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I Abstract 

Deutsch 
 

This research was originally published in JNM. Schobert I, Chapiro J, Nezami N, Hamm 

CA, Gebauer B, Lin M, Pollak J, Saperstein L, Schlachter T, Savic LJ. Quantitative 

Imaging Biomarkers for (90)Y Distribution on Bremsstrahlung SPECT After Resin-Based 

Radioembolization. J Nucl Med. 2019;60(8):1066-72. © SNMMI  

Dieser Abstract wurde von der obenstehenden Publikation adaptiert und übersetzt. 

 

Zielsetzung: Die Identifizierung prätherapeutischer bildbasierter 

Tumorcharakteristika zur Vorhersage der Yttrium-90 (90Y) Verteilung in der 

posttherapeutischen Bremsstrahlung single photon emission computed tomography 

(SPECT) und des Tumoransprechens in Patienten mit primären und sekundären 

Lebertumoren nach selektiver interner Radiotherapie (SIRT).  

Methoden: In diese retrospektive Studie wurden 38 Patienten mit Lebertumoren, 

die mit Harzmikrosphären-basierter SIRT behandelt wurden, eingeschlossen. Die 

Patientenkohorte bestand aus 23 Patienten mit Hepatozellulärem Karzinom (HCC) und 

15 Patienten mit anderen malignen Lebertumoren (non-HCC). Die Bildgebung umfasste 

eine multiphasische Kontrastmittel-MRT oder CT vor SIRT und eine Bremsstrahlung 

SPECT unmittelbar nach SIRT. Das totale und kontrastmittelaufnehmende 

Tumorvolumen (ETV [cm3] and %), und die totale und kontrastmittelaufnehmende 

Tumorlast (%) wurden volumetrisch auf der prätherapeutischen Bildgebung quantifiziert. 

Bis zu zwei dominante Tumore pro behandeltem Leberlappen wurden analysiert. Nach 

der multimodalen Bildregistrierung von prätherapeutischer MRT oder CT auf die 

SPECT/CT, wurde die 90Y Verteilung in der SPECT als Tumor-zu-normale-Leber 

Verhältnis (TNR) volumetrisch bestimmt. Das Tumoransprechen wurde anhand der 

quantitative European Association for the Study of the Liver (qEASL) und response 

evaluation criteria in solid tumors 1.1 (RECIST1.1) Kriterien beurteilt. Klinische 

Parameter, wie z.B. Child-Pugh Stadien, wurden ebenfalls untersucht. Statistische Tests 

umfassten den nicht-parametrischen Mann-Whitney U, die bivariate Pearson Korrelation 

und Lineare Regression.  

Ergebnisse: In HCC korrelierte ein höheres prätherapeutisches ETV% mit höherer 

TNR in der SPECT, und damit mehr 90Y Aufnahme des Tumors relativ zum umliegenden 

Lebergewebe (P<0.001). In non-HCC bestand die Korrelation zwischen höherer ETV% 
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und TNR  auch (P=0.039). Zusätzlich zeigten HCC Patienten mit Child-Pugh B signifikant 

mehr 90Y Ablagerung in nicht-tumoröser Leber, gemessen als niedrigere TNR, als Child-

Pugh A Patienten (P=0.021). Die Nachsorge-Bildgebung für die Beurteilung des 

Tumoransprechens innerhalb von 4 Monaten nach SIRT war nach 25 Behandlungen 

vorhanden. Eine höhere TNR korrelierte mit besserem Tumoransprechen, gemessen als 

posttherapeutische Reduktion von ETV%, in HCC (P=0.039), aber nicht in non-HCC 

(P=0.886).   

Schlussfolgerung: Diese Studie identifizierte ETV% als quantifizierbaren 

prätherapeutischen bildbasierten Biomarker für die 90Y Verteilung in der 

posttherapeutischen Bremsstrahlung SPECT in Patienten mit HCC und non-HCC. 

Zusätzlich war bei Patienten mit HCC, jedoch nicht bei Patienten mit non-HCC, eine 

höhere relative 90Y Aufnahme des Tumors mit besserem Tumoransprechen nach SIRT 

assoziiert.   



English 

This research was originally published in JNM. Schobert I, Chapiro J, Nezami N, Hamm 

CA, Gebauer B, Lin M, Pollak J, Saperstein L, Schlachter T, Savic LJ. Quantitative 

Imaging Biomarkers for (90)Y Distribution on Bremsstrahlung SPECT After Resin-Based 

Radioembolization. J Nucl Med. 2019;60(8):1066-72. © SNMMI 

This abstract was adapted from the above-mentioned publication. 

Purpose: To investigate baseline tumor imaging features that predict Yttrium-90 

(90Y) distribution on posttreatment single photon emission computed tomography 

(SPECT) and tumor response to 90Y-transarterial radioembolization (TARE) in patients 

with primary and secondary liver tumors.  

Methods: This retrospective study included 38 patients with liver tumors who 

underwent resin-based TARE. The patient cohort consisted of 23 patients with 

hepatocellular carcinoma (HCC) and 15 patients with non-HCC hepatic malignancies. 

Multiphasic contrast-enhanced magnetic resonance imaging (MRI) or computed 

tomography (CT) scans were obtained prior to TARE, and Bremsstrahlung SPECT scans 

were captured immediately post-radioembolization. Total and enhancing tumor volume 

(ETV [cm3] and %), and total and enhancing tumor burden (%) were quantified on 

baseline MRI or CT. Up to two dominant tumors per treated liver lobe were included in 

the analysis. Non-rigid multimodal image registration of baseline scans and SPECT/CT 

was performed, and 90Y distribution was volumetrically assessed on posttreatment 

SPECT as tumor-to-normal-liver ratio (TNR). Tumor response was assessed according 

to established quantitative European Association for the Study of the Liver criteria 

(qEASL) and RECIST1.1 criteria. Clinical parameters, such as Child-Pugh class, were 

also assessed. Statistical analyses included non-parametric Mann-Whitney U test, 

bivariate Pearson correlation, and linear regression.  

Results: In HCC, higher ETV% on baseline imaging correlated with increased TNR 

on posttreatment SPECT, thus demonstrating higher 90Y-microsphere uptake in tumor 

relative to liver parenchyma (P<0.001). In non-HCC, higher baseline ETV% similarly 

correlated with increased TNR on SPECT (P=0.039). Moreover, HCC patients with Child-

Pugh B showed more 90Y-microsphere deposition in nontumorous liver parenchyma, 

measured as lower TNR, compared to Child-Pugh A patients (P=0.021). Follow-up 

imaging within four months, and in turn response assessment, was available after 25 
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treatments. Higher TNR correlated with better tumor response, measured as a reduction 

of ETV% after treatment, in HCC (P=0.039), but not in non-HCC (P=0.886).  

Conclusion: In patients with HCC and non-HCC, ETV% may serve as a quantifiable 

baseline imaging biomarker to predict 90Y distribution on posttreatment Bremsstrahlung 

SPECT. Moreover, relatively higher tumor 90Y uptake was associated with better tumor 

response in patients with HCC, though this association was not evident in patients with 

non-HCC.  
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II. Manteltext

Background 

Hepatocellular Carcinoma (HCC) is the third leading cause of cancer-related 

deaths with increasing incidence rates worldwide (1). Additionally, the liver is the primary 

site for metastases of various malignancies, such as colorectal cancer and 

neuroendocrine tumors (2). In clinics, HCC is staged according to Barcelona Clinic Liver 

Cancer (BCLC), which takes into account tumor parameters, such as tumor size and 

number, liver function according to Child-Pugh, and Eastern Cooperative Oncology 

Group (ECOG) performance status (3). Each BCLC class is linked with specific treatment 

recommendations (3). HCC is usually diagnosed at intermediate to advanced disease 

stages, where curative treatments are no longer amenable (4). In these patients, palliative 

intra-arterial liver-directed therapies (IAT) are guideline-approved and thought to prolong 

overall survival (OS), bridge or downstage the tumor to liver transplant, and improve 

Quality of Life (QoL) (5).  

