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Abstract  

In the study, the effect of 4% sodium sulfate (Na2SO4) as an activator on cement pastes 

with 0, 20, and 40% fly ash replacements and a low water-to-cementitious materials 

ratio of 0.30 was investigated. The investigation was conducted to evaluate the 

effectiveness of the technique for the utilization of fly ash in developing sustainable 

concrete. The use of Na2SO4 decreased setting times of the fresh pastes and increased 

compressive strength of the hardened pastes up to 28 days irrespective of fly ash 

replacement. The use decreased Ca(OH)2 content in the hardened pastes irrespective of 

fly ash replacement. Meanwhile, it increased Ca(OH)2 consumption by the pozzolanic 

reaction of fly ash and content of calcium silicate and aluminate hydrates in the 

hardened fly ash-cement pastes. Consequently, the use of Na2SO4 negatively affected 

cement hydration in the hardened cement pastes without fly ash, while the use 

accelerated ettringite formation and pozzolanic reaction of fly ash in the hardened pastes. 

Keywords: Compressive strength; Hydration; Setting time; Thermal gravimetric 

analysis; X-ray diffraction.  
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Introduction 

Fly ash is known as a green material that is used to replace Portland cement in concrete 

in the modern and sustainable construction industry (Zachar 2011; Hemalatha and 

Ramaswamy 2017; Hemalatha and Sasmal 2019). The use of fly ash in the concrete 

leads to several benefits such as replacing natural materials (i.e. limestone and clay) 

used for Portland cement manufacture, reducing CO2 emissions, air pollutant, waste, 

and cost of concrete, and improving the later-age strength and durability of concrete 

(Shi and Day 1995; Baert et al. 2008; Camões et al. 2015; Hemalatha and Ramaswamy 

2017). The improvement is attributed to the pozzolanic reaction of fly ash that 

consumes Ca(OH)2 formed from cement hydration and generates secondary hydration 

products (Mehta 1987; Bui et al. 2016; Hemalatha and Ramaswamy 2017). 

Nevertheless, the pozzolanic reaction of fly ash in cement concrete is extremely slow at 

early ages (Feldman et al. 1990; Lam et al. 2000; Baert et al. 2008). The slow 

pozzolanic reaction results in lower early-age strength and slower strength development 

of the cement concrete with fly ash when compared with that of cement concrete 

without fly ash (Qian et al. 2001; Durán-Herrera et al. 2011; Bui et al. 2017). Baert et al. 

(2008) concluded that compressive strength of concrete at early ages significantly 

decreases with increases in the fly ash replacement. Lam et al. (2000) also observed that 

fly ash replacement negatively affects the compressive strength of fly ash–cement 

pastes up to the age of 28 days. However, the negative effect was insignificant when 

pastes exhibited low water-to-cementitious materials ratios (w/cms) (Lam et al. 2000).  

Recently, a chemical activation via the use of several chemical activators was 

proposed to promote the pozzolanic reaction of fly ash and eliminate low early-age 

strength of fly ash concretes (Shi and Day 1995; Lee et al. 2003). Sodium hydroxide, 

sodium carbonate, water glass, and sodium sulfate are the most widely used chemical 
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activators due to their availability and economic benefits (Shi et al. 2006). It was 

reported that sulfate activators are extremely effective for fly ash–cement paste when 

the Portland cement content exceeded 20% (Shi et al. 2006). Shi and Day (1995) added 

sodium sulfate (Na2SO4) to lime-fly ash pastes with water-to-cement ratios in the range 

of 0.35 – 0.375. The addition increased the pozzolanic reactivity of fly ash, thereby 

increasing the strength of the pastes moist-cured at 50 C. When the Na2SO4 activator 

was used in the range of 3 – 5% of the mass of lime-fly ash cement, the improvement in 

strength at the ages corresponding to 90 and 180 days was significant (Shi and Day 

