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Background: Computational linguistic methodology allows quantification of speech
abnormalities in non-affective psychosis. For this patient group, incoherent speech has
long been described as a symptom of formal thought disorder. Our study is an
interdisciplinary attempt at developing a model of incoherence in non-affective
psychosis, informed by computational linguistic methodology as well as psychiatric
research, which both conceptualize incoherence as associative loosening. The primary
aim of this pilot study was methodological: to validate the model against clinical data and
reduce bias in automated coherence analysis.

Methods: Speech samples were obtained from patients with a diagnosis of
schizophrenia or schizoaffective disorder, who were divided into two groups of n = 20
subjects each, based on different clinical ratings of positive formal thought disorder, and n =
20 healthy control subjects.

Results: Coherence metrics that were automatically derived from interview transcripts
significantly predicted clinical ratings of thought disorder. Significant results from
multinomial regression analysis revealed that group membership (controls vs. patients
with vs. without formal thought disorder) could be predicted based on automated
coherence analysis when bias was considered. Further improvement of the regression
model was reached by including variables that psychiatric research has shown to inform
clinical diagnostics of positive formal thought disorder.

Conclusions: Automated coherence analysis may capture different features of
incoherent speech than clinical ratings of formal thought disorder. Models of
incoherence in non-affective psychosis should include automatically derived coherence
metrics as well as lexical and syntactic features that influence the comprehensibility of
speech.
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INTRODUCTION

Speech impairments in non-affective psychosis (NAP) can
impede communication up to “discourse failure” (1).
Impairments comprise difficulties with structural aspects (2–4),
the pragmatic use of language (5, 6) as well as cohesion (7–10)
and semantic coherence (11–15). Incoherence is a particularly
impairing symptom of schizophrenia (16–18). Clinicians usually
evaluate incoherent speech by relying on standardized rating
scales [e.g. (19)].

The linguistic definition of coherence regards the deeper
semantic meaning of speech (often modeled through so-called
coherence relations holding among the propositions being
expressed) – in contrast to cohesion, which is an aspect of the
text surface [(20), p. 25]. Cohesive markers establish syntactic
connections between text parts (temporal, causal, referential, etc.)
which can still lack semantic coherence, i.e. meaningfulness [(20),
p. 33]. The following example contains patient’s speech that is partially
incoherent, but still relatively rich of cohesive markers (in italics):
Fronti
“When you are under tension, then you cannot feel joy.
When you are relaxed, when the tension somehow …
then you can feel joy. And to that effect, that I am
under tension, I cannot feel joy that you, namely, look
stupid. Therefore, I already have conned you. I, do you
seriously want to tell me? So, joy.”
The conceptualization of incoherent speech by Andreasen
(19) is very influential in clinical psychiatric research. She
describes incoherent speech as one sign of formal thought
disorder (FTD), which can occur in numerous mental
disorders, albeit predominantly in psychosis (21–23). The Scale
for the Assessment of Positive Symptoms (SAPS) defines
incoherent speech as loss of associations within sentences,
which can result in incomprehensible “schizophasia” or “word
salad” (17). Andreasen (19) connects incoherence to other
manifestations of positive FTD such as tangentiality (i.e.
irrelevant responses to questions), derailment (i.e. loss of
associations between larger units of speech), illogical, and
indirect speech. Incoherent speech is not present in all NAP
patients (18, 24) and can vary depending on the stage of illness
and the presence and severity of other symptoms (21, 25, 26).

Ditman and Kuperberg (16) link incoherent speech in NAP to
problems in “integrating meaning across clauses” (p. 7) that can
lead to a lower similarity in meaning between sentences. This
idea invites for automated coherence analysis in computational
linguistics because it models coherence as a similarity or overlap
between concepts – a speaker is expected to adhere to an
established topic to a certain degree at any given stage of the
conversation to be considered coherent. Thus, computational
linguistics and psychiatry both define incoherent discourse as a
decreased semantic similarity between discourse units. Latent
Semantic Analysis [LSA; (27)] was the first automated coherence
measure used in schizophrenia research (11, 12) (see Ratana,
Sharifzadeh, Krishnan, and Pang (28) for a review of automated
speech analysis in NAP). Elvevåg et al. (11) were able to
ers in Psychiatry | www.frontiersin.org 2
differentiate NAP patients from controls based on LSA scores
and reported significant correlations between LSA scores and
ratings of formal thought disorder. For the analysis of free speech,
Elvevåg et al. (11) focused on tangentiality rather than incoherence,
measuring similarity between question and response. Bedi et al.
(12) were able to predict psychosis development in high-risk
individuals with a model that defines coherence as semantic
similarity between pairs of adjacent sentences. The LSA-based
coherence measure combined with syntactic markers (maximum
phrase length, use of determiners) was superior to clinical ratings
indicating that automatically derived coherence metrics may
represent a highly sensitive measure to detect even sub-clinical
incoherence. This was supported by Corcoran et al. (15) who were
similarly able to predict psychosis onset in high-risk individuals by
combining automatically derived coherence measures with
syntactic markers like possessive pronouns. Iter et al. (13)
recently improved LSA-based models (11, 12) by preprocessing
their data set, filtering stop words and fillers and using modern
word and sentence embeddings that were shown to outperform
LSA (29, 30). Word embeddings were also used by Rezaii, Walker,
and Wolff (31) who were able to predict psychosis onset in high-
risk individuals based on word embeddings and participants’
choice of words, and Bar et al. (32) who found that NAP
patients adhered less to a topic throughout a conversation than
controls. Word embeddings such as Global Vectors for Word
Representation [GloVe; (33)] create a vector space based on a large
number of texts. In this space, each word is assigned a
corresponding vector, and proximity between word vectors
represents semantic similarity. Thus, like LSA, GloVe also uses
global cooccurrence counts. However, in contrast to LSA, GloVe
uses weighted cooccurrences, i.e. vectors can be scaled according to
the informativity of the corresponding words using a range of
weighting schemes such as Term Frequency-Inverse Document
Frequency [TF-IDF; (34)]. Sentence embeddings are represented
by the mean vector of their underlying word embeddings. Semantic
similarity is defined as “the cosine of the angle […] between two
vectors […], with greater cosine values indicating greater degrees of
similarity” (11).