IATs comprise various techniques that utilize different materials for intra-arterial 

injection and varying mechanisms of action (6). Yttrium-90 transarterial radioembolization 

(90Y-TARE) is mainly used for the treatment of BCLC C patients but is also frequently 

performed in hepatic metastases such as colorectal cancer liver metastases or 

neuroendocrine liver metastases (5, 6). The pathophysiological principle of IATs is based 

on the dual blood supply of the liver parenchyma and liver malignancies. While the liver 

is mainly supplied by the portal vein, liver tumors are predominantly fed by the hepatic 

artery (7, 8). Moreover, many liver tumors are hypervascularized with a high 

microvascular density and a dense peritumoral arterial supply (9).  

This unique characteristic of liver tumors is also exploited by 90Y-TARE. During the 

treatment, a catheter is advanced to a branch of the hepatic artery, and microspheres 

loaded with radioactive 90Y are delivered to the tumor feeding arteries, while sparing most 

of the surrounding healthy liver tissue from unnecessary internal radiation (10). The 

microspheres, which are 20-60 μm in diameter, are trapped in the capillary bed of the 

tumor where the 90Y undergoes β- decay into inactive 90Zirconium, and thus irradiates the 

surrounding tissue over the course of several days (11, 12). 90Y has a half-life of 64.1 

hours (11). Due to their diameter, the 90Y-microspheres predominantly accumulate in the 

tumoral microvasculature, as they cannot pass the capillary bed (13).  
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There are two types of commercially available 90Y-loaded microspheres that are 

approved for the treatment of liver malignancies: resin-based microspheres (SIR-

Spheres®, Sirtex medical limited, New South Wales, Australia) and glass-based 

microspheres (TheraSphere®, BTG, London, UK) (11). As compared to glass-based 

spheres, resin-based microspheres are larger in diameter and have less activity per 

microsphere (11). Therefore, a higher number of microspheres is injected to achieve 

comparable doses (11). However, despite those differences between available 

microspheres, clinical results are comparable (14). 

Prior to radioembolization, the individual anatomy of the patient is assessed with a 

planning angiography combined with a Technetium-99m macroaggregated albumin 

(99mTc-MAA) single photon emission computed tomography (SPECT) imaging (12). This 

is done in order to assess hepatic and extrahepatic vasculature, identify tumor-feeding 

vessels, and measure shunting to the lungs and gastroenteric organs (12). For resin-

based radioembolization, a lung shunt fraction (LSF) of more than 20% is usually a 

contraindication for treatment. Additionally, the absorbed dose of the lung is calculated 

prior to therapy using the LSF and the total administered dose. If the estimated absorbed 

lung dose is <30 Gy, a potential radiation damage such as radiation pneumonitis is 

unlikely and TARE can be performed (12). Even though the 99mTc-MAA scan is mandatory 

and useful in clinical practice to anticipate 90Y-microsphere distribution, the prognostic 

value is limited due to differences in distribution behavior of the particles (15). The 

difference in 99mTc-MAA and 90Y-microsphere uptake may be due to slightly different 

particle sizes, 10-50 µm for 99mTc-MAA and 20-60 µm for 90Y resin-microspheres, 

aggregation of albumin particles, catheter tip positions, which can be different due to 

separate sessions of the planning scan and the treatment, specific gravity, and the 

number of infused particles (15, 16). Thus, the 99mTc-MAA scan helps the nuclear 

medicine physician plan the intended radiation doses, but does not simulate the 90Y TARE 

completely (15). 

For resin-based TARE, the planned 90Y activity for each patient is calculated with 

the body surface are (BSA) method, which was developed to achieve safe activities (12). 

However, it does neither take into account varying 90Y-microsphere distribution nor a 

personalized tumor absorbed dose target. This results in safe, but sometimes not 

sufficient injected activities and absorbed doses (17).  

In order to assess 90Y deposits after TARE, a 90Y Bremsstrahlung SPECT 
immediately after TARE is used to visualize the 90Y-microspheres and evaluate the 
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coverage of the tumor, non-target deposits to healthy liver parenchyma, and shunting to 

neighboring organs (12). In recent investigations, the quantitative assessment of 90Y 

activity distribution and calculation of absorbed doses based on SPECT have proven 

technically advanced but feasible (18). However, the application of quantitative SPECT 

for the prediction of outcome after radioembolization remains challenging due to varying 
90Y-microspheres uptake and dose-response relationships of individual tumors across 

entities and within the same entity (17, 19).   

The activity distribution and deposits of 90Y-microspheres can also be assessed 

with positron emission tomography (PET), because of the internal pair production of 90Y 

(20). Even though the use of PET may be easier to quantify absorbed doses due to an 

incorporated calibration algorithm and higher spatial resolution, SPECT is due to cost-

efficiency more widely available and was thus used in this study as well (21).  

It has been shown that sufficient coverage of the tumor with 90Y leads to reliable 

tumor response (19). For resin-based radioembolization it is recommended to administer 

a mean tumor absorbed dose of at least 120 Gy, in order to achieve tumor response and 

to limit liver absorbed doses to less than 50 Gy, and lung absorbed doses to less than 20 

Gy to prevent radiation-related toxicity (22). As 90Y-microspheres usually do not distribute 

evenly in the tumor, studies analyzing dose-volume-histograms on PET/CT after 90Y 

resin-microsphere TARE showed that at least 70% of the tumor volume needs to be 

covered with at least 100 Gy, in order to result in complete response in patients with HCC 

(19). 

As the effect of TARE relies on radiation-induced DNA damage, tumor response, 

if measured as tumor size reduction, occurs as late as two to six months after treatment 

(23). Compared to other IATs, this interval is rather long (e.g. only four weeks after TACE) 

causing a delayed response assessment and thus, a suboptimal setting for non-

responders requiring additional treatments. This is particularly problematic for palliative 

patients and makes an early estimate of treatment success and probability of tumor 

response very much needed. 

The biology and vasculature of hepatic metastases such as colorectal cancer liver 

metastases differ from HCC. This leads to a deviation in general appearance on imaging 

and contrast agent uptake behavior compared to HCC (24, 25). For example, colorectal 

cancer liver metastases show hypointense signal on T1 weighted images and an 

enhancing rim after contrast administration, but usually the necrotic center of the 

metastasis remains hypovascular (24). Because particle distribution after TARE follows 
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arterial perfusion, in large colorectal liver metastases often only few particles are 

distributed into the necrotic hypovascular center (11). Studies investigating tumor 

response parameters in colorectal liver metastases that predict overall survival after 

TARE found volumetric measurements of tumor metabolism, such as total lesion 

glycolysis and metabolic tumor volume quantified on FDG-PET, to be an early surrogate 

marker for the outcome after TARE (26). Additionally, CT perfusion imaging early after 

treatment was found to correlate with tumor response after 90Y-TARE (27).  

Most primary liver cancer develop in cirrhotic livers, that do not only show 

decreased liver function but also major changes in liver structure and matrix composition 

(3). Those alterations in parenchymal structure lead for example to portal hypertension, 

hepatofugal portal blood flow, hepatic artery buffer response, and intrahepatic shunting 

of blood (28, 29). The above-mentioned changes in hemodynamics are relevant to intra-

arterial therapies, which rely on liver vasculature and tumor capillary beds (12). 

Given the heterogenous 90Y microsphere distribution within the liver and the 

importance of early response prediction in palliative patients, this study aimed on the one 

hand to identify imaging surrogate markers for 90Y distribution on Bremsstrahlung 

SPECT, and on the other hand investigate the effect of 90Y distribution on tumor response 

after TARE. 
 

Methodology  
 

This research was originally published in JNM. Schobert I, Chapiro J, Nezami N, Hamm 

CA, Gebauer B, Lin M, Pollak J, Saperstein L, Schlachter T, Savic LJ. Quantitative 

Imaging Biomarkers for (90)Y Distribution on Bremsstrahlung SPECT After Resin-Based 

Radioembolization. J Nucl Med. 2019;60(8):1066-72. © SNMMI  

The following text describes the already published Material and Methods in detail. 
 