1995). However, high curing temperature is potentially limited in a few practical 

situations. Therefore, Shi (1996) investigated the effect of Na2SO4 on setting time and 

strength development of lime-fly ash pastes cured at 23 C. The addition of Na2SO4 to 

the lime-fly ash pastes with a water-to-solid ratio of 0.35 slightly decreased their initial 

setting time, significantly decreased final setting time, and significantly increased their 

strength development (Shi 1996). Significant increases in the compressive strength up to 

28 days by the addition of 3% Na2SO4 to lime-fly ash mortars with a water-to-cement 

ratio of 0.46 was also indicated in the study by Qian et al. (2001). In addition to lime-fly 

ash mortars, the addition of 3% Na2SO4 was especially effective in increasing the 

strength from 3 to 28 days for the cement paste with 30% fly ash replacement (Qian et 

al. 2001). Lee et al. (2003) reported that low Ca(OH)2 content and high amount of 

ettringite (AFt) were observed following the addition of 1% Na2SO4 to cement pastes 

with 40% fly ash replacement and a w/cm of 0.485. Thus, their compressive strength 

increased at early ages (i.e. at the ages of 1, 3, and 7 days) and even at later ages (i.e. at 

the age of 28 days) (Lee et al. 2003). The increase was also observed in the pastes 

activated via 0.5 and 2% Na2SO4. However, the effect of 4% Na2SO4 on increases in the 

strength at 28 days is not shown (Lee et al. 2003). Briefly, most existing studies focused 
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on increasing the strength of the blended cements (i.e. lime-fly ash and fly ash–cement) 

with w/cms in the range of 0.35 – 0.485 via the use of Na2SO4 from 1 to 5% of the mass 

of cementitious materials. There is a paucity of studies on the effect of Na2SO4 on 

hydration (i.e. cement hydration and pozzolanic reaction of fly ash) in the fly ash–

cement pastes with w/cms lower than 0.35.  

The purpose of the present study involved evaluating the effectiveness of the use of 

Na2SO4 on fresh and hardened properties, and hydration of cement pastes with 0, 20, 

and 40% fly ash replacements and a low w/cm of 0.30. In addition to setting time and 

compressive strength up to the age corresponding to 28 days, contents of Ca(OH)2, and 

calcium silicate and aluminate hydrates were analyzed by thermal gravimetric analysis 

in order to deeply understand the cement hydration and pozzolanic reaction of fly ash in 

the hardened pastes with 0 and 4% Na2SO4. The main phases detected via X-ray 

diffraction were also investigated.  

 

Research significance 

The utilization of fly ash in the concrete production has been recently promoted towards 

developing sustainability in construction. The sulfate activation on pozzolanic reactivity 

of fly ash in the blended cements with w/cms higher than 0.35 has been investigated in 

order to expand its application. The motivation of the present study is the applicability 

of sulfate activation to the fly ash-cement pastes with a w/cm lower than 0.35. It is 

expected that a high volume of fly ash resulting from a low w/cm could be activated by 

the use of Na2SO4. The effect of sulfate activator on hydration in the cement pastes with 

and without fly ash could be clarified more in the present study. 

 

Experiments 
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1. Materials 

Portland cement conforming to TCVN 2682:2009 (Vietnamese Standard 2009) and 

Class-F fly ash conforming to TCVN 10302:2014 (Vietnamese Standard 2014) were 

used as cementitious materials in the study. The physical properties and chemical 

compositions of the cement and fly ash are listed in Table 1. Tap water without any 

impurities as per TCVN 4506:2012 (Vietnamese Standard 2012) was used to mix the 

cement and fly ash. Sodium sulfate (Na2SO4) was used as a sulfate activator and was 

expected to accelerate the pozzolanic reaction of fly ash.  

 

2. Mixture proportion 

A low w/cm corresponding to 0.30 was used to produce a paste with sufficient strength 

and also utilize the high volume of Class-F fly ash towards developing sustainable 

construction. The pastes were designated as Fa0, Fa20, and Fa40 with 0, 20, and 40% 

replacements of cement by fly ash, respectively. The amount of Na2SO4 with 4% mass 

of cementitious materials was kept constant for all mixture proportions. The amount 

was based on that in a previous study (Lee et al. 2003). Additionally, pastes with 0% 

Na2SO4 was prepared for reference purposes. Table 2 summarizes the mass proportions 

of all pastes in the present study. 

