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On topological Hochschild homology of the K(1)-local sphere

Gabriel Angelini-Knoll

Abstract

We compute mod (p, v1) topological Hochschild homology of the connective cover of the K(1)-
local sphere spectrum for all primes p � 3. This is accomplished using a May-type spectral
sequence in topological Hochschild homology constructed from a filtration of a commutative
ring spectrum.
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1. Introduction

Algebraic K-theory of rings is known to encode deep arithmetic information; for example,
algebraic K-theory groups of rings of integers in totally real number fields are related to
special values of Dedekind zeta functions by the Lichtenbaum–Quillen conjecture. Following
the Ausoni–Rognes program [4], we would like to explore the arithmetic encoded in the
algebraic K-theory of ‘brave new rings’ or, more precisely, ring spectra. To approach this,
we use a technique, initiated by Bökstedt in [11], where one approximates algebraic K-theory
by topological Hochschild homology. Specifically, topological Hochschild homology is a linear
approximation to algebraic K-theory in the sense of Goodwillie’s calculus of functors by [17].
The purpose of this paper is to compute topological Hochschild homology of the connective
cover of the K(1)-local sphere mod (p, v1). Here K(1) is the first Morava K-theory which has
coefficients K(1)∗ ∼= Fp[v±1

1 ].
This computation uses a spectral sequence associated to a multiplicative filtration con-

structed by the author and Salch in [1]. The idea of the spectral sequence is to mimic the
construction of May where he filters a Hopf algebra by powers of the augmentation ideal
and constructs an associated filtration of the bar construction. In particular, the author and
Salch show in [1] that there is a model for the Whitehead tower of a connective commutative
ring spectrum as a filtered commutative ring spectrum. From this filtered commutative ring
spectrum, the author and Salch produce a filtration of a generalized bar construction, for
example, the cyclic bar construction and construct a spectral sequence in (higher) topological
Hochschild homology. This work is summarized in Section 2.

In the 1980s, Waldhausen first suggested computing algebraic K-theory of connective and
nonconnective versions of the localizations of the sphere spectrum appearing in the chromatic
tower as an approach to computing algebraic K-theory of the sphere spectrum [31]. There
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are homology theories E(n), depending on a nonnegative integer n and a prime p, called
the Johnson–Wilson E-theories with coefficients Z(p)[v1, v2, . . . , vn−1, v

±1
n ]. Using Bousfield

localization, one can construct spectra LE(n)S(p) with maps LE(n)S(p) → LE(n−1)S(p) for each
n. The homotopy limit gives a good approximation to the sphere spectrum in the sense that

S(p) −→ holim← LE(n)S(p)

is a weak equivalence due to the chromatic convergence theorem of Hopkins and Ravenel [28,
Theorem 7.5.7]. In the connective case, the limit is also known to converge after applying
algebraic K-theory in the sense that the map

K(S(p)) −→ holim← K(τ�0LE(n)S(p))

is a weak equivalence [25, Theorem 2.8], where τ�0LE(n)S(p) is the connective cover of
LE(n)S(p). By convention, τ�0LE(0)S(p) is HZ(p) and the first map is the linearization map
τ�0LE(1)S(p) → HZ(p). This gives a method for organizing the information in the algebraic
K-theory of the sphere spectrum in a similar way to how the E(n)-localizations organize the
information in the homotopy groups of spheres according to ‘chromatic height’.

We can approximate K(τ�0LE(1)S(p)) using the trace methods approach initiated by
Bökstedt [11]. In other words, we can approximate algebraic K-theory by topological cyclic
homology, which is an invariant that is built out of topological Hochschild homology (THH)
using the cyclotomic structure on THH. Since topological cyclic homology is not sensitive to
the difference between R and its p-completion Rp, we will compute algebraic K-theory of the
p-completion (τ�0LE(1)S(p))p, which is equivalent to τ�0LK(1)S. Moreover, one can compute
algebraic K-theory of τ�0LE(1)S(p) using the homotopy pullback

due to Dundas, which appears in [7, Theorem 6.7].
We now briefly outline the trace methods approach for computing algebraic K-theory of

p-complete commutative ring spectra. We may model topological Hochschild homology of a
commutative ring spectrum R as the tensoring S1 ⊗R, in commutative ring spectra, with
the circle by the main theorem of [23]. The group S1 therefore acts on S1 ⊗R on the first
coordinate. Additionally, THH(R) is a cyclotomic spectrum which allows us to produce maps

where F is given by inclusion of fixed points and the map R is constructed using the cyclotomic
structure. We may then form p-typical topological cyclic homology

TC(R; p) := lim←−
F,R

THH(R)Cpn .

For more details about this construction, see [19].
The key step in approximating algebraic K-theory is the use of the theorem of Dundas–

Goodwillie, and McCarthy [16], which together with work of Hesselholt and Madsen [19]
produces the following result

Theorem 1.1 [16, Theorem VII 3.1.14]. If R is a connective commutative ring spectrum
and there is a surjection Zp → π0R, then there is an equivalence

K(R)p � τ�0TC(R; p)p,
where τ�0 is the connective cover functor.



260 GABRIEL ANGELINI-KNOLL

The spectrum τ�0LK(1)S is also modeled by algebraic K-theory of certain finite fields. For
this explanation, let p be an odd prime and let q be a prime power that also topologically
generates Z×

p . Due to Quillen [27], it is known that algebraic K-theory of a finite field of order
q can be computed, after p-completion, using the fiber sequence

ψq is the qth Adams operation and kup is the p-completion of connective complex K-theory.
Now, Devinatz and Hopkins showed in [14] that there is an equivalence

LK(1)S � KUhG1
p ,

where G1 is the height 1 Morava stabilizer group, which is isomorphic to Z×
p , and KUp is the p

completion of periodic complex K-theory. Note that the Morava stabilizer group G1 = Z×
p acts

on KUp by Adams operations, so we may write ψq for the Adams operation corresponding to
the topological generator q of Z×

p [20]. The homotopy fixed points can therefore be modeled
by the fiber sequence

Under the stated conditions on q and p, there is therefore a map of fiber sequences

By examining homotopy groups of each of the fibers, we see that the map of fibers induces an
isomorphism in homotopy in degrees greater or equal to 0. The homotopy groups of LK(1)S
agree with Quillen’s computation

K∗(Fq) ∼=
{

Z if ∗ = 0
Z/(qi − 1)Z if ∗ = 2i− 1 for i ∈ N

in nonnegative degrees after p-completion when q is a prime power that topologically generates
Z×
p . Therefore, there are equivalences K(Fq)p � τ�0LK(1)S � (τ�0LE(1)S)p, where τ�0LK(1)S

denotes the connective cover of the K(1)-local sphere. See the proof of Theorem 5 and the
Introduction of [14] for more details. The upshot of this discussion is that the main theorem of
this paper is a first approximation to iterated algebraic K-theory of a large class of finite fields.

We also compute mod (p, v1) homotopy of THH(τ�0LK(1)S) because this is the natural first
step in approaching the chromatic red-shift conjecture of Ausoni and Rognes [5]. The homology
theories K(n) for each prime p and nonnegative integer n have coefficients K(n)∗ ∼= Fp[v±1

n ]
for n � 1 and K(0)∗ ∼= Q and they are useful for detecting chromatic height. We say that a
p-local finite cell S-module V has type n if K(n− 1)∗V ∼= 0 and K(n)∗V is nontrivial. Due to
the thick subcategory theorem of Hopkins and Smith [21, Theorem 7], the category of p-local
finite cell S-modules F(p) can be filtered into proper thick subcategories

0 ⊂ · · · ⊂ C2 ⊂ C1 ⊂ C0 = F(p),

where Cn contains exactly spectra of type � n; that is, it consists of the K(n− 1)-acyclic
spectra [15]. The first examples of type n spectra for small n can be constructed by an iterative
procedure by taking cofibers of vn-self maps beginning with v0 = p: for example, the cofiber
of the multiplication by p map, denoted S/p, is a type one spectrum. At odd primes, we can
continue this process and construct a type one spectrum V (1) as the cofiber of a periodic
self map v1 : Σ2p−2S/p → S/p. By Hopkins and Smith [21, Theorem 4.11], there exists a
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type n spectrum for each n, though not necessarily constructed by the iterative procedure
we just discussed.

To phrase the red-shift conjecture, it is necessary to have a notion of chromatic height for
spectra that are not finite cell S-modules. We recall a definition due to Baas, Dundas, and
Rognes that provides a notion of chromatic height in this context. This uses the fact that every
p-local finite cell S-module V admits a vn-self map for some n, a consequence of the periodicity
theorem of Hopkins and Smith [21, Theorem 9].

Definition 1.2 (Baas–Dundas–Rognes [7, Definition 6.1]). Let X be a spectrum and let
TX be the thick subcategory of finite p-local spectra V such that the map

V ∧X → v−1
n V ∧X (1)

induces an isomorphism in homotopy groups in sufficiently high degrees. Then if TX = Cn, we
say that X has telescopic complexity n.

We now state the conjecture due to Ausoni and Rognes, which generalizes the Lichtenbaum–
Quillen conjecture to higher chromatic heights.

Conjecture 1.3 (Ausoni–Rognes red-shift conjecture). If R is a suitably finite K(n)-local
spectrum, then K(R) has telescopic complexity n + 1.

Note that this version of the conjecture does not apply to the connective cover of the K(1)-
local sphere directly, however, we can relate it to algebraic K-theory of the K(1)-local sphere
using a localization sequence in algebraic K-theory á la Waldhausen [32]. Using a fracture
square argument, we observe that LE(1)(τ�0LK(1)S) � LK(1)(τ�0LK(1)S) � LK(1)S and there
is therefore a fiber sequence

K(D1) → K(τ�0LK(1)S) → K(LK(1)S),
where D1 is the category of finite τ�0LK(1)S-modules that are E(1)-acyclic. This relies on
the fact that the telescope conjecture is true at height one and consequently E(1)-localization
is a finite localization. Using a dévissage argument as in Blumberg–Mandell [9], one could
identify K(D1) as algebraic K-theory of a spectrum and then use the localization sequence to
compute mod (p, v1) homotopy of K(LK(1)S). Thus, by determining the telescopic complexity
of K(τ�0LK(1)S), we can verify the Ausoni–Rognes red-shift conjecture in this case.

We may also phrase the red-shift conjecture using telescopic complexity, as Barwick does in
[8] in the case of iterated algebraic K-theory of the complex numbers.

Conjecture 1.4 (Telescopic red-shift conjecture). If R is a commutative ring spectrum with
telescopic complexity n, then K(R) is a commutative ring spectrum with telescopic complexity
n + 1.

In the example of interest, we know that

πk

(
S/p ∧ τ�0LK(1)S

)
−→ πk

(
v−1
1 S/p ∧ τ�0LK(1)S

)
is an isomorphism for k sufficiently large. Therefore, τ�0LK(1)S has telescopic complexity
one. Determining the telescopic complexity of K(τ�0LK(1)S) allows us to verify the telescopic
complexity red-shift conjecture directly in this case. To determine the telescopic complexity of
K(τ�0LK(1)S), we need to know that

πk

(
V (1) ∧K(τ�0LK(1)S)

)
→ πk

(
v−1
2 V (1) ∧K(τ�0LK(1)S)

)
(2)

is an isomorphism for k sufficiently large. The author plans to verify this in future work as a
natural extension of the results of this paper.
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In the present paper, we compute topological Hochschild homology of the connective K(1)-
local sphere, after smashing with the Smith–Toda complex V (1), as follows.

Theorem 1.5. Let p be an odd prime. There is an isomorphism of graded rings

V (1)∗(THH(τ�0LK(1)S)) ∼= P (μ2) ⊗ Γ(σb) ⊗ Fp{α1, λ
′
1, λ2α1, λ2λ

′
1, λ2λ

′
1α1},

where the products between the classes {α1, λ
′
1, λ2α1, λ2λ

′
1, λ2λ

′
1α1} are zero except for

α1 · λ2λ
′
1 = λ′

1 · λ2α1 = λ2λ
′
1α1.

The paper is divided into two sections. Section 2 gives a brief summary of the construction
of the topological Hochschild-May spectral sequence and provides a large class of examples
of decreasingly filtered commutative ring spectra; that is, those that can be produced as a
multiplicative model for the Whitehead tower of a connective commutative ring spectrum. In
Section 3, we provide all the details needed to prove Theorem 3.22.