Study Cohort 

This retrospective study is compliant with the Health Insurance Portability and 

Accountability Act of 1996 (HIPAA) and was approved by the institutional review board 

(IRB) of Yale University. Due to the retrospective design of the study, informed consent 

was waived. The study cohort comprises 38 patients, 23 with HCC and 15 with other 

hepatic malignancies. Patients were included if they had primary or secondary liver 

malignancies, treated with lobar and resin-based TARE, treatment date between August 
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2012 and January 2018, and received contrast-enhanced imaging within three months 

prior to treatment and a SPECT/CT immediately after treatment. Exclusion criteria were 

tumor size smaller than 1.5 cm, no SPECT imaging immediately after TARE, insufficient 

image quality of the CT, MRI or SPECT, and segmental treatment. A minimum tumor size 

was important due to the partial volume effect and spatial resolution (30). Some patients 

dropped out as they received only a planar scan after treatment, due to reimbursement 

system regulations. And image quality had to allow for (quantitative) image analysis. In 

total, 38 patients with 40 treated lobes and 58 dominant tumors were included in the 

analysis. Additionally, clinical parameters such as Child-Pugh class were assessed. 

 

MRI and CT Imaging 

Prior to treatment all patients received contrast-enhanced CT or MR imaging of the 

abdomen (baseline imaging) and after 25 radioembolizations, patients received follow-up 

imaging within one to four months. Imaging was performed according to standardized 

institutional protocols. Briefly, patients received non-contrast and contrast-enhanced 

multi-phasic T1-weighted scans on a 1.5T MRI (Magnetom Avanto; Siemens; Erlangen, 

Germany) using a phased-array torso coil. The standardized protocol included T1-

weighted breath-hold non-contrast and contrast enhanced imaging in the hepatic arterial 

phase (20 seconds after contrast administration), portalvenous (70 seconds after contrast 

administration), and venous phase (3 minutes after contrast administration). For contrast-

enhanced imaging 0.1 mmol/kg intravenous macrocyclic gadolinium-based contrast 

agent (Dotarem; Guerbet, Roissy, France) was used. The multi-phasic contrast-

enhanced CT was acquired with a multi-detector scanner (Siemens, Malvern, USA, PA) 

and included native scans, contrast-enhanced arterial, portal-venous, and venous 

phases. 

 
90Y Radioembolization 

The preparation of TARE included an angiography of the mesentery and tumor 

supplying arteries and a 99mTc-MAA scan one or two weeks prior to treatment in order to 

assess the lung shunt fraction and reduce the planned dose of 90Y if needed. Dose 

calculation was performed using the BSA model.  

For the 90Y-TARE, the hepatic artery was catheterized under fluoroscopy guidance 

via transfemoral access. Then, a microcatheter was advanced through the catheter and 

placed either in the proximal left or the right hepatic artery for digital subtraction 
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angiography (DSA) and lobar injection of 90Y resin-microspheres (SIR-Spheres; SIRTeX 

Medical Limited; Lane Cove, Australia).  In case of bilobar treatment, the lobar 

administrations of 90Y were performed sequentially with at time interval of three to four 

weeks.  

 

SPECT/CT 

Immediately after completion of TARE, a Bremsstrahlung SPECT/CT was 

acquired. The dual-head SPECT scanner (Symbia Truepoint; Siemens; Malvern, PA) had 

a Low-Energy High-Resolution collimator. Besides planar scans, SPECT images were 

acquired. Images were acquired with 32 frames per camera and 20 seconds per frame. 

The acquisition energy windows were 55-100 keV and 105-195 keV and matrix size was 

128x128. The CT was acquired low-dose with 130kV, 0.8 seconds rotation time, 30mAs, 

and a matrix size of 512x512. Data was reconstructed with the iterative ordered subset 

expectation maximization (OSEM) method using FLASH 3D, a company-specific 

software. The SPECT was then visualized with and without fusion to the CT. 

 

3D Tumor Image Analysis 

Up to two tumors per treated lobe were defined as dominant tumors, depending 

on the largest diameter. The tumor boundaries and liver lobe boundaries were 

volumetrically outlined (segmented) on the T1-weighted MRI or CT in arterial contrast 

phase. The segmentation and measurement of the total tumor volume (TTV in cm3) and 

total liver lobe volume was done on baseline and follow-up imaging using semi-automatic 

interactive 3D software (GeoBlend Software). For the quantification of tumor 

enhancement, a software called quantitative European Association for the Study of the 

Liver (qEASL, Intellispace Portal, Philips Healthcare; Best, Netherlands) was used. 

Besides measuring the absolute enhancing tumor volume (ETV in cm3), the relative 

enhancing tumor volume (ETV%) was calculated as the ratio of ETV and TTV. The qEASL 

software workflow included the following: the non-contrast images were subtracted from 

the arterial phase images to remove background signal. The volumetrically segmented 

tumor mask was then applied to the subtracted image and a reference box was placed in 

surrounding non-tumorous liver parenchyma. The definition of tumor contrast 

enhancement was every voxel that had at least two standard deviations higher signal 

intensity compared to the reference box in the liver parenchyma, as previously described 

(31). Thus, tumor enhancement was defined voxel-by-voxel based on an individual 



threshold. Moreover, the volumetrically outlined liver lobes were used to calculate the 

total and enhancing tumor burden of the lobes to be treated with TARE. The above 

described parameters will hereinafter be called imaging biomarkers for 90Y-microsphere 

distribution. Regarding tumor response assessment, the change of ETV% and tumor 

diameter after treatment were calculated and categorized according to previously 

described qEASL% and RECIST 1.1 criteria as complete response, partial response, 

stable disease, and progressive disease.  

90Y Biodistribution 

The 90Y-SPECT scans were loaded into MIM Encore (MIM Software Inc.; 

Cleveland, OH), a nuclear medicine software, and analyzed with a dedicated image 

analysis protocol. Treated liver lobes and the dominant tumors were volumetrically 

outlined on the baseline arterial phase images. SPECT images were reconstructed with 

an algorithm that included scatter and attenuation correction. The baseline arterial phase 

MRI or CT was non-rigidly registered to the CT of the hybrid 90Y-SPECT/CT and was 

afterwards fused to the SPECT. In order to achieve a healthy liver lobe parenchyma 

volume without tumorous volume, all non-dominant tumors were also volumetrically 

segmented and subtracted from the healthy liver lobe. Thereafter, the total number of 

counts was quantified in the dominant tumors and in the non-tumorous treated liver lobe. 

The activity per count was determined as follows: the LSF was subtracted from the total 

injected activity and the remaining activity was divided by the total number of counts within 

the liver. Eventually, to measure the distribution of 90Y to the tumorous and non-tumorous 

tissue within the treated liver lobe, the tumor-to-normal-liver-ratio (TNR) was calculated 

as a ratio of counts within the dominant tumors and healthy liver lobe parenchyma. 

For the conversion of the SPECT-based count rate into a measure of activity 

concentration, phantom experiments were conducted, in order to calculate a calibration 

correction factor (CCF) as previously described. Thereafter, absorbed dose calculations 

were done according to the partition model.  

Statistical Analysis 

Descriptive data, for the characterization of the patient cohort and tumors at 

baseline, was summarized as absolute (n) and relative (%) frequency, mean and standard 

deviation (SD), and median and range. Further correlation and comparative analyses 

included Pearson correlation test and linear regression analysis for the relationship 
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between ETV and TNR, and TNR and tumor response. Mann-Whitney-U test was used 

for the investigation of the impact of liver cirrhosis on 90Y distribution, and Kaplan-Meier 

analysis was used for median overall survival and survival curves. Statistical analysis was 

carried out using SPSS (IBM Corp., v24.0, Armonk, New York, USA) and Graphpad Prism 

(v7.0, La Jolla, California, USA). A two-tailed P-value <0.05 was considered statistically 

significant. 

Essential new results 

This research was originally published in JNM. Schobert I, Chapiro J, Nezami N, Hamm 

CA, Gebauer B, Lin M, Pollak J, Saperstein L, Schlachter T, Savic LJ. Quantitative 

Imaging Biomarkers for (90)Y Distribution on Bremsstrahlung SPECT After Resin-Based 

Radioembolization. J Nucl Med. 2019;60(8):1066-72. © SNMMI  

The following text describes the published results in detail. 

Table 1. Baseline patient characteristics. This research was originally published in JNM. 

Schobert I, Chapiro J, Nezami N, Hamm CA, Gebauer B, Lin M, Pollak J, Saperstein L, 

Schlachter T, Savic LJ. Quantitative Imaging Biomarkers for (90)Y Distribution on 

Bremsstrahlung SPECT After Resin-Based Radioembolization. J Nucl Med. 