 

3. Mixing procedure 

First, Na2SO4 with a pre-weighed dosage was added to the mixing water until all 

sodium compounds dissolved in water to form a chemical solution. Second, Portland 

cement and fly ash were thoroughly blended in dry form at an extremely slow speed in a 

mixer to obtain an acceptably homogenous mixture. Subsequently, a chemical solution 

or only water was added to the dry mixture, and the mixture was mixed at a low speed 
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for 30 s and then at a medium speed for 90 s prior to testing the setting times of the 

pastes and casting specimens. 

 

4. Setting time test  

The setting times of all the fresh pastes were tested by using a 1 mm2 section Vicat 

needle as per TCVN 6017:1995 (Vietnamese Standard 1995). The setting time test was 

done one time for each mixture proportion. The initial setting time was defined as the 

time elapsed between the initial contact of water and cement and time when the 

penetration of Vicat needle was at 36±1 mm. Furthermore, final setting time was 

calculated as the time elapsed between the initial contact of water and cement and time 

when the needle sank into the paste at 0.5 mm. 

 

5. Specimen preparation and curing condition 

After mixing, the pastes were cast in 50-mm cube-shaped moulds for strength 

measurements. Following casting, the placing surfaces of specimens were covered with 

polyethylene sheets and cured at temperature corresponding to 291 C and relative 

humidity corresponding to 905%, which are nearly identical to those in the practical 

curing condition for concrete structures in Vietnam. All specimens were demoulded 24 

h after casting and cured at a temperature corresponding to 291 C and relative 

humidity corresponding to 905% until the designated test ages. 

 

6. Test procedures  

Compressive strength of hardened pastes 

To assess the effectiveness of sulfate activator on the strength of the hardened pastes, 

their compressive strengths at the ages of 1, 3, 7, and 28 days were measured via a 
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compression machine. The compressive strength of each mixture proportion at each age 

corresponded to the average value of three cubic specimens. It means that the 

compressive strength test was repeated three times for each mixture proportion at each 

age. 

 

Hydration products of the pastes 

To evaluate the effect of sulfate activator on hydration in the pastes, thermal gravimetric 

analysis and X-ray diffraction test were applied to the aforementioned pastes. The 

samples for thermal gravimetric analysis and X-ray diffraction test were collected from 

cubic specimens used for the compressive strength tests at the ages corresponding to 3 

and 28 days. The samples were immersed in acetone to avoid any further hydration and 

were subsequently dried in a vacuum desiccator. Subsequently, the samples were 

ground into powders with a size of less than 150 m prior to testing. It is noted that each 

test was carried out one time for each mixture proportion at each age. 

Thermal gravimetric analysis 

Thermal gravimetric analysis was applied to determine the Ca(OH)2 content in the 

hardened pastes by using simultaneous differential thermal analysis and thermal 

gravimetry (Shimadzu DTG-60H). The Ca(OH)2 content was calculated from the mass 

of the paste powder after ignition and mass loss from the dehydration of Ca(OH)2 and 

that from the decomposition of calcium carbonate on heating. The temperature range for 

the thermal gravimetric analysis corresponded to 20–1000 C at a rate of 20 C /min. 

In addition to measuring the Ca(OH)2 content, the content of calcium silicate and 

aluminate hydrates including AFt, calcium silicate hydrate (C–S–H), and gehlenite 

hydrate (C2ASH8) was also computed. The content of the calcium silicate and aluminate 

hydrates was calculated in the study based on the mass loss between 20 and 420 C and 
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mass of the paste powder after ignition that was based on a previous study (Chaipanich 

and Nochaiya 2010). 