1.1. Notation and conventions

Throughout, let Sp be the category of symmetric spectra of pointed simplicial sets. We equip Sp
with the positive stable flat model structure [30]. Note that Sp is a closed symmetric monoidal
model category with ∧ as symmetric monoidal product and the sphere spectrum S as the unit.
We will write CommD, for the category of commutative monoids in a symmetric monoidal
category D. When a map X → Y between objects in Sp is a cofibration, we will write Y/X for
the cofiber. We will fix a prime p � 3 throughout. This ensures that the mod p Moore spectrum
has a v1-self map v1 : Σ2p−2S/p −→ S/p and the cofiber, denoted V (1), exists.

As we observed in the introduction, there is an equivalence K(Fq)p � τ�0LK(1)S. There is
also an equivalence τ�0LK(1)S � jp, where jp is the p completion of the connective image of J
spectrum. We use the model K(Fq)p, which is known to be a commutative ring spectrum and
we write j throughout for a cofibrant replacement of this ring spectrum in Comm Sp.

Throughout, we will write =̇ to mean equivalence up to multiplication by a unit in Fp. We
write E(x1, x2, . . .) for an exterior algebra over Fp, P (x1, x2, . . .) for a polynomial algebra over
Fp, Pp(x1, x2, . . .) for a truncated polynomial algebra over Fp truncated at the pth power, and
Γ(x1, x2, . . .) for a divided power algebra over Fp on generators xi for i � 1. We recall that a
divided power algebra generated by x has generators γi(x) for i � 0 with relations γ0(x) = 1,
γ1(x) = x and γi(x)γj(x) = (i, j)γi+j(x), where (i, j) =

(
i+j
j

)
. In particular, over the finite field

Fp, there is an isomorphism Γ(z) ∼= Pp(z, γp(z), γp2(z), . . .). When not otherwise indicated, ⊗
will represent ⊗Fp

and HH∗(R) will represent HH
Fp∗ (R) when R is a (bi)graded Fp-algebra.

2. Topological Hochschild–May spectral sequence

The goal of this section is to briefly summarize the necessary ingredients for the topological
Hochschild–May spectral sequence. This section is a review of results from the author’s paper
with Salch [1] and we refer the reader to that paper for details. To describe the spectral
sequence, we first need to define what we mean by a filtered object in Sp. We write (Nop,+, 0)
for the opposite category of the natural numbers N, regarded as a partially ordered set, with
symmetric monoidal product given by summing natural numbers.

Definition 2.1. A decreasingly filtered commutative monoid in Sp is a lax symmetric
monoidal functor

I : (Nop,+, 0) −→ (Sp,∧, S).
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We will write In for a decreasingly filtered commutative monoid in Sp evaluated on a natural
number n ∈ Nop. Concretely, a decreasingly filtered commutative monoid in Sp is a sequence
of objects in Sp

along with structure maps

ρi,j : Ii ∧ Ij −→ Ii+j

satisfying certain commutativity, associativity, unitality, and compatibility axioms, which are
encoded in the structure of a lax symmetric monoidal functor. By Day [13, Example 3.2.2],
the category of decreasingly filtered commutative monoids in Sp is equivalent to Comm SpN

op
.

In [1, Section 4.1], a useful model structure on Comm SpN
op

is discussed. The cofibrant objects
in the model structure described in [1, Section 4.1] will be referred to as cofibrant decreasingly
filtered commutative monoids in Sp and the reader can see [1] for more details since the model
structure will not play an important role in the present article. Naturally, one would like to
define the associated graded commutative monoid in Sp of a cofibrant decreasingly filtered
commutative monoid in Sp. The maps ρi,j are the structure necessary to make sense of such
an associated graded commutative monoid in Sp. Additively, we define the associated graded
commutative monoid of I• to be

E∗
0I :=

∐
n∈N

In/In+1,

and in [1, Definition 3.1.6] we provide E∗
0I with the structure of a commutative monoid in Sp,

such that the multiplication maps are induced by maps

Is/Is+1 ∧ It/It+1 → Is+t/Is+t+1.

Definition 2.2. Let R be an object in Comm Sp and let X• be a simplicial finite set.
We define the tensor product X• ⊗R to be the realization of the simplicial object X•⊗̃R
in Sp where the n-simplices are (X•⊗̃R)n =

∧
s∈Xn

R{s} with face maps di : (X•⊗̃R)n −→
(X•⊗̃R)n−1 given on each summand of the coproduct by the map R{s} −→

∧
t∈Xn−1

R{t}
which includes R{s} into the summand corresponding to δi(s) ∈ Xn−1. Here the maps δi and
σi are the face and degeneracy maps of the simplicial finite set X•. Note that the coproduct
in commutative ring spectra is the smash product and we are using that fact here. Similarly,
the degeneracy map si : (X•⊗̃R)n−1 −→ (X•⊗̃R)n is given on each summand by the map
R{t} −→

∧
s∈Xn

R{s} where R{t} includes as the smash factor corresponding to σi(t) ∈ Xn.

Example 2.3. In the case where X• = Δ[1]/δΔ[1] =: S1
• , the minimal simplicial model for

the circle

THH(R) := S1
• ⊗R

is the geometric realization of the simplicial object in Sp

(3)

with face and degeneracy maps given by the following formulas: the face maps are

di =
{

idR ∧ . . . idR ∧μ ∧ idR ∧ . . . ∧ idR if i < n
(μ ∧ idR ∧ . . . ∧ idR) ◦ tn if i = n,
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where the multiplication map μ : R ∧R → R is in the ith position on the first line and

tn : R∧n → R∧n

is the map that cyclicly permutes the factors to the right. The degeneracy maps are

si = idR ∧ . . . ∧ idR ∧η ∧ idR ∧ · · · ∧ idR

where the unit map η : S → R from the sphere spectrum is in the i-th position.

Theorem 2.4 [1, Theorem 4.2.1]. Let I be a cofibrant decreasingly filtered commutative
monoid in Sp and let X• be a simplicial finite set, then there is a spectral sequence

E1
s,t = Es,t(X• ⊗ E∗

0 (I))) ⇒ Es(X• ⊗ I0) (4)

with differential

dr : Er
s,t −→ Er

s−1,t+r

for any connective generalized homology theory E∗, where the second grading on the input
of the spectral sequence keeps track of the May filtration. The spectral sequence strongly
converges when πk(Ii) ∼= 0 for k < i and the differentials satisfy the Leibniz rule. The spectral
sequence is also functorial in both variables in the sense that a map of simplicial finite sets
X• → Y• induces a map of spectral sequences

and a map I → J of cofibrant decreasingly filtered commutative monoids in Sp induces a map
of spectral sequences

In this paper, we will primarily be concerned with the case where X• = S1
• , in which case

the spectral sequence (4) reduces to

E1
s,t = Es,t(THH(E∗

0 (I))) ⇒ Es(THH(I0)). (5)

We retain the full generality of the theorem here though because it will also be useful to
consider the case where X• = ∗. We will also use the map of topological Hochschild–May
spectral sequences induced by ∗ → S1

• .

Remark 2.5. Given a cofibrant decreasingly filtered commutative monoid I and a cofibrant
I-module M in the category SpN

op
, we can also construct a topological Hochschild–May spectral

sequence with coefficients and prove an analogous fundamental theorem of the May filtration
with coefficients. This produces a spectral sequence

E1
∗,∗ = E∗(THH(E∗

0 (I), E∗
0 (M))) ⇒ E∗(THH(I0,M0)) (6)

with the same differential convention. The spectral sequence strongly converges when πk(Ii) ∼= 0
for k < i and πk(Mi) ∼= 0 for k < i. Notably, the spectral sequence is not multiplicative unless
M is also a decreasingly filtered commutative ring spectrum and it is an algebra over the
decreasingly filtered commutative monoid I. See [1, Theorem A.3.3] for details.
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2.1. Decreasingly filtered commutative monoids in spectra

In order to compute with the topological Hochschild–May spectral sequence, it is necessary to
have examples of cofibrant decreasingly filtered commutative monoids in Sp. In [1, Theorem
4.2.1], the author and Salch constructed a large class of examples by constructing a specific
model for the Whitehead tower associated to a cofibrant connective commutative ring spectrum.
This model for the Whitehead tower of j is used to compute mod (p, v1) homotopy of THH(j)
in the subsequent section, so we recall the statement of the theorem.

Theorem 2.6 [1, Theorem 4.2.1]. Let R be a cofibrant connective commutative monoid in
Sp, then there is an associated cofibrant decreasingly filtered commutative monoid in Sp,

where πk(τ�nR) ∼= πk(R) for k � n and πk(τ�nR) ∼= 0 for k < n, equipped with structure maps

ρi,j : τ�iR ∧ τ�jR → τ�i+jR

satisfying commutativity, associativity, unitality, and compatibility encoded in the structure of
a cofibrant object τ�•R in Comm SpN

op
.

Remark 2.7. It is well known that a model for the Whitehead tower as an object in
SpN

op
exists. The main thrust of the proof in [1, Theorem 4.2.1] is that τ�•R can be built with

multiplicative structure; that is, τ�•R can be constructed as a cofibrant object in Comm SpN
op

.

Example 2.8. Fix a prime p � 5 and let q be a prime power that topologically generates
Z×
p . Recall that j is a cofibrant replacement in Comm Sp for the connective commutative ring

spectrum K(Fq)p. Theorem 2.6 produces a decreasingly filtered commutative monoid τ�•j in
Sp. We will write J in place of τ�•j for the sake of brevity. The associated graded E∗

0J is
additively equivalent to

Hπ0j ∨ Σ2p−3Hπ2p−3j ∨ Σ4p−5Hπ4p−5j ∨ . . .

or more succinctly Hπ∗(j). As a commutative ring spectrum, E0
∗J is given by taking iterated

square-zero extensions. The homotopy groups π∗(E∗
0J) are isomorphic to π∗(j) as graded rings,

but E∗
0J is a generalized Eilenberg–Maclane spectrum. In other words, we have killed off all

the Postnikov k-invariants. After smashing with S/p, there is an equivalence

S/p ∧ E∗
0J � HFp ∨

∨
i�1

Σ(2p−2)i−1HFp ∨ Σ(2p−2)iHFp

and S/p ∧ E∗
0J is naturally an S/p ∧Hπ0j algebra, or in other words an HFp-algebra.

We compute the topological Hochschild–May spectral sequence (4) where X• is a point

π∗(S/p ∧ E∗
0J) ⇒ π∗(S/p ∧ j). (7)

The spectral sequence collapses for bidegree reasons as is visible from the pattern indicated by
Figure 1. There is therefore an additive isomorphism

π∗(S/p ∧ E∗
0J) ∼= P (v1) ⊗ E(α1),

where in the E∞-page the bidegrees are

|α1v
k−1
1 | = ((2p− 2)k − 1, (2p− 2)k − 1) and

|vk1 | = ((2p− 2)k, (2p− 2)k − 1),

where the first coordinate is the topological degree and the second coordinate is the May
filtration.
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Figure 1. The E∞
s,t-page of the S/p topological Hochschild–May spectral sequence for p � 3

for s � 4p2 and all t. Here we are simply tensoring with a point and our decreasingly filtered
commutative ring spectrum is J.

The ring structure on π∗(S/p ∧ E∗
0J), however, is not the same as π∗(S/p ∧ j) and instead

each of the elements α1v
k
1 and vk1 are indecomposable for k � 0 and all the products α1v

n
1 · vm1 ,

α1v
n
1 · α1v

k
1 and v�1 · vm1 are trivial when m > 0 and � > 0. This is clear because there is an

isomorphism of graded rings π∗(E∗
0J) ∼= π∗j and the products of elements αj · αk, where αj ∈

π(2p−2)j−1j, are trivial for degree reasons and the product on π∗(S/p ∧ E∗
0J) is induced by the

product on E∗
0J. It is also clear because π∗(E∗

0J) is a bigraded ring and the products indicated
must all be trivial for bidegree reasons.