2019;60(8):1066-72. © SNMMI  

This table was adapted from the above mentioned publication. 

n (%) HCC n (%) Non-HCC 

Number of patients 23 (100) 15 (100) 

Male / female 18 (78.26) /5 (21.74) 9 (60) / 6 (40) 

Age (years), mean ± SD 62.39 ± 8.62 61.13 ± 11.51 

Caucasian / Asian / African-

American 

18 (78.26) / 1 (4.35) / 4 

(17.39) 

12 (80) / 1 (6.67) / 2 

(13.33) 

Cirrhosis 23 (100) 0 (0) 

Child-Pugh A / B 13 (56.52) / 10 (43.48) N/A 

ECOG 0 / 1 11 (47.83) / 12 (52.17) 9 (60) / 6 (40) 

BCLC B / C 10 (43.45) / 13 (56.52) N/A 

14



n (%) HCC n (%) Non-HCC 

Pretreatment: Systemic 

therapies / Resection / 

Locoregional treatment* 

5 (21.74) / 3 (13.04) / 21 

(91.3) 

10 (66.67) / 3 (20) / 3 (20) 

*only non-pretreated tumors were included in analyses

Study Population and Overall Survival 

The baseline characteristics of the present cohort are displayed in table 1.  

The HCC cohort is in the left column, the non-HCC cohort in the right column. The 15 

patients with non-HCC had intrahepatic cholangiocarcinoma, and 

metastases from neuroendocrine cancer, colorectal cancer, melanoma cancer, 

Prostate cancer, and Leiomyosarcoma. The median overall survival of patients with 

HCC was 14.4 months (1.58-55.76), and for patients with non-HCC 18.97 months 

(1.48-55.07). At the end of follow-up, five (21.74%) patients with HCC and ten 

(66.66%) patients with non-HCC were alive and therefore censored in Kaplan-Meier 

survival analysis. 

Imaging Findings 

Patients with HCC had a median of 6 (IQR 3.5–12, range 1–54) tumors in the 

liver, 4 (2–5, 1–11) tumors per treated liver lobe, and a median tumor burden of 

13.05% per treated liver lobe (IQR 5.12–28.78, range 0.71–67.56). Patients 

with non-HCC malignancies had a median of 11 (IQR 5.5–11, range 4–129) tumors in 

the liver, 6 (IQR 3.5–6, range 1–85) tumors per treated liver lobe, and a median 

tumor burden of 6.1% (IQR 5.59–26.73, range 1.53–76.86) per treated liver lobe. The 

dominant tumors had a mean diameter of 5.24 ± 2.93 cm in the HCC cohort and 4.68 

± 2.48 cm (p = 0.445) in the non-HCC cohort, respectively.  

Response Assessment 

Follow-up imaging for response assessment was available after n=25 

treatments. HCC patients had a median time to follow-up imaging of 68 days (range 

30-111) and non-HCC patients had a median time to follow-up imaging of 78

days (range 28-143). According to volumetric enhancement-based qEASL%, there

was no complete response after TARE, 0 and 2 (28.57%) patients had partial response,

17 (94.44%) and 5 (71.43%) patients had stable disease, and 1 (5.56%) and no

patient had progressive disease, in
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the HCC and non-HCC cohort, respectively. qEASL% response assessment was used 

for correlation with TNR. According to unidimensional RECIST1.1, no patient had 

complete response, 2 (11.11%) patients and 3 (42.86%) patients showed partial 

response, 15 (83.33%) patients and 4 (57.14%) patients had stable disease, and 1 

(5.56%) and no patient had progressive disease, in the HCC and non-HCC cohort, 

respectively.  

90Y and 99mTc-MAA Distribution and Absorbed Doses 

On pre-treatment 99mTc-MAA SPECT/CT, patients had a mean LSF of 6.6 ± 4.7%. 

During 90Y-TARE, patients received a mean 90Y activity of 1.17 ± 0.61 GBq and showed 

a calculated mean absorbed tumor and liver parenchyma dose of 52.52 ± 31.8 and 39.94 

± 22.4 Gy, respectively. The dominant tumors had a mean 90Y distribution ratio, measured 

as TNR, of 1.47 ± 0.42 in HCC patients and 1.52 ± 0.65 in non-HCC patients.  

Correlation of Baseline Tumor Characteristics on Imaging with 90Y-microsphere 

Distribution on SPECT and Overall Survival 

The relationship between ETV% on baseline MRI and 90Y distribution, quantified 

as TNR on SPECT, was assessed. The two-tailed Pearson correlation demonstrated that 

HCC with a higher contrast enhancing tumor percentage distributed more 90Y to the 

tumors (p < 0.001). The linear regression model showed a correlation coefficient (r) of 

0.759 and a R² of 0.516. In non-HCC patients, the correlation of ETV% and TNR was 

statistically significant (p = 0.039), but not as strong as in HCC patients (r = 0.424; R² = 

0.179). Moreover, a baseline ETV% threshold value of 80% achieved the most 

pronounced separation of TNR in patients with HCC (p < 0.001) and non-HCC 

malignancies (p = 0.014). Thus, patients with baseline ETV ≥80% distributed on average 

more 90Y to the tumors than patients with <80% baseline ETV.  Regarding the other 

baseline tumor features, the tumor diameter (p = 0.488 and p = 0.845), total (p = 0.109 

and p = 0.982) and enhancing tumor volume (p = 0.43 and p = 0.686), and total (p = 0.498 

and p = 0.125) and enhancing tumor burden (p = 0.852 and p = 0.768) did not correlate 

with TNR. Furthermore, in the present cohort, baseline ETV% did not show a significant 

correlation with overall survival in patients with HCC (p = 0.088) and non-HCC (p = 0.172). 

Correlation of Baseline Clinical Characteristics with 90Y-microsphere Distribution 
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Besides baseline imaging features such as ETV, the impact of liver cirrhosis on 90Y 

distribution was assessed. Therefore, in a subanalysis with HCC patients, TNR was 

stratified according to Child-Pugh classes. In this cohort, patients with Child-Pugh B 

distributed significantly less 90Y to the tumor compared to Child-Pugh A patients, as 

revealed by comparison of TNR values with Mann-Whitney U test (p = 0.021). Moreover, 

Child-Pugh B patients distributed significantly more 99mTc-MAA to the lungs, measured 

as higher LSF, compared to Child-Pugh A patients (p = 0.049).  

Correlation of 90Y-microsphere Distribution with Tumor Response 

Eventually, 90Y-microsphere distribution and tumor response according to 

qEASL% were correlated. In HCC, high TNR values on SPECT correlated with better 

tumor response on follow-up imaging (p = 0.038, r = -0.465, R² = 0.216). However, in 

non-HCC patients, no correlation between TNR and tumor response was found (p = 

0.886, R² = 0.002, r = 0.044). Of note, there was no significant relation between TNR and 

overall survival in patients with HCC (p = 0.526) or non-HCC (p = 0.233). 

Resulting clinical applications and further scientific questions 

This study identified ETV% on baseline imaging as a quantifiable surrogate marker 

for 90Y distribution after TARE using 3D image registration and analysis of SPECT, MRI 

and CT in patients with liver malignancies. Additionally, the relationship between 90Y 

uptake to the tumor and response to treatment was confirmed in patients with HCC but 

could not be proven in hepatic metastatic disease.  

In the present study, the baseline tumor parameter ETV% was investigated as an 

easily applicable and non-invasive imaging biomarker and surrogate for 90Y-microsphere 

distribution to the tumor after TARE (p < 0.001). The identification of such non-invasive 

biomarkers may help improve and refine clinical patient selection for 90Y-TARE and may 

ultimately help strengthen the role of TARE among other IATs by identifying patients that 

are most susceptible to TARE and thus most likely to respond. Recently, the effect of 

TARE was questioned, due to the results of large cohort prospective studies. The 

multicenter prospective phase III studies SIRveNIB and SARAH compared the outcome 

after TARE with the standard of care sorafenib in patients with advanced stage HCC (32, 

33). Those studies did not find a survival benefit for patients treated with TARE, however, 

side effects after treatment were lower and quality of life was improved compared to 
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sorafenib treatment (32, 33). Additionally, SIRveNIB found longer time to progression and 

progression-free survival after TARE (32). However, patient selection was done based on 

clinical evaluation of the patients, such as BCLC stage, rather than on individual tumor 

characteristics. BCLC stage B or C comprise a heterogeneous patient population with 

varying tumor characteristics, disease extent, and prognosis (3). This rather immature 

process of patient selection is reflected in clinical decision making as well. If patients are 

not eligible or have not responded to TACE, TARE is considered. However, institutions 

which adopted TARE as a primary locoregional therapy for HCC achieved improved 

overall survival compared to TACE (5). This underscores the need for personalized 

patient selection and treatment decisions for optimized treatment efficacy. 