 

X-ray diffraction 

In the study, X-ray diffraction (XRD) was used to identify phase changes in the 

powders prepared from the hardened pastes. The XRD patterns were acquired via a 

Bruker D2 Phaser. A test was performed with CuK radiation and with a 2theta angle 

scan ranging from 5 to 65 o at a rate of 5 o/min. Specifically, EVA program software 

was used to analyze the test data. 

 

Results and discussion 

Setting time of fresh pastes 

Effects of fly ash replacement and Na2SO4 on setting time including initial and final 

setting times of the fresh pastes are shown in Fig. 1. With respect to the initial setting 

time, fly ash delayed the setting times of the fresh pastes with 0% Na2SO4 for 55 min 

while it delayed the setting times of those with 4% Na2SO4 from 25 to 35 min. With 

respect to the final setting time, fly ash also delayed the setting time of fresh pastes with 

0% Na2SO4 from 40 to 65 min while it delayed the setting time of fresh pastes with 4% 

Na2SO4 from 40 to 60 min. The delay in the setting time of the pastes due to the 

presence of fly ash was also observed in a few previous studies (Ravina and Mehta 

1986; Durán-Herrera et al. 2011; Huang et al. 2013). This was potentially owing to 

decreases in the amount of Portland cement that was replaced by Class-F fly ash in the 

fly ash–cement pastes. When compared with the fresh pastes with 20% fly ash 

replacement, the initial setting time of those with 40% fly ash replacement was slightly 

higher or nearly identical. Meanwhile, the final setting time of the fresh pastes with 40% 
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fly ash replacement was accelerated more regardless of Na2SO4. Naik and Singh (1997) 

explained that the acceleration of the setting time was due to the low gypsum content in 

the paste with low cement and high fly ash contents (Naik and Singh 1997). The lower 

gypsum content in the fresh pastes with 40% fly ash replacement than that in the fresh 

pastes with 20% fly ash replacement might affect their setting time, leading to the 

slightly higher or nearly identical initial setting time and lower final setting time. 

As shown in Fig. 1, Na2SO4 decreased the initial setting time from 5 to 35 min and 

the final setting time from 45 to 50 min in fresh pastes with 0, 20, and 40% fly ash 

replacements. The decreases in the setting time due to the use of Na2SO4 was also 

observed in the lime-fly ash cement paste cured at 23 C and in blended cement pastes 

with a high volume of calcined clay pozzolan as reported in existing studies (Shi 1996; 

Boakye et al. 2017). Kumar and Rameswara Rao (1994) indicated that the type and 

concentration of SO4
2- ions significantly affected the setting time of the cement paste 

because they contributed to the solubility of cement compounds (Kumar and 

Kameswara Rao 1994). Therefore, decreases in setting time of the fresh pastes with 4% 

Na2SO4 when compared with that of the fresh pastes with 0% Na2SO4 is potentially due 

to the acceleration of the dissolution of calcium ions in the cement paste irrespective of 

fly ash replacement.  

 

Compressive strength of hardened pastes 

Effects of Na2SO4 on the compressive strength of the hardened pastes with 0, 20, and 

40% fly ash replacements at the ages corresponding to 1, 3, 7, and 28 days are shown in 

Figs. 2 (a), (b), and (c), respectively. Generally, Class-F fly ash decreases the 

compressive strength of cement/concrete mixtures and especially at early ages 

(Sahmaran and Yaman 2007; Baert et al. 2008; Durán-Herrera et al. 2011; Bui et al. 
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2017). With respect to specimens with 0% Na2SO4, the compressive strength of almost 

all the hardened fly ash–cement pastes (Fa20 and Fa40) was lower than that of the plain 

cement paste (Fa0) at 1 and 3 days. Additionally, increases in the fly ash replacement 

decreased the compressive strength at early ages (i.e. at the ages of 1 and 3 days). The 

aforementioned tendency was also reported in a previous study by Baert et al. (2008). 