Therefore, there must be hidden multiplicative extensions in the spectral sequence (7). In
particular, the existence of the spectral sequence implies that there is a filtration of the graded
ring

π∗(S/p ∧ j) = P (v1) ⊗ E(α1),

given by the May filtration, whose associated graded is the E1 ∼= E∞-page of the spectral
sequence. We explicitly describe the multiplicative filtration of the graded ring P (v1) ⊗ E(α1)
whose associated graded is the E∞-page of the spectral sequence. It can be written explicitly
as

· · · ⊂ (α1, v1)3 ⊂ (α1, v1)2 ⊂ · · · ⊂ (α1, v1)2 ⊂ (α1, v1) ⊂ · · · ⊂ (α1, v1) ⊂ P (v1) ⊗ E(α1), (8)

where the redundant copies of (α1, v1)k are simply included so that the filtration matches the
one coming from the Whitehead filtration on j. More precisely, writing F•(P (v1) ⊗ E(α1)) for
this filtration, then there are equalities

F0(P (v1) ⊗ E(α1)) =P (v1) ⊗ E(α1) = π∗(S/p ∧ E∗
0J), and (9)

Fs(P (v1) ⊗ E(α1)) = (α1, v1)k(s) when (2p− 2)(k(s) − 1) � s � (2p− 2)k(s) − 1

when s � 1. This filtration is clearly multiplicative with multiplication maps

Fs(P (v1) ⊗ E(α1)) ⊗ Ft(P (v1) ⊗ E(α1)) → Fs+t(P (v1) ⊗ E(α1))
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given by the composite maps

(α1, v1)j(s) ⊗ (α1, v1)k(t) → (α1, v1)j(s)+k(s) ↪→ (α1, v1)�(s+t) (10)

where either

1 � k(t) � j(s) � �(s + t) � j(s) + k(t) or

1 � j(s) < k(t) � �(s + t) � j(s) + k(t)

and the map

(α1, v1)n ⊗ (α1, v1)m → (α1, v1)n+m

is the standard multiplication map for all n,m � 1. The multiplication maps when j(s) = 0 or
k(s) = 0 are simply the right and left P (v1) ⊗ E(α1) module structure maps for P (v1) ⊗ E(α1)-
bimodule (α1, v1)k(s). These multiplication maps satisfy the necessary commuting diagrams by
constructing the multiplicative topological Hochschild–May spectral sequence. The associated
graded of this multiplicative filtration is⊕

i�0

Fi(P (v1) ⊗ E(α1))/Fi+1(P (v1) ⊗ E(α1)) = S/p∗E∗
0J.

To see this multiplicatively, note that Fs(P (v1) ⊗ E(α1))/Fs+1(P (v1) ⊗ E(α1)) is only non-
trivial for s � 1 when s = (2p− 2)k − 1 for some k. Consequently, all products of elements of
the form αvj1, v

k
1 for j � 0 and k � 1 are trivial.

In Figure 1, it is also clear that all products of α1v
j
1 and vk1 for j � 0 and k � 1 in

S/p∗(E∗
0J) must be trivial for bidegree reasons and yet there is room for multiplicative

extensions. Each of these multiplicative extensions must occur by strong convergence of the
multiplicative topological Hochschild–May spectral sequence and the known multiplication on
S/p∗j ∼= P (v1) ⊗ E(α1). More precisely, there are multiplicative extensions

α1v
k
1 · vm1 =α1v

k+m
1

vk1 · vm1 = vk+m
1

and for bidegree reasons there is no room for further multiplicative extensions. We use this
fact in Lemma 3.3, Remark 3.8, and Proposition 3.13.

3. Topological Hochschild homology of j mod (p, v1)

In Section 2, we reviewed the construction that takes a decreasingly filtered commutative
monoid I in Sp as input and produces a May-type spectral sequence

E1
s,t = Es,t(THH(E∗

0I)) ⇒ Es(THH(I0))

for any connective generalized homology theory E, which we call the E topological Hochschild–
May spectral sequence. Here, the second grading keeps track of the May filtration. Also,
in Section 2 we produced a Whitehead-type decreasingly filtered commutative monoid in
Sp, denoted J, associated to a cofibrant commutative ring spectrum model for p-complete
connective image of J, which we denote j. We therefore have a spectral sequence

E1
s,t = Es,t(THH(E∗

0J)) ⇒ Es(THH(j)). (11)

The purpose of this section is to compute this spectral sequence in the case E = V (1).
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3.1. Computing the HFp topological Hochschild–May spectral sequence

In the case E = HFp, the input of the spectral sequence is calculable, and the output is
already known due to Angeltveit–Rognes [2]. The HFp topological Hochschild–May spectral
sequence computation, therefore, will allow us to determine differentials in the V (1) topological
Hochschild–May spectral sequence that are also detected in the HFp topological Hochschild–
May spectral sequence. To begin, let us recall the computation of Angeltveit–Rognes.

Theorem 3.1 [2, Proposition 7.12, Theorem 7.15]. There is an isomorphism

HFp∗(j) ∼= P (ξ̃p1 , ξ̃2, ξ̄3, . . .) ⊗ E(τ̃2, τ̄3, . . .) ⊗ E(b) ∼= (A//A(1))∗ ⊗ E(b),

where all the elements in (A//A(1))∗ besides τ̃2, ξ̃
p
1 , and ξ̃2, and b have the usual A∗-coaction

and the coaction on the remaining elements τ̃2, ξ̃
p
1 , ξ̃2, and b is given as

ψ(b) = 1 ⊗ b

ψ(ξ̃p1) = 1 ⊗ ξ̃p1 − τ0 ⊗ b + ξ̄p1 ⊗ 1

ψ(ξ̃2) = 1 ⊗ ξ̃2 + ξ̄1 ⊗ ξ̃p1 + τ1 ⊗ b + ξ̄2 ⊗ 1

ψ(τ̃2) = 1 ⊗ τ̃2 + τ̄0 ⊗ ξ̃2 + τ̄1 ⊗ ξ̃p1 − τ1τ0 ⊗ b + τ̄2 ⊗ 1.

There is also an isomorphism

HFp∗(THH(j)) ∼= HFp∗(j) ⊗ E(σξ̃p1 , σξ̃2) ⊗ P (στ̃2) ⊗ Γ(σb)

of A∗-comodules and HFp∗(j)-algebras. The A∗-coaction is given by the formula

ψ(σx) = (1 ⊗ σ) ◦ ψ(x) (12)

and the previously stated coactions.

Note that Angeltveit–Rognes use a tilde over a symbol, for example, x̃ to signify that the
element has a different coaction than the coaction on x or x̄. We now want to compute
the input of the spectral sequence. First, we note that as described in Example 2.8,
S/p ∧ E∗

0J is an HFp algebra and hence V (1) ∧ E∗
0J is also an HFp algebra. It is known

more generally that THH(R) is an R algebra when R is a commutative ring spectrum, so
V (1) ∧ THH(E∗

0J) is a V (1) ∧ E∗
0J-algebra and in particular an HFp-algebra. We can therefore

apply the following lemma, which is well known and can be found in Ausoni–Rognes [6,
Lemma 4.1].

Lemma 3.2. Let M be an HFp-algebra. Then M is equivalent to a wedge of suspensions
of HFp, and the Hurewicz map π∗(M) → HFp∗(M) induces an isomorphism between π∗(M)
and the subalgebra of A∗-comodule primitives contained in HFp∗(M).

Therefore, computing the subalgebra of comodule primitives in HFp∗(V (1) ∧ THH(E∗
0J))

will suffice for computing the input of the V (1) topological Hochschild–May spectral sequence.

Lemma 3.3. There is an isomorphism of graded Fp-algebras

π∗(HFp ∧ E∗
0J) ∼= (A//E(0))∗ ⊗ S/p∗E∗

0J (13)

and the HFp topological Hochschild–May spectral sequence for X• = ∗,

π∗(HFp ∧ E∗
0J) ⇒ π∗(HFp ∧ j)
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has differentials

d2p−3(τ1)=̇v1,

d2p−3(ξ̄1)=̇α1,

d2p−2(τ̄1vk1 )=̇vk+1
1 , and

d2p−2(ξ̄1vk1 )=̇α1v
k
1

for k � 1, as well as those differentials generated by the Leibniz rule, and there is an
isomorphism of graded Fp algebras

E∞
∗,∗ = P (ξ̄p1 , ξ̄2, . . . ) ⊗ E(τ̄2, τ̄3, . . . ) ⊗ E(α1ξ̄

p−1
1 ) ∼= HFp∗(j).

Proof. Since HZ ∧ S/p � HFp, there is an equivalence HFp ∧ E∗
0J � HZ ∧ S/p ∧ E∗

0J and
since S/p ∧ E∗

0J is an HFp-algebra, there is an equivalence

HZ ∧ S/p ∧ E∗
0J � (HZ ∧HFp) ∧HFp

S/p ∧ E∗
0J.

By the Künneth isomorphism, we produce the desired isomorphism (13).
We then examine the topological Hochschild–May spectral sequence for X• = ∗, for which the

abutment is known by Theorem 3.1. In topological degrees 0 < m < 2p2 − 2p− 1, we know the
abutment (HFp)m(j) is trivial. This forces the differentials d2p−3(ξ̄1) = α1 and d2p−3(τ̄1) = v1

since there is no other way for these classes to be killed by differentials. After invoking the
Leibniz rule, we compute

E2p−2
∗,∗ = P (ξ̄p1 , ξ̄2, . . .) ⊗ E(τ̄2, τ̄3, . . .) ⊗ Fp{1, τ̄1vk1 , vk+1

1 , ξ̄1v
k
1 , α1v

k
1 |k � 1}

where all products of elements in the set {τ̄1vk1 , vk+1
1 , ξ1v

k
1 , α1v

k
1 |k � 1} are trivial. These

elements occur in pairs {τ̄1vk1 , vk+1
1 } in bidegrees ((2p− 2)(k + 1) + 1, (2p− 2)k − 1) and

((2p− 2)k, (2p− 2p)(k + 1) − 1), respectively, and pairs {ξ̄1vk1 , α1v
k
1} in bidegrees ((2p−

2)(k + 1), (2p− 2)k − 1) and ((2p− 2)(k + 1) − 1, (2p− 2p)(k + 1) − 1), respectively. When we
compare to the abutment, we see that in degree m = (2p− 2)k − 1 for k � 1 the dimension
of the Fp-vector space of the E2p−2-page contributing to this degree is one more than the
abutment. Similarly, in degree m = (2p− 2)k the dimension of the Fp-vector space of the
E2p−2-page contributing to degree (2p− 2)k for k � 1 is two more than the abutment. Finally,
in degree m = (2p− 2)k + 1 for k � 1 the dimension of the Fp-vector space of the E2p−2-page
contributing to degree (2p− 2)k + 1 for k � 1 is one more than the abutment. We observe that
the differential pattern stated is the only one that could possibly lead to the known abutment.
Therefore, there must be differentials d2p−2(τ̄1vk1 ) = vk+1

1 and d2p−2(ξ̄1vk1 ) = α1v
k
1 for k � 1.

Finally, we note that the E∞-page is concentrated on two lines with each element in
P (ξ̄p1 , ξ̄2, . . . ) ⊗ E(τ̄2, τ̄3, . . . ) in May filtration zero and all elements divisible by α1ξ̄

p−1
1 in May

filtration 2p− 3. A hidden multiplicative extension would contradict the fact that the spectral
sequence is multiplicative and known to strongly converge to (HFp)∗(j). Consequently, there
is no room for multiplicative extensions. �

3.1.1. The algebraic Hochschild–May spectral sequence. A large number of differentials in
the HFp topological Hochschild–May spectral sequence can be determined by algebraic means
using the algebraic Hochschild-May spectral sequence [29, Proposition 2.1]. We briefly recall
the setup of the algebraic Hochschild–May spectral sequence in the specific case of interest.

As noted in Example 2.8, there is a filtration of the graded ring S/p∗(j) ∼= P (v1) ⊗ E(α1)
given by the May filtration whose associated graded is S/p∗(E∗

0J). Specifically, if we write
mfilt(x) for the May filtration of an element x ∈ P (v1) ⊗ E(α1), then mfilt(α1v

k−1
1 ) =

mfilt(vk1 ) = (2p− 2)k − 1 for k � 1 and mfilt(1) = 0. By adjusting the grading by a linear
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transformation, the filtration of S/p∗(j) makes more sense in the algebraic setting. As it stands,
the grading is given by |vk1 | = ((2p− 2)k, (2p− 2)k − 1) and |α1| = ((2p− 2)k − 1, (2p− 2)k −
1) where the second grading is the May filtration grading. Since the topological Hochschild–May
spectral sequence has the grading convention

S/ps,t(E∗
0J) ⇒ S/ps(j),

we will adjust this so that the spectral sequence is of the form

S/pp,q(E∗
0J) ⇒ S/pp+q(j),

where t = q, p + q = s, and therefore p = s− t. This makes more sense algebraically because we
can think of S/p∗,∗(E∗

0J) as a bigraded ring whose totalization Tot∗(S/p∗,∗(E∗
0J) is additively

isomorphic to S/p∗(j). Consequently, in the remainder of this section we will use the grading
convention |vk1 | = (1, (2p− 2)k − 1) and |α1| = (0, (2p− 2)k − 1).

