
Decomposing the influences of
uncertainty on learning

Normative computations, uncertainty biases, and lifespan differences

Dissertation

Zur Erlangung des akademischen Grades
Doktor der Naturwissenschaften

(Dr. rer. nat.)

am Fachbereich Erziehungswissenschaft und Psychologie
der Freien Universität Berlin

Vorgelegt von
Rasmus Bruckner

M.Sc., B.Sc. Psychologie

Berlin, 2020

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Institutional Repository of the Freie Universität Berlin

https://core.ac.uk/display/395672435?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Erstgutachter: Prof. Dr. Hauke R. Heekeren

Zweitgutachter: Prof. Dr. Gerhard Jocham

Drittgutachter: Prof. Dr. Markus Ullsperger

Datum der Disputation: 27.11.2020



Contents

Danksagung v

1 Summary 1

2 Glossary 5

3 Introduction 9
3.1 Normative computations . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.2 Uncertainty biases . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.3 Lifespan differences . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4 Research questions and hypotheses 39

5 General methodology 43
5.1 Participants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
5.2 Experimental tasks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
5.3 Computational modeling . . . . . . . . . . . . . . . . . . . . . . . . . 47
5.4 Software and data repositories . . . . . . . . . . . . . . . . . . . . . . 53

6 Summary of the dissertation studies 55
6.1 Study I: Perceptual uncertainty . . . . . . . . . . . . . . . . . . . . . 55
6.2 Study II: Uncertainty and aging . . . . . . . . . . . . . . . . . . . . . 56
6.3 Study III: Default beliefs in children and older adults . . . . . . . . . 57
6.4 Study IV: Computational modeling across the lifespan . . . . . . . . 59

7 General discussion and future directions 61
7.1 Discussion of the research questions . . . . . . . . . . . . . . . . . . . 61
7.2 Perceptual uncertainty . . . . . . . . . . . . . . . . . . . . . . . . . . 72
7.3 Expected uncertainty . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
7.4 Unexpected uncertainty . . . . . . . . . . . . . . . . . . . . . . . . . 75
7.5 Resource rationality . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
7.6 Uncertainty in the cycle of adaptive behavior . . . . . . . . . . . . . . 77
7.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

8 Bibliography 81

9 Appendix 95
9.1 Deutsche Zusammenfassung . . . . . . . . . . . . . . . . . . . . . . . 95

iii



Contents

9.2 List of publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
9.3 Talks and colloquium presentations . . . . . . . . . . . . . . . . . . . 101
9.4 Eigenanteil . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
9.5 Eidesstattliche Erklärung . . . . . . . . . . . . . . . . . . . . . . . . . 105
9.6 Research articles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

iv



Danksagung

Ich möchte mich bei all denjenigen bedanken, die meine Dissertation ermöglicht,

unterstützt und in vielerlei Hinsicht inspiriert haben.

Zuallererst bedanke ich mich sehr herzlich bei meinem Doktorvater Hauke

Heekeren. Du hast in meinen Augen die seltene Gabe, als Betreuer das große Ganze

zu überblicken und an den richtigen Stellen auf die Details zu achten. Du hast

mich immer sehr dabei unterstützt, mit unterschiedlichen WissenschaftlerInnen und

Arbeitsgruppen zu kooperieren, sodass wir jetzt sogar mit Mäusen forschen. In

den vergangenen Jahren bist Du neben all den gemeinsamen wissenschaftlichen

Tätigkeiten zu meinem Mentor geworden, der mich hoffentlich auch in Zukunft noch

begleiten wird.

Ich bedanke mich auch sehr herzlich bei Ben Eppinger. Wir kennen uns schon

seit meiner HiWi-Zeit am MPI und haben seitdem an verschiedenen Projekten zusam-

mengearbeitet. Du hast mir schon früh die Möglichkeit gegeben, an Forschungspro-

jekten mitzuwirken, viel zu lernen und somit die Grundlage für meine Promotion

geschaffen. Trotz der großen räumlichen Entfernung haben wir weiterhin im Team

mit Matt zusammengearbeitet, ein langjähriges Projekt nun endlich zum Abschluss

gebracht und noch viele Projekte in Zukunft geplant.

Dem schon eben erwähnten Matt Nassar gilt mein nächster Dank. Dear Matt, I

had a great time with you and your family in Providence. Thank you for inspiring

me so many times so that I have now completed my own dissertation on learning and

uncertainty. Many thanks for teaching me all my modeling basics and the amazing

collaboration over the years!

Ebenfalls möchte ich mich vielmals bei Dirk Ostwald bedanken. Deine Mathe-

matik hat mich von Anfang an begeistert und mir eine neue Art des wissenschaftlichen

Denkens gelehrt. Außerdem werde ich vermutlich immer von Deiner einzigartigen

Akribie profitieren.

v



Danksagung

Ein großer Dank geht an Ulman Lindenberger. Du hast mich über die gesamte

Zeit der Promotion mit viel Vertrauen unterstützt. Deine wissenschaftliche Begeis-

terung und Offenheit hat mich immer wieder inspiriert. Außerdem habe ich mich

unglaublich über die Einladungen zum Symposium am Tegernsee gefreut und bin

jedes Mal mit vielen Ideen nach Berlin zurückgekehrt.

Weiterer Dank gilt der Arbeitsgruppe mit Felix Molter, Julia Rodriguez Buritica,

Yuan-Wei Yao und Adrian Fischer. Wir haben viele Jahre zusammengearbeitet und

jeder von Euch hat einen nicht geringen Teil zu meiner Dissertation beigetragen.

Auch sei an dieser Stelle Daniela Satici-Thies erwähnt. Ohne Deine organisatorische

Hilfe wäre ich in bürokratischen Angelegenheiten verloren gewesen. Es ist schön,

dass Du unsere Gruppe so gut zusammenhältst. Bei Timo Schmidt bedanke ich

mich für die tolle Zusammenarbeit bei der Organisation der CCNB-Events und vor

allem des 10-jährigen Jubiläums. Außerdem vielen Dank an Christoph Korn, dessen

Dissertation und Ratschläge mir beim Schreiben viel geholfen haben.

Weiterhin danke ich Markus Ullsperger, Shu-Chen Li und Michael Frank. Work-

ing in your labs was a great experience. I learned a lot from you about science and

academia, which contributed significantly to my decision to pursue a Ph.D.