Decreases in the compressive strength were attributed to the slow pozzolanic reaction of 

fly ash at early ages (Durán-Herrera et al. 2011). However, the compressive strength of 

the Fa20 specimen with 0% Na2SO4 was slightly higher and that of the Fa40 specimen 

with 0% Na2SO4 was nearly identical to that of the Fa0 specimen at 7 days. The increase 

in compressive strength of the Fa20 and Fa40 specimens with 0% Na2SO4 could be due 

the formation of AFt as a hydration product of the fly ash at early ages and the space-

filling effect by fly ash particles (Berry et al. 1990). At 28 days, the compressive 

strength of the Fa40 specimen with 0% Na2SO4 was slightly higher than that of the Fa20 

specimen and even higher than that of the Fa0 specimen at 28 days. Durán-Herrera et al. 

(2011) also indicated that the difference in compressive strength between the fly ash 

concrete and reference concrete without fly ash decreased with time (Durán-Herrera et 

al. 2011). This was potentially due to the pozzolanic reaction of fly ash that proceeded 

in the aforementioned cement paste at the 28 days.  

A previous study observed that the use of Na2SO4 from 1 to 4% of the mass of 

cementitious materials significantly increased the compressive strength of the fly ash–

cement system with a w/cm of 0.485 at early ages (i.e. at 1 and 3 days) (Lee et al. 2003). 

However, the increase was not observed at later ages (i.e. after 7 days) when the use of 

Na2SO4 exceeded 2% of the mass of cementitious materials (Lee et al. 2003). In the 

study, when compared with the hardened cement pastes with 0% Na2SO4, the 

compressive strength of the Fa0 specimen with 4% Na2SO4 was slightly higher at the 
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ages corresponding to 1, 3, and 7 days and significantly at the age corresponding to 28 

days as shown in Fig. 2 (a). The slightly higher compressive strengths of the Fa20 and 

Fa40 specimens with 4% Na2SO4 were also observed at 1 day and significantly at 3, 7, 

and 28 days as shown in Figs. 2 (b) and (c), respectively. Evidently, the use of 4% 

Na2SO4 increased the compressive strength of the hardened cement pastes at early ages 

and also at later ages irrespective of fly ash replacement. The reason for the increase is 

explained in further detail in the section on hydration products of the pastes. 

As shown in Figs. 2 (a), (b), and (c), the gain in compressive strength of the Fa20 

and Fa40 specimens with 4% Na2SO4 was more significant than that of the Fa0 

specimen from the age of 1 to 7 days. This implies that the use of Na2SO4 effectively 

resulted in a higher increase in compressive strength of the Fa20 and Fa40 specimens 

when compared with that of the Fa0 specimen at early ages.  

 

Hydration products of the pastes 

Ca(OH)2 content 

Effects of fly ash replacement and Na2SO4 on the Ca(OH)2 content in the hardened 

pastes at the ages corresponding to 3 and 28 days are shown in Figs. 3 (a) and (b), 

respectively. Generally, the Ca(OH)2 content in cement pastes containing fly ash is 

lower than that in plain cement paste without fly ash (Lam et al. 2000; Sakai et al. 2005; 

Bui et al. 2015, 2016, 2017, 2018). As shown in Figs. 3 (a) and (b), decreases in the 

Ca(OH)2 content at the ages corresponding to 3 and 28 days in the Fa20 and Fa40 

specimens when compared with that in the Fa0 specimen irrespective of the use of 

Na2SO4 are attributed to the partial replacement of Portland cement by Class-F fly ash. 

Additionally, the Ca(OH)2 content was low with increases in the fly ash replacement. 
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With respect to the hardened pastes with 0% Na2SO4, the Ca(OH)2 content in the 

Fa0, Fa20, and Fa40 specimens increased until 28 days. The increase in the Ca(OH)2 

implied that the cement hydration in all specimens proceeded until 28 days. The 

tendency was also observed in the Fa0 specimen with 4% Na2SO4. However, a slight 

decrease in Ca(OH)2 content from the age of 3 to 28 days in the Fa20 and Fa40 

specimens with 4% Na2SO4 is shown in Figs. 3 (a) and (b). The decrease in Ca(OH)2 

content with time potentially indicated the progress of the pozzolanic reaction of fly ash 

in the Fa20 and Fa40 specimens with 4% Na2SO4.  