We will write Fi = {x ∈ P (v1) ⊗ E(α1) : mfilt(x) � i}. This produces a filtration of the chain
complex associated to the cyclic bar complex

and the usual spectral sequence of a double chain complex produces a Hochschild–May spectral
sequence

E1
s,p,q = HHs,p,q(E∗

0F•) ⇒ HHs,p+q(P (v1) ⊗ E(α1)),

where the s is the homological grading, p internal grading, and q is the May filtration grading,
after applying the linear transformation described above. Here HHs,p,q(E∗

0F•) is the Hochschild
homology of the bigraded ring E∗

0F•, which agrees with HHs(TotE∗
0F•), and HHs,p+q(P (v1) ⊗

E(α1)) is Hochschild homology of the graded ring P (v1) ⊗ E(α1).
Since the filtration F• is clearly complete, Hausdorff, and exhaustive, we know the spectral

sequence converges conditionally by Boardman [10, Theorem 9.2]. For each fixed p, the degree p
part of the filtration F• is eventually trivial. Therefore, when we consider the spectral sequence
as a tri-graded spectral sequence it is clear that the spectral sequence converges strongly by
[10, Theorem 7.1]. The differential convention, for r � 0, is

dr : Es,p,q
r −→ Es−1,p,q+r

r

as can be easily determined by usual differential convention of a spectral sequence associated
to a filtered complex. Since E∗

0F• ∼= S/p∗(E∗
0J), we have proven the following lemma.

Lemma 3.4. There is a strongly convergent Hochschild–May spectral sequence

E1
s,p,q = HHs,p,q(S/p∗(E∗

0J)) ⇒ HHs,p+q(S/p∗(j)), (14)

where s is the homological degree, p is the internal grading, and q is the May filtration grading.
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Note that the Hochschild homology HH∗(S/p∗(E∗
0J)) is the Hochschild homology of a

bigraded ring, but this agrees with the Hochschild homology of the totalization Tot∗ S/p∗E∗
0J.

It therefore suffices to consider the total degree of elements in S/p∗(E∗
0J) to compute the E1-

page of the algebraic Hochschild–May spectral sequence. Note that there is an isomorphism of
graded rings

S/p∗(E∗
0J) ∼= Fp[x1, x2, x3, x4, . . .]/(xixj |0 � i � j < ∞),

where the total degrees are given by |x2i−1| = (2p− 2)i− 1 and |x2i| = (2p− 2)i. Next, we
observe that S/p∗(E∗

0J) can be written as a filtered colimit colim
r→∞ A2r, where

A2r = Fp[x1, x2, x3, x4, . . . , x2r]/(xixj |0 � i � j < 2r) (15)

with the same grading convention as above. Since Hochschild homology commutes with filtered
colimits, it suffices to compute HH∗(A2r). This computation is known in the ungraded context
due to Geisser–Hesselholt [18, Lemma 2.2]. We recall their setup since much of the computation
carries over to the graded context. We will write Bcy

• (A2r) for the cyclic bar complex of A2r such
that Bcy(A2r) := |Bcy

• (A2r)| and HH∗(A2r) ∼= π∗Bcy(A2r). Note that in the graded context it
is necessary to define the structure maps in the cyclic bar complex with a sign that depends on
the grading (the Koszul sign convention) as in Loday [22, Section 5.3.2]. Therefore, the maps
in the graded context are the same as those in [18, Section 2] except for the maps

dn(a0 ⊗ a1 ⊗ · · · ⊗ an) = (−1)|an|(|a0|+|a1|+...|an−1|)(an · a0 ⊗ a1 ⊗ · · · ⊗ an−1), (16)

tm(a0 ⊗ a2 ⊗ · · · ⊗ am) = (−1)|am|(|a0|+|a1|+...|am−1|)(−1)m(am ⊗ a0 ⊗ · · · ⊗ am−1). (17)

We will use the notation t̄m for the operator

t̄m(a0 ⊗ a2 ⊗ · · · ⊗ am) = (am ⊗ a0 ⊗ · · · ⊗ am−1). (18)

Following [18], we write ω for a function ω : {0, 1, . . . ,m− 1} → {x1, x2, . . . , x2r}, which we
call a word with letters {x1, x2, . . . , x2r}, and we write [ω] for the Cm orbit of a word where
Cm acts by cyclic permutation. The length of the orbit [ω] will be called the period of [ω]. By
convention, the empty word will be written as [0] and it has period 1. There is a splitting of
graded Fp vector spaces

Bcy
• (A2r) =

⊕
[ω]

Bcy
• (A2r; [ω]),

where Bcy
• (A2r; [ω]), for ω = (xi0 , xi1 , . . . xim) and m � 1, is the sub-cyclic graded Fp vector

space of Bcy
• (A2r) generated by xi1 ⊗ · · · ⊗ xim . Here a cyclic graded Fp vector space should

be interpreted as a functor Λop → Fp-mod where Λ is Connes’ cyclic category and Fp-mod is
the category of Fp vector spaces. In other words, we are freely adding in all degeneracy and
cyclic operations acting on xi1 ⊗ · · · ⊗ xim . We will write

HH∗(A2r; [ω]) ∼= π∗|Bcy(A2r; [ω])|. (19)

Lemma 3.5. Let A2r be the graded Fp-algebra defined in (15) and HH∗(A2r; [ω]) be
the summand of HH∗(A2r) defined in (19). Let ω = (xi1 , . . . , xim) be a word with letters
{x1, x2, . . . , x2r} of length m � 0 and period � � 1. Then if m = 0, HH0(A2r; [ω]) ∼= Fp{1}. For
m � 1, if (m− 1)� + (|xim−�+1 | + · · · |xim |)(|xi1 | + · · · + |xim−�

|) is even, then HHm−1(A2r; [ω])
is a free Fp vector space of rank one generated by the cycle xi1 ⊗ · · · ⊗ xim and HHm(A2r; [ω])
is a free Fp vector space of rank one generated by the cycle N(xi1 ⊗ · · · ⊗ xim) defined as∑

0�u<�

t̄msm−1t
u
m−1(xi1 ⊗ · · · ⊗ xim).
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For m � 1, if (m− 1)� + (|xim−�+1 | + · · · |xm|)(|xi1 | + · · · + |xim−�
|) is odd, then

HHm−1(A2r; [ω]) ∼= HHm(A2r; [ω]) ∼= 0.

Proof. We will adjust the proof of [18, Lemma 2.2] to the graded context. To compute
HH∗(A2r; [ω]), it suffices to compute H∗(D•) where D• is the associated normalized chain
complex [33, Theorem 8.3.8]. When m = 0, then D• = Fp{1} where Fp{1} a the free Fp vector
space generated by 1 concentrated in degree zero, so H∗(D•) ∼= Fp{1} as well. Now observe
that the internal grading of all elements in Bcy(A2r; [ω]) are the same so the same method
as [18, Lemma 2.2] applies in the graded context except that the boundary maps must be
adjusted according to the grading.

The chain complex computing HH∗(A2r; [ω]) is concentrated in degree m and m− 1 with
Dm = Fp{t̄msm−1t

k
m−1(xi1 ⊗ . . . xim)|0 � k < �}

and
Dm−1 = Fp{tkm−1(xi1 ⊗ . . . xim)|0 � k < �}

and differential d given by the usual graded Hochschild differential convention [22, Sec-
tion 5.3.2]. We split into three cases. First, consider when (m− 1)� + (|xim−�+1 | + · · · +
|xim |)(|xi1 | + · · · + |xim−�

|) is odd. Let D′ be the chain complex concentrated in degrees m
and m− 1 with D′

m = D′
m−1 = Fp[C�] and differential d′ given by multiplication by 1 − τ .

Define α : D′ → D by
αm(τu) = tum−1(xi1 ⊗ . . .⊗ xim)

αm−1(τu) = t̄msm−1t
u
m−1(xi1 ⊗ . . .⊗ xim)

and define N = 1 + τ + · · · τ �−1. Note that, by a straightforward computation,
d(N(xi1 ⊗ . . .⊗ xim)) =
xi1 ⊗ . . . xim − (−1)(m−1)�+(|xim−�+1 |+···+|xim |)(|xi1 |+···+|xim−�

|)xi1 ⊗ . . . xim

(20)

where the sign on the last term is determined by (16). Since (m− 1)� + (|xim−�+1 | + · · · +
|xim |)(|xi1 | + · · · + |xim−�

|) is even by assumption, α is an isomorphism of chain complexes and
HmD′ = Fp{N} and Hm−1D

′ = Fp{1} and otherwise Hk(D′) = 0. Thus, Hm(D) ∼= F{N(xi1 ⊗
. . .⊗ xim)}, Hm−1(D) ∼= Fp{xi1 ⊗ . . .⊗ xim} and Hk(D) ∼= 0 otherwise. (Note that in [18,
Lemma 2.2] the signs of αm(τu) and αm−1(τu) seem to differ from ours significantly, however,
this is accounted for by our convention for the sign of tum in formula (17), which differs from
Geisser–Hesselholt’s convention. Our convention is standard for Hochschild homology of a
graded ring.)

When (m− 1)� + (|xim−�+1 | + · · · + |xim |)(|xi1 | + · · · + |xim−�
|) is odd and � is odd, consider

the chain complex D′′ concentrated in degrees m and m− 1 with D′′
m = D′′

m−1 = Fp[C�] and
boundary map d′′ = 1 + τ . Then let β : D′′ → D be defined by the formulas

βm(τu) = (−1)utum−1(xi1 ⊗ . . .⊗ xim)

βm−1(τu) = (−1)ut̄msmtum−1(xi1 ⊗ . . .⊗ xim).

Since (m− 1)� + (|xim−�+1 | + · · · + |xim |)(|xi1 | + · · · + |xim−�
|) is odd by assumption and � is

odd, the differential (20) is compatible with β and d′′ and β is an isomorphism of chain
complexes. Since 1 + τ : Fp[C�] → Fp[C�] is an isomorphism when � is odd, Hk(D) ∼= 0 for all
k � 0.

When (m− 1)� + (|xim−�+1 | + · · · |xim |)(|xi1 | + · · · |xim−�
|) is odd and � is even, consider the

chain complex D′′′ concentrated in degrees m and m− 1 with D′′′
m = D′′′

m−1 = Fp[x]/(x� + 1)
and boundary map d′′′ = 1 + y. Then let β : D′′′ → D be the defined by the formulas

βm(yu) = (−1)utum−1(xi1 ⊗ . . .⊗ xim)

βm−1(yu) = (−1)ut̄msmtum−1(xi1 ⊗ . . .⊗ xim).
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Since (m− 1)(�) + (|xim−�+1 | + · · · + |xim |)(|xi1 | + · · · + |xim−�
|) is odd the differentials d and

d′′ are compatible with β. Also, y� = −1 maps to

(−1)�t̄msmtum−1(xi1 ⊗ . . .⊗ xim

= (−1)�(−1)(m−1)�+(|xim−�+1 |+···|xim |)(|xi1 |+···|xim−�
|)1 ⊗ xi1 ⊗ . . .⊗ xim

so since � is even and (m− 1)� + (|xim−�+1 | + · · · |xim |)(|xi1 | + · · · |xim−�
|) is odd by assumption,

β is an isomorphism of chain complexes. Since 1 + y : Fp[y]/(y� + 1) → Fp[y]/(y� + 1) is an
isomorphism, Hk(D) ∼= 0 for all k � 0. �

From here on we will return to writing α1v
k
1 and vk+1

1 for x2k−1 and x2k+2, respectively,
for k � 0. By an easy computation of the shuffle product in HH∗(S/p∗E∗

0J), we see that the
shuffle product on 1 ⊗ α1 is given by the formula

(1 ⊗ α1)#n = n⊗ α1 ⊗ . . .⊗ α1︸ ︷︷ ︸
n

.

