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Abstract: Photocatalysis based on plasmonic nanoparticles has emerged as a promising 

approach to facilitate light-driven reactions under far milder conditions than thermal catalysis. 

Several effects, such as strong local electromagnetic fields, increased electron and lattice 

temperatures, or the transfer of non-thermal charge carriers could contribute to the reaction rate 

enhancement. In order to understand plasmon-enhanced catalysis and to enable plasmonic 

platforms, a distinction between the different underlying effects is required. We investigate the 

electrochemical model reactions oxidative hydroxide adsorption and glucose oxidation and 

deconvolve the enhancement processes via their dependence on excitation wavelength. We 

observe that non-thermal effects contribute significantly to the plasmonic enhancement. 

 

Introduction 

Plasmonic nanoparticles (NPs) are currently intensively discussed as an enhancing agent for light-driven 

heterogeneous catalytic conversions.1–6 The possibility of photo-generated carriers initiating the reaction 

might lower its operating temperature, which is usually a problem in terms of catalyst stability, high 

required thermal input and reaction selectivity. Thus, an operating temperature reduction is desirable.7 

In a pioneering work, Christopher et al. observed a strong increase of the catalytic reaction rate on 

plasmonic silver nanoparticles upon illumination with visible light and a scaling of the rate enhancement 

with the incident optical power.8 The authors proposed a combination of electromagnetic field 

enhancement and extracted electrons to be responsible for the enhancement. However, their early model 

did not account for the currently discussed specifics of the plasmon excitation.4,9–14 Looking at gold 

nanoparticles (AuNPs) as plasmonic model system, different processes could contribute to the reaction 

rate enhancement (cf. Figure 1): 

1) During the coherent drive of the plasmon, light is focused into strongly enhanced, localized electric 

fields around the NPs.15 These strong fields could affect the energies of molecular (anti-)bonding states 

e.g. of adsorbates involved in the reaction, as for example suggested for the dissociation of O2.16 

With the subsequent plasmon decay, several processes occur that could also lead to reaction rate 

enhancements:4,9,17–20 

2) Landau damping of the plasmon results in a non-equilibrium, non-thermal carrier distribution, i.e. 

electrons and holes are excited to states far from the Fermi level. These could enhance the reaction via 

a direct21 or indirect22–26 carrier transfer between the NPs and the adsorbate-binding molecular 

orbitals.2,4,25,27,28 
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3) Carrier-carrier scattering leads to an equalization of the non-thermal carrier distribution, resulting in 

a bath of thermalized excited electrons in equilibrium. Within 10-1000 fs these could also populate 

electronic states in the adsorbate molecule.18 

4) Electron-phonon coupling occurs on picosecond timescales and turns the thermalized carrier bath into 

local heat (phonons).19,20 The elevated NP temperatures could enhance a phonon-driven chemical 

reaction that occurs at or close to the surface.  

 

 

 
Figure 1: Left: Schemes of the different possible reaction rate enhancing processes. Middle: Expected 

wavelength-dependencies for the reaction rate enhancement r. Right: Expected wavelength-dependent 

rate enhancements after normalization to the absorption (Abs).  

 

To optimize plasmon-assisted catalysis towards higher reaction rates, it is important to know which of 

the above processes is the most relevant. The relative importance is currently a matter of debate.29 A 

dominance of purely thermal effects was proposed, ruling out the injection of non-thermal carriers.30,31 

Other studies report the influence of both, thermal and electronic enhancements.32–35 For example, Zhou 

et al.34 measured the photocatalyst´s surface (local) temperature using an infrared thermometer during 

ammonia decomposition and concluded that the thermal contribution caused by the determined heating 

cannot solely explain the observed enhancement in the product formation rate. Consequently, a recent 

study by Zhan et al.,36 employs excitation-power and wavelength-dependent measurements to 

disentangle thermal and non-thermal effects in electrochemical reactions. Christopher et al. proposed a 

similar methodology for studying the plasmonic reaction enhancement.8 An approach by Li et al. 

