and braking phases already yields a good basis for SCO.
This, however, may not be always the case. In systems with
different kinds of robots, implying different kinds of masses
and durations of movements, a second iteration of SCO may
be strictly required, or it may be required to choose fictive
starting costs in a more fine-grained manner.

VI. RELATED WORK

To the best of our knowledge, our work is the first
application of synthesis techniques for production system
controllers that exploit braking energy recuperation. Other
controller synthesis techniques exist that target efficient
motion planning for mobile robots [19], [20] or lawnmow-
ers [21], without considering energy recuperation.

This is the author’s version of an article that has been published in the CASE 2018 proceedings.
Changes were made to this version by the publisher prior to publication.

The final version of record is available at https://dx.doi.org/10.1109/COASE.2018.8560544

Copyright (c) 2018 IEEE. Personal use of this material is permitted. For any other purposes,
permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



TABLE III
RELATIVE AMOUNT OF BRAKING ENERGY LOST DUE TO POOR

ALIGNMENT OF CONCURRENT MOVEMENT.

interval length 5.0 s 6.5 s 8.0 s
unoptimized strategy 35.9 % 49.5 % 49.4 %

optimized strategy 53.4 % 61.6 % 61.4 %
with fictive energy values

optimized strategy 53.5 % 61.6 % 61.5 %
including robot cell model

VII. CONCLUSION

We presented a novel engineering methodology for the de-
velopment of energy-efficient production system controllers.
Our methodology benefits from easy to use scenario-based
specifications in combination with two automated optimiza-
tion techniques, SCO and DTO, in order to be able to syn-
thesize controller software which exploits the recuperation of
braking energy. These optimization techniques can be applied
iteratively to achieve the best possible results.

The evaluation based on an example system with three
robots shows that optimized discrete control strategy deter-
mined by applying the SCO step is more efficient, but that the
energy saving is relatively small. However, a more important
result is that SCO procedure indeed shifted acceleration
and deceleration phases such that more braking energy is
generated during the acceleration phases other robots. This
leads us to believe that by integrating DTO, we will be able
to more drastically improve energy savings in the future.

We are working on integrating the existing DTO tech-
niques [13], [22] into our methodology. We also plan to study
how well the technique scales with more complex systems
and variations in the production processes.

REFERENCES

[1] M. Dai, D. Tang, A. Giret, M. A. Salido, and W. Li, “Energy-
efficient scheduling for a flexible flow shop using an improved genetic-
simulated annealing algorithm,” Robotics and Computer-Integrated
Manufacturing, vol. 29, no. 5, pp. 418–429, 2013.

[2] C. Upton, F. Quilligan, C. Garcı́a-Santiago, and A. González-
González, “Energy efficient production planning,” in Advances in
Production Management Systems. Competitive Manufacturing for In-
novative Products and Services, ser. IFIP Advances in Information and
Communication Technology. Springer Berlin Heidelberg, 2013, vol.
397, pp. 88–95.

[3] F. Shrouf, J. Ordieres-Meré, A. Garcı́a-Sánchez, and M. Ortega-
Mier, “Optimizing the production scheduling of a single machine
to minimize total energy consumption costs,” Journal of Cleaner
Production, vol. 67, no. 0, pp. 197–207, 2014.

[4] Hansen, C., Kotlarski, J., and Ortmaier, T., “Optimal motion planning
for energy efficient multi-axis applications,” International Journal of
Mechatronics and Automation (IJMA), vol. 4, no. 3, pp. 147–160,
2014.

[5] A. Mohammed, B. Schmidt, L. Wang, and L. Gao, “Minimizing energy
consumption for robot arm movement,” Procedia CIRP, vol. 25, no.
Supplement C, pp. 400 – 405, 2014, 8th International Conference
on Digital Enterprise Technology - DET 2014 Disruptive Innovation
in Manufacturing Engineering towards the 4th Industrial Revolution.
[Online]. Available: http://www.sciencedirect.com/science/article/pii/
S2212827114010865

[6] E. Glorieux, S. Riazi, and B. Lennartson, “Productivity/energy
optimisation of trajectories and coordination for cyclic multi-robot
systems,” Robotics and Computer-Integrated Manufacturing, vol. 49,
no. Supplement C, pp. 152 – 161, 2018. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0736584516303155

[7] D. Meike and L. Ribickis, “Recuperated energy savings potential
and approaches in industrial robotics,” in 2011 IEEE International
Conference on Automation Science and Engineering, Aug 2011, pp.
299–303.

[8] Hansen, C., Öltjen, J., Meike, D., and Ortmaier, T., “Enhanced ap-
proach for energy-efficient trajectory generation of industrial robots,”
in Proceedings of the 2012 IEEE International Conference on Au-
tomation Science and Engineering (CASE), 2012, pp. 1–7.