Vincent en Erik, jullie hebben mij al in Nijmegen als vrienden begeleid. Wij

hebben samen niet alleen veel gestudeerd maar ook ons enthousiasme voor de

wetenschap ontwikkeld en uiteindelijk allemaal een promotie gedaan. In Nijmegen

en Berlijn hadden we altijd veel plezier en zullen in de toekomst hopelijk nog vaak

met elkaar afspreken.

Kai und Marcus, wir haben uns im Psychologie-Master kennengelernt und

gemeinsam viel Zeit miteinander und an unseren jeweiligen Laptops in Berliner

Bibliotheken, Cafés und später in unseren Büros verbracht. Vielen Dank für Eure

Freundschaft.

Bei meinen Eltern, Rosa und Helmut, bedanke ich mich für Euer bedingungsloses

Vertrauen. Hättet Ihr damals gedacht, dass ich zum Thema Lernen promoviere?

vi



Ohne Eure Unterstützung in jeglicher Hinsicht, das unermüdliche Interesse und

ein immer offenes Ohr für meine wissenschaftlichen Ausführungen, hätte ich nicht

geschafft, auf was ich jetzt zurückblicken kann. Bei meinem Bruder Jan bedanke ich

mich ebenfalls. Du hast mich nicht nur immer wieder mit Deinem Informatikwissen

inspiriert, sondern ich freue mich vor allem, dass wir uns so gut verstehen und immer

eine tolle Zeit miteinander haben.

Zu guter Letzt bedanke ich mich bei Mareike. Du hast mich über die gesamte

Zeit der Promotion begleitet und bei allen Hürden, die es zu überwinden galt, riesig

unterstützt! Außerdem möchte ich Dir vielmals für Deine Ratschläge zur Gestaltung

und Verbesserung der Dissertation danken.

vii





1 Summary

Learning often takes place in environments with uncertainty about current and future

outcomes. To behave adaptively in these circumstances, people need to learn beliefs

from past experiences, based on which they can predict future outcomes.

In my dissertation, I examine:

1. Normative computations that should determine learning under uncertainty.

2. Uncertainty biases that lead to deviations from normative learning.

3. Age-related differences in learning under uncertainty that are characteristic

across the lifespan.

Here, the term normative computations from the field of computational neuro-

science refers to computations that provide an optimal solution to a learning and

decision-making problem. My dissertation studies draw on computational models

that implement normative computations and formally define uncertainty. Based

on these models, the studies systematically investigated to what degree younger

adults and people across the lifespan consider uncertainty when learning from their

experiences.

I begin by illustrating that adaptive behavior consists of several related steps,

including a representation of the environment, decision making, and learning (In-

troduction). Based on this, I present a framework that decomposes uncertainty

into three forms: perceptual uncertainty, expected uncertainty, and unexpected

uncertainty (Normative computations). Perceptual uncertainty is related to sensory

information processing, expected uncertainty arises from outcome variability, and

unexpected uncertainty is the consequence of changes in the environment. For each

form, I describe how individuals should learn under uncertainty based on normative

computations. I then show that biases, that is, deviations from a normative consid-

eration of uncertainty, are characteristic of human learning behavior (Uncertainty
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1 Summary

biases). Finally, I motivate why capturing these biases in computational models

of cognition can improve our understanding of age-related lifespan differences in

learning under uncertainty (Lifespan differences).

The first dissertation study (Bruckner et al., 2020a) examined which normative

computations should guide learning under perceptual uncertainty, to which degree

humans regulate learning accordingly, and how past perceptual choices bias this

process. The second study (Nassar et al., 2016) investigated expected and unexpected

uncertainty in younger and older adults, particularly how biases in the consideration

of uncertainty explain age-related learning differences. The third study (Bruckner et

al., 2020b) built upon this and examined the role of simplified learning strategies

across the lifespan. Finally, the fourth study (Van den Bos et al., 2018) was an opinion

paper on how applying computational cognitive models advances our understanding

of age-related lifespan differences in learning and decision making.

In the following, I briefly summarize the results of the dissertation studies

mentioned above. In Bruckner et al. (2020a), we showed that perceptual uncertainty

often corrupts learning because of misinterpreted perceptual information. Learning

behavior under perceptual uncertainty should be more cautious than in perceptually

clear situations to avoid such misinterpretations. We found that humans consider

perceptual uncertainty during learning. However, we also identified learning biases

driven by previous perceptual choices, which led to a less cautious regulation of

learning.

In Nassar et al. (2016), our results suggested that age-related learning differences

are related to the adjustment to expected uncertainty. In particular, we found that

older adults (60 to 80 years) exhibit a bias to underestimate uncertainty about

their beliefs compared to younger adults (20 to 30 years). This form of uncertainty

underestimation leads to less flexible learning behavior compared to younger adults.

In Bruckner et al. (2020b), we found that age-related impairments in learning

under uncertainty often arise because children (7 to 11 years) and older adults resort to

2



simplified learning strategies that lead to more repetitive responding (perseveration)

and stronger environmental influences on behavior (environmental control) compared

to younger adults.

Finally, in Van den Bos et al. (2018), we argued that computational cognitive

models are an essential tool to gain a better understanding of age-related learning

and decision-making differences. In particular, we illustrated both promises of the

application of computational models to study age-related behavioral differences

(concerning risk-taking, strategy selection, and reinforcement learning) and potential

pitfalls.

After discussing the implications of these studies (General discussion and future

directions), I propose a cognitive model of learning under uncertainty based on the

new insights of my studies and previous work in the literature (Uncertainty in the

cycle of adaptive behavior). In summary, the dissertation highlights that learning is

a dynamic process that is influenced by multiple forms of uncertainty. People take

uncertainty into account during learning but show inherent uncertainty biases that

substantially change across the lifespan.