employed two different illumination geometries on a metal-semiconductor catalyst for carbon dioxide 

methanation. The comparison of the indirect excitation (a barrier layer absorbs all light so that the metal 



below can only generate a thermal enhancement) with the direct (no barrier layer so that all enhancement 

mechanisms can occur on the metal side) excitation of the plasmon pointed towards significant non-

thermal contributions.37 

The possible contributing processes have different dependencies on the excitation conditions (cf. Figure 

1): 

 

Enhanced near fields 

The local fields around AuNPs are strongly enhanced when exciting in resonance with the plasmon.15 

The excitation-wavelength dependence of the near field enhancement does in general not track the 

absorption, which is known as near-field far-field shift.38 In the case of small AuNPs, interband 

transitions lead to a decrease in local field enhancement at short wavelengths and an increase in 

absorption.15,39 On the other hand, the absorption drops faster towards the near-infrared than the field 

enhancement, because it scales linearly with the excitation energy (apart from the plasmon resonance), 

while the field enhancement does not.15 Figure 2 displays a model calculation for small AuNPs. The 

field enhancement normalized to the absorption possesses an excitation-wavelength dependence. In case 

the population of the reactants’ molecular (anti-)bonding orbitals promoted by the local field would be 

the main contribution to the reaction rate enhancement, the normalization to the absorbed optical power 

would lead to no clear resonance, but to a rate increase towards longer wavelengths (Figure 2, inset). 

The complicated dependencies of the electronic structure of adsorbed molecules makes the scaling of 

the reaction rate enhancement with incident power hard to define. However, several studies report 

surface-enhanced Raman scattering as field driven process to scale super linear with power.40–42 

 

 

 
Figure 2: Calculated absorption cross section and field enhancement, averaged over the surface of a 12 

nm AuNP using Mie theory. The refractive index of the surrounding medium was set to n = 1.6 to 

account for the ITO substrate and the molecules surrounding the gold nanoparticle. An analytic model 

from Ref.43 was used for the dielectric function of gold. Inset: Average near field intensity enhancement, 

normalized to the calculated absorption cross section.  

 

 

Non-thermalized hot carriers 



Landau damping is a momentum-conserving process that allows donating the full photon energy into a 

single intraband transition, resulting in non-thermal electrons and holes.12 In this case, the exact carrier 

distribution depends on the excitation wavelength.14,44 Absorbed low-energy photons result in electrons 

excited close to the Fermi edge. Photons with higher energies can excite non-thermal electrons far from 

the Fermi edge.14,26,45 Even higher photon energies can excite interband transitions from the d-band into 

states above the Fermi level.13 For the case that non-thermalized hot electrons are the main contribution 

to the reaction rate enhancement, a spectrum of the reaction rate enhancement normalized to the 

absorbed number of photons would show a peak in the spectral range where hot electrons are generated 

most effectively. 

 

Thermalized hot carriers 

The lifetimes of non-equilibrium carriers is very short (100 fs) and their excess energy is quickly 

redistributed within the electron gas.12,13 As the estimated heat capacity of the electron gas in AuNPs is 

a linear quantity in the temperature range up to 3000 K and independent of the excitation-mechanism,11 

the temperature of the thermalized electron gas only depends on the amount of absorbed optical energy. 

Consequently, for thermalized hot carriers as the main contribution to the reaction rate enhancement, a 

normalization to the absorption would result in a vanishing wavelength dependence. 

Both, non-thermalized and thermalized hot carrier-based enhancements would lead to a linear increase 

of the reaction rate with absorbed optical power due to the linearity between photon absorption and 

carrier generation. 

 

Local heating 

The heat capacity of AuNPs does not differ significantly from bulk Au. The rise in temperature thus 

depends linearly on the total amount of absorbed optical energy.10,11,46 If temperature was the main 

reaction rate enhancing contribution, the wavelength dependence of the rate enhancement would 

reproduce the absorption spectrum. Similar to the case of thermalized hot carriers, the reaction rate 

enhancement, normalized to the absorbed optical power would not show any clear dependence on the 

excitation. 

When assuming the rate of a chemical reaction scaling in an Arrhenius type with the temperature, the 

reaction rate would increase exponentially with increasing incident optical power for sole thermally 

enhanced processes. 