When compared with the hardened fly ash–cement pastes with 0% Na2SO4, 

Ca(OH)2 contents in the hardened pastes with 4% Na2SO4 were lower at the ages 

corresponding to 3 and 28 days. The decrease in the Ca(OH)2 contents up to 28 days in 

the hardened cement pastes with 40% fly ash replacement via the addition of 1% 

Na2SO4 was also observed in a previous study (Lee et al. 2003). The decrease indicates 

that the pozzolanic reaction of fly ash in Fa20 and Fa40 specimens was accelerated via 

the use of Na2SO4. Figs. 3 (a) and (b) also show the decrease in the Ca(OH)2 contents in 

the hardened cement paste with 0% fly ash replacement via using Na2SO4. The use of 

Na2SO4 increased alkali concentration of pore solution in the hardened cement pastes 

with 0% fly ash replacement, resulting in limiting cement hydration. This was also 

found in the hardened cement paste with 0% fly ash replacement naturally injected by 

alkali solution from the age of 1 month (Bui et al. 2015). It was concluded that the use 

of Na2SO4 negatively affected cement hydration in the hardened pastes without fly ash. 

 

Ca(OH)2 consumption by the pozzolanic reaction of fly ash 

It is assumed that cement hydration in the cement pastes with 20 and 40% fly ash 

replacements was identical to that in the plain cement paste with 0% fly ash replacement 
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(Bui et al. 2016, 2018). Therefore, the Ca(OH)2 consumption by the pozzolanic reaction 

of fly ash in the cement pastes is calculated by Eq. (1) as follows: 

 

Ca(OH)2 consumption = Ca(OH)2 plain cement paste (c/(c+f)) – Ca(OH)2 fly ash–cement paste      (1) 

where, 

Ca(OH)2 consumption: Ca(OH)2 consumption by the pozzolanic reaction of fly ash in 

the Fa20 or Fa40 specimen (%) 

Ca(OH)2 plain cement paste: Ca(OH)2 content in the Fa0 specimen (%) 

Ca(OH)2 fly ash–cement paste: Ca(OH)2 content in the Fa20 or Fa40 specimen (%) 

(c/(c+f)): mass ratio of cement in cementitious materials including Portland cement and 

Class-F fly ash (= 0.8 for the Fa20 specimen and = 0.6 for the Fa40 specimen) 

 

Figure 4 (a) shows the effects of Na2SO4 on the Ca(OH)2 consumption via the 

pozzolanic reaction of fly ash in the hardened pastes with 20 and 40% fly ash 

replacements at the ages corresponding to 3 and 28 days. It is observed that the Ca(OH)2 

consumption increased until 28 days irrespective of the fly ash replacement and the use 

of Na2SO4, and this was due to the pozzolanic reaction of fly ash. Increases in the fly 

ash replacement increased the Ca(OH)2 consumption due to the pozzolanic reaction of 

fly ash in the hardened pastes. This was also compatible with the results of a previous 

study (Bui et al. 2015). 

With respect to the Fa20 specimen, the Ca(OH)2 consumption in the hardened pastes 

with 4% Na2SO4 increased by 3.35 and 51.1% at the ages corresponding to 3 and 28 

days, respectively, when compared with that in the hardened pastes with 0% Na2SO4. 

With respect to the Fa40 specimen, the Ca(OH)2 consumption in the hardened pastes 

with 4% Na2SO4 increased by 28.3 and 55.8% at the ages corresponding to 3 and 28 
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days, respectively, when compared with that in the hardened pastes with 0% Na2SO4. 