In theory and as confirmed in this study, hypervascularized tumors with large 

ETV% at baseline are more likely to take up 90Y microspheres which remain in the 

capillary bed where they actively irradiate the tumor. In case of unfavorable tumor 

vascularization and subsequent low contrast uptake, an approach to artificially increase 

arterial perfusion exists that may increase 90Y-microsphere distribution towards the tumor 

and thus improve treatment efficacy of TARE (34). Furthermore, advances in 

microcatheter technology have led to the development of new administration techniques 

that aim at increased, tumor-targeted delivery of high radiation doses (35). Among these 

techniques, radiation segmentectomy has evolved which requires placement of the 

catheter in close proximity to the tumor in a (sub-)segmental artery and thus, increases 

the 90Y activity to an ablative dose (36). Radiation segmentectomy proved feasible for 

patients with singular tumors limited to few segments (36). Another new approach to 

intensify radiation doses is the boosted selective internal radiation therapy (B-SIRT), 

which aims for a personalized dose prescription, and thus higher doses for patients with 

a low risk profile for treatment complications (37). In patients with HCC, the 99mTc-MAA 

scan was assessed regarding particle distribution to the tumor and healthy liver, and 

regarding the total injected dose, in order to personalize the 90Y dose. The treatment 

intensifications with higher tumor absorbed doses achieved better response rates without 

higher rates of adverse events or toxicity (37). Even though B-SIRT approach was 

introduced using glass-microspheres in HCC, which generally achieve higher doses more 

easily, the personalized dosimetry and treatment planning are desirable for resin-based 

TARE as well. In future research, baseline imaging biomarkers for 90Y distribution and 

treatment efficacy could be investigated with a radiomics or deep learning approach, in 

order to find and refine criteria indicative of the individual tumor susceptibility to treatment. 
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As a second step, based on the preparatory angiography and 99mTc-MAA scan, a B-SIRT 

inspired treatment planning would optimize patient selection and therapeutic outcome in 

clinical practice.  

As tumor response generally occurs after a relatively large interval compared to 

other IATs, early surrogate markers for tumor response prediction are urgently needed to 

distinguish between responders and non-responders who require additional treatments. 

Additional challenges in imaging-based tumor response assessment include the 

frequently observed occurrence of radiation-related edema, which may lead to an 

increase in tumor size after TARE of varying duration (23). Overall, these example stress 

the disadvantages of unidimensional, size-based response assessments such as 

RECIST (23). In turn, they emphasize the importance of enhancement-based 

measurements in the context of tumor response to IATs.  However, early after 

radioembolization, some tumors show hemorrhage and are thus hyperintense on T1-

weighted MRI. Another early finding on post-procedural imaging is treatment-related 

inflammation within the tumor and in the peritumoral area, which appears as arterial 

hyperenhancement. Moreover, tumors can display a thin enhancing rim that is related to 

fibrosis rather than viable tumor (23). Those imaging findings make early response 

assessment and assessment solely based on the contrast-enhanced images obsolete, 

as the differentiation between treatment-related changes to the tumor and tumor 

response remains unclear. These potential pitfalls in image analysis after TARE highlight 

the potential advantages of qEASL response assessment, which was used in the present 

study. qEASL uses subtracted images, removing T1 hyperintense signal from arterial 

phase MRI, thus taking the actual tumor enhancement and the change of enhancement 

over time into account (38). The study further demonstrates the use of TNR on SPECT 

as a readily applicable surrogate marker for enhancement-based volumetric tumor 

response according to qEASL in patients with HCC (p = 0.038). As measurable changes 

in tumor size develop rather late after treatment, TNR may help to assess treatment 

efficacy early and facilitate clinical treatment planning for palliative patients with little time. 

Similar to HCC, non-HCC malignancies also demonstrated that a high enhancing 

tumor percentage on baseline imaging correlates with 90Y distribution to the tumor on 

SPECT (p = 0.039). However, 90Y distribution was not predictive of tumor response after 

TARE in these tumors (p = 0.886). A possible explanation for this observation could be 

that the non-HCC cohort comprised several tumor entities. This causes a substantial 

heterogeneity and may hamper clear results regarding the relationship of TNR with tumor 
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response. In future works, this may be addressed by investigating each tumor entity 

separately. Additionally, more recently introduced concepts, such as metabolic tumor 

response assessment and CT perfusion imaging proved to be valuable for early response 

prediction in hepatic metastases after TARE (26, 27). Furthermore, diffusion weighted 

imaging and the quantitative apparent diffusion coefficient proved to be an early predictor 

for tumor response and survival after radioembolization (39). 

Besides tumor type, this study revealed additional predictors of 90Y distribution that 

take into account the anatomic and structural variability among patients. As the majority 

of HCC develop in chronic liver disease, liver cirrhosis is a frequently encountered feature 

and can be found in varying severity, which is assessed by Child-Pugh class (3). The 

present study showed that patients with impaired liver function and Child-Pugh class B 

had lower TNR values and higher LSF compared to Child-Pugh A patients. This 

unfavorable 90Y distribution pattern with relatively more 90Y deposition in the healthy liver 

parenchyma and lungs may be associated with a higher risk of treatment-related adverse 

events and toxicity (40). Therefore, advanced cirrhosis may hinder effective and safe 

treatment and thus, should be considered in pre-treatment patient evaluation in order to 

select the best possible treatment for each individual patient.  

In conclusion, this study showed the value of ETV% as an easily clinically 

applicable and quantitative imaging surrogate marker on baseline contrast-enhanced 

imaging for the prediction of 90Y microsphere distribution on SPECT immediately after 

TARE in primary and secondary hepatic malignancies. Yet, the effect of a favorable 90Y 

distribution to the tumor on improved treatment response was only shown for HCC. In 

summary, those imaging biomarkers may help refine patient selection and thus improve 

outcome after TARE. 
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Quantitative Imaging Biomarkers for 90Y Distribution on
Bremsstrahlung SPECT After Resin-Based Radioembolization
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Jeffrey Pollak1, Lawrence Saperstein1, Todd Schlachter1, and Lynn J. Savic1,2
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Charité Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität, and Berlin Institute of
Health, Berlin, Germany; and 3Visage Imaging Inc., San Diego, California

Our purpose was to identify baseline imaging features in patients

with liver cancer that correlate with 90Y distribution on postproce-
dural SPECT and predict tumor response to transarterial radioem-

bolization (TARE). Methods: This retrospective study was approved

by the institutional review board and included 38 patients with he-
patocellular carcinoma (HCC) (n 5 23; 18/23 men; mean age, 62.39

± 8.62 y; 34 dominant tumors) and non-HCC hepatic malignancies

(n 5 15; 9/15 men; mean age, 61.13 ± 11.51 y; 24 dominant tumors)

who underwent 40 resin-based TARE treatments (August 2012 to
January 2018). Multiphasic contrast-enhanced MRI or CT was

obtained before and Bremsstrahlung SPECT within 2 h after TARE.

Total tumor volume (cm3) and enhancing tumor volume (ETV [cm3]

and % of total tumor volume), and total and enhancing tumor bur-
den (%), were volumetrically assessed on baseline imaging. Up to 2

dominant tumors per treated lobe were analyzed. After multimodal

image registration of baseline imaging and SPECT/CT, 90Y distribu-
tion was quantified on SPECT as tumor–to–normal-liver ratio (TNR).