 

To quantify the excitation-wavelength dependence experimentally, a reaction with a directly observable 

rate is required. When regarding the charge flow between the plasmonic metal and its surrounding as an 

electrical current that occurs due to illumination under defined conditions, one can directly relate this 

current to the number of carriers contributing to the reaction’s enhancement. This suggests an 

electrochemical approach in which the plasmonic metal represents the working electrode under 

investigation. The charges extracted from/into the adjacent phase (electrolyte) are compensated at a 

counter electrode delivering an externally measurable current. This approach enables to screen an 

arbitrary reaction (cathodic, i.e. extraction of electrons from the plasmonic metal working electrode, or 

anodic, the extraction from or compensation of holes in the metal) by applying the respective necessary 

electrochemical potential between this working electrode and an inert reference electrode (i.e. at which 

no charge transfer reactions occur). In this setup we used AuNPs immobilized on an optically passive 

and electrochemically inert electrode (In-doped SnO2, ITO) to compare the reaction current under dark 

with that under defined illumination conditions. The difference of both over time is averaged giving the 

photocurrent 𝐼ph, a quantitative measure of the steady-state photo-enhancement of the reaction rate. As 

model reactions with broad relevance we screened the alkaline adsorption of hydroxide on the Au 

surface and – upon addition of glucose to the electrolyte – the oxidation of glucose.23,47–50 We varied 

power and wavelength of the optical excitation to disentangle thermal and non-thermal influences. 



We observed linear dependencies of the reaction rates on the incident optical power, whereas its 

effectivity (slope of 𝐼ph vs. absorbed power) strongly varies with the excitation wavelength, showing a 

maximum at the plasmon resonance. The normalization to the absorbed optical power allows us to 

conclude that the main contribution to the reaction rate enhancement are non-thermal carriers and not 

thermalized electrons, elevated NP temperatures or strong local fields. 

 

Results & Discussion 

AuNPs were synthesized with a mean diameter of 12.3 ± 0.8 nm (see Supporting Information Figure 

S1) and immobilized on an ITO-covered glass slide to prepare AuNP/ITO electrodes. As apparent in the 

scanning electron microscopy (SEM) images (Figures 3a-b), AuNPs cover the ITO surface with 

negligible agglomerate formation. SEM investigations (see Supporting Information Figure S2) reveal 

no relevant AuNP detachment from the substrate after the electrochemical experiments. 

 
Figure 3: (a,b) SEM images of the AuNP-ITO electrode surface. (c) Cyclic voltammogram in glucose-

containing (500 mM) and glucose-free base electrolyte (500 mM KOH). The current was normalized to 

the AuNP electrochemically active surface area (ECSA, see Supporting Information Figure S3) to give 

the current density j. Scan rate: 50 mV/s. Arrows indicate the scan directions.  

 

The electrodes were used for the glucose oxidation in alkaline environment (pH = 14). 

In alkaline environment, alcohols (as which we consider glucose) deprotonate to alkoxides which are 

then oxidized on a surface decorated with oxide species.47,51,52 The latter result from hydroxide 

adsorption according to: 

 

Au +  OHaq
−  → Au − OHads + e−   (1) 

 

which occurs at potentials similar to the oxidation potential of glucose. Glucose oxidation to gluconic 

acid then occurs via a one-electron transfer between the metal and the electrolyte48: 

 

C6H12O6 + Au − OHads → Au − C6H12O7,ads + H+ + e−   (2) 

 

Recently, Wang et al. demonstrated the photo-enhancement of alkaline glucose oxidation on AuNPs.23 

A broad range of parameters that affect the photo enhancement of the reaction were reported, i.e. the 

incident light wavelength, the power of the light source and the pH of the electrolyte solution.  