3





2 Glossary

agent Something that acts (Russell & Norvig, 2010). Here, mainly referred to

as a computationally implemented artificial agent model that perceives its

environment and performs actions to achieve a goal. 9, 10, 22, 48, 61

Bayesian inference Mathematical method to update probability distributions based

on newly arriving information. In computational neuroscience, Bayesian models

are often used to model an agent’s beliefs, mathematically define uncertainty,

and derive normative computations. See Box 2 for more details. 11, 13, 22, 69

belief In the context of Bayesian inference, the term reflects an agent’s knowledge

of a variable that is often not directly observable in the environment. Beliefs

can be quantified with a belief distribution that assigns a degree of belief to

each possible value of the variable. 12, 13, 22

belief state Posterior probability of task states conditional on the current sensory

information and computed using Bayesian inference. Often applied to deal

with observations when task states are not directly observable, e.g., because of

perceptual uncertainty. 12–14, 30, 45, 55

belief uncertainty Variance of an agent’s belief distribution, where a wider distri-

bution reflects more belief uncertainty than a narrower distribution. Often

emerges from expected uncertainty when beliefs are merely based on a few

variable outcomes. Sometimes also referred to as estimation uncertainty. 11–13,

19, 22, 30, 47, 49, 56, 77, 78

bias Systematic deviation from normative behavior. In this dissertation, uncertainty

biases are particularly defined as deviations from normative computations. 30,

48, 55, 69, 79

5



Glossary

categorical perception Categorical commitment to one interpretation of a stimulus

and neglect of alternative interpretations under perceptual uncertainty. Often

driven by past perceptual choices. 29, 35, 55, 64, 73, 79

changepoint Abrupt change in the outcome contingencies of a task. Because change-

points are unsignaled, they are a major source of unexpected uncertainty and

require strong behavioral adjustments to the new contingencies. 13, 21, 24, 30,

46

changepoint probability Posterior probability of a changepoint. Because change-

points are often not directly observable, changepoint probability can guide

learning under uncertainty about whether a changepoint occurred. Sometimes

also referred to as surprise. 25, 47, 49

default belief Refers to a default response that can easily be computed, such as re-

lying on previous responses, yielding perseveration; or relying on environmental

cues, yielding environmental control. 36, 37, 42, 50, 67, 78

environmental control Behavior that is guided by environmental cues. It is assumed

that environmental control emerges from weakened cognitive representations

required for solving a task and is associated with lower task performance. 58,

67

expected uncertainty Uncertainty about outcome contingencies in a task that

emerges from variability across outcomes. It is assumed that agents expect

and tolerate this form of uncertainty during learning. Expected uncertainty

leads to belief uncertainty because the outcome variability prevents perfect

knowledge of outcome contingencies. 11–13, 19, 30, 77, 78

expected value In decision-making tasks involving rewards, the term expresses the

expected, average benefits that are likely to result from choosing a particular
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option (Rangel et al., 2008). More generally, expected value can refer to an

expected outcome that is not necessarily rewarding. 9, 10, 12, 21, 45, 77, 78

hazard rate Parameter in changepoint tasks that controls the frequency of change-

points. 24, 41, 56, 77, 78

learning rate In reinforcement-learning models, the learning rate controls the influ-

ence of a prediction error on the updated expected value. A high learning rate

(near 1) indicates that the prediction error strongly influences the expected-

value update. A low learning rate (near 0) reflects a weak influence. 18, 19, 25,

47, 49, 55

normative computations Computations that should be performed to solve a learn-

ing or decision-making problem optimally; often derived from Bayesian inference.

13, 22, 36, 55, 69

outcome contingency Mapping between states, actions, and outcomes in a task.

13, 21, 30, 35, 44, 45, 61, 74

perceptual uncertainty Uncertainty over stimuli/states that emerges from the un-

reliability of perceptual information. Often formalized with the belief state.

11–14, 30, 77

prediction error In reinforcement-learning models, the term refers to the difference

between a received and an expected outcome. Prediction errors are used as a

teaching signal that drives learning. See Box 1 for more details. 9, 10, 17, 46,

47, 75

reinforcement learning Computational approach to learning based on rewards dur-

ing interaction with the environment. See Box 1 for more details. 11, 49
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reversal learning Common paradigm to study learning and decision making. Often

based on two or more choice options where the outcome contingency reverses

between two states, one associated with a high expected value, the other

associated with a low expected value. High performance requires an adjustment

of choice behavior when a reversal is detected. 13, 23

state A signal from the environment or an internal process that is relevant for an

agent and either fully or partly available, mostly via perceptual processes. 9,

10, 12, 21, 44, 45, 55, 61, 77, 78

surprise Unexpectedness of an outcome. In this dissertation, used in the context

of unexpected changepoints and formalized with changepoint probability. In-

formation theory offers additional measures of surprise (MacKay, 2003). 25,

28

surprise insensitivity Refers to a bias in the consideration of surprise, which leads

to a reduced adjustment after a changepoint. 30, 33, 41, 56

unexpected uncertainty Emerges from changes in the environment. The term

denotes that changes lead to strongly unexpected observations beyond the

random variability due to expected uncertainty. 11, 13, 21, 30, 78, 79

volatility A central term in models of learning under unexpected uncertainty that

assume drifting changes in the outcome contingencies. Volatility controls the

extent to which the outcome probabilities of choice options change across trials.

Formally, volatility is often defined as the variance of a distribution that models

the drifting outcome contingencies. 13, 21, 23, 24, 30, 77, 78
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3 Introduction

Learning is pervasive in humans, animals, and artificial intelligence. It occurs when

we acquire knowledge as a result of experience and is the basis for adaptive behavior

(Terry, 2015). Examples range from basic phenomena such as classical conditioning

to complicated decisions based on assessing the financial market.

1. Representation
Set of feasible actions,

environmental, and
internal states

2. Valuation
Expected value of each

action given states

3. Decision making

Comparison of values,
commitment to a choice

4. Outcome evaluation
Desirability of outcome,

prediction error

5. Learning
Update of representa-
tions, expected values,

and decisions

Figure 1. The cycle of adaptive behavior. Adaptive behavior incorporates five related steps. During interaction
with the environment, an agent sequentially goes through these steps. First, a representation of the set of feasible
actions (e.g., eating vs. rejecting a berry) as well as environmental and internal states. A state signals relevant
information for an agent, which can originate in the agent’s environment (e.g., presence of strawberries and cherries)
or internally (e.g., feeling hungry). Second, valuation, i.e., the assignment of an expected value to the feasible actions
depending on the environmental and internal states (e.g., high vs. low expected taste value of eating a strawberry).
Third, decision making based on a comparison of the actions’ expected values (e.g., eating a strawberry because of a
higher expected value compared to cherry). Fourth, outcome evaluation, expressing the desirability of the received
outcome, for example, based on prediction errors indicating the difference between an outcome and the expected
value (e.g., comparison of the actual taste and the expected value of a strawberry). Fifth, learning in response
to outcome evaluation, including an update of the representations (e.g., switching from hungry to not hungry),
expected values (e.g., increasing the expected strawberry value), and decision-making policy (not further described
here). The schematic was adapted from Rangel et al. (2008).