Since 1 ⊗ α1 is the usual cycle representative for σα1 the shuffle product above makes γn(σα1)
sensible notation for 1 ⊗ α1 ⊗ . . .⊗ α1︸ ︷︷ ︸

n

.

The differentials can be easily determined using the definition of a spectral sequence of
a filtered chain complex. We therefore simply recall almost verbatim the discussion of the
behavior of the differentials from [29, Proposition 2.1] in our special case.

Lemma 3.6 [cf. 29, Proposition 2.1]. The differential in the spectral sequence is computed
on a class

x ∈ HH∗,∗(S/p∗(E∗
0J), S/p∗(E∗

0J))

by computing a homogeneous cycle representative y for x in the standard Hochschild chain
complex for S/p∗(E∗

0J), lifting y to a homogeneous chain ỹ in the standard Hochschild chain
complex for A, applying the Hochschild differential d to ỹ, then taking the image of d(ỹ) in
the standard Hochschild chain complex for S/p∗(E∗

0J).

Corollary 3.7. The spectral sequence (14) collapses at the E2-page with an additive
isomorphism E2

∗,∗ ∼= E∞
∗,∗ ∼= E(α1) ⊗ P (v1) ⊗ Γ(σα1) ⊗ E(σv1).

Proof. By Lemma 3.6, given cycles N(αε1
1 vi11 ⊗ αε2

1 vi21 ⊗ . . . αεm
1 vim1 ) and αε0

1 vi01 ⊗ αε1
1 vi11 ⊗

. . . αεm
1 vim1 in the cyclic bar complex for S/p∗E∗

0J, the differentials in the algebraic Hochschild–
May spectral sequence are given by the following formulas. First, we compute

d1(N(αε1
1 vi11 ⊗ αε2

1 vi21 ⊗ . . .⊗ αεm
1 vim1 ))

=
∑

0�u<�

d1(t̄msmtum−1(α
ε1
1 vi11 ⊗ αε2

1 vi21 ⊗ . . .⊗ αεm
1 vim1 ))

=
∑

0�u<�

γud
1(1 ⊗ α

εm−u+1
1 v

im−u+1
1 ⊗ α

εm−u+2
1 v

im−u+2
1 ⊗ . . .⊗ α

εm−u

1 v
im−u

1 ),

where γu = (−1)m−1(−1)(|α
εm−u+1
1 v

im−u+1
1 |+···+|αεm

1 vim
1 |)(|αε1

1 v
i1
1 +···+|αεm−u

1 v
im−u
1 |) and

d1(1 ⊗ α
εm−u+1
1 v

im−u+1
1 ⊗ α

εm−u+2
1 v

im−u+2
1 ⊗ . . .⊗ α

εm−u

1 v
im−u

1 ))

= −1 ⊗ α
εm−u+1+εm−u+2
1 v

im−u+1+im−u+2
1 ⊗ α

εm−u+3
1 v

im−u+3
1 ⊗ . . .⊗ α

εm−u

1 v
im−u

1
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+1 ⊗ α
εm−u+1
1 v

im−u+1
1 ⊗ α

εm−u+2+εm−u+3
1 v

im−u+2+im−u+3
1

⊗α
εm−u+4
1 v

im−u+4
1 ⊗ . . .⊗ α

εm−u

1 v
im−u

1

+ · · · + (−1)m−11 ⊗ α
εm−u+1
1 v

im−u+1
1 ⊗ . . . α

εm−u−1+εm−u

1 v
im−u−1+im−u

1 + Eu

where
∑

0�u<� Eu = 0. Here εi ∈ {0, 1} for all 0 � i � m, m � 2, and � is the length orbit of
the Cm action.

Consequently, all of the cyclic bar complex cycles of the form N(αε1
1 vi11 ⊗ αε2

1 vi21 ⊗ . . .⊗
αεm

1 vim1 ) where εi = 1 for all 0 � i � m are d1-cycles. When in addition ij = 0 for all 0 � j � m,
then

d1(N(α1 ⊗ . . .⊗ α1︸ ︷︷ ︸
m

)) = α1 ⊗ . . . α1︸ ︷︷ ︸
m

+ (−1)m(−1)|α1|(|α1|(m−1))α1 ⊗ . . . α1︸ ︷︷ ︸
m

where if m is even, |α1|(|α1|(m− 1)) is odd, and if m is odd, then |α1|(|α1|(m− 1)) is even so in
either case (−1)m(−1)|α1|(|α1|(m−1) = −1 and the differential is zero. It is also easy to observe
from the formula above that the element N(α1 ⊗ . . .⊗ α1) cannot be a boundary. If εi = 1 for
0 � i � m except εk = 0 and ij = 0 for all 0 � j � m except ik = 1, then we compute d1(N(v1 ⊗
α1 ⊗ . . . α1)) = 0. All other cyclic bar complex cycles of the form N(αε1

1 vi11 ⊗ αε2
1 vi21 ⊗ . . .⊗

αεm
1 vim1 ) are either the source of a differential or they are boundaries.
Similarly, there are differentials

d1(αε0
1 vi01 ⊗ αε1

1 vi11 ⊗ . . . αεm
1 vim1 )

= αε0+ε1
1 vi0+i1

1 ⊗ αε2
1 vi21 ⊗ . . . αεm

1 vim1 − αε0
1 vi01 ⊗ αε1+ε2

1 vi1+i2
1 ⊗ . . .⊗ αεm

1 vim1

+ · · · + (−1)m(−1)|α
εm
1 |(|αε0

1 v
i0
1 |+···+|αm−1

1 v
im−1
1 |)αε0+εm

1 vi0+im
1 ⊗ αε1

1 vi11 ⊗ . . . α
εm−1
1 v

im−1
1 ,

where εi ∈ {0, 1} for all 0 � i � m and m � 2, respectively.
Consequently, if

∑m
k=0 εk � m and

∑m
k=0 ik > 2, then αε0

1 vi01 ⊗ αε1
1 vi11 ⊗ . . . αεm

1 vim1 is the
source of a differential. Also, if

∑m
k=1 ik � 2, then αε0

1 vi01 ⊗ αε1
1 vi11 ⊗ . . .⊗ αεm

1 vim1 is necessarily
the boundary of a differential. The only elements of the form αε0

1 vi01 ⊗ αε1
1 vi11 ⊗ . . .⊗ αεm

1 vim1
that are not the boundary or source of a differential are the elements of the form αε0

1 vi01 ⊗ α1 ⊗
. . .⊗ α1 and αε0

1 vi01 ⊗ v1 ⊗ . . .⊗ α1, which survive to become αε0
1 vi01 γmσb and αε0

1 vi01 σv1γmσb,
respectively, in the abutment. Therefore, there is an isomorphism E2 ∼= E∞ and an additive
isomorphism E∞

∗,∗ ∼= P (v1) ⊗ E(α1) ⊗ E(σv1) ⊗ γ(σα1). �

Remark 3.8. It will also be useful to understand the multiplicative extensions in the
spectral sequence (14) explicitly. We include Figure 2 to facilitate this. Note that, as a ring,
the E∞-page is isomorphic to(

E(σv1) ⊗ Γ(σα1) ⊗ P (α1v
k
1 , v

k+1
1 : j, k � 0)

)
/(

(α1v
j
1)

2, (vk+1
1 )(vj+1

1 ), (α1v
j
1)(v

k+1
1 ) for all j, k � 0

)

We can describe the multiplicative filtration of the graded ring P (v1) ⊗ E(α1) ⊗ E(σv1) ⊗
Γ(σα1) coming from filtering the abutment as

· · · ⊂ G2 ⊂ G1 ⊂ G0 = P (v1) ⊗ E(α1) ⊗ E(σv1) ⊗ Γ(σα1),

where

Gs = {x ∈ G0 : mfilt(x) � s}
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Figure 2. The E∞
∗,∗-page of the Hochschild–May spectral sequence in a range. Here we simply

write α := α1, v := v1, γi = γi(σα1) and z = σv1.

for s � 1. Since mfilt(xy) � mfilt(x) + mfilt(y), we observe that this is a multiplicative
filtration. By inspection, the associated graded of this filtration is exactly⊕

i�0

Gi/Gi+1 = E∞
∗,∗,∗.

Trivial products between w, z ∈ E∗
0G• arise when mfilt(zwy) > mfilt(z) + mfilt(w). Suppose z

and w are nontrivial and zw is nontrivial in G0, then mfilt(zw) > mfilt(z) + mfilt(w) exactly
when

z, w ∈ {α1v
k
1x, v

k+1
1 x : k � 0, x ∈ E(σv1) ⊗ Γ(σα1)}.

Consequently, there are trivial products

vj+1
1 x · vk1y = 0 ∈ E∞

∗,∗,∗, and

α1v
j
1x · vk1y = 0 ∈ E∞

∗,∗,∗
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for j � 0 and k � 1. We know, however, that in the abutment these products are nontrivial.
We therefore observe that there must be multiplicative extensions

α1v
j
1x · vk+1

1 y = α1v
j+k
1 xy for j, k � 0, (21)

vj1x · vk1y = vj+k
1 xy for j + k � 1

for all x, y ∈ E(σv1) ⊗ Γ(σα1). In particular, we know that the abutment is isomorphic to

HH∗(E(α1) ⊗ P (v1)) ∼= E(α1) ⊗ P (v1) ⊗ Γ(σα1) ⊗ E(σv1)

as bi-graded Fp-algebras by [24, Proposition 2. 1]. Therefore, there cannot be further
multiplicative extensions.

3.1.2. The HFp topological Hochschild–May spectral sequence. We now observe that there
is an equivalence of commutative ring spectra

E∗
0J � HZ(p) ∧

⎛
⎝S ∨

∨
k�1

Σ(2p−2)k−1S/pνp(k)+1

⎞
⎠,

where the commutative ring spectrum structure on (S ∨
∨

k�1 Σ(2p−2)k−1S/pνp(k)+1) is given
by iterating the trivial square-zero extension construction. For brevity, we will write E∗

0J for
the commutative ring spectrum (S ∨

∨
k�1 Σ(2p−2)k−1S/pνp(k)+1). This immediately implies

THH(E∗
0J) � THH(HZ(p)) ∧ THH(E∗

0J)

since S1
• ⊗ (−) is a left adjoint and therefore commutes with coproducts (smash products) of

commutative ring spectra. Before computing H∗THH(E∗
0J), we need to prove a lemma about

how the Bökstedt spectral sequence interacts with the May filtration. We will use the notation
E∗

0 |MS1
•(K)| for the associated graded of the cofibrant decreasingly filtered commutative

ring spectrum |MS1
•(K)| constructed as the realization of the simplicial decreasingly filtered

commutative monoid in spectra |MS1
•(K)|, where K is a cofibrant decreasingly filtered

commutative monoid in spectra, see [1, Definition 3.3.3] for further explanation of this notation.

Lemma 3.9. Let K be a decreasingly filtered commutative ring spectrum as in Definition 2.1.
Then the differentials in the Bökstedt spectral sequence

HH∗(E∗
0K) ⇒ H∗(THH(E∗

0K))

respect the May filtration.

Proof. By the fundamental theorem of the May filtration [1, Theorem 3.3.10], there is an
equivalence of commutative ring spectra

E∗
0 |MS1

•(K)| � THH(E∗
0K).

We can filter E∗
0K =

∨
i�0 Ki/Ki+1 using the trivial filtration

E∗
0K ←

∨
i�1

Ki/Ki+1 ←
∨
i�2

Ki/Ki+1 ← . . .

and this is clearly a cofibrant decreasingly filtered commutative ring spectrum. There is
therefore a topological Hochschild–May spectral sequence

H∗(E∗
0 |MS1

•(K)|) ⇒ H∗(THH(E∗
0K)), (22)

which collapses. The E1-page of the Bökstedt spectral sequence is the chain complex
H∗(E∗

0K∧t) with differential given by the standard Hochschild homology differential. There
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is a filtration of this chain complex by H∗(
∨

i�s Ki/Ki+1), which produces a double complex
and therefore a collapsing spectral sequence as in (22). If we filter this double complex by
Bökstedt filtration to produce a triple complex, then since the spectral sequence collapses
in one direction, this spectral sequence is equivalent to the Bökstedt spectral sequence. This
implies that the Bökstedt spectral sequence differentials for this particular spectrum E∗

0K must
respect the May filtration. �

Proposition 3.10. There is an isomorphism of A∗-comodules

H∗(THH(E∗
0J)) ∼= (A//E(0))∗ ⊗ E(σξ̄1) ⊗ P (στ1) ⊗HH∗(S/p∗(E0J)).