The current between the AuNP/ITO electrode and the counter electrode serves as a metric to quantify 

the extent of potential and illumination-dependent charge transfer. The required potential range for 

glucose oxidation was identified by cyclic voltammetry (CV) measurements under dark conditions 

(Figure 3c). The voltammogram (red curve) shows a broad oxidation peak at approximately +300 mV 

upon anodic potential (𝐸) increase, which is attributed to the oxidation of glucose to gluconic acid 



according to Eq. (2).49,50 Upon further potential increase, the peak slowly decays due to a saturation of 

the surface with adsorbing gluconic acid species (Au − C6H12O7,ads) and further increases at potential 

ranges where higher oxides form53 according to: 

 

Au − OHads + OHaq
− → Au − Oads + H2O + e−   (3)  

 

and the oxidation of the initially non-covered Au sites: 

 

2Au +  6OHaq
−  → Au2O3  +  3 H2O + 6e−   (4) 

 

In the cathodic scan, i.e. after scan reversal, a second oxidation peak at approximately +100 mV is 

observed, which can also be attributed to the adsorption-controlled glucose oxidation onset in 

coincidence with the onset of stripping of gluconic acid and/or oxygen species from the oxide-covered 

Au (at +200 mV, according to the reverse of Eq.s (1), (3) and (4)).47,54 The observed behavior is equal 

to that observed earlier for AuNP/ITO electrodes.48 This hydroxide adsorption was screened in a separate 

experiment using a glucose-free electrolyte. The corresponding curve in Figure 3c shows the hydroxide 

adsorption onset during the anodic scan at approximately 0 mV and occurring throughout the entire 

anodic potential range, originating from the oxide formation-stripping behavior of Au in alkaline 

conditions.53 The subsequent scan reversal leads to a slight oxide stripping peak at +50 mV followed by 

the reduction of dissolved oxygen residuals. 

 

To assess the plasmon-based reaction enhancement, we carried out chronoamperometry measurements 

(i.e. a potential step from the open-circuit potential to a potential in the glucose oxidation and 

simultaneous Au surface oxidation regime as identified by CV under dark conditions; see Supporting 

Information Figures S4A-B for the corresponding current transients under dark and illumination). 

All transients show a current decrease in the first seconds of the experiments, which we attribute to the 

transport of electroactive species to the electrode and capacitive charging upon switch-on. At later times 

of the experiment (after 30 s) the currents were stable. To obtain the illumination-related current 

transient (photocurrent 𝐼𝑝ℎ(𝑡)), we subtracted the dark current from that of the illuminated electrode. 

𝐼ph(𝑡) was averaged within the time interval [30; 60 s] to obtain the steady state photocurrent 𝐼ph (cf. 

Supporting Information Figures S4C-D). Figure 4 displays 𝐼ph for different applied potentials 𝐸 and in 

different electrolyte solutions. We observe a small photocurrent over the entire 𝐸 range in the (glucose-

free) base electrolyte whereas the photocurrent steadily increases when glucose is present. Relative to 

the dark current, the current enhancement in the base electrolyte is large at lower potentials, i.e. where 

the hydroxide monolayer adsorption sets on (due to the normalization to small dark currents, the relative 

enhancement is apparently high at potentials before this onset although photocurrents are in fact low) 

and decreases with increasing potential. In contrast, the current enhancement has a clear maximum at 

𝐸 =  +300 mV when glucose is present (coinciding with the CV peak potential, Figure 3c). We 

conclude from this similarity of the CV peak with the relative 𝐼ph peak that the photo-enhancement of 

the glucose oxidation rate is proportional to its dark oxidation rate.23 Although an electrode potential 

shift of a few mV due to illumination has been reported,55 the effect is not expected to lead to the 

observed large current increase and is furthermore immediately compensated by the potentiostat. 

Therefore, it can be neglected. We thus focused on +300 mV as the working potential. We assume that 

in case of the glucose-containing electrolyte at this potential both reactions (hydroxide adsorption by 

Eq. (1) and glucose oxidation according to Eq. (2)) occur whereas only the first proceeds in the glucose-

free electrolyte. 

 



 
Figure 4: Photoresponse of AuNP/ITO electrodes glucose oxidation and hydroxide adsorption. 

Absolute (left ordinate, dashed lines) and relative (ratio of 𝐼ph to dark current 𝐼dark, right ordinate, 

straight lines) photocurrents vs. applied potential 𝐸, excited at 454 nm with 35.7 mW in the glucose-

containing (red) and the glucose-free base electrolyte (black). Error bars represent the standard 

deviation within the steady-state duration of the experiment. 

 

𝐼ph versus illumination wavelengths 𝜆 from 454 − 802 nm  is displayed in Figure 5a. 