[9] J. Greenyer, D. Gritzner, T. Gutjahr, F. König, N. Glade, A. Marron,
and G. Katz, “Scenariotools – a tool suite for the scenario-
based modeling and analysis of reactive systems,” Science of
Computer Programming, vol. 149, no. Supplement C, pp. 15
– 27, 2017, special Issue on MODELS’16. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0167642317301442

[10] K. Chatterjee, W. Dvorák, M. Henzinger, and V. Loitzenbauer,
“Conditionally Optimal Algorithms for Generalized Büchi Games,”
in 41st International Symposium on Mathematical Foundations
of Computer Science (MFCS 2016), ser. Leibniz International
Proceedings in Informatics (LIPIcs), P. Faliszewski, A. Muscholl,
and R. Niedermeier, Eds., vol. 58. Dagstuhl, Germany: Schloss
Dagstuhl–Leibniz-Zentrum fuer Informatik, 2016, pp. 25:1–25:15.
[Online]. Available: http://drops.dagstuhl.de/opus/volltexte/2016/6440

[11] D. Gritzner and J. Greenyer, “Synthesis of Cost-optimized Controllers
from Scenario-based GR(1) Specifications,” in Modellierung 2018,
I. Schaefer, D. Karagiannis, A. Vogelsang, D. Méndez, and C. Seidl,
Eds. Bonn: Gesellschaft für Informatik e.V., 2018, pp. 167–182.

[12] ——, “Generating Correct, Compact, and Efficient PLC Code from
Scenario-based Assume-Guarantee Specifications,” in Proceedings of
the 4th International Conference on System-Integrated Intelligence:
Challenges for Product and Production Engineering, SysInt 2018 (to
appear)), 2018.

[13] Z. Ziaukas, K. Eggers, J. Kotlarski, and T. Ortmaier, “Optimizing
ptp motions of industrial robots through addition of via-points,” in
Proceedings of the 14th International Conference on Informatics in
Control, Automation and Robotics, 2017, pp. 527–538.

[14] D. Harel and R. Marelly, Come, Let’s Play: Scenario-Based Program-
ming Using LSCs and the Play-Engine. Springer, 2003.

[15] P. Hamon, M. Gautier, and P. Garrec, “Dynamic Identification of
Robots With a Dry Friction Model Depending on Load and Velocity,”
in Proc. of the IEEE/RSJ International Conference on Intelligent
Robots and Systems, 2010, pp. 6187–6193.

[16] C. T. Johnson and R. D. Lorenz, “Experimental identification of fric-
tion and its compensation in precise, position controlled mechanisms,”
IEEE Transactions on Industry Applications, vol. 28, no. 6, pp. 1392–
1398, 1992.

[17] J. Swevers, C. Ganseman, D. B. Tukel, J. de Schutter, and H. V. Brus-
sel, “Optimal robot excitation and identification,” IEEE Transactions
on Robotics and Automation, vol. 13, no. 5, pp. 730–740, Oct 1997.

[18] K. Eggers, E. Knöchelmann, S. Tappe, and T. Ortmaier, “Modeling
and experimental validation of the influence of robot temperature on
its energy consumption,” in Proceedings of the IEEE International
Conference on Industrial Technology (ICIT), 2018.

[19] Y. Wang, N. T. Dantam, S. Chaudhuri, and L. E. Kavraki, “Task and
motion policy synthesis as liveness games,” in Proceedings of the
Twenty-Sixth International Conference on International Conference
on Automated Planning and Scheduling, ser. ICAPS’16. AAAI
Press, 2016, pp. 536–540. [Online]. Available: http://dl.acm.org/
citation.cfm?id=3038594.3038661

[20] R. Ehlers and V. Raman, “Slugs: Extensible GR(1) synthesis,” in
Computer Aided Verification, S. Chaudhuri and A. Farzan, Eds.
Cham: Springer International Publishing, 2016, pp. 333–339.

[21] M. Randour, “Automated synthesis of reliable and efficient systems
through game theory: A case study,” in Proceedings of the European
Conference on Complex Systems 2012, T. Gilbert, M. Kirkilionis, and
G. Nicolis, Eds. Cham: Springer International Publishing, 2013, pp.
731–738.

[22] K. Eggers, Z. Ziaukas, S. Tappe, and T. Ortmaier, “On the relationship
of travel time and energy efficiency of industrial robots, proceedings
of the international conference on industrial, enterprise, and systems
engineering,” in International Conference on Industrial, Enterprise,
and System Engineering (ICoIESE), 2017.

This is the author’s version of an article that has been published in the CASE 2018 proceedings.
Changes were made to this version by the publisher prior to publication.

The final version of record is available at https://dx.doi.org/10.1109/COASE.2018.8560544

Copyright (c) 2018 IEEE. Personal use of this material is permitted. For any other purposes,
permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.