The coaction on elements in (A//E(0))∗ are determined by the coproduct in A∗ and the
coaction on elements in E(σξ̄1) ⊗ P (στ1) is determined by the formula (12). The coaction on
a cycle x0 ⊗ x1 ⊗ . . .⊗ xm or N(x1 ⊗ . . .⊗ xm) for xi ∈ {α1v

k−1
1 , vk1 |k � 1} for all 0 � i � m

is given by the formulas:

ψ(x0 ⊗ x1 ⊗ . . .⊗ xm) =
∑
i∈I

τ̄0 ⊗ (x0 ⊗ . . .⊗ xi−1 ⊗ α1v
ki−1
1 ⊗ xi+1 ⊗ . . .⊗ xm)

+1 ⊗ (x0 ⊗ x1 ⊗ . . .⊗ xm)

where xi = vki
1 for i ∈ I ⊂ {0, 1, . . . ,m} and xj = α1v

kj

1 if j �∈ I and 0 � j � m, and

ψ(N(x1 ⊗ x2 ⊗ . . .⊗ xm) =
∑
i∈I

τ̄0 ⊗N(x1 ⊗ . . .⊗ xi−1 ⊗ α1v
ki−1
1 ⊗ xi+1 ⊗ . . .⊗ xm)

+1 ⊗N(x1 ⊗ x2 ⊗ . . .⊗ xm)

where xi = vki
1 for i ∈ I and xj = α1v

kj

1 if j �∈ I and 0 � j � m. The elements α1v
k0
1 ⊗ α1v

k1
1 ⊗

. . .⊗ α1v
km
1 and N(α1v

k1
1 ⊗ α1v

k1
1 ⊗ . . .⊗ α1v

km
1 ) are comodule primitives.

Proof. As discussed above, there is an isomorphism

HFp∗THH(E∗
0J) ∼= HFp∗THH(HZ(p)) ⊗HFp∗THH(E∗

0J).

The computation of HFp∗THH(HZ(p)) ∼= (A//E(0))∗ ⊗ E(σξ̄1) ⊗ P (στ1) along with its A∗-
coaction is due to Bökstedt [12]. The Bökstedt spectral sequence

HH∗(HFp∗(E
∗
0J)) ⇒ HFp∗THH(E∗

0J)

has input HH∗(S/p∗(E∗
0J)) since

HFp∗(E
∗
0J) ∼= π∗(S/p ∧HZ(p) ∧ (S ∨

∨
k�1

Σ(2p−2)k−1S/pνp(k)+1))) ∼= S/p∗(E∗
0J). (23)

Also, we may regard the Bökstedt spectral sequence as a tri-graded spectral sequence since
the differentials must respect the May filtration grading by Lemma 3.9. There are no possible
differentials in the Bökstedt spectral sequence that preserve the May filtration and consequently
the spectral sequence collapses.

To compute the coaction on elements in H∗(THH(E∗
0J)), we note that α1v

k
1 is by definition

the image the fundamental class in the composite

H∗
(
Σ(2p−2)k−1S

)
→ H∗

(
Σ(2p−2)k−1S/pνp(k)+1

)
→ H∗(E∗

0J) → H∗(THH(E∗
0J))

and vk1 is the image of the element τ0 in

H∗
(
Σ(2p−2)k−1S/pνp(k)+1

)
∼= Σ(2p−2)k−1E(τ0)
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under the composite

H∗
(
Σ(2p−2)k−1S/pνp(k)+1

)
→ H∗(E∗

0J) → H∗(THH(E∗
0J)).

Consequently, the Bockstein on α1v
k
1 is vk+1

1 for k � 0. This demonstrates that α1v
k
1 is primitive

for k � 0 and the coaction on vk+1
1 is ψ(vk+1

1 ) = τ0 ⊗ α1v
k
1 + 1 ⊗ vk+1

1 for k � 0.
To compute the remaining coactions, first consider a general element of the form

N(αε1
1 vi11 ⊗ . . .⊗ αεm

1 vim1 ) ∈ H∗(THH(Ē∗
0J))

where εj ∈ {0, 1} for 1 � j � m and ij � 1 for 0 � j � m. It is represented by a map

Σm
m∧
i=1

Σ(2p−2)(εi+ki)−1S/pνp(ki)+1) → THH(Ē∗
0J) (24)

where we let Σ(2p−2)(εi+ki)−1S/pνp(ki)+1 = Σ(2p−2)(εi+ki)−1S when εi = 1. The map (24) is
constructed by a simplicial map, which on m-simplices is induced by

S ∧
m∧
i=1

Σ(2p−2)(εi+ki)−1S/pνp(ki)+1) → S ∧ (Ē∗
0J)∧m → (Ē∗

0J)∧m+1

where the simplicial object in the source is the mth simplicial suspension of the constant
simplicial spectrum and the object on the right is the cyclic bar complex for Ē∗

0J, whose
realization is THH(Ē∗

0J). �

We now use the HFp topological Hochschild–May spectral sequence in a case where the
output is known due to [2, Theorem 7.15] in order to detect differentials in the V (1) topological
Hochschild–May spectral sequence.

Proposition 3.11. The d1-differentials in the HFp topological Hochschild–May spectral
sequence exactly correspond to the differentials in the Hochschild–May spectral sequence (14).
Therefore, there is an isomorphism of graded Fp-vector spaces

E2
∗,∗ ∼= P (v1) ⊗ (A//E(0))∗ ⊗ E(σξ̄1) ⊗ P (στ̄2) ⊗ E(α1) ⊗ E(σv1) ⊗ Γ(σα1)

Proof. Recall that

E1
∗,∗ ∼= (A//E(0))∗ ⊗ E(σξ̄1) ⊗ P (στ̄2) ⊗HH∗(S/p∗(E∗

0J)),

where all elements in (A//E(0))∗ ⊗ E(σξ̄1) ⊗ P (στ̄2) are in May filtration zero. If x0 ⊗ x1 ⊗
. . . xm is a word with letters xi ∈ {α1v

k−1
1 , vk1 |k � 1}, then

mfilt(x0 ⊗ x1 ⊗ . . . xm) = mfilt(x0) + mfilt(x1) + · · · + mfilt(xm), (25)

where mfilt(α1v
k−1
1 ) = mfilt(vk1 ) = (2p− 2)k − 1. We know that the abutment is

H∗(j) ⊗ E(λ′
1, λ2) ⊗ P (μ2) ⊗ Γ(σb).

To achieve this, there must be differentials killing off the classes

{N(αε1
1 vi11 ⊗ . . .⊗ αεm

1 vim1︸ ︷︷ ︸
m

), αε0
1 vi01 ⊗ αε1

1 vi11 ⊗ . . .⊗ αεm
1 vim1︸ ︷︷ ︸

m

|m � 1} (26)

when
∑m

k=1 ik +
∑m

k=1 ε1 > m and
∑m

k=1 ik > 1 for any ε0 ∈ {0, 1} and i0 � 0. The elements in
(26) come in pairs with one element in May filtration one lower and topological degree one more
than the other. All the other generators must survive to a later page and therefore there is no
differential pattern other than the one stated, which would produce the desired abutment. �
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Remark 3.12. We could also produce the differentials in Proposition 3.11 by explicitly
representing an element, such as 1 ⊗ v1 ⊗ v1 ⊗ v1 = N(v1 ⊗ v1 ⊗ v1), as a generator of

H∗(HZ ∧ Σ2p−3HFp ∧ Σ2p−3HFp ∧ Σ2p−3HFp) ⊂ H∗(E∗
0J∧4).

For example, the differential

d1(1 ⊗ v1 ⊗ v1) = 1 ⊗ v2
1 ⊗ v1 − 1 ⊗ v1 ⊗ v2

1 = N(v2
1 ⊗ v1)

arises from the fact that (E∗
0J)∧4 id∧μ−→ (E∗

0J)∧3 is the zero map in degrees greater than 0, but
this is an artifact of the fact that the products of elements in positive degree such as α1 · α1

are zero in π∗j. However, in π∗S/p ∧ j there is a relation β(α1) · β(α1) = v1 · v1 = v2
1 = β(α2),

which is not visible in S/p∗(E∗
0j) because v2

1 = 0. We claim that this multiplicative relation is
reintroduced by differentials like d1(N(v1 ⊗ v1 ⊗ v1)) = N(v2

1 ⊗ v1). The element N(v2
1 ⊗ v1)

can be thought of as σv2
1 · σv1 using the shuffle product and the notation 1 ⊗ v1 = σv1. If v2

1

were a square of an element in the input, then since σ is a derivation it would be the case that
σv2

1 · σv1 = 0. Since the fact that it is not a square any longer is an artifact of the associated
graded construction, this needs to be corrected by differentials in the spectral sequence and
this differential does just that.

In other words, there is a nontrivial map

which shifts May filtration by one, representing the differential. This sort of argument is
standard for the spectral sequence of a double complex and our claim is that it also holds
in the spectral setting. We also claim that the differentials in Proposition 3.11 can all be
constructed using a similar argument, although it would be quite tedious to compute them
this way and therefore we give the simpler argument.

Proposition 3.13. There are differentials

d2p−3(ξ̄1)=̇α1, d2p−3(τ̄1)=̇v1, d2p−3(στ̄1)=̇σv1,

d2p−3(σξ̄1) =σα1, d2p−2(τ̃1vk1 )=̇vk+1
1 , d2p−2(ξ̄1vk1 )=̇α1v

k
1 ,

d2p−2(τ̃1α1v
k−1
1 ) =α1v

k
1

for k � 1 in the HFp topological Hochschild–May spectral sequence

(HFp)s,t(THH(E∗
0J)) ⇒ (HFp)s(THH(j))

and no further differentials besides those generated using the Leibniz rule from the differentials
above. The surviving classes

{ξ̄p−1
1 α1, σξ̄1γp−1σα1, γp(σα1), (στ̄1)p, (στ̄1)p−1σv1}

map to the classes {b, σξ̃p1 , σb, στ̃2, σξ̃2}, respectively, in HFp∗(THH(j)) and there no hidden
multiplicative extensions in the HFp topological Hochschild–May spectral sequence. All other
surviving classes map to classes of the same name.
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Figure 3. The E∞
s,t-page of the HFp topological Hochschild–May spectral sequence for p � 3 for

s � 4p2 − 2p and all t.

Proof. There is a map of HFp topological Hochschild–May spectral sequences

(27)

induced by the map ∗ → S1
• of simplicial finite sets, where the elements ξ̄1, α1v

k
1 , τ̄1, and vk1 all

map to elements of the same name. This produces the differentials d2p−3(ξ̄1)=̇α1, d2p−3(τ̄1)=̇v1,
d2p−2(τ̃1vk1 )=̇vk+1

1 , and d2p−2(ξ̄1vk1 )=̇α1v
k
1 .

We also know that the abutment (HFp)m(THH(j)) is trivial in the range 0 < m < 2p2 − 1,
which forces the differentials d2p−3(στ̄1)=̇σv1 and d2p−3(σξ̄1) = σα1. The resulting E2p−1-
page is additively isomorphic to HFp∗(THH(j)) with the specified correspondence in the
proposition and therefore the spectral sequence must collapse at this page. In Figure 3, we
draw the E2p−1 ∼= E∞-page, where write b = α1ξ̄

p−1
1 and γ′

k = γk(γp(σα1)), σξ̄
p
1 = σξ̄γp−1σα1

and σξ̄2 = (στ̄1)p−1σv1 for brevity.
We may describe the multiplicative filtration G′

• of the abutment (HFp)∗(THH(j))) whose
associated graded is the E∞-page as follows. First, of course, G′

0 = (HFp)∗(THH(j))). We
define G′

s for s � 1 by

G′
s = {x ∈ G′

0 : mfiltx � s}.



ON TOPOLOGICAL HOCHSCHILD HOMOLOGY OF THE K(1)-LOCAL SPHERE 281

By inspection, the associated graded of the filtration G′
• is exactly⊕

i�0

G′
i/G

′
i+1 = E∞

∗,∗.