 

 
Figure 5: (a) Photocurrent 𝐼ph vs. excitation wavelength 𝜆 for both electrolytes at 𝐸 = +300 mV. The 

measured values are normalized to the incident optical power (cf. Supporting Information Figure S5 and 

Figure 1, central column). (b) Iph vs. incident optical power 𝑃, at different excitation wavelengths. 

 

The data correspond to the situation displayed in the central column of Figure 1. As expected from the 

preceding discussion, we observe a strong dependence of 𝐼ph on 𝜆 with a pronounced maximum around 

the plasmon resonance in the glucose oxidation case. 𝐼ph for increasing incident optical power at 

different excitation wavelengths is displayed in Figure 5b. 𝐼ph scales linearly with the power in all cases. 

These two observations alone would apply to all potential reaction rate-enhancing processes.  



 

 
Figure 6: (a) Photocurrent 𝐼ph normalized to the absorbed optical power 𝑃abs vs. excitation wavelength 

𝜆 for both electrolytes at 𝐸 = +300 mV. The gray dashed line refers to the right ordinate and represents 

the optical absorption of the AuNP/ITO electrode. (b) 𝐼ph vs. absorbed optical power 𝑃abs = 𝑃 ∙ 𝐴 for 

different excitation wavelengths, including linear fits and the corresponding slopes at the same 𝐸 as in 

(a). 

 

𝐼ph  scales linearly with the reaction rate enhancement via the number of electrons excited via absorption. 

The normalization of 𝐼ph to the optical absorption of the electrode then corresponds to the situations 

displayed in the right column of Figure 1, as discussed above. 

To measure the absorption, micro-absorption spectroscopy was applied (see dashed line in Figure 6a). 

The experiment accounts for the reflected and transmitted light (see Supporting Information Figure S6). 

The spectrum of 𝐼ph normalized with the absorbed power (𝑃abs = 𝑃 ∙ Absorption) (Figure 6a) clearly 

displays a non-vanishing dependence on the excitation wavelength, for both electrolytes showing a 

maximum around 𝜆 = 590 nm. We find higher rate-enhancements in the glucose-containing solution 

than in the base electrolyte by a factor of 1.7. According to Eq. (2), glucose oxidation first demands for 

an adsorbed OH species (i.e. one charge to be transferred). The oxidation of glucose then demands for 

another charge. We can deduce that the enhancement refers to both reactions (1) and (2), while 

deconvolving both appears rather speculative due to different adsorbate coverages in both cases. The 

retaining wavelength dependence of the normalized 𝐼ph (as a measure for the reaction rate enhancement) 

provides a strong indication that non-thermal effects contribute significantly to the enhancement of both 

oxidation reactions (apparently, the photoexcitation enhancement of the glucose oxidation occurs via a 

similar mechanism as the hydroxide adsorption, whereas the enhancement is stronger for glucose 

oxidation). As discussed earlier, thermal effects would vanish after normalization to the absorption and 

local fields would show a more linear dependence in the observed wavelength regime. 𝐼ph is independent 

from the duration of illumination (see Supporting Information Figures S4C-D), i.e. from any heat uptake. 

The slope of the power dependence of 𝐼ph (Figure 6b) normalized to the absorbed optical power 𝑃abs 

represents the effectivity of the reaction rate-enhancing process. It is a measure for the reaction events 

per absorbed photon energy. Thermal processes would show a non-linear behavior with increasing 

power (see discussion above). This is observed in none of the regarded cases. For non-thermal carriers, 

the slope is expected to be linear and larger for wavelengths where non-thermal carriers are excited 

effectively. Following the present understanding of the plasmon decay, this is what we observe: Landau 

damping of the plasmon is effectively a plasmon–electron scattering process, where the energy of a 



single plasmon quantum generates an electron–hole pair.13 Plasmon excitations thus effectively generate 

non-thermal carriers, where the excess energy scales with the photon energy.22,56,57 Both of these two 

important and exemplary reactions seem to be enhanced by the injection of non-thermal carriers 

resulting from the plasmon decay, but each with different sensitivity. Therein, the plasmonic 

enhancement of hydroxide adsorption, being a prerequisite to many alkaline oxidation reactions, further 

emphasizes the potential of hot carrier injection for e.g. oxygen evolution or green fuel (e.g. methanol) 

formation reactions. In order to achieve an even more efficient enhancement by hot charge carriers, 

further studies addressing the generation of non-equilibrium carrier distributions, as well as their 

lifetimes and diffusion are important.12,58 Furthermore, the observed difference in reaction enhancement 

between the oxidation and the hydroxide adsorption points towards complex and convolved 

dependencies. 