Response was assessed according to RECIST1.1 and quantitative

European Association for the Study of the Liver criteria. Clinical

parameters were also assessed. Statistical tests included Mann–
Whitney U, Pearson correlation, and linear regression. Results: In
HCC patients, high baseline ETV% significantly correlated with high

TNR on SPECT, demonstrating greater 90Y uptake in the tumor

relative to the liver parenchyma (P , 0.001). In non-HCC patients,
a correlation between ETV% and TNR was observed as well (P 5
0.039). Follow-up imaging for response assessments within 1–4 mo

after TARE was available for 23 patients with 25 treatments. The

change of ETV% significantly correlated with TNR in HCC (P 5
0.039) but not in non-HCC patients (P 5 0.886). Additionally,

Child–Pugh class B patients demonstrated significantly more 90Y

deposition in nontumorous liver than Child–Pugh A patients (P 5
0.021). Conclusion: This study identified ETV% as a quantifiable

imaging biomarker on preprocedural MRI and CT to predict 90Y

distribution on postprocedural SPECT in HCC and non-HCC. How-

ever, the relationship between the preferential uptake of 90Y to the
tumor and tumor response after radioembolization could be vali-

dated only for HCC.

Key Words: radioembolization; 90Y; quantitative SPECT; contrast

enhancement; imaging biomarker

J Nucl Med 2019; 60:1066–1072
DOI: 10.2967/jnumed.118.219691

Hepatocellular carcinoma (HCC) is the sixth most common
cancer and the third most common cause of cancer-related deaths

worldwide (1). Moreover, liver is the primary metastatic site for

many malignancies, especially of gastrointestinal origin such as

colorectal carcinoma or neuroendocrine tumors (2). Over 70% of

newly diagnosed patients with primary or secondary liver cancer

present with advanced disease stages and are no longer amenable

for curative therapeutic approaches (3,4). In this setting, intraarte-

rial therapies such as transarterial chemoembolization (TACE) and

radioembolization (TARE) with 90Y constitute mainstay palliative

treatment options (5).
In TARE, microspheres loaded with radioactive 90Y are injected

into the hepatic artery to deliver therapeutic doses of radiation to

the liver lobe that contains the target tumors. The particles are

trapped and remain in the tumor capillary bed, where they decay

with b2-emissions (6). Radiation is the predominant therapeutic

effect of TARE, whereas the embolic properties of the 20- to 60-

mm microspheres remain limited and depend on the total number of

administered microspheres. In fact, angiographic stasis before com-

plete dose delivery occurs in only about 20% of treatments (7,8).
Previous studies have shown that 90Y uptake of the target tu-

mors corresponds with tumor response to treatment (9). A clini-
cally used tool to predict 90Y biodistribution before TARE is the
preparatory 99mTc-macroaggregated albumin (99mTc-MAA) scan.
However, the prognostic value of 99mTc-MAA for 90Y deposition
patterns is limited mainly by different particle sizes and hemody-
namics, which restricts the relevance of the 99mTc-MAA scan to
the identification of hepatopulmonary shunting (10).
For post-TARE evaluation of 90Y distribution in clinical prac-

tice, deposits are visualized on Bremsstrahlung SPECT immedi-

ately after treatment to qualitatively assess 90Y distribution to the

tumor and liver tissue as well as nontarget deposition and shunting

to other organs. More recently, quantitative methods for SPECT

analysis have been investigated for the measurement of 90Y dis-

tribution and calculation of absorbed doses and proved technically

feasible in an experimental setting (11). However, as 90Yuptake of

tumors and dose–response relationships are highly variable across
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tumors of different etiology and morphology, the use of quantita-
tive 90Y-SPECT for the prediction of tumor response to TARE
remains challenging.
Therefore, this study aimed to identify and establish baseline

imaging features in patients with liver malignancies that predict
90Y distribution as seen on post-TARE Bremsstrahlung SPECT
and to assess the prognostic value of 90Y distribution for early
prediction of tumor response.

MATERIALS AND METHODS

Study Cohort

This Health Insurance Portability and Accountability Act–compli-
ant, retrospective single-center study was approved by the institutional

review board, and informed consent was waived. In total, 38 patients
with 23 HCC and 15 non-HCC liver malignancies who received lobar

resin-based 90Y-TARE between August 2012 and January 2018 were
included. The relatively high dropout rate due to missing SPECT was

related to reimbursement system regulations that stipulated planar
scans instead of SPECT. Forty treated liver lobes with 58 dominant

tumors were included in the final analysis. With respect to partial-
volume effect and limited spatial resolution of SPECT imaging, tu-

mors smaller than 1.5 cm in diameter were excluded from the analysis
(Fig. 1) (12). Clinical parameters were also assessed.

MRI and CT Imaging

All patients received either MRI or CT of the liver before (baseline)

and after 25 treatments 1–4 mo after the TARE procedure (follow-up).
Scans were acquired according to the respective standardized institu-

tional protocols. Specifically, patients underwent contrast-enhanced
multiphasic T1-weighted MRI with a 1.5-T scanner (Magnetom

Avanto; Siemens) using a phased-array torso coil. The protocol in-
cluded breath-hold unenhanced and contrast-enhanced (intravenous

macrocyclic gadolinium) imaging in the hepatic arterial (20 s after
administration), portal venous (70 s), and delayed phase (3 min). The

multiphasic contrast-enhanced CTwas performed with a multidetector

scanner (Siemens) including native, arterial, portal venous, and delayed
contrast-enhanced phases.

TARE

Within 2 wk before TARE, all patients underwent mesenteric angio-

graphy to identify the vascular supply of the tumor and a 99mTc-MAA
scan to calculate the lung shunt fraction (LSF) and subsequent dose

reduction.
For the actual treatment, a catheter was placed via transfemoral

access under fluoroscopy guidance. Thereafter, a microcatheter was
advanced into a proximal hepatic artery branch for lobar administra-

tion of 90Y resin-microspheres (SIR-Spheres; SIRTeX Medical Lim-
ited). For bilobar therapy, the interval between sequential treatments

was 3–4 wk.

SPECT/CT

Within 2 h after completion of TARE, Bremsstrahlung SPECT/CT
was performed. The dual-head scanner (Symbia TruePoint; Siemens)

was equipped with a low-energy high-resolution collimator. Acquisi-
tion settings included 32 frames per camera and a 20-s acquisition

time per frame. Matrix size was 128 · 128, and energy windows were
55–100 and 105–195 keV. The low-dose CTwas acquired with 130 kV,

30 mAs, 0.8-s rotation time, and 512 · 512 matrix. Maximum-likelihood
reconstruction based on 3-dimensional (3D) ordered-subsets expectation

maximization was performed using a manufacturer-specific software
(FLASH 3D).

3D Tumor Assessment on MRI and CT

Up to 2 dominant target tumors per treated lobe were determined by

size and segmented in 3 dimensions on the arterial-phase T1-weighted
MRI or CT scans at baseline and follow-up using a semiautomated,

volumetric technique to measure the total tumor volume (TTV, cm3).
Quantitative European Association for the Study of the Liver (Intelli-

Space Portal; Philips Healthcare), a software-based 3D quantification
tool, was used to calculate the absolute enhancing tumor volume

(ETV, cm3) and the ETV in percentage of the TTV (ETV%). Briefly,
the precontrast scan was subtracted from the arterial-phase scan to

remove background enhancement. The 3D segmented tumor mask
was applied, and a reference region was placed in healthy liver paren-

chyma. Tumor enhancement was defined as 2 SDs above the signal
intensity of the reference region as previously described (13). In addi-

tion, the treated liver lobes were segmented, and the total and enhancing
tumor burden per treated lobe were assessed (14). These parameters are

referred to here as imaging biomarkers for 90Y distribution.
For volumetric tumor response assessment, changes of TTV, ETV,

and ETV% between baseline and follow-up imaging were calculated
and interpreted according to the established qEASL% criteria (13,14).

Additionally, tumor response was assessed according to RECIST1.1.
Response was categorized as complete or partial response or as stable

or progressive disease.