In a preliminary study (14), models of coherence by Elvevåg et al.
(11) and Bedi et al. (12), with improvements by Iter et al. (13), were
transferred to German language and applied to a NAP patient
sample. The Incoherence Model by Bedi et al. (12), i.e. a measure of
coherence based on semantic similarity between adjacent sentences,
combined with GloVe and the TF-IDF embeddings yielded
significant group differences: lower automatically derived
coherence metrics were found for patients with positive FTD than
for those without positive FTD, and automatically derived
coherence metrics of healthy controls (HC) were higher than
those of patients (14). However, potential bias in the model and
potential relationships between incoherence and other relevant
variables (referential abnormalities, neologisms) had to be discussed.

The present methodological study aims to 1) further validate
the Incoherence Model against clinical data, to 2) address bias in
the model, and to 3) improve its predictive value. For the second
goal, we consider that measuring incoherence in NAP via
concept overlap can be biased by exclusion of relevant words
August 2020 | Volume 11 | Article 846
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that do not appear in the reference corpus, such as neologisms,
and by perseveration. Perseveration presents a problem as
automated coherence analysis is based on the similarity
between sets of keywords, without actually accounting for
whether the speech is intelligible, and is therefore especially
sensitive to bias by inadequate repetition (13). For the third goal,
we address that clinical ratings of incoherent discourse may not
only be informed by concept similarity but also by
comprehensibility of discourse. We therefore introduce
additional measures by taking into consideration that
comprehensibility of NAP patients’ utterances has been shown
to be impaired by abnormal use of referents (1, 16, 35–37) and
neologisms (38). Moreover, we analyze the cohesive structure of
speech, which is a necessary, albeit not sufficient characteristic of
coherent speech (20, 35) and has been shown to improve
coherence analysis (12).

In summary, this pilot study aims to examine the
following hypotheses:

1. Automatically derived coherence metrics match clinical
ratings of positive formal thought disorder.

2. Group membership (healthy controls, patients with/without
positive FTD) is predicted by automatically derived coherence
metrics when bias by inadequate repetition is controlled for.
Frontiers in Psychiatry | www.frontiersin.org 3
3. Modeling disordered thought in NAP can be improved by
integrating other quantifiable coherence measures like a)
abnormal use of referential markers, b) number of
neologisms, and c) syntactic markers of cohesion.
MATERIALS AND METHODS

Participants
N = 60 participants were included (see Table 1 for characteristics of
the sample), which is comparable to sample sizes in prior research
dealing with automated speech analysis in NAP samples (11–13,
31). n = 12 were patients from the Psychiatric University Clinic at St.
Hedwig Hospital Berlin and n = 28 patients were recruited from the
pool of participants in the MPP-S study (clinical trials ID:
NCT02576613). Participants were: (1) inpatients (n = 7) or
outpatients (n = 33) with a diagnosis of schizophrenia (n = 33) or
schizoaffective disorder (n = 7) according to Diagnostic and
Statistical Manual of Mental Disorders, Fourth Edition, Text
Revision (DSM-IV-TR), confirmed by trained clinicians; (2)
showed native proficiency in German language; (3) had no
organic mental disorder or relevant severe somatic disease; (4) no
active substance dependence. Healthy control subjects (n = 20) were
recruited from the local community and screened by experienced
TABLE 1 | Characteristics of the sample.