 

Conclusions 

In this work, we investigated the plasmon-enhanced electrochemical glucose oxidation under hydroxide 

adsorption on AuNPs that are attached to an ITO electrode in an alkaline electrolyte. The photocurrent, 

i.e. the difference between illuminated and dark current in the steady state, is suitable to quantify a steady 

state reaction enhancement under minimization of capacitive effects. We estimated the wavelength-

dependent photocurrent to separate possible reaction rate enhancing processes. When normalized to the 

absorbed power, the reaction rate enhancement shows a distinct wavelength dependence with a 

maximum coinciding with the plasmon resonance. This is not expected neither for thermal nor for 

processes supported by local fields. Thus, non-thermal carriers seem to be most relevant for the plasmon-

assisted conversion enhancement. 
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Materials and Methods. 

Chemicals. Tetrachloroauric(III) acid (≥99.9% trace metal basis), trisodium citrate dihydrate (≥99.0%), 

11-mercaptoundecanoic acid (95%) were purchased from Sigma-Aldrich; ethanol absolute (100.0%) 

was obtained from VWR. Ethylenediaminetetraacetic acid tetrasodium salt hydrate (EDTA) was 

obtained from Merck. Glucose was purchased from Sigma and used as received. KCl was purchased 

from Nanjing Chemical Reagent Co., Ltd. (Nanjing, China). ITO-covered glass (surface resistivity 8-12 

Ω/cm² was purchased from Sigma-Aldrich. All aqueous solutions were prepared with Millipore water 

(resistivity of 18.2 MΩ · cm). HClO4 and KOH were purchased from Carl Roth, Germany. 

AuNP synthesis. Citrate-stabilized AuNPs were synthesized and characterized as published earlier.59 α-

Methoxypoly(ethylene glycol)-ω-(11-mercaptoundecanoate) (PEGMUA, molecular mass: 2 kDa) was 

synthesized as described previously.60 AuNPs were functionalized by straightforward ligand exchange 

of citrate-stabilized AuNPs using a mixture of PEGMUA and MUA in aqueous solution as reported:61 

A PEGMUA/MUA mixture was prepared by mixing different volumes of an aqueous solution of 

PEGMUA (1 mM) and an ethanolic solution of MUA (1 mM), yielding a mixture with the molar 

PEGMUA/MUA ratios of 1:3. A solution of PEGMUA/MUA-AuNPs with a final concentration of 

AuNP of 10 nM was prepared. 

AuNPs characterization. Transmission Electron Microscopy (TEM) measurements were performed 

using a Jeol JEM-1011 instrument operating at 100 kV. For TEM sample preparation, 10 μL of sample 

solution was drop-casted onto a carbon-coated copper grid, which was placed on a glass slide, and left 

to dry for at least 24 h. Quantitative analyses of AuNP size distributions based on TEM measurements 

were conducted using ImageJ.  

AuNPs immobilization on ITO substrate. AuNPs were modified on an ITO slide for cyclic voltammetry 

measurements. Before modification, the ITO substrate with a surface area of 1.44 cm2 (1.2 cm x 1.2 cm) 

was cleaned under ultrasonic agitation subsequently in acetone, isopropanol and water for 15 min each. 

The slide was thoroughly dried with nitrogen gas, and treated with a PSD-UV4 O2 plasma cleaner system 

(Novascan 203 Technologies) for 30 s to further remove organic contaminants from the surface and 

make the glass hydrophilic. The cleaned slide was then immersed into a freshly prepared diluted acidic 

solution (𝑝𝐻 = 2) of AuNPs for 72 h. The obtained AuNPs/ITO electrode was rinsed with water to 

clean from non-immobilized NPs, and dried with nitrogen gas. The electrochemically active surface area 

of this electrode was determined via the capacitance ratio method with 6.69 cm² (see Supporting 

Information Figure S3, this area corresponds to a geometrical electrode area of 1.44 cm²) and served to 

normalize the current observed CV experiments. 