90Y Biodistribution
90Y SPECT images were analyzed with a dedicated protocol in

MIM Encore (MIM Software Inc.). Treated lobes and dominant tumors
were volumetrically segmented on the baseline contrast-enhanced

MRI or CT, which was nonrigidly registered to the CT of the SPECT/
CT and then to the scatter- and attenuation-corrected SPECT. All

remaining tumors in the treated lobe were also segmented, and the
volumes were subtracted from the liver lobe volume to separate the

healthy liver parenchyma from tumorous tissue. On the basis of
these segmentations, the total number of counts in the dominant tumors

and the nontumorous parenchyma of the treated lobe were quanti-
fied. 90Y activity per count was calculated on the basis of the ad-

ministered dose, the LSF, and the total number of counts within theFIGURE 1. Study workflow and exclusion criteria.
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liver. Finally, the tumor–to–normal-liver ratio (TNR) was calculated,
representing the distribution of 90Y between the dominant tumors and

nontumorous liver in the treated lobe.
To convert the count-rate on the SPECT image to a measure of

activity concentration, a phantom-based calibration correction factor
was calculated of 4 phantom studies as previously described (11).

Briefly, activity concentrations measured on SPECT were divided by

TABLE 2
Baseline Non-HCC Patient Characteristics

Parameter n (%)

Demographics

Number of patients 15 (100)

Age (y), mean ± SD 61.13 ± 11.51

Male/female 9 (60)/6 (40)

Ethnicity

Caucasian 12 (80)

Asian 1 (6.67)

African-American 2 (13.33)

Disease characteristics

Tumor entity

Intrahepatic cholangiocarcinoma 2 (13.33)

Neuroendocrine cancer

metastases

7 (46.67)

Colorectal cancer metastases 3 (20)

Melanoma cancer metastases 1 (6.67)

Prostate cancer metastases 1 (6.67)

Leiomyosarcoma metastases 1 (6.67)

Eastern Cooperative Oncology

Group performance status

0 9 (60)

1 6 (40)

Main portal vein thrombosis 1 (6.67)

Tumor characteristics, median

(interquartile range, range)

Number of tumors/liver 11 (5.5–11, 4–129)

Number of tumors/analyzed

lobe

6 (3.5–6, 1–85)

TTV (cm3)/analyzed lobe 102.01 (67.03–300.89,
14.94–1,868.39)

ETV (cm3)/analyzed lobe 66.66 (19.54–87.79,

0–839.01)

Tumor burden/analyzed

lobe (%)

6.1 (5.59–26.73,

1.53–76.86)

Enhancing tumor burden/

analyzed lobe (%)

4.38 (2.12–5.45,

0–38.25)

Previous treatments

Systemic therapies 10 (66.67)

Resection* 3 (20)

TACE* 1 (6.67)

Ablation* 2 (13.33)

*Pretreated tumors are not included in the analysis.

TABLE 1
Baseline HCC Patient Characteristics

Parameter n (%)

Demographics

Number of patients 23 (100)

Age (y), mean ± SD 62.39 ± 8.62

Male/female 18 (78.26)/5 (21.74)

Ethnicity

Caucasian 18 (78.26)

Asian 1 (4.35)

African-American 4 (17.39)

Disease characteristics

Etiology of cirrhosis

Viral hepatitis 17 (73.91)

Alcohol consumption 4 (17.39)

Nonalcoholic steatohepatitis 2 (8.7)

Eastern Cooperative Oncology

Group performance status

0 11 (47.83)

1 12 (52.17)

Child–Pugh class

A 13 (56.52)

B 10 (43.48)

Barcelona Clinic liver cancer

stage

B 10 (43.45)

C 13 (56.52)

Main portal vein thrombosis 5 (21.74)

Extrahepatic disease 3 (13.04)

Tumor characteristics, median

(interquartile range, range)

Number of tumors/liver 6 (3.5–12, 1–54)

Number of tumors/analyzed

lobe

4 (2–5, 1–11)

TTV (cm3)/analyzed lobe 110.08 (79.82–225.58,
4.13–730.37)

ETV (cm3)/analyzed lobe 62.57 (7.47–112.8,
0–509.95)

Tumor burden (%)/analyzed

lobe

13.05 (5.12–28.78,

0.71–67.56)

Enhancing tumor burden

(%)/analyzed lobe

4.34 (0.83–12.41,

0–57.82)

Previous treatments

Sorafenib 5 (21.74)

Resection* 3 (13.04)

TACE* 11 (47.83)

Ablation* 5 (21.74)

Other 5 (21.74)

*Pretreated tumors are not included in the analysis.
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the true activity concentrations measured at the time of the scan using
an activity meter to obtain the calibration correction factor (Supple-

mental Fig. 1; supplemental materials are available at http://jnm.
snmjournals.org). The 4 results were averaged and multiplied by the

counts within the volume of interest. Eventually, absorbed doses were
calculated using partition modeling (15).

Statistical Analysis

Descriptive results are reported as frequency (n,%), mean6 SD, or

median and range. Further analyses included Pearson correlation, lin-
ear regression, Mann–Whitney U test, and Kaplan–Meier curves. Sta-

tistical analyses were performed using SPSS (IBM Corp., version

24.0) and Prism (version 7.0). A P value of less than 0.05 was con-
sidered statistically significant.

RESULTS

Study Population and Survival Analysis

Detailed characteristics of the patient population are displayed
in Tables 1 and 2. Patients with HCC and non-HCC had a median
survival of 14.4 (1.58–55.76) and 18.97 (1.48–55.07) months after
TARE, respectively. Five patients with HCC and 10 patients with
non-HCC were still alive at the end of follow-up and censored for
Kaplan–Meier analysis.

Imaging Findings

Baseline Imaging Features. The tumor characteristics on base-
line MRI or CT are displayed in Tables 1 and 2. The dominant

tumors measured 5.24 6 2.93 cm and 4.68
6 2.48 cm (P 5 0.445) for HCC and non-
HCC, respectively.
Response Assessment. Follow-up imag-

ing was acquired within a median time of
68 (30–111) and 78 (28–143) days for
HCC and non-HCC, respectively, and was
available after 25 treatments. According to
3D enhancement-based qEASL%, which
was further used for correlation analyses
with TNR, TARE achieved no complete
responses, 0 and 2 (28.57%) partial responses,
17 (94.44%) and 5 (71.43%) stable disease,
and 1 (5.56%) and 0 progressive disease in
HCC and non-HCC, respectively. Accord-
ing to RECIST1.1, there was no complete
response, 2 (11.11%) and 3 (42.86%) par-

tial responses, 15 (83.33%) and 4 (57.14%) stable disease, and
1 (5.56%) and 0 progressive disease in HCC and non-HCC,
respectively.

90Y Distribution on SPECT/CT and Absorbed Dose Calcula-
tions. Patients had a mean 99mTc-MAA LSF of 6.6% 6 4.7%.
The mean administered activity was 1.17 6 0.61 GBq, and the
mean absorbed tumor and healthy liver dose were 52.52 6 31.8
and 39.94 6 22.4 Gy, respectively. The mean 90Y distribution to
the dominant tumors quantified as TNR was 1.47 6 0.42 in HCC
and 1.52 6 0.65 in non-HCC.

Correlation Analyses

Correlation of Baseline Imaging Features with 90Y Distribution
and Survival. The 2-tailed Pearson analysis revealed a significant
correlation between baseline ETV% and 90Y distribution on SPECT
quantified as TNR, showing that more relative enhancement was
associated with higher TNR in patients with HCC (P , 0.001).
The correlation coefficient (r) was 0.759 and R2 was 0.516 in a linear
regression model. In patients with liver cancer other than HCC, the
correlation of baseline ETV% with TNR was not as strong as in HCC
but still statistically significant (P 5 0.039; r 5 0.424; R2 5 0.179)
(Fig. 2). Specifically, a baseline ETV% cutoff of 80% was empirically
identified to provide the most significant separation of TNR values in
HCC (P, 0.001) and non-HCC patients (P5 0.014), demonstrating
higher mean TNR for patients with ETV% of at least 80% (Fig. 3).
As for the remaining baseline tumor characteristics, TTV (P5 0.109
and 0.982), ETV (P 5 0.43 and 0.686), diameter (P 5 0.488 and

0.845), tumor burden (P5 0.498 and 0.125),
and enhancing tumor burden (P5 0.852 and
0.768) did not demonstrate significant corre-
lations with TNR. Of note, survival did not
correlate with baseline ETV% in HCC (P 5
0.088) and non-HCC (P 5 0.172).
Correlation of Baseline Clinical Fea-

tures with 90Y Distribution. To assess the
effect of liver cirrhosis on the 90Y distribu-
tion, Child–Pugh classes were correlated
with TNR. In the present cohort, the mean
TNR of Child–Pugh B patients was signif-
icantly lower than that of Child–Pugh A
patients (P 5 0.021) (Fig. 4). Furthermore,
patients with Child–Pugh B had a signifi-
cantly higher LSF than Child–Pugh A
(P 5 0.049).