NAP with positive FTD
(n = 20)

NAP without positive FTD
(n = 20)

HC
(n = 20)

Statistics p-value

Age (years) 45.7 (11.91) † 41.9 (10.87) 43.9 (13.29) F a = .5 .61
Sex (male) n = 15 n = 7 n = 11 c² b = 6.47 .04
Verbal IQ 103.6 (14.86) 106.1 (12.61) 103.25 (7.62) Welch’s F c = .37 .69
Inpatients n = 7 n = 0 c² d = 8.49 .004
F20.0 n = 16 n = 17 c² = .17 .68
F25.0 n = 4 n = 3 c² = .17 .68
Antipsychotic medication n = 18 n = 20 c² = 2.11 .15
CGI 5.2 (1.36) 3.65 (1.31) t e = −3.67 .001
Duration of illness (years) 17.25 (12.03) 14.35 (9.91) t = -.83 .41
SAPS
positive FTD 2.8 (.7) .35 (.59) t = −12.03 <.001

Incoherence 1.4 (1.55) .05 (.22) t = −4.25 <.001
Tangentiality 2.6 (.82) .05 (.22) t = −13.41 <.001
Derailment 2.25 (1.29) .15 (.67) t = −6.45 <.001
Illogicality 1.5 (1.54) .05 (.22) t = −4.17 <.001
Circumstantiality 1.7 (1.66) .55 (.89) t = −2.74 .009
Pressured speech 2.15 (1.6) .4 (.88) t = −4.29 <.001
Distractibility 1.25 (1.29) .1 (.45) t = −3.76 .001
Clanging .6 (1.0) 0 t = −2.7 .01

Hallucinations 1.6 (1.67) 1.0 (1.49) t = −1.2 .24
Delusions 2.6 (1.23) .7 (1.03) t = −5.29 <.001
Bizarre Behavior 1.3 (1.26) .05 (.22) t = −4.37 <.001
Inappropriate Affect .85 (1.23) .05 (.22) t = −2.87 .009

SANS –

Flat Affect 1.55 (1.54) 1.3 (1.13) t = -.59 .56
Alogia 1.0 (1.38) .85 (1.09) t = -.38 .7
Avolition/apathy 1.95 (1.47) 1.55 (1.47) t = -.86 .39
Anhedonia/asociality 2.6 (1.31) 1.95 (1.47) t = −1.48 .15
Attention .95 (1.13) .15 (.67) t = −2.66 .012
Aug
ust 2020 | Volume 11 | Ar
†Mean (SD); group comparisons between healthy controls (HC) and patients with non-affective psychoses (NAP) with and without formal thought disorder (FTD): aANOVA; bc²-test;
cWelch’s ANOVA; group comparisons between patients with and without FTD: dc²-test; et-test for independent samples. CGI: Clinical Global Impression; SANS, Scale for the Assessment
of Negative Symptoms; SAPS, Scale for the Assessment of Positive Symptoms.
ticle 846

https://www.frontiersin.org/journals/psychiatry
http://www.frontiersin.org/
https://www.frontiersin.org/journals/psychiatry#articles


Just et al. Modeling Incoherent Discourse in NAP
clinicians with the Mini-International Neuropsychiatric Interview
(M.I.N.I.) (39). Half of all participants were also included in a
preliminary study (14). All participants provided written informed
consent. The study was approved by the local ethics’ committee.

Measures
Narrative of Emotions Task (NET)
Speech samples for automated analysis were obtained by trained
clinicians with a short semi-structured interview, the Narrative
of Emotions Task (NET) (40). It includes three questions about
four emotions: sadness, fear, anger, and happiness: (1) What
does this emotion mean to you? (2) Describe a situation where
you felt this emotion. (3) Why do you think you felt this emotion
in this situation? The interview is designed to prompt participants
to define this range of simple emotions to “assess the richness and
coherence with which one explains emotional and social events”
(40). Semi-structured interviews have already been used in studies
on automated speech analysis in NAP (10, 11). The structured
format allows direct comparison between subjects and open
questions generate larger samples of free speech. All NET
interviews were conducted in German and recorded. They were
manually transcribed by the first and third author.

Psychopathology
Psychopathology was rated by trained clinicians in the course of
a diagnostic interview, using the Scale for the Assessment of
Negative Symptoms (SANS) (41) and the Scale for the
Assessment of Positive Symptoms (SAPS) (19). Both scales
have good psychometric properties and have frequently been
used in schizophrenia research (42, 43). The patient sample was
divided into two groups based on SAPS ratings: the group with
positive FTD was defined by SAPS ratings of at least mild (≥ 2)
global positive FTD and at least mild incoherence or tangentiality
(≥ 2), as those appeared to be most relevant for incoherence analysis.

Severity of Illness
The Clinical Global Impression – Severity Scale (CGI) (44)
allows trained clinicians to assess the severity of a patient’s
illness on a scale from 1 (not at all ill) to 7 (extremely severely ill).

Verbal Intelligence
“Crystallized” verbal intelligence was assessed with a German
vocabulary test, the Wortschatztest (WST) which is often used to
estimate the premorbid intelligence level (45), since intelligence
Frontiers in Psychiatry | www.frontiersin.org 4
has been shown to be correlated with narrative abilities in former
research (46, 47).