Note that there were hidden multiplicative extensions determined in Remark (3.8), however,
the multiplicative extensions only involved classes which do not survive the HFp topological
Hochschild–May spectral sequence, so in fact they do not appear here. We also determined that
there are no multiplicative extensions in the top spectral sequence of (27) in Lemma 3.3 and
in fact this map of spectral sequences splits off the bottom spectral sequence. The remaining
elements have the property that

mfilt(xy) = mfilt(x) + mfilt(y)

by (25) so the products are nontrivial already at the E∞-page. We observe that there is an
isomorphism of graded Fp-algebras

E∞
∗,∗ ∼= (HFp)∗(THH(j)).

This is visible, in a range, by Figure 3. Therefore, there cannot be multiplicative extensions
because then the abutment would not have the correct multiplicative structure, contradicting
the fact that the HFp topological Hochschild–May spectral sequence is a strongly convergent
multiplicative spectral sequence. �

Remark 3.14. The behavior of the differentials above leads us to speculate that the
differentials in the topological Hochschild–May spectral sequence commute with the operation
σ. We plan to return to this in future work.

Proposition 3.15. There is an isomorphism

V (1)∗(THH(E∗
0J)) ∼= E(λ1, ε1) ⊗ P (μ1) ⊗HH∗(S/p∗E∗

0J),

where |ε1| = |λ1| = |σṽ1| = 2p− 1, |α1| = 2p− 3, |μ1| = 2p, |ṽ1| = 2p− 2, and |σα1| = 2p− 2.

Proof. We can compute HFp∗(V (1) ∧ THH(j)) where the input is HFp∗(V (1) ∧
THH(E∗

0J)), using the HFp ∧ V (1) topological Hochschild–May spectral sequence. The
differentials are the same and the classes τ̄0 and τ̄1 map to classes of the same name in the
output. This is useful because there is a map of spectral sequences from the V (1) topological
Hochschild–May spectral sequence to the HFp ∧ V (1) topological Hochschild–May spectral
sequence induced by the map of S-algebras

where η : S → HFp is the unit map of HFp. Due to Lemma 3.2, the map

V (1)∗(THH(E∗
0J)) −→ (HFp ∧ V (1))∗(THH(E∗

0J))

includes V (1)∗(THH(E∗
0J)) into (HFp ∧ V (1))∗(THH(E∗

0J)) as the A∗-comodule primitives.
By Lemma 3.10, the elements

{α1, v1 − τ̄0α1, στ̃1 − τ̄0σξ̄1, σξ̄1, σα1, σv1 − τ̄0σα1, τ̃1 − τ̄1} (28)

are comodule primitives, where we write τ̃1 to distinguish the class in HFp∗(THH(E∗
0J)) from

the class τ̄1 ∈ HFp∗(V (1)). We rename these classes, respectively,

{α1, v1, μ1, λ1, σα1, σv1, ε1}.
In addition, there is a corresponding comodule primitive for each algebra generator of
HH∗(S/p∗J) which can be computed by simply subtracting the necessary terms as we did to
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produce the comodule primitive v1 − τ̄0α1. Therefore, the subalgebra of comodule primitives
is isomorphic to

E(λ1, ε1) ⊗ P (μ1) ⊗HH∗(S/p∗(E∗
0J))

and the result follows from Lemmas 3.10 and 3.2. �

We now consider the map of topological Hochschild–May spectral sequences

induced by the map

η ∧ idV (1) : S ∧ V (1) −→ HFp ∧ V (1),

where η : S → HFp is the unit map of the ring spectrum HFp.

Proposition 3.16. The only d1 differentials in the V (1) topological Hochschild–May
spectral sequence are those in the algebraic Hochschild–May spectral sequence, consequently,
there is an additive isomorphism

E2
∗,∗ ∼= E(λ1, ε1) ⊗ P (μ1) ⊗ E(α1) ⊗ P (v1) ⊗ Γ(σα1) ⊗ E(σv1)

where |λ1| = (2p− 1, ), |ε1| = (2p− 1, 0), |μ1| = (2p, 0), |α1v
k−1
1 | = (2p− 3, (2p− 2)k − 1),

|vk1 | = ((2p− 2)k, (2p− 2)k − 1) for k � 1, |γpk(σα1)| = ((2p− 2)pk, (2p− 3)k) and |σv1| =
(2p− 1, 2p− 2). Multiplicatively, there is an isomorphism

E2
∗,∗ ∼= E(λ1, ε1) ⊗ P (μ1) ⊗ Fp[xi|i � 1]/m⊗ Γ(σα1) ⊗ E(σv1),

where x2i corresponds to vi1 and x2i−1 corresponds to α1v
i
1 for i � 1 and m = (x1, x2, . . .).

Proof. This is an easy consequence of Proposition 3.11 since the map

V (1) ∧ THH(E∗
0J) → HFp∗(V (1) ∧ THH(E∗

0J))

is an isomorphism onto the sub-algebra of co-module primitives, and in particular it is
injective. The d1-differentials therefore correspond to the d1-differentials in HFp∗(V (1) ∧
THH(E∗

0J)) �

Proposition 3.17. The only d2p−3 differentials in the V (1) topological Hochschild–May
spectral sequence are

d2p−3(λ1) =̇σα1,

d2p−3(ε1) =̇ v1,

d2p−3(μ1) =̇σv1,

and those differentials generated by these differentials under the Leibniz rule. There are d2p−2

differentials

d2p−2(ε1vk1 ) =̇ vk+1
1 , and

d2p−3(ε1 · α1v
k−1
1 ) =̇α1v

k
1
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for k � 1. The E2p−1-page of the V (1) topological Hochschild–May spectral sequence is
therefore isomorphic to

E(α1, λ
′
1, λ2) ⊗ P (μ2) ⊗ Γ(σb),

where λ′
1 = λ1γp−1(σα1), γp(σα1) = σb, λ2 = σv1μ

p−1
1 , and μ2 = μp

1. The bidegrees of these
elements are therefore |λ′

1| = (2p2 − 2p + 1, 2p2 − 5p + 4), |σb| = (2p2 − 2p, 2p2 − 3p), |λ2| =
(2p2 − 1, 2p− 1), and |μ2| = (2p2, 0).

Proof. The classes {v1, μ1, λ1, σα1, σv1, ε1} in the V (1) topological Hochschild–May spectral
sequence map to the classes

{v1 − τ̄0α1, στ̃1 − τ̄0ξ̄1, σξ̄1, σα1, σv1 − τ̄0σα1, τ̃1 − τ̄1}
in the HFp ∧ V (1) topological Hochschild–May spectral sequence under the map of spec-
tral sequences, denoted f , induced by the map S ∧ V (1) → HFp ∧ V (1). There are trivial
differentials in the HFp ∧ V (1) topological Hochschild–May spectral sequence

dr(τ̄0) = dr(τ̄1) = 0

for r � 1 and nontrivial differentials

d2p−3(ξ̄1) =̇α1, d2p−3(σξ̄) =̇σα1,

d2p−3(τ̃1) =̇ v1, d2p−3(στ̄1) =̇σv1,

d2p−2(τ̃1vk1 ) =̇ vk+1
1 d2p−2(ξ̄1vk1 ) =̇α1v

k
1

d2p−2(τ̃1α1v
k−1
1 ) =̇α1v

k
1

for k � 1 as well as the d1 differentials in the Hochschild–May spectral sequence (14) by
Propositions 3.13 and 3.15. We will use the formula fdr = drf to compute the differentials.
Note that the map f is still injective on the E2-page of the spectral sequences so it makes sense
to use the formula dr(x) = f−1dr(f(x)). We therefore produce differentials

d2p−3(λ1) =f−1(d2p−3(σξ̄1)) = f−1(σα1) = σα1,

d2p−3(ε1) =f−1d2p−3(τ̃1 − τ̄1) = f−1(v1) = v1

d2p−3(μ1) =f−1(d2p−3(στ̃1 − τ̄0ξ̄1)) = f−1(σ(v1) − τ̄0α1) = σ(v1)

in the V (1) topological Hochschild–May spectral sequence as desired. In Figure 4, there are
no other possible dr differentials when 2 � r � 2p− 2 for bidegree reasons in columns to
the left of 4p2. The only exceptions to this are the possible differential on λ′

1 hitting σb
and the possible differential on μ2 hitting λ2, but these can both be ruled out. Recall that
λ′

1 = λ1γp−1(σα1) and γp(σα1) = σb. There is a differential d2p−3(λ1) = σα1 and therefore
d2p−3(λ1γp−1(σα1) = γp−1(σα1) · σα1 = pγp(σα1) = 0 modulo p. Similarly, μ2 = μp

1 and λ2 =
σv1μ

p−1
1 and the differential d2p−3(μ1) = σv1 implies d2p−3(μ

p
1) = pσv1μ

p−1
1 = 0. Therefore,

since all of the algebra generators are in range the depicted in Figure 4 except for the elements
γpk(σα1) for k � 1, the only remaining possible differentials are differentials whose source is
γpk(σα1) for k � 1. We will eliminate this possibility by directly analyzing which elements are
in topological degree (2p2 − 2p)pk − 1, one column to the left of γpk(σb), and in strictly higher
May filtration. Consider a general monomial

λe1
1 εe21 αe3

1 σve41 μ�
1v

j
1γm(σα1) (29)

whose topological degree is

(2p− 2)e1 + (2p− 1)e2 + (2p− 3)e3 + (2p− 1)e4 + (2p)� + (2p− 2)j + (2p− 2)m
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Figure 4. The E2p2−5p+3
s,t -page of the V (1) topological Hochschild–May spectral sequence for

p � 5 for s � 4p2 and all t. When p = 3, the only difference is that there is an additional class
γp(σb) in bidegree (2p3 − 2p, 2p3 − 3p2).

and whose May filtration is (2p− 3)e4 + (2p− 2)(j + e3) − 1 + (2p− 3)m, where e1, e2, e3, e4 ∈
{0, 1}, �, j,m � 0, and j + e3 > 0. When e1, e2, e3, e4 ∈ {0, 1}, �, j,m � 0, and j + e3 = 0, the
May filtration of (29) is (2p− 3)e4 + (2p− 3)m. In order for this element to be the target of a
differential on γpk(σα1), the relation

(2p− 2)e1 + (2p− 1)e2 + (2p− 3)e3 + (2p− 1)e4 + (2p)� + (2p− 2)j + (2p− 2)m

= (2p− 2)pk − 1

must hold. By rearranging terms, we see that the relation

(2p− 2)(e1 + e2 + e3 + e4 + � + j + m− pk) + e2 − e3 + e4 + 2� + 1 = 0

must hold. Since e2 − e3 + e4 + 2� + 1 � 0, the relation will only hold if

e1 + e2 + e3 + e4 + � + j + m− pk = 0 (30)

and

e2 − e3 + e4 + 2� + 1 = 0. (31)

However, we know the May filtration of (29) must be greater than the May filtration of γpk(σα1)
and therefore when j + e3 > 0,

(2p− 3)e4 + (2p− 2)(j + e3) − 1 + (2p− 3)m > (2p− 3)pk

and when j + e3 = 0

(2p− 3)e4 + (2p− 3)m > (2p− 3)pk.

When j + e3 = 0, the relation reduces to

e4 + m− pk > 0
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and consequently e1 + e2 + e3 + e4 + � + j + m− pk > e1 + e2 + e3 + � + j � 0 so (30) does
not hold and therefore the corresponding element (29) cannot be the target of a differential on
γpk(σb). When j + e3 = 0, then

(2p− 3)e4 + (2p− 2)(j + e3) − 1 + (2p− 3)m > (2p− 3)pk

reduces to

(2p− 3)(e4 + j + e3 + m− pk) > 1 − j − e3

so e4 + j + e3 + m− pk > 1−j−e3
2p−3 and therefore e1 + e2 + e3 + e4 + � + j + m− pk > e1 +

e2 + � + 1−j−e3
2p−3 � 0 when j < 2p− 3. Thus, we have reduced to the case when j > 2p− 3.