FIGURE 2. Correlation of baseline ETV% and 90Y distribution after TARE. This graph demon-

strates that with greater ETV% on baseline imaging, 90Y uptake of tumor measured as TNR

increases in HCC (n 5 34, P , 0.001) (A) as well as non-HCC (n 5 24, P 5 0.039) (B). Intermittent

lines indicate 95% confidence interval.

FIGURE 3. Stratification of 90Y distribution according to tumor enhancement thresholds. Mann–

Whitney-U test reveals 80% baseline ETV% as empirically most significant cutoff value to stratify

patients with HCC (P , 0.001) (A) and non-HCC (P 5 0.014) (B) according to TNR. Graph shows

median, range, and 25th–75th percentiles.
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Correlation of 90Y Distribution with Tumor Response. Further-
more, 90Y distribution was correlated with tumor response avail-
able in a subset of patients (n 5 25). For HCC, a high TNR
correlated with tumor response according to the enhancement-
based volumetric qEASL% criteria (P 5 0.038, R2 5 0.216,
r 5 20.465) (Fig. 5). However, in non-HCC, no correlation was
observed between TNR and tumor response according to qEASL
% (P 5 0.886, R2 5 0.002, r 5 0.044) (Fig. 6).
There was no correlation between TNR and survival in HCC

(P 5 0.526) or non-HCC patients (P 5 0.233).

DISCUSSION

The main finding of this study is the identification of ETV% as
a quantifiable imaging biomarker on preprocedural MRI and CT,
which predicts 90Y distribution as measured on immediate post-
procedural SPECT. Second, this study validated the relationship
between the preferential uptake of 90Y activity to the tumor and
tumor response after TARE in patients with HCC.
Recently, TARE was called into question when published results

from prospective clinical trials comparing TARE with sorafenib as
the standard of care in advanced HCC revealed no difference in

survival between both treatments (16,17). However, patient selec-
tion for TARE in those studies was based mainly on general clinical
evaluations rather than individual tumor characteristics. This re-
flects the currently immature patient selection process in clinical
practice, where TARE is oftentimes performed when patients are
considered ineligible or not responding to other locoregional ther-
apies such as TACE, which underscores the need for personalized
and tumor-specific treatment indications. In this study, the ETV%,
reflecting on pathologic tumor viability and vascularity, was iden-
tified as a noninvasive imaging biomarker and predictor for 90Y
distribution to the tumor after TARE (P , 0.001). Thus, the results
of this study may help refine patient selection criteria for TARE,
consolidating the role of TARE among other intraarterial therapies
and improving treatment outcome with minimized toxicity by de-
termining the patients who are most likely to benefit from TARE
(18).
Previous studies have shown the feasibility and value of quantita-

tive SPECT for the evaluation of the extra- and intrahepatic distri-
bution of 90Y and absorbed dose quantifications after TARE (19).
More recently, several studies investigating hepatic metastases found
CT perfusion imaging and metabolic response assessment using PET
predictive of tumor response early after TARE (20). This study intro-
duces TNR as a quantitative surrogate on SPECT as a readily appli-
cable predictor for enhancement-based tumor response after TARE
in HCC (P 5 0.038). As morphologic changes of the tumors occur
gradually and become measurable on anatomic imaging as late as
2–4 mo after TARE, TNR may thus allow for the evaluation of
treatment efficacy immediately after treatment (21,22). Such imme-
diate feedback can support timely clinical decision making in rapidly
evolving disease processes of liver cancer in a palliative setting.
In addition to ETV% at baseline, the findings of this study sug-

gest that liver cirrhosis represents an additional influencing factor
on intrahepatic 90Y distribution. Liver cirrhosis not only is asso-
ciated with worsened liver function but also causes fundamental
structural changes to the parenchyma, with portal hypertension,
arterioportal, and hepatovenous shunting being frequently encoun-
tered features (23). Such conditions may possibly explain why
patients with Child–Pugh B demonstrated increased rates of non-
target 90Y delivery (P 5 0.021) and higher LSF (P 5 0.049),
while, in parallel, demonstrating decreased uptake in tumors,
when compared with Child–Pugh A. The reduced dose delivered
to the tumor necessarily results in lower response rates while
simultaneously increasing the risk of radiation-induced injury to
nontumorous parenchyma (24,25).

The goal of high and tumor-specific dose
delivery provided the rationale for the de-
velopment of new therapeutic strategies with
TARE (6). Among others, the concept of radi-
ation segmentectomy was introduced, which
represents a possibly curative approach apply-
ing high radiation doses to singular tumors re-
stricted to a single or a few segments (26).
Another approach, called boosted selective in-
ternal radiation therapy, targets patients with
large HCC with or without portal vein throm-
bosis for personalized treatment intensification
that entails increased amounts of administered
90Yactivities (27). Patients were selected on the
basis of their 99mTc-MAA scan, quantifications
of doses to the tumor and liver, and total in-
jected dose. Boosted selective internal radiation

FIGURE 4. Stratification of 90Y distribution according to Child–Pugh

class. HCC patients with Child–Pugh B show significantly decreased

TNR compared with Child–Pugh A (P 5 0.021). Graph shows median,

range, and 25th–75th percentiles.

FIGURE 5. Multimodal image analysis. Postprocessing and analyses included volumetric seg-

mentations of dominant tumors on baseline and follow-up MRI, registration of baseline MRI on

postprocedural SPECT, and tumor response assessment.
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therapy was found to achieve significantly higher tumor doses re-
sulting in improved response rates without compromising patient
safety. Although conducted with glass spheres containing higher
activity per microsphere, this approach proves the potential and
underscores the need for surrogate markers predicting 90Y dis-
tribution to achieve better outcomes after TARE.
Hepatic metastases usually show different contrast uptake

and washout behavior than HCC (28,29). As the vascular density
in metastatic tumors such as colorectal cancer metastases is usually
lower than for HCC, metastases may lack contrast enhancement on
baseline imaging and distinct alterations of contrast uptake dynam-
ics throughout the course of TARE (22,28). In the present cohort,
a high baseline ETV% was predictive of 90Y distribution to the
tumor (P 5 0.039), but 90Y distribution did not correlate with
tumor response (P5 0.886). Thus, ETV% as an imaging biomarker
for tumor-specific 90Y uptake and the dependent tumor response
may be applied only for HCC.
This study had several limitations. This is a retrospective study

with a relatively small sample size and relatively wide range of
imaging intervals. Additionally, tumors of different entities were
included in the non-HCC cohort, with potentially varying phys-
iology and enhancement patterns that may affect the 90Y uptake
behavior and response to TARE.
Finally, as compared with SPECT, PET may generally provide

more advanced quantification techniques and superior spatial reso-
lution (30). However, SPECT is currently still more widely available,
with higher cost efficiency than PET, which provided the ratio-
nale to develop a quantitative SPECT approach in this study (31).

CONCLUSION

This study showed the feasibility and prognostic value of ETV%
as a quantifiable imaging biomarker on preprocedural MRI and
CT, which predicts the relative 90Y distribution on postprocedural
SPECT in HCC and non-HCC. However, the relationship between
the preferential uptake of 90Y to the tumor and tumor response after
TARE could be validated only for HCC. Overall, this study intro-
duces an easily clinically applicable surrogate marker to refine and
personalize patient selection for TARE.
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Supplemental Figure 1 Yttrium-90 (90Y) phantom study. A) A cylinder-shaped phantom was filled 

with saline to mimic the body’s water compartment. B) Four 5 mL syringes containing 90Y 

microspheres of various activity concentrations were scanned sequentially under the same 

conditions and with the same acquisition protocol as clinical patients. C) Calibration Correction 

Factors were calculated for each activity concentration in four phantoms. 
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