Learning takes place during interaction with the environment. To introduce

how environment, behavior, and learning are related to each other, I commence

with a framework based on earlier work by Rangel et al. (2008), which builds upon

theories from psychology, computer science, and economics (Busemeyer & Johnson,

2004; Mas-Colell et al., 1995; Sutton & Barto, 1998). The basic idea is that adaptive

behavior involves five related steps (Figure 1). When an animal, a person, or an

9



3 Introduction

artificial agent (Hassabis et al., 2017; Russell & Norvig, 2010) interacts with the

environment, they repeatedly cycle through these steps.

The first step is a representation of the set of feasible actions as well as environ-

mental and internal states (representation). The term state refers to a signal from the

environment or an internal process that is relevant for an agent and mostly available

via perceptual processes. For example, an animal might be in an environment with

different berry varieties such as strawberries and cherries. The set of feasible actions

in this environment is eating or rejecting a berry. The two berry varieties comprise

the environmental states, and the animal’s internal state could be feeling hungry.

Therefore, in the representation step, the animal needs to represent those states to

identify what is currently relevant for its behavior.

Second, the expected values assigned to the available actions (valuation), refer-

ring to the expected benefits of the actions that are likely to result from choosing

them. That is, when the animal chooses between eating strawberries or cherries

to appease its hunger, it might expect a good taste of strawberries (high expected

value). In contrast, if it expects a bad taste of cherries, it is less valuable for the

animal to eat cherries (low expected value).

Third, the comparison of expected values to make an informed choice leading to

the subjectively preferred outcome (decision making). Based on the higher expected

value of strawberries compared to cherries, the animal may choose to eat strawberries

and refuse cherries.

Fourth, an evaluation of the outcome of the choice (outcome evaluation). In

the example, this could correspond to an evaluation of the perceived taste of the

consumed strawberries, and whether the animal is still hungry or not.

Finally, the evaluated outcome is utilized to update the representations, expected

values, and future choices (learning). For example, if the animal likes a strawberry

better than expected (positive prediction error), learning leads to an increase of the

expected strawberry value, and if a berry is worse than expected (negative prediction

10



3.1 Normative computations

error), learning leads to a decrease. Moreover, after having eaten a sufficient amount

of strawberries, the animal’s internal state might change from hungry to not hungry.

In summary, the computations sketched in this framework enable the animal to

learn about the best course of action to adapt its behavior to internal needs and the

current environment. For an example of how the cycle of adaptive behavior can be

described within the framework of reinforcement learning, see Box 1.

3.1 Normative computations

The information on which humans and animals rely during learning is often remark-

ably uncertain. For example, in the representation step, two different types of berries

may perceptually be hard to discriminate (perceptual uncertainty). In the valuation

step, the animal may be confronted with uncertainty due to the natural variability

of the berries’ taste (expected uncertainty), which leads to uncertainty about the

expected taste value (belief uncertainty). Uncertainty can also emerge from changes

in the berries’ expected value so that berries taste better at the beginning than at

the end of summer (unexpected uncertainty).

Each of these forms of uncertainty makes it more difficult for an agent to learn

from its experienced outcomes. However, although uncertainty can significantly

corrupt learning, taking this into account generally improves the learning accuracy.

For instance, learning the strawberries’ expected value benefits from consideration of

expected uncertainty due to natural taste variability. After the consumption of a

bad berry, an animal which considers expected uncertainty would not immediately

conclude that it dislikes all strawberries and pays attention to other strawberries

as well to reduce its belief uncertainty over the value of the berries (see Box 2 on

Bayesian inference for a graphical illustration of this example).

11



3 Introduction

Perceptual uncertainty

0 5 10 15 20 25
Trial

0.0

0.5

1.0
Belief state

Strawberry
Cherry

Expected uncertainty

0 5 10 15 20 25
Trial

Low

Medium

High

True value
Outcome
Expected value

Unexpected uncertainty

0 5 10 15 20 25
Trial

Low

Medium

High

Expected value of volatility model
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Trial

Low

Medium
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Expected value of changepoint model

Strawberry Cherry

?

Expected value
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Belief
uncertainty
(variance)

Expected
value

Belief distribution

Reversal in expected value

Changepoint in expected value

a

b

c

Figure 2. Decomposing uncertainty into three major forms. a) First, perceptual uncertainty concerns
the representation step, particularly the identification of the environmental states, because it emerges from the
unreliability of perceptual information about those states. For example, perceptual uncertainty due to bad light
conditions can impede distinguishing strawberries and cherries when an animal forages for food. One can formalize
perceptual uncertainty with the belief state that indicates the state probabilities based on the available perceptual
information such as the probability of strawberry versus cherry. In the example (right plot), the belief state weakly
favors strawberry in trial 0, strongly favors strawberry in trial 2, and strongly favors cherry in trial 13. b) Second,
expected uncertainty primarily concerns the valuation step. Expected uncertainty emerges from variability across
outcomes and makes it impossible to know the expected value of an action exactly. For example, due to natural
variability, only 80 % of the strawberries taste well. Using a belief distribution, one can model the animal’s belief
over the strawberry value, as shown in the middle panel. The mean (red vertical line) of the distribution reflects the
animal’s expected taste value, i.e., the average probability of obtaining a good strawberry. The variance (horizontal
arrows) reflects the belief uncertainty. Here, a lower variance would indicate less belief uncertainty. As shown
in the right panel, based on the belief distribution, one can model the evolution of the animal’s expected value.
In this example, the animal experiences several good and bad berries, based on which its learned expected value
approximates the true value of 80 %.
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3.1 Normative computations

Figure 2 (Continued). c) Third, unexpected uncertainty is the consequence of changes in the environment.
Changes specifically affect the outcome contingency in a task, i.e., the mapping between states, actions, and outcomes.
I distinguish approaches that assume volatile environments (volatility, first row) and changepoint environments
(second row). A typical example of volatility is reversal learning where the outcome contingency switches between
two states, for example, associated with a high vs. low expected strawberry value. Volatility models assume that
these changes occur smoothly over time (right panel). As indicated by the red line, these models compute drifting
changes in the expected values, which approximate the true strawberry value after the experience of multiple berries.
In contrast, changepoint models assume discrete changepoints in the outcome contingency. In the changepoint
example (second row), the expected value of berry availability changes at discrete time points. The availability of
strawberries is initially high (left set of berries) but suddenly changes so that only a few berries are available (right
set of berries). As shown in the right plot, a changepoint model tries to detect those changepoints and rapidly
adjusts the expected value accordingly.