Data Analysis
Preparation of Data
The data set consisted of 513 min of 60 recorded NET interviews
(see Table 2). Interview length ranged between 3 and 22 min,
with an average length of 8.5 min. The interviewer’s speech was
left out for complex analysis since it can be reduced to the
questions mentioned above. After cleaning transcripts of the
interviewer’s speech, the raw data set consisted of 46,375 words,
ranging from 134 to 2,644 words, with an average of 772.92
words per participant. Examples for raw data are shown in
Figure 1A. For the coherence models, verbal fillers and
sentences only containing stop words were excluded from
analysis because they can bias coherence measures (13). An
example of this is shown in Figure 1B. Words not appearing in
the reference corpus for the GloVe model were discarded for this
model. Unknown words were saved for later examination,
especially for the detection of neologisms. The GloVe model
was provided by deepset (48) as open source who trained the
model on a German Wikipedia dump.
Automated Coherence Analysis
The shift from a taxonomical view on word meaning to one that
emphasizes distributional similarities between words has proved
to be one of the most fruitful developments of the last decade in
natural language processing. Under this perspective, the meaning
of a word is captured by the contexts within which it appears.
GloVe (33) represents a widely used and effective way to learn
semantic representations of words in the form of real-valued and
relatively low-dimensional vectors from large amounts of text,
called embeddings. The great advantage of such models in
comparison to taxonomic resources or high-dimensional,
sparse, and orthogonal vector encodings lies in the fact that
they provide a natural notion of word similarity. Embeddings of
words that appear in similar contexts will not only share some
aspect of their meaning but also have vectors that cluster
together. The distance between two vectors can hence be
interpreted as a measure of the semantic similarity of the words
they represent.

Figure 1 illustrates the steps in coherence analysis. After
preprocessing Figure 1(B), each word is assigned a corresponding
vector in the GloVe model Figure 1(C). Let S be a sentence of
length n and w the embedding of some word.
TABLE 2 | Data set.

Word count Total (N = 60) NAP with positive FTD (n = 20) NAP without positive FTD (n = 20) HC (n = 20) Fa p-value

Raw data 46,375772.92 (493.94)† 18,011900.55 (542.81) 10,788539.4 (360.12) 17,576878.8 (496.92) 3.67 .03
GloVe 42,757712.62 (462.57) 16,624831.2 (504.34) 9,772488.6 (331.7) 16,361818.05 (469.81) 3.86 .03
August 2020 | Volume
 11 | Ar
†Mean (SD); aANOVA; group comparisons of healthy controls (HC) and patients with non-affective psychoses (NAP) with and without formal thought disorder (FTD); GloVe data set:
transcripts cleaned of sentences only containing stop words, fillers, unknown words.
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S = w1,w2,w3, :::wnf g
Following the weighting scheme Term Frequency-Inverse

Document Frequency [TF-IDF; (34)], to mitigate the influence
of very frequent but semantically poor words, such as articles or
prepositions, we scale every word embedding by the ratio of the
appearance of their corresponding word in the sentence of
interest to the number of documents within a large reference
corpus that contain it1. For this purpose, we used a lemmatized
dump of Wikipedia (2011). Lemmatization aims “to remove
inflectional endings only and to return the base or dictionary
form of a word, which is known as the lemma” [p. 32, (49)]. This
sharpens the resulting statistic as different morphological forms
of one and the same word are all mapped to their respective
lemmas. The resulting scalar for very common words will thus be
very small, while very uncommon words will be scaled by a
number somewhat closer to their actual number of appearances
within the sentence under consideration, as shown in Figure 1D.
We then derive embeddings from entire sentences by using the
mean vector of its word embeddings Figure 1(E).

Let ai be the weight by which wi is scaled. The corresponding
sentence embedding Sv is then computed as follows:

Sv =
1
no

n

i=1
wiai
1In order to prevent artifacts of the reference corpus, such as e.g. misspellings, to
accidentally influence the derived weights, we required a word to have appeared in
at least two documents for it to be included in the statistics informing the TF-IDF-
measure. The highest possible weight thus is the number of appearances of a word
within the sentence under consideration divided by two.

Frontiers in Psychiatry | www.frontiersin.org 5
Our coherence analysis largely follows the Incoherence Model
by (12). We take the mean cosine similarity between adjacent
sentence embeddings to be a measure of the overall coherence of
the entire text. The cosine similarity (represented by the angle in
Figure 1F) between two vectors A and B is defined by their dot
product over the product of their respective magnitudes.

sim =
A · B
Ak k Bk k = on

i=1AiBiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
on

i=1A
2
i

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
on

i=1B
2
i

p

Given a text T consisting of a sequence of n sentences S and
Svi representing the sentence embedding of the ith sentence in T,
the overall coherence score is computed as follows:

Coherence Tð Þ = 1
n − 1o

n−1

i=1
sim Svi, Svi+1ð Þ

Repetitions
We developed a script to approximate the problem of bias by
perseveration in NAP via controlling for inadequate repetition. It
was necessary to differentiate adequate from inadequate
repetitions because adequate repetitions, e.g. for emphasis,
increase coherence. The script counted repetitions of emotion
keywords in responses to question one of the NET interview,
where participants were asked to define emotions. The idea
behind this approach was that it is, for example, necessary and
coherent to use the word “fear” a few times when one is asked to
define that emotion. However, a relatively high frequency of
emotion keywords was assumed to represent a semantically poor,
tautological, and thus inadequate repetition (e.g. “fear is fear is
fear”). Thus, a high number of repetitions may represent a failure
A B

D E F

C

FIGURE 1 | Steps of coherence analysis. Raw data, represented here by three sentences from a transcript (A), is preprocessed by filtering sentences only
containing stop words and verbal fillers (B). The meaning of each word is represented as a vector in a semantic space by the GloVe model (C). TF-IDF allows scaling
vectors according to their respective semantic contribution (D). Sentence embeddings are calculated as the mean vector of its word embeddings (E). Cosine
similarity between adjacent sentences is taken as a measure for level of coherence between them (F).
August 2020 | Volume 11 | Article 846
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to develop a more complex and coherent conceptualization of
emotion that requires diverging from literal words for emotions
(50). Numbers were normalized for word count.

Referential Abnormalities
Evaluation of referential abnormalities was based on manual
annotation of ambiguous use of pronouns and names
throughout the interview transcripts. In contrast to Iter et al.
(13), we refrained from using automated coreference resolution
which appeared to be relatively error-prone. Both pronouns and
names were marked when it remained unclear whom they
referred to, as in the following example from a patient’s
interview (ambiguous referents in italics):
Fronti
“For example, we want to do something too often, you
know, so when he becomes sick from that, you know?
Maybe you get little or a little more, like with panic, but
so. He always says it like that.”
This measure allowed for determining the relative frequency
of ambiguous referents per interview.

Neologisms
It is worth examining words that were not assigned vectors in the
GloVe model. These can either be uncommon or quite specific
words (e.g. exacerbation) or neologisms that are more or less
intelligible and might impede coherence (e.g. “Rotwut”: “red-
rage”; “Leichendurchschauer”: “somebody-who-looks-through-
bodies”, presumably for coroner). Thus, unknown words in the
GloVe model were screened for neologisms. The mean
percentage of words that were characterized as neologisms was
calculated per transcript.

LIWC
The Linguistic Inquiry Word Count [LIWC; (51)] automatically
assesses the relative frequency of certain syntactic features of a text
by comparing every single word of a text to a dictionary and
mapping it to one or more pre-defined categories. We used the
German DE-LIWC2015 dictionary by Meier et al. (52) that
ers in Psychiatry | www.frontiersin.org 6
comprises more than 18,000 words and more than 80 categories.
Following former psycholinguistic research (53, 54), we focused on
LIWC categories conjunctions, common adverbs, causation,
differentiation, and focus on past, present, or future that were
connected to additive, temporal and causal markers of cohesion,
i.e. “connectives” [p. 198, (53)] that establish relationships between
different text parts. LIWC was applied to the raw data set and
calculated the percentage of words per transcript in these pre-
defined categories. Only categories that differed significantly
between groups were included in further analysis (Table 3), i.e.
differentiation cohesive markers (if, when, but, although, etc.).
Statistics
Statistical analysis was performed using PASW Statistics (version
18.0; SPSS Inc., Chicago, USA). Differences between all three groups
were assessed using univariate analysis of variance (ANOVA) or
Welch’s ANOVA, depending on the homogeneity of variances.
Analyses of differences between the two patient groups were t-tests
or c²-tests, depending on the level of measurement. For all analyses,
the significance level was set at p < 0.05. Linear regression analysis
was used to predict clinical ratings of FTD with automatically
derived coherence metrics. Assumptions for the analysis were met:
Homoscedasticity of residuals was given, as shown by the
scatterplot of residuals, and a Kolmogorov-Smirnov test indicated
normality of residuals (D = .112, p = .2). Multinomial logistic
regression analysis was conducted to test whether coherence
measures could predict group membership of participants and to
calculate odds ratios (OR) for coherence measures. The healthy
controls group was used as the reference category. Variance
inflation factors indicated that multicollinearity of z-standardized
predictor variables was likely not an issue (VIF 1.09–1.48). Three
separate analyses were performed across all three groups, first
entering automatically derived coherence metrics as a predictor
variable, second automatically derived coherence metrics, and
repetitions as predictor variables and their interaction term
ACM*repetition. The third, full model was further supplemented
with variables that were first, theoretically associated with coherence
in NAP [see 2.4. (4–6)], and second, significantly differed between
TABLE 3 | Coherence markers, bias and syntactic features: z-standardized independent variables.