We now note that j is the exponent of v1 in (29). Consider the map of spectral sequences
induced by the Hurewicz map

V (1) → HFp ∧ V (1). (32)

There is a differential in the target spectral sequence

d2p−2−ε(λe1
1 τ1α

e3
1 σve4−1

1 μ�
1v

j
1γm(σα1)) = λe1

1 αe3
1 σve41 μ�

1v
j
1γm(σα1)

where ε = 1 if e1 = e3 = e4 − 1 = � = j = m = 0 and ε = 0 otherwise.
Since λe1

1 ε1α
e3
1 σve4−1

1 μ�
1v

j
1γm(σα1) maps to λe1

1 τ1α
e3
1 σve4−1

1 μ�
1v

j
1γm(σα1) and

λe1
1 αe3

1 σve41 μ�
1v

j
1γm(σα1) maps to an element of the same name in the map of E2-pages

of spectral sequences induced by the map 32, the target of this differential cannot be hit by
a differential at an earlier page or else the compatibility of the map of spectral sequences
induced by (32) with the differentials would be violated. This implies that e2 = 1 and
j � 2p− 3. We now recall that that the relation (31) also must be satisfied and when e2 = 1,
then e2 − e3 + e4 + 2� + 1 = 2 − e3 + e4 + 2� > 0 and thus (31) cannot be satisfied. Therefore,
there are no possible differentials with γpk(σα1) as a source. Note that this same argument
works for all differentials of the form dr(γpk(σα1)) for r � 1. We will use this fact in the proof
of Theorem 3.22 as well.

Consequently, there are no possible differentials of length 2 � r � 2p− 2 and in fact there
are no other possible differentials besides the ones stated and the ones implied by the Leibniz
rule for r < 2p2 − 5p + 3 by the same argument. �

Remark 3.18. Note that the only elements in the E2p−1 page of the V (1) topological
Hochschild–May spectral sequence that are in the kernel of the map to the E2p−1 page of
the HFp topological Hochschild–May spectral sequence induced by the Hurewicz map are the
multiples of α1. Since the differential on α1 is trivial for bidegree reasons and the spectral
sequence obeys the Leibniz rule, the only possible differentials of longer length are differentials
with a multiple of α1 as a target.

Lemma 3.19. There is an isomorphism of graded Fp-algebras

V (1)∗(THH(j; �)) ∼= E(λ′
1, λ2) ⊗ P (μ2) ⊗ Γ(σb)

Proof. Note that there are equivalences

V (1) ∧ THH(j; �) � THH(j;HFp) � HFp ∧j THH(j)

and that HFp ∧j THH(j) is an HFp-algebra. We can therefore apply Lemma 3.2 and
Theorem 3.1 to compute V (1)∗THH∗(j; �). The result is the algebra of comodule primitives in
HFp∗THH(j;HFp). Since there is an equivalence THH(j;HFp) � THH(j) ∧j HFp, we can
compute this using the Eilenberg–Moore spectral sequence

TorH∗(j)
∗,∗ (H∗(THH(j)), H∗(HFp)) ⇒ H∗(THH(j;HFp)).
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Since H∗THH(j) is a free H∗j-module by Theorem 3.1, this spectral sequence collapses
producing an isomorphism

HFp∗(THH(j;HFp)) ∼= A∗ ⊗ E(σξ̃p1 , σξ̃2) ⊗ P (στ̃2) ⊗ Γ(σb),

where the coaction on elements in A∗ is determined by the coproduct and the coaction on the
remaining elements is determined in Theorem 3.1.

The subalgebra of comodule primitives is isomorphic to E(λ′
1, λ2) ⊗ P (μ2) ⊗ Γ(σb), where

λ′
1 = σξ̃p1 − τ̄0σb,λ2 = σξ̄2 − ξ̄1 ⊗ σξ̃p1 − τ̄1 ⊗ σb, and μ2 = στ2 − τ̄0σξ̃2 − τ̄1σξ̃

p
1 + τ0τ1σb. �

We have another approach to computing THH∗(j; j/(p, v1)) = V (1)∗(THH(j)) by filtering
the coefficients j/(p, v1) using the short filtration

0 −→ Σ2p−3HFp −→ j/(p, v1) (33)

with associated graded j-module HFp � Σ2p−3HFp. It is important to note that this is not a
spectral sequence of V (1) ∧ j-algebras because V (1) ∧ j is not a commutative ring spectrum
and therefore the filtration (33) is not itself a cofibrant decreasingly filtered commutative
monoid in spectra in the sense of [1, Definition 3.2.2]. The filtration of (33) is just a cofibrant
decreasingly filtered symmetric J-module in the sense of [1, Definition A.1.1], which suffices
to construct the spectral sequence without multiplicative structure. We use the topological
Hochschild–May spectral sequence with filtered coefficients as follows

THHs,t(j;HFp � Σ2p−3HFp) ⇒ THHs(j; j/(p, v1)). (34)

This spectral sequence reduces to the long exact sequence

(35)

where two out of three terms are known. We claim that this exact sequence demonstrates that
the V (1) topological Hochschild–May spectral sequence cannot collapse at E2p−2. The author
owes Eva Höning for giving some evidence that there must be a longer differential in personal
communication, since the author originally had a faulty argument that said that the differential
on λ2 = (μ1)p−1σṽ1 was zero.

Proposition 3.20. There is a differential

d2p2−5p+3((μ1)p−1σṽ1) =̇α1λ1γp−1(σα1)

in the V (1) topological Hochschild–May spectral sequence and no remaining differentials.

Proof. The spectral sequence (34) may be expressed as the long exact sequence (35), or in
other words, the diagram

where the dotted arrow indicates a shift in degree by 1. In particular, in degree 2p2 − 1 and
2p2 − 2, we have the exact sequence

0 −→ Fp{(μ1)p−1σṽ1} −→ Fp{λ2} −→ Fp{λ′
1} −→ Fp{α1λ1γp−1(σα1)} −→ 0.
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We can therefore determine if there should be a differential in the V (1) topological Hochschild–
May spectral sequence, as stated, by determining if the map Fp{λ2} −→ Fp{λ′

1} is nontrivial.
To determine this, we note that the boundary map is exactly the map

V (1)∗(THH(j; �)) −→ V (1)∗(THH(j; Σ2p−2�))

induced by the map � −→ Σ2p−2� given by 1 − ψq where q is the qth Adams operation. This
map induces multiplication by P 1 in homology

In the dual, we therefore know that the map

sends classes of the form ξ̄1y to y and the map sends all other classes to zero. The same will
therefore be true for the induced map, which we also denote P (1), in the diagram

in particular ξ̄1σξ̃
p
1 maps to σξ̃p1 . We therefore examine the square

which is isomorphic to

As stated in the proof of Proposition 3.17, the vertical maps are defined by

g(λ2) = σξ̃2 − ξ̄1σξ̃
p
1 − τ̄1σb,

h(λ′
1) = σξ̃p1 − τ̄0σb

The bottom horizontal map sends the class in the image of σξ̃2 to the class σξ̃p1 ; that is,

Since the inverse image of the Hurewicz map evaluated on this element is

h−1(σξ̃p1) = h−1(σξ̃p1 − τ̄0σb) = λ′
1.

This proves that the top horizontal map is nontrivial and therefore, there must be a differential

d2p2−5p+3((μ1)p−1σṽ1) =̇α1λ1γp−1(σα1)

as stated. �
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Remark 3.21. Due to Oka [26, Theorem 4.4], the obstruction to a ring structure on V (1)
at the prime 3 is a composite of maps including the composite map

however, we can compute that the induced map Σ11j → Σj is null homotopic and hence the
obstruction vanishes after smashing with j. Thus, V (1) ∧ j and hence V (1) ∧ THH(j) are ring
spectra, so the ring structure on V (1)∗THH(j) is also correct at the prime 3. This type of
argument is also used in [3] in the case of V (1) ∧ ku.

Theorem 3.22. Let p > 2 be a prime number and let V (1) be the cofiber of the periodic
self-map v1 : Σ2p−2S/p → S/p. Then there is an isomorphism

V (1)∗(THH(j)) ∼= P (μ2) ⊗ Γ(σb) ⊗ Fp{α1, λ
′
1, λ2α1, λ2λ

′
1, λ2λ

′
1α1},

where the products between the classes

{α1, λ
′
1, λ2α1, λ2λ

′
1, λ2λ

′
1α1}

are zero except for

α1 · λ2λ
′
1 = λ′

1 · λ2α1 = λ2λ
′
1α1.

Proof. We can compute the E2p2−4p+2-page by Propositions 3.13 and 3.20. All the algebra
generators are in the range 0 � s � 4p2 depicted Figure 4 except for γpk(σb) for k � 1. The
figure clearly shows that there no possible differentials drs,t for r > 2p2 − 4p + 2 in the range
0 � s � 4p2. The only remaining possible differentials are differentials with source γpk(σb) for
k � 1. There are no possible differentials with source γpk(σb) by a bidegree argument, which
we already proved in the proof of Proposition 3.17. Therefore, there are no possible differentials
with source γpk(σb) and consequently the spectral sequence collapses at the E2p2−4p+2-page.
The classes γpk(σb) map to classes of the same name in the Hurewicz image. There are no
hidden multiplicative extensions on the elements (γpk−1(σb))p for k � 1 because the only other
classes in this topological degree are in lower filtration in the spectral sequence. To see this,
consider a general monomial

μ�
2γj(σb)α

e1
1 (λ′

1)
e2(λ2α1)e3(λ2λ

′
1)

e4(λ2λ
′
1α1)e5 , (36)

which is in topological degree

2�p2 + (2p2 − 2p)j + (2p− 3)e1 + (2p2 − 2p + 1)e2 + (2p2 + 2p− 4)e3

+(4p2 − 2p)e4 + (4p2 − 3)e5

and May filtration

(2p2 − 3p)j + (2p− 3)e1 + (2p2 − 5p + 3)e2 + (4p− 3)e3 + (2p2 − 3p)e4 + (2p2 − p− 3)e5,

where �, j � 0, ei ∈ {0, 1} for 1 � i � 5 and
∑5

i=1 ei = 1. Then, in order for this monomial to
be in the same topological degree as (γpk−1(σb))p for some k � 1, the relation

2�p2 + (2p2 − 2p)j + (2p− 3)e1 + (2p2 − 2p + 1)e2 + (2p2 + 2p− 4)e3

+(4p2 − 2p)e4 + (4p2 − 3)e5 = (2p2 − 2p)pk (37)

must hold. This already implies that e1 = e2 = e5 = 0 since
∑5

i=1 ei = 1. Thus, the relation
reduces to

2�p2 + (2p2 − 2p)j + (2p2 + 2p− 4)e3 + (4p2 − 2p)e4 − (2p2 − 2p)pk = 0.
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We also know that in order for the May filtration of the monomial (36) to be greater than that
of γpk(σb), the inequality

(2p2 − 3p)j + (4p− 3)e3 + (2p2 − 3p)e4 > (2p2 − 3p)pk (38)

must hold. By rearranging terms, we see that

(2p2 − 2p)j + (2p2 − 2p)e4 − (2p2 − 2p)pk > −(4p− 3)e3 + pj + pe4 + pk+1

and therefore

2�p2 + (2p2 − 2p)j + (2p2 + 2p− 4)e3 + (4p2 − 2p)e4 − (2p2 − 2p)pk >

2�p2 + (2p2 + 2p− 4)e3 + 2p2e4 − (4p− 3)e3 + pj + pe4 + pk+1

where the right-hand side of the inequality reduces to

2�p2 + (2p2 − 2p− 1)e3 + 2p2e4 + pj + pe4 + pk+1 > 0

since 2p2 > 2p + 1 for all primes p. Thus, the relations (37) and (38) cannot both hold.
Therefore, there are no elements in May filtration greater than that of (γpk−1(σb))p = 0, which
has the same May filtration as γpk(σb). This implies that there cannot be a hidden multiplicative
extension on (γpk−1(σb))p or any of the other products γi(σb)γj(σb) = 0 where i + j = pk for
i, j, k � 1. These are the only other possible hidden multiplicative extensions, so no further
hidden multiplicative extensions occur. �

Remark 3.23. This paper mainly considers mod (p, v1) homotopy of topological Hochschild
homology of the connective cover of the K(1)-local sphere, but one could also consider mod
(p, v1) homotopy of topological Hochschild homology of the nonconnective K(1)-local sphere.
This is trivial, however, since

(S/p)∗(LK(1)S) ∼= P (v±1
1 ) ⊗ E(α1),

and therefore the map induced by v1 is multiplication by a unit on homotopy groups
and therefore V (1)∗LK(1)S ∼= 0. Since THH(LK(1)S) is a LK(1)S-algebra, the spectrum
V (1) ∧ THH(LK(1)S) is contractible. It would still be interesting to study S/p∗THH(LK(1)S),
but this would not help us approach S/p∗K(LK(1)S) because Theorem 1.1 only holds for
connective spectra.
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