We are now in a position to formulate a framework that dissociates three

major forms of uncertainty that plague learning (Figure 2). First, perceptual

uncertainty concerns perceptual information processing and is primarily related to

the representation step of the cycle of adaptive behavior. The second form, expected

uncertainty, arises from random variability between outcomes and ultimately leads

to belief uncertainty. Third, unexpected uncertainty, which emerges from changes in

the environment. Within the cycle of adaptive behavior, expected and unexpected

uncertainty primarily affect the valuation step.

The proposed framework gives an overview of normative computations that

agents should perform to solve the learning problems presented in the following

sections optimally. These normative computations are derived from Bayesian in-

ference, a method that can be utilized to define uncertainty mathematically (see

Box 2). In the following, I will borrow the term belief from the language of Bayesian

inference (Russell & Norvig, 2010) to refer to an agent’s knowledge of an uncertain

variable such as an environmental state (belief state) in the representation step or

the expected value of an action (belief distribution) in the valuation step.1

1Please note that other frameworks exist that distinguish between several forms of uncertainty.
Yu and Dayan (2005) proposed the terms expected and unexpected uncertainty. Bach and
Dolan (2012) distinguish between uncertainty about sensory information, states, rules, and
outcomes. This framework is, however, more directly focused on uncertainty during decision
making than learning. Soltani and Izquierdo (2019) review the literature on expected and
unexpected uncertainty but do not include perceptual uncertainty. Moreover, Ma and Jazayeri
(2014) proposed a framework on neural coding of uncertainty. Finally, I will not explicitly
consider effects of motor uncertainty during action selection on learning (e.g., Fleming et al.,
2013; Frömer et al., 2020).
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3 Introduction

3.1.1 Perceptual uncertainty

The form of perceptual uncertainty is primarily related to the representation of

environmental states. Virtually all learning processes require the processing of

perceptual information about environmental states, such as the currently available

berry varieties. Previous work traditionally studied learning under conditions in

which the perceptual input is clearly interpretable. However, learning is often

impeded by perceptual uncertainty because perceptual information is unreliable or

distorted by variability inherent in sensory systems (Dayan & Daw, 2008; Gold &

Heekeren, 2014; Gold & Shadlen, 2007; Law & Gold, 2009; Summerfield & Tsetsos,

2012).

As illustrated in Figure 2a, an animal could be confronted with perceptual

uncertainty whether it found a strawberry or cherry during foraging (e.g., under bad

light conditions). Although the animal can not exactly identify the current state of

the environment (strawberry vs. cherry), it can rely on a belief about the state. I

refer to this as the belief state, which expresses the state probability depending on

the currently available uncertain sensory information (Daw, 2014; Dayan & Daw,

2008). More distinct belief states (e.g., 95 % in favor of strawberry vs. 5 % of cherry)

indicate low perceptual uncertainty and more similar probabilities (e.g., 55 % vs.

45 %), high uncertainty. Formally, these computations are based on Bayes’ theorem,

which I introduce in Box 2.

Intuitively, the belief state should regulate how much an agent learns from an

outcome. If the animal is sure that it has eaten a tasty strawberry and not a tasty

cherry (99 % vs. 1 %), it can adjust the strawberries’ expected value accordingly. In

contrast, if it does not exactly know which berry it consumed (55 % vs. 45 %), the

animal should learn more cautiously about the values because it may have confused

the berries.

Although it is somewhat surprising that the cognitive-neuroscience literature

has not yet proposed a Bayesian-inference model that learns according to this idea
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3.1 Normative computations

(to the best of my knowledge), perceptual decision-making research provides relevant

prior results on perceptual uncertainty. This field of research studies choices based

on available perceptual evidence (Heekeren et al., 2008), often using stimuli that are

uncertain because they are noisy or weakly presented so that participants can not

clearly perceive them (Gold & Stocker, 2017).

Several studies provided rewards for correct choices or punishments for incorrect

responses. In these cases, an estimate of the uncertainty with which a stimulus

can correctly be detected or classified can be useful to increase the likelihood of

obtaining a reward or avoiding punishment. For example, Whiteley and Sahani (2008)

asymmetrically penalized participants for providing incorrect responses, i.e., they

penalized incorrect answers on the one side more heavily than on the other side. Under

high perceptual uncertainty, participants tended to avoid more heavily penalized

answers, suggesting that they chose the less negative option to avoid high punishment

in trials where they could hardly identify the stimuli due to perceptual uncertainty.

In contrast, under low perceptual uncertainty, choices were primarily driven by the

available perceptual information and less so by differences in punishment.

There is also compelling evidence that rhesus monkeys consider perceptual

uncertainty to similarly maximize collected rewards (Kiani & Shadlen, 2009). In a

random-dot task with varying difficulty levels, Kiani and Shadlen rewarded monkeys

for correct choices. In half of the trials, the monkeys had the opportunity to opt-out

of the decision to obtain a smaller but guaranteed reward. They chose this option

particularly in difficult trials, indicating that they utilized an estimate of perceptual

uncertainty to determine when the small but guaranteed reward was more valuable

than a larger reward that depended on the correctness of the perceptual choice.

Here, neurons in the parietal cortex seemed to be involved in the computation of the

perceptual choice as such, and the corresponding perceptual uncertainty about the

visual input.
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Studies applying sequential-sampling models provided further evidence that

humans and animals consider perceptual uncertainty during perceptual decision

making (Forstmann et al., 2016). Based on reaction times and choice data, these

models describe decision-making processes in terms of an accumulation of uncertain

perceptual information integrated over time. According to such models, individuals

report their decisions when the accumulated evidence reaches a decision threshold.

The study results in monkeys by Kiani and Shadlen (2009) were qualitatively consis-

tent with a sequential-sampling model that framed the computation of the parietal

neurons to opt-out of a decision depending on perceptual uncertainty in terms of a

Bayesian evidence accumulation process.