NAP with positive FTD NAP without positive FTD HC Statistics p-value

ACM −.41 (.89) † .2 (1.2) .22 (.77) F a = 2.73 .07
Repetitions −.32 (.89) .52 (1.11) −.2 (.8) F = 4.63 .01
Ambiguous referents .56 (1.51) −.2 (.51) −.36 (.25) Welch’s F b = 4.11 .03
Neologisms .59 (1.38) −.1 (.72) −.49 (.23) Welch’s F = 8.2 .002
LIWC
Differentiation −.42 (.95) .02 (1.08) .41 (.82) F = 3.8 .03
Common adverbs −.09 (1.05) −.18 (.94) .27 (1.0) F = 1.12 .33
Conjunctions −.33 (1.05) −.01 (1.12) .34 (.73) F = 2.34 .11
Causation −.05 (.85) .19 (1.28) −.15 (.82) F = .6 .55
Focus past .13 (.98) .24 (.94) −.37 (1.01) F = 2.24 .12
Focus present −.22 (.98) .13 (1.03) .1 (1.0) F = .75 .48
Focus future .04 (.8) −.07 (1.32) .04 (.84) Welch’s F = .06 .95
A
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†Mean (SD); aANOVA; bWelch’s ANOVA; group comparisons of healthy controls (HC) and patients with non-affective psychoses (NAP) with and without formal thought disorder (FTD);
ACM, automatically derived coherence metrics; LIWC, Linguistic Inquiry Word Count.
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groups (see Table 3): differentiating markers of cohesion (LIWC),
referential abnormalities, and neologisms.
RESULTS

Sample Characteristics
Patients andHC did not differ significantly regarding age and verbal
IQ. Patients with and without signs of positive FTD did not differ
significantly regarding diagnosis, duration of illness, or current
medication. Patients with positive FTD were more often male,
inpatients, and rated to be overall more severely ill than those
without positive FTD. Patients with positive FTD also had higher
ratings for various other symptoms than patients without ratings of
positive FTD (Table 1). None of the sample characteristics that
differed significantly between groups – i.e. differences in sex, patient
status, overall severity of illness as well as severity of symptoms
other than positive FTD – were significantly associated with
differences in automatically derived coherence metrics.

NET Interviews
Table 2 shows that interview length and word count differed
significantly between groups: Patients with positive FTD had
longer interviews and used more words than healthy controls.
Patients without positive FTD had shorter interviews and used
fewer words than healthy controls. This difference persisted after
Frontiers in Psychiatry | www.frontiersin.org 7
cleaning transcripts of unknown words (i.e. words that were not
assigned vectors in the GloVe model), verbal fillers, and
sentences only containing stop words. The number of removed
words did not differ significantly between groups.
Coherence Analysis
Predicting Clinical Ratings With Automatically
Derived Coherence Metrics
Coherence metrics from automatic coherence analysis significantly
predicted clinical ratings of positive FTD in NAP patients (b = -.35,
95% CI [-.6, -.04], p = .028) in a linear regression model. 9.8% of
the variance in clinical ratings was explained by automatically
derived coherence metrics (F = 5.23, p = .028). As illustrated in
Figure 2, automatically derived coherence metrics appeared to be
lower for patients with ratings of positive FTD and higher for those
without ratings of positive FTD. Results did not change when
excluding the outlier value in the group without positive FTD.
Predicting Group Membership With Automatically
Derived Coherence Metrics
Table 4 summarizes the results of the multinomial logistic
regression analysis while Table 5 shows the model fitting criteria
and tests of significance. The first model, which only included
automatically derived coherence metrics as an independent variable,
was not significant, while the second model obtained a significant
FIGURE 2 | Linear regression between z-standardized values of automatically derived coherence metrics and clinical SAPS ratings of positive FTD. Trend line b
depicted with 95% confidence bands.
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improvement over the intercept-only model. Automatically derived
coherence metrics significantly predicted group membership for
patients with positive FTD as compared to healthy controls, while
inadequate repetitions significantly predicted groupmembership for
patients without positive FTD as compared to healthy controls. The
interaction effect of the independent variables was non-significant.
Model 2 correctly classified 25% of healthy controls, 60% of patients
with positive FTD, and 50% of patients without positive FTD.
Full Multinomial Logistic Regression Model
As shown in Table 5, testing the third full model versus an
intercept-only model was statistically significant. The model
correctly classified 75% of healthy controls, 70% of NAP
patients with positive FTD, and 50% of NAP patients without
positive FTD. All predictor variables except automatically
derived coherence metrics were significant in classifying patients
with positive FTD as compared to healthy controls. In the patient
group with positive FTD, the probability of LIWC cohesive
differentiation markers was lower as compared to healthy
controls, while the use of neologisms and ambiguous referents
was more likely to be found among patients with positive FTD as
compared to healthy controls. Table 4 also reveals that high
numbers of, i.e. inadequate, repetitions significantly predicted
membership in the patient group without positive FTD as
Frontiers in Psychiatry | www.frontiersin.org 8
compared to healthy controls, which was not the case for
patients with positive FTD. As shown in Table 5, Model 3
received a lower Akaike Information Criteria (AIC) score than
the other two models indicating the best model fit.
DISCUSSION