AuNPs/ITO electrode characterization. AuNPs/ITO characterization was performed by Scanning 

Electron Microscopy (SEM) using a Leo Gemini 1530 microscope. 

Micro-absorption measurements. The optical setup for micro-absorption measurements was described 

recently.62 Briefly, a supercontinuum laser (Fianium, SC-400-4, 450–2400 nm) was used as a light 

source. The light was guided through a linear polarizer and a beam splitter (Thorlabs, BSW26R) into an 

inverted microscope (Olympus, IX71). A Leica HCX PL Fluotar 100× objective with a numerical 

aperture (NA) of 0.9 was used to focus the light onto the sample with a laser power <100 μW. The 

AuNPs/ITO sample was mounted to a motorized xy-translation stage. The position of the laser spot on 



the sample was visible through a microscope camera. The transmitted light intensity (𝑇) was collected 

with an Olympus Mplan FL N BD 100× objective with an NA of 0.9 and guided by a fiber (Ocean 

Optics, QP600-2-UV-BX for 450–950 nm and BIF600-VIS-NIR for 700–1200 nm) to a spectrometer 

(Avantes, Avaspec 3648). The reflected light intensity (𝑅) was separated from the incoming light with 

a second beam splitter (Thorlabs, BSW26R) and detected by a spectrometer (same fibers and 

spectrometer as for the transmitted light). The absorbed light intensity (𝐴) was determined by subtracting 

𝑇 and 𝑅 contributions from the source light intensity.  

Electrochemical and photoelectrochemical measurements. Electrochemical and photoelectrochemical 

measurements were performed using a ZenniumX potentiostat and a photoelectrochemical cell by 

Zahner, Germany, equipped with a Pt wire counter electrode. AuNP/ITO electrodes were contacted with 

Au wire using Ag paste (Plano, Germany) and nail polish for electrical insulation. ECSA of all samples 

was determined using the capacitance ratio method63 i.e. performing cyclic voltammetry (CV) cycles 

under varied scan rates of 2, 5 and 10 mVs-1 in a potential range of ±50 mV around the open-circuit 

potential (OCP) of the sample in 1 M HClO4 vs. a Ag/AgCl reference electrode (Figure S2-A). The 

capacitance (obtained from the averaged slope of the anodic and cathodic charging currents at OCP vs. 

scan rate) was scaled with the area-specific capacitance (40 μF cm-2)63,64 to obtain the ECSA (Figure S2-

B). The current in CV (Figure 3c) was normalized to the AuNP ECSA determined with 6.69 cm² to give 

the current density 𝑗. For (photo-)electrochemical tests the cell (reference electrode was changed to a 

Ag wire due to the change in pH from acidic to alkaline) was first filled with freshly degassed 500 mM 

glucose solution + 500 mM KOH aqueous solution. CV experiments were performed under dark 

conditions for three successive cycles at 50 mV s-1 scan rate. Subsequent current transients were 

recorded for 60 s under dark and illuminated conditions in the following order: 1) for varied potentials 

under 454 nm illumination (15.3 mW, supplied by a tunable light source TLS03 by Zahner, Germany, 

illuminating the full sample area), 2) for varied intensities at an externally applied potential 𝐸 =

+300 mV vs. Ag at the same wavelength and 3) for varied wavelengths and intensities according to the 

maximum available emission spectrum of the TLS03 (see Figure S5) at 𝐸 = +300 mV. After this 

procedure, the electrolyte was removed, the electrode cleaned thoroughly with water and steps 1) - 3) 

were repeated under freshly degassed 500 mM KOH solution. In addition, in repeated experiments with 

fresh substrates, no deviations of the experiment results were observed. In control experiments, the ITO 

substrate neither contributes to the observed dark nor to the photocurrent transients (see Supporting 

Information Figure S7) and was therefore regarded as passive. 
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