Sequential-sampling models further suggested that asymmetric rewards or losses

bias evidence accumulation towards the high-reward/low-loss option. Most results

support the idea that unequal reward or punishment serves as prior information

that shifts the starting point of the evidence accumulation process towards the more

desirable option. In effect, especially under high perceptual uncertainty, choices are

often biased in the direction of the high-reward/low-punishment option (Diederich

& Busemeyer, 2006; Feng et al., 2009; Gold & Shadlen, 2001; Rorie et al., 2010;

Simen et al., 2009). Similar studies in humans indicated that neural activity in the

parietal and prefrontal cortex (PFC) correlates with perceptual uncertainty during

perceptual decision making (Mulder et al., 2012; Summerfield & Koechlin, 2010).

Finally, humans seem to utilize perceptual uncertainty in tasks with unobservable

and occasionally changing response rules (Purcell & Kiani, 2016). In this study,

participants adjusted their responses after feedback about the correct rule more

quickly when they suffered from lower perceptual uncertainty. The authors formally

described these computations with a sequential-sampling model that dynamically

integrated uncertain perceptual evidence and response feedback.

Studies in monkeys and mice that used a reinforcement-learning framework

provided more recent evidence that perceptual uncertainty affects learning (Lak
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et al., 2017; Lak et al., 2020). These authors suggested that the brain weights reward

processing and learning as a function of belief states with a neural mechanism at

the level of the reward prediction error in the striatum (see Box 1 on reinforcement

learning). Moreover, results in rats demonstrate another potential neural mechanism

in the anterior cingulate cortex (ACC) that leads to a similar regulation of learning

in response to perceptual uncertainty (Stolyarova et al., 2019).

In summary, perceptual decision making provides evidence that humans and

animals represent and utilize perceptual uncertainty to adapt their behavior more

cautiously when only weak perceptual information is available, potentially via neural

mechanisms including the PFC and parietal cortex. More recent work suggests that

perceptual uncertainty guides learning from feedback at the level of the striatum and

ACC. However, the field currently lacks Bayesian-inference models indicating how

agents should normatively adjust learning under perceptual uncertainty that help us

to test to what degree humans learn according to these principles.
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Box 1| Reinforcement learning
Learning from reward and punishment is a fundamental ability of humans and other animals that is essential
for adaptive behavior. In psychology and neuroscience, the reinforcement-learning framework emerged from
classical experiments on animal conditioning and learning algorithms in computer science (Daw & Tobler,
2014; Dayan & Daw, 2008; Rescorla & Wagner, 1972; Sutton & Barto, 1998). A popular idea of this
approach is that learning results from comparing the reward received at a particular point in time with the
expected value. Formally, we can express this as the prediction error

δt = ot − vt(st), (3.1)

where the index t denotes a trial, st the state of the environment, ot the outcome, and vt the expected value.
As shown in the example on the Cycle of adaptive behavior plotted below, the state st could refer to the
berry variety (strawberry vs. cherry), the outcome ot to the taste of the consumed berry (high vs. low), and
the expected value vt to the initially expected taste of the berries (e.g., medium). The animal then uses the
prediction error to adjust its expected value at the next trial t+ 1 according to

vt+1(st) = vt(st) + α · δt, (3.2)

which expresses that the current expected value vt of state st is combined with the prediction error δt and
multiplied by the learning rate α that determines how strongly δt influences the expected value vt+1(st).
Based on this framework, we can model the five steps of the cycle of adaptive behavior. a) In the repre-
sentation step, the animal has to represent the two environmental states, corresponding to strawberry and
cherry (next to internal states, which are ignored for simplicity). b) In the valuation step, the animal assigns
an expected value to both berry varieties, which differently evolve across time. c) In the decision-making
step, the animal chooses one of the berries, preferably the one with the higher expected value. d). During
outcome evaluation, the animal perceives the taste, which is either high or low. e) Subsequently, it computes
the prediction error (eq. (3.1)). f) Finally, the animal updates its expected value according to eq. (3.2). That
is, the expected value update shown in (f) indicates to which degree the animal adjusts the expected value
in (b) from trial to trial. Thus, the animal learns a higher expected value of strawberries than cherries (b)
and tends to choose strawberries more often (c).
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3.1.2 Expected uncertainty

Within the cycle of adaptive behavior, expected uncertainty primarily affects the

valuation step. This form of uncertainty arises from random variability across

outcomes. When the learner is aware that outcomes are plagued by uncertainty, the

term expected uncertainty is often used to indicate that some degree of randomness

is expected and tolerated during learning (Yu & Dayan, 2005).

As shown in Figure 2b, when the animal forages for strawberries, it suffers from

expected uncertainty due to outcome variability (80 % probability of good berry and

20 % bad berry). Consequently, the animal can not exactly know the true strawberry

value (i.e., 80 % probability of good berry). However, it can rely on a belief about

the value, which we can express with a belief distribution over the strawberry value

(Figure 2b, middle panel). The mean of the belief distribution denotes the animal’s

expected value, i.e., the average probability of obtaining a good strawberry. The

variance characterizes the animal’s belief uncertainty over the value (sometimes

also referred to as estimation uncertainty), where a lower belief uncertainty (lower

variance) indicates that the animal has learned a more reliable expected value of the

strawberry.

Therefore, when learning the strawberries’ expected value, the animal has to

average out the outcome variability by combining multiple experienced outcomes.

As shown in Figure 2b (right panel), doing so in response to experiencing good

and bad berries results in an expected value that converges towards the true value.

The key prediction of Bayesian learning under expected uncertainty is that the

influence of a new outcome on the expected value decays over time. This decay in

the learning rate is related to belief uncertainty. At the beginning of learning, the

belief about the value is highly uncertain and, therefore, strongly influenced by a

new outcome. Conversely, after multiple outcomes, the agent is more confident, and

a new observation changes the belief distribution merely weakly (see also Box 2 on

Bayesian inference for illustration).
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Several studies suggest that humans adjust their learning rate under expected

uncertainty according to the principles of Bayesian inference. For example, Payzan-

LeNestour and Bossaerts (2011) used a six-armed-bandits task with considerable

expected uncertainty over the bandits’ payoffs. The authors compared a Bayesian

learning model that regulates learning according to belief uncertainty with classical

reinforcement-learning algorithms lacking this ability. The results of this study

favored Bayesian learning, suggesting that human participants can flexibly determine

how much they learn from new observations under expected uncertainty. Follow-up

neuroimaging work showed expected-uncertainty-related activity in the ACC and

PFC (Payzan-LeNestour et al., 2013).