This pilot study tested a computational linguistic approach to
modeling coherence in the free speech of patients with non-
affective psychosis. Modeling of coherence followed the
Incoherence model by Bedi et al. (12), and used TF-IDF sentence
embeddings and GloVe word embeddings. Results from linear
regression analysis seem to support Hypothesis 1 that
automatically derived coherence metrics match clinical ratings of
positive FTD: NAP patients with higher ratings of positive FTD
displayed lower automatically derived coherence metrics. These
results agree with findings in our preliminary study (14) and
former research in this field (11, 13). The small percentage of
explained variance in clinical ratings of positive FTD indicates that
automatically derived coherence metrics may not be sufficient in
predicting incoherence in NAP patients. This is also suggested by
insufficient prediction of Model 1 in multinomial logistic
regression analysis which only included automatically derived
coherence metrics as the independent variable.

Hypothesis 2 postulated an improved prediction of group
membership by automatically derived coherence metrics when
controlling for bias by inadequate repetition. We therefore
integrated an automated assessment of inadequate repetition of
emotion keywords to regression model 2, which was significant.
Results indicated that automatically derived coherence metrics,
not repetitions, predicted group membership in the patient sample
with positive FTD, while the reverse pattern was found for the
patient sample without positive FTD: repetitions predicted status
as a patient, while coherence metrics appeared similar to healthy
TABLE 5 | Model evaluation for the multinomial logistic regression analysis.

Model fitting criteria Likelihood ratio tests

AIC Nagelkerke R2 c² p

Model 1 134.025 .104 5.808 .055
Model 2 130.936 .276 16.897 .010
Model 3 112.867 .575 42.966 .000
AIC, Akaike Information Criteria.
TABLE 4 | Prediction of group membership: results of three multinomial logistic regression analysis models.

NAP patients without positive FTD NAP patients with positive FTD

b SE p OR [95% CI] b SE p OR [95% CI]

Model 1
Constant .004 .323 .990 −.089 .339 .792
ACM −.020 .318 .950 .980 [.526–1.828] −.769 .382 .044 .464 [.219–.979]

Model 2
Constant −.167 .369 .651 −.148 .370 .690
ACM .031 .353 .930 1.032 [.517–2.058] −.946 .434 .029 .388 [.166–.909]
Repetitions .938 .418 .025 2.555 [1.126–5.799] −.227 .418 .588 .797 [.351–1.809]
ACM*Rep −.520 .425 .221 .594 [.258–1.367] −.406 .417 .330 .666 [.294–1.508]

Model 3
Constant 1.124 .763 .141 .918 .773 .235
ACM .230 .378 .543 1.259 [.599–2.642] −.235 .522 .653 .791 [.284–2.200]
Repetitions .852 .422 .044 2.345 [1.025–5.367] −.493 .530 .353 .611 [.216–1.728]
Neologisms 2.152 1.22 .078 8.603 [.787–94.053] 2.658 1.25 .033 14.27 1.239–164.27]
Ambig. ref. 1.318 1.01 .192 3.737 [.516–27.069] 2.485 1.04 .017 12.00 [1.560–92.238]
Differentiat. −.282 .398 .479 .754 [.346–1.644] −1.14 .514 .026 .319 [.116–.872]
Au
gust 2020 | Vo
The reference category is healthy controls.
ACM, automatically derived coherence metrics; FTD, formal thought disorder; NAP, non-affective psychosis.
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2 Since von Schlegel (55), languages are located along a continuum of
morphological complexity. German is of a more synthetic type than English,
which lies closer to the analytical end of the spectrum. This notion reflects that
German exhibits more inflectional morphology, such as e.g. case-marking suffixes,
than English, which predominantly uses positional means or prepositions to mark
case. Semantically rich words (nouns, verbs, adjectives) hence encompass larger
sets of surface forms in the German than the English training data.
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controls. In other words, patients without FTD seemed to hold on
to the literal repetition of the concept at hand, while thought-
disordered patients derailed from the conversation topic and
jumped to semantically more distant associations. One possible
explanation could be that verbal perseveration, e.g. as a catatonic
symptom, indicates associative restraint rather than associative
loosening, and is not included in SAPS criteria for FTD. Moreover,
repetitions might suggest a failure to change mental sets flexibly,
and may hence indicate executive dysfunction, which might be
even more prominent in patients without striking positive
symptoms (55–57). Results show that, on the one hand,
including repetitions in automated coherence analysis improved
prediction. On the other hand, due to non-significant interaction
effects, automatically derived coherence metrics did not seem to be
overestimated by repetitions. However, our measure of repetitions
can only serve as an approximation of perseveration in a closely
specified context, probably missing other causes of inadequate
repetition. Future studies with more complete automated
measures of perseveration may find significant interaction effects.