The increase in the Ca(OH)2 consumption indicated that the pozzolanic reaction of the 

fly ash–cement pastes was accelerated via the use of Na2SO4. Comparing the Ca(OH)2 

consumption between the Fa20 and Fa40 specimens, the normalization is also shown in 

Fig. 4 (b). For the hardened pastes with 0% Na2SO4, the Ca(OH)2 consumption in the 

Fa40 specimen, in which the fly ash content was twice as much as that in the Fa20 

specimen, was 1.51 and 1.46 times as much as that in the Fa20 specimen at the ages 

corresponding to 3 and 28 days, respectively. For the hardened pastes with 4% Na2SO4, 

the Ca(OH)2 consumption in the Fa40 specimen, in which the fly ash content was twice 

as much as that in the Fa20 specimen, was 1.87 and 1.50 times as much as that in the 

Fa20 specimen at the ages corresponding to 3 and 28 days, respectively. A comparison 

of the Ca(OH)2 consumption between the Fa20 and Fa40 specimens indicated that the 

use of Na2SO4 was effective in accelerating the pozzolanic reaction of fly ash in the 

Fa40 specimen when compared with that in the Fa20 specimen at an early age (i.e. at 3 

days) and at later age (i.e. at 28 days). 

 

Content of calcium silicate and aluminate hydrates including AFt, C–S–H, and C2ASH8  

The contents of calcium silicate and aluminate hydrates including AFt, C–S–H, and 

C2ASH8 in the Fa0, Fa20, and Fa40 specimens at the ages corresponding to 3 and 28 

days are shown in Figs. 5 (a) and (b), respectively. The content of calcium silicate and 

aluminate hydrates in the Fa0, Fa20, and Fa40 specimens increased until 28 days. This 

indicated that the content of the hydrates increases with time, thereby leading to 

increases in the compressive strength up to 28 days of the hardened pastes as shown in 

Fig. 2. However, fly ash decreased the content of calcium silicate and aluminate 

hydrates in the hardened pastes irrespective of curing age and the use of Na2SO4. This 
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tendency was also observed in an extant study (Chaipanich and Nochaiya 2010). This 

was potentially due to decreases in the amount of C–S–H that decreased compressive 

strength of the Fa20 and Fa40 specimens when compared with that of the Fa0 specimen 

as shown in Fig. 2. As shown in Figs. 5 (a) and (b), increases in the fly ash replacement 

decrease the content of calcium silicate and aluminate hydrates including AFt, C–S–H, 

and C2ASH8.  

As shown in Figs. 5 (a) and (b), 4% Na2SO4 increases the content of calcium silicate 

and aluminate hydrates in hardened pastes irrespective of fly ash replacement and 

curing age. This confirms that the use of Na2SO4 positively contributed to the formation 

of calcium silicate and aluminate hydrates including AFt, C–S–H, and C2ASH8 in the 

pastes. 

Furthermore, the gain in the content of calcium silicate and aluminate hydrates 

including AFt, C–S–H, and C2ASH8 from 3 to 28 days in Fa0 specimens with 0 and 4% 

Na2SO4 corresponded to 17.5 and 14.1%, respectively. The gain in the content of 

calcium silicate and aluminate hydrates from 3 to 28 days in Fa20 specimens with 0 and 

4% Na2SO4 corresponded to 23.0 and 25.2%, respectively. Furthermore, the gain in the 

content of calcium silicate and aluminate hydrates from 3 to 28 days in Fa40 specimens 

with 0 and 4% Na2SO4 corresponded to 41.3 and 29.4%, respectively. This indicated 

that the gain in the content of calcium silicate and aluminate hydrates including AFt, C–

S–H, and C2ASH8 in the fly ash cement pastes increased more significantly from 3 to 28 

days when compared with that in the plain cement paste irrespective of the use of 

Na2SO4. This was potentially due to the formation of secondary C–S–H from the 

pozzolanic reaction of fly ash.  