Meyniel and colleagues presented further evidence that belief uncertainty impacts

learning (Meyniel & Dehaene, 2017; Meyniel, Schlunegger, et al., 2015). In a learning

task, they instructed participants to provide explicit confidence ratings about their

learned beliefs. These confidence ratings were in line with "belief certainty" (i.e., the

inverse of belief uncertainty) of a Bayesian-inference model, and related to brain

activity in the PFC. Thus, this result also suggests that human learners use an

estimate of belief uncertainty to regulate learning but extends previous findings to

show that this estimate can be explicitly reported and related to brain activity.

Nassar and colleagues (Nassar et al., 2010) showed that participants report more

substantial belief updates after observing only a few compared to multiple uncertain

outcomes across an extended period. The authors quantitatively captured this result

in a Bayesian belief-updating model suggesting that participants regulated their belief

updates depending on the amount of belief uncertainty. Functional neuroimaging

work using this model revealed that activity in the medial PFC and parietal areas

correlates with the uncertainty-dependent learning regulation, suggesting that these

areas support such computations (McGuire et al., 2014).

Finally, an influential theory states that the neurotransmitter acetylcholine

signals the level of expected uncertainty (Yu & Dayan, 2005). Several studies that
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tested this idea offer support along these lines, for example, pharmacological work

in humans (Marshall et al., 2016; Moran et al., 2013; Vossel et al., 2014), and

optogenetics in mice (Hangya et al., 2015).

In summary, expected uncertainty comes from variability between outcomes.

Therefore, learning under expected uncertainty leads to uncertain beliefs about the

expected value of choice options, mainly when an agent has only observed a few

uncertain outcomes. Several studies suggest that humans flexibly adjust learning

under expected uncertainty, which is associated with brain activity in the ACC, PFC,

parietal cortex, and the neurotransmitter acetylcholine.

3.1.3 Unexpected uncertainty

The form of unexpected uncertainty also primarily affects the valuation step. Un-

expected uncertainty emerges from changes in the environment and implies such

changes lead to strongly unexpected observations beyond the random variability

through expected uncertainty (Yu & Dayan, 2005). The literature on learning in

these environments can broadly be divided into approaches using models that as-

sume drifting outcome contingencies modulated by volatility and abruptly-changing

contingencies related to a changepoint.

Volatility

Changes in the environment affect the outcome contingency in a task, referring to the

mapping between states, actions, and outcomes. A typical task is reversal learning,

where the expected value of choosing an option reverses between two states (Figure

2c, upper row). In one state, the expected strawberry value is high because it is

likely that the animal picks a good berry. In the other state, the expected value is

low because the animal is unlikely to find a good berry. To adjust to these changes

in the outcome contingencies, the animal has to update its learned expected value of

the strawberries accordingly.
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Box 2| Bayesian inference
Bayesian inference is a mathematical method to update probability distributions based on newly arriving
information. In psychology and neuroscience, the application of this method has proven to be suitable for
the development of computational models of cognition. An appealing characteristic is that it offers insights
into the normative computations indicating how a learning or decision-making problem under uncertainty
should optimally be solved. An important term in the language of Bayesian inference is belief, referring to
an agent’s knowledge of an uncertain variable. In the Cycle of adaptive behavior, one could, for example, use
this method to learn a belief about the expected value vt of the strawberries’ taste. The central component is
Bayes’ theorem, which describes how the probability of an event (vt, indicating the probability of obtaining
a tasty strawberry) can be computed after a new outcome ot when we have prior knowledge about the event,
i.e.,

p(vt|ot) =
p(ot|vt)p(vt)

p(ot)
, (3.3)

where p(vt|ot) refers to the posterior probability after incorporating the new outcome information, which
is obtained by consideration of the prior information about the event p(vt) and the likelihood of the new
outcome ot, conditional on vt being true, i.e., p(ot|vt). p(ot) in the denominator refers to the marginal
probability of ot and acts as a normalization factor. As shown in the example on the cycle of adaptive
behavior in the plot below, vt can be interpreted as the strawberries’ expected value, and the outcome ot

denotes the taste of the strawberry (high vs. low). The prior p(vt) could denote the initially expected value
of the strawberries. a) To illustrate the evolution of the animal’s expected strawberry value according to
Bayesian inference, the animal is always in the strawberry state. b) In the valuation step, the animal tracks
the strawberries’ expected value, which develops from medium to high. c) Because Bayesian inference is
concerned with updating a probability distribution, we can explicitly model an agent’s uncertainty regarding
the belief about the expected value. I refer to this form of uncertainty as belief uncertainty, which formally
denotes the variance of the belief distribution (see also Figure 2b, middle panel). As shown in the plot
below, belief uncertainty slowly decays across trials, reflecting that the agent’s belief over the strawberry
value is increasingly certain. d) Because the animal is constantly in the strawberry state, it only eats
strawberries and subsequently evaluates the perceived taste. e) Thus, during outcome evaluation, the
animal experiences mostly good berries. f) Finally, in the learning step, the animal updates the expected
value under consideration of belief uncertainty using eq. (3.3).
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A common idea about the computational underpinnings of learning under

unexpected uncertainty is that humans and animals assume continuous drifts instead

of abrupt changes in the outcome contingencies. In this scenario, volatility controls to

which degree the outcome contingency is assumed to change across time. Therefore,

environments with more unexpected uncertainty are assumed to be more volatile;

that is, outcome contingencies drift more heavily. It is important to keep in mind

that although the reversals occur at discrete time points, volatility models assume

that behavioral adjustments to such changes occur continuously. As illustrated in the

figure, the animal’s expected value of the strawberries (red line) smoothly develops

across time.

An influential study proposed a Bayesian-inference model for reversal learning

in such environments (Behrens et al., 2007). To optimally respond to reversals in

the task, the model by Behrens et al. (2007) not only learns the choice options’

expected value, but also the volatility itself. In effect, the model can flexibly adjust to

environments with different levels of volatility such that in more volatile environments,

the model more quickly adjusts to the contingency changes in the task. The empirical

results on learning under volatility in humans were in line with this idea and suggested

that subjects who performed better were better calibrated to volatility. Moreover,

participants showing more ACC activity achieved a higher learning performance,

suggesting that the ACC might be involved in regulating learning in response to

volatility.