We found support for Hypothesis 3 that modeling disordered
thought can be improved by integrating other quantifiable
coherence measures: classification of groups was improved in
the full multinomial logistic regression model. Interestingly, when
additional FTD measures like referential abnormalities, neologisms,
and cohesive markers were included as predictors, automatically
derived coherence metrics were no longer a significant predictor of
diagnostic status (Model 3). One possible explanation could be that
disordered thought (based on clinical ratings of global positive FTD
and incoherence or tangentiality) was better predicted by referential
abnormalities, cohesion markers, and neologisms because they were
associated with the listener’s subjective impression of “incoherent”
speech. Ambiguous referents and neologisms may lead to
unintelligibility for the listener, which in turn biases their clinical
rating of associative loosening. In contrast, the mere occurrence of
remote semantic relations in the patients’ speech, represented by
lower automatically derived coherence metrics, could still be
tolerated by trained clinicians and not perceived as overly
confusing. Therefore, linguistic incoherence alone might not be
the decisive criterion for clinical ratings of FTD. This signals
different conceptualizations of coherence – either as a “product of
psychological representations” [(53), p. 193f.] formed by the listener
or as an inherent feature of the text. This may hint at the potentially
unique contribution of automatically derived coherence metrics to
clinical research. They aim to represent impairments in coherence
inherent in the speaker’s speech and thus, capture characteristics of
incoherent discourse that might not be detectable by clinicians. This
may explain why Bedi et al. (12) and Corcoran et al. (15) found
automatically derived coherence metrics superior to clinical
impression in the prediction of psychosis development in high-
risk individuals, who do not show obvious neologisms or referential
abnormalities. Thus, our results call for further research in
sub-clinical samples to corroborate the value of automated
coherence analysis.

Alternative FTD measures that markedly improved the full
multinomial logistic regression model were referential
abnormalities, neologisms, and LIWC cohesive differentiating
Frontiers in Psychiatry | www.frontiersin.org 9
markers (if, when, but, although, etc.). The fact that referential
abnormalities were more likely in the thought-disordered patient
sample than in the other two groups is in line with findings by
Docherty, Cohen, Nienow, Dinzeo, and Dangelmaier (58),
Docherty (59), and Rochester and Martin (1). According to the
latter authors, referential abnormalities might emerge when
patients fail to perpetuate meaning across sentences, i.e. to
maintain semantic coherence. Neologisms can result from
reduced adherence to pragmatic rules resulting in violation of
conventional word usage (60). A higher probability of
neologisms for patients with high ratings of positive FTD can
be a sign of incoherent “schizophasia” (38). Also, LIWC cohesive
differentiating markers predicted patient status. It should be
noted that other LIWC categories linked to cohesion did not
differ significantly between groups, i.e. syntactic cohesion seemed
to be relatively intact in the patient sample. One could argue that
the LIWC category differentiation represents a relatively complex
relation between discourse units where opposing concepts and
their association need to be maintained concurrently. Thus, one
could speculate that it was more error-prone than other relations.

One limitation of this pilot study is the representational
quality of the trained model. Our model was trained on the
German version of Wikipedia and may be inferior to models
trained in English [see (11–13)]. In Iter et al. (13) for instance,
who trained their models on the respective English Wikipedia
dump, training data nearly triples German training data. Since
German models need to generalize over a wider morphological
spread, there is an even greater need for larger amounts of
training data2. Moreover, especially multinomial logistic
regression results should be carefully interpreted due to the
relatively small sample size and require replication. Large
confidence intervals of odds ratios (Table 4) indicate the
uncertainty of analysis. We therefore conducted a post-hoc
power analysis for the linear regression analysis and ANOVA
for ACM–our most relevant predictor (power of ANOVAs for
other predictors was larger than .80). While the power analysis
for linear regression was sufficient (power of linear regression:
0.862, effect size f²: 0.127), power for ANOVA (ACM) was small
with 0.586, effect size f: 0.325. If expecting an effect of .325, a
sample size of at least n = 96 would be needed to achieve a power
of .80 and could be recommended to future studies. Moreover,
the selection of variables that had been demonstrated to
distinguish patient groups in this sample of cases might have
produced a bias in favor of the multinomial logistic regression
model. Also, the reliability of interpretations could be improved
by balancing patient samples for defining characteristics.
Another interesting question for future studies may be whether
automatically derived coherence metrics can predict other
measures of FTD, e.g. self-report instruments such as the
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rating scale for the assessment of objective and subjective formal
Thought and Language Disorder (61).

In summary, automated coherence analysis can serve as an
objective measure of concept overlap, capturing inherent features of
incoherent speech that are independent from the listener’s
impression. Nevertheless, clinical evaluations of coherence are not
only informed by concept similarity but also comprehensibility,
which was impaired by factors such as referential abnormalities and
neologisms. It can be assumed that linguistic parameters of
coherence will enrich assessments of FTD, but that several facets
leading to the clinical diagnosis of FTD, as well as parameters
potentially biasing automated coherence metrics, have to be equally
considered. The study shows that interdisciplinary collaboration
between computational linguistics and psychiatry can enable
mutual stimulation and further conceptual understanding.
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