 

X-ray diffraction 
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Figures 6, 7, and 8 show the XRD patterns of the Fa0, Fa20, and Fa40 specimens with 0 

and 4% Na2SO4 at ages corresponding to 3 and 28 days, respectively. With respect to 

the pastes with 0% Na2SO4, the main phases in all the Fa0, Fa20, and Fa40 specimens 

corresponded to monosulfoaluminate, portlandite (Ca(OH)2), and calcite (CaCO3). It is 

considered that AFt in the pastes with 0% Na2SO4 converted to monosulfoaluminate 

after the age of 3 days, thereby leading to the absence of AFt peak in the Fa0, Fa20, and 

Fa40 specimens. Furthermore, with respect to the pastes with 4% Na2SO4, the main 

phases in all the Fa0, Fa20, and Fa40 specimens corresponded to AFt, Ca(OH)2, and 

CaCO3. The presence of AFt after the addition of Na2SO4 was also observed in the lime-

low calcium fly ash pastes and in the fly ash–cement pastes as reported in the previous 

studies (Shi 1996; Lee et al. 2003). The production of AFt in the hardened fly ash–

cement pastes with 4% Na2SO4 was explained via the following mechanism: (1) when 

Na2SO4 was added to the paste, it reacted with Ca(OH)2 formed from cement hydration 

to form gypsum and sodium hydroxide that increased the pH value in the paste; (2) the 

gypsum reacted with unreacted tri-calcium aluminate to produce AFt; (3) when the 

pastes exhibited sufficient pH value, the glassy surface layer of fly ash particles began 

to corrode and the chains of the Si-O-Si and Al-O-Al links also began to break, and thus 

the pozzolanic reaction of fly ash proceeded. Briefly, the use of Na2SO4 promoted the 

formation of AFt and accelerated the pozzolanic reaction of fly ash in the hardened 

cement pastes. Thus, the decrease in the Ca(OH)2 content, increases in the Ca(OH)2 

consumption via the pozzolanic reaction of fly ash, and content of calcium silicate and 

aluminate hydrates including AFt, C–S–H, and C2ASH8 are shown in Figs. 3, 4, and 5, 

respectively, thereby resulting in significant increases in the compressive strength of the 

fly ash–cement pastes as shown in Fig. 2. Similarly, the addition of Na2SO4 also 

produced AFt in the hardened cement paste without fly ash and increased the pH value 
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in the aforementioned paste. The increase in the pH value partially hindered the cement 

hydration at early ages in the paste, thereby leading to decreases in Ca(OH)2 content as 

shown in Fig. 3.  

The presence of peaks of AFt in the Fa40 specimens was weaker than those in Fa0 

and Fa20 specimens irrespective of the use of Na2SO4. This indicated that the amount of 

AFt was minor, and this was due to the lower Ca(OH)2 content in the Fa40 specimens 

when compared with that in the Fa0 and Fa20 specimens as shown in Fig. 3. A 

comparison of Figs. 6, 7, and 8 indicates that the peak of Ca(OH)2 in the Fa20 and Fa40 

specimens is weaker than that in the Fa0 specimens. This was due to the lower Ca(OH)2 

content in the specimens when compared with that in the Fa0 specimens as shown in 

Fig. 3. 

 

4. Conclusions 

Effects of Na2SO4 activator with 4% mass of cementitious materials on setting time, 

compressive strength, and hydration of fly ash–cement pastes with a low w/cm of 0.30 

were investigated experimentally in the study. The following conclusions are obtained 

from the study: 

The use of Na2SO4 accelerated the dissolution of calcium ions in the fresh pastes 

irrespective of fly ash replacement, thereby decreasing the initial and final setting times 

of the fresh pastes. 

The use of Na2SO4 positively affected the formation of ettringite detected via X-ray 

diffraction analysis in the hardened cement paste without fly ash although it negatively 

affected the cement hydration at an early age (i.e. at 3 days) which was not found in the 

previous studies. However, the negative effect was negligible at later ages, thereby 

resulting in significant increases in the compressive strength at 28 days. 
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The use of Na2SO4 accelerated the pozzolanic reaction of a high volume of fly ash 

in the hardened cement paste with a low w/cm in addition to promoting the ettringite 

formation, thereby resulting in significant increases in the compressive strength at early 

ages (i.e. at 3 and 7 days) and also up to 28 days for the hardened pastes. 
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