While the model by Behrens et al. (2007) is suitable for simulating learning

behavior, it is hard to estimate it based on participant data, primarily because this

would take too much time due to a large number of required numerical calculations

(Mathys et al., 2011). However, model estimation offers the appealing possibility to

uncover individual differences in the latent processes governing learning that might

deviate from a normative model (see Model estimation).
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Therefore, more recent studies proposed computational models that approximate

optimal Bayesian inference for a fraction of the computational complexity, allowing

for subject-specific parameter estimates reflecting the computational underpinnings

of learning behavior. A prominent example is the hierarchical Gaussian filter (HGF),

which performs hierarchical Bayesian inference (Mathys et al., 2011; Mathys et al.,

2014). One can apply the HGF to a broad array of learning tasks, which offers the

possibility to extract general principles of learning under uncertainty. A previous

application of this model, for example, provided evidence for an involvement of the

basal forebrain in belief updating of volatility (Iglesias et al., 2013). However, the

generalizability of the HGF may come at the cost of missing learning dynamics that

are specific to particular tasks (Bröker et al., 2018). More recent studies, therefore,

offered simpler, alternative models that are less able to generalize across various

tasks but might better capture uncertainty-driven learning in the tasks they were

designed for (Bröker et al., 2018; Piray & Daw, 2020).

In summary, in volatile environments, outcome contingencies smoothly change,

and the volatility controls the extent of this change during each trial. The different

volatility models shown in this section have their strengths and weaknesses. However,

the bigger picture that this line of research sketches is that humans can utilize

unexpected uncertainty in volatile reward environments to regulate learning flexibly.

Finally, at the neural level, volatility-related activity enabling such inferences was

found in the ACC and the basal forebrain.

Changepoints

An alternative way of responding to unexpected uncertainty is to assume discrete

changepoints during learning. Thus, in contrast to the assumption in volatility models

that outcome contingencies change smoothly, changepoint models assume discrete

changes or jumps. In this scenario, the hazard rate controls how often changes occur.

In Figure 2c (lower row), the changepoint environment depicts a situation in which
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the expected value of strawberry availability changes systematically at particular

points in time. For example, in some periods, strawberries are widely available, while

they are rare in other periods. Adaptive behavior in this environment requires keeping

track of the expected value of the strawberry availability by detecting and responding

to the changepoints. If a changepoint in the strawberry availability occurs, the animal

should update the expected value to the new outcome contingencies. In contrast,

if no change occurs, there is no need for a strong adjustment because previous

strawberry-availability values are most predictive for future outcomes. Please note

the evolution of the animal’s expected strawberry value (red line), which similarly

reflects such discrete changes in the environment.

Nassar and colleagues (Nassar et al., 2010) have conducted an ongoing line of

research on learning in changing environments. They developed a Bayesian learning

model that captures how humans and animals learn in changing environments by

detecting the changepoints themselves, expressed as changepoint probability or

surprise. When changepoint probability is high, the model increases its learning

rate to adjust to the potential changepoint. When changepoint probability is

low, the model more strongly considers expected uncertainty similar as described

above. This model describes human learning in changing environments better than

a reinforcement-learning model with a fixed learning rate, i.e., a learning rate that is

not modulated by the probability of a change in the environment (Nassar et al., 2010).

Neuroimaging work showed that learning in response to changepoint probability is

reflected in visual areas and the medial PFC (McGuire et al., 2014).

Furthermore, as shown in Box 3, I collaborated with Nassar and Frank to study

surprise-driven learning in different statistical contexts using electroencephalography

(EEG) (Nassar, Bruckner, & Frank, 2019). In this study, we demonstrated that

the event-related P300 component (Ullsperger, Danielmeier, et al., 2014; Ullsperger,

Fischer, et al., 2014) signals surprising outcomes, which subsequently leads to an

adjustment to a changepoint through a high learning rate. In contrast, in a different
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statistical context where surprise indicates occasional oddballs, this component is

associated with lower learning rates to suppress the influence of irrelevant information

on learning.

In line with this idea, O’Reilly et al. (2013) showed that belief updating in

response to surprising outcomes is related to ACC activity, while the perception of

an unexpected outcome independent of a belief update has neural signatures in the

posterior parietal cortex. Furthermore, Meyniel and Dehaene (2017) compared a

learning task in the visual domain with a task with auditory stimuli to test which

learning signals might be independent of the sensory modality of the stimuli. They

found such modality-independent surprise representations in frontal and temporal

areas. Finally, in the six-armed-bandits task described above, Payzan-LeNestour

et al. (2013) reported unexpected-uncertainty-related signals in posterior areas and

the temporal cortex.

In summary, in abruptly-changing environments, outcome contingencies occasion-

ally jump from one state to the other, and the hazard rate controls the frequency of

changepoints. Model-based studies assuming these types of changes provide evidence

that humans can respond to unexpected uncertainty by up-regulating learning after

surprise signals that indicate the probability of a changepoint. Changepoint-related

brain activity is reflected in sensory and higher-order areas, including the posterior,

temporal, and prefrontal cortex.

Finally, Yu and Dayan (2005) argued that norepinephrine transmitters might

signal unexpected uncertainty. One way to test this idea is pupillometry, which could

reflect noradrenergic brainstem activity (Joshi et al., 2016). Several studies using

this approach support the idea that norepinephrine signals unexpected uncertainty

(Krishnamurthy et al., 2017; Muller et al., 2019; Nassar et al., 2012). Pharmacological

work (Marshall et al., 2016) and the neuroimaging findings by Payzan-LeNestour et al.

(2013) that showed that unexpected uncertainty is associated with noradrenergic

brainstem activity provide further support in favor of this hypothesis.
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3.1.4 Summary

The framework shows multiple factors that should optimally influence learning

under uncertainty. Perceptual uncertainty is the consequence of uncertain sensory

information. Here, the belief state expresses the probability of an uncertain state

conditional on the available perceptual information. The belief state should regulate

the influence of new information on learning so that an agent can take into account

that it might misinterpret stimuli under high perceptual uncertainty. Expected

uncertainty emerges from variability across outcomes. Here, belief uncertainty

indicates how reliably beliefs about expected values have been learned so far and

should regulate the degree of learning to average out the variability. Unexpected

uncertainty arises from changes in outcome contingencies. I have distinguished

between approaches assuming continuously drifting changes related to volatility and

changepoints related to the hazard rate. While these approaches differ in their

assumptions of how changes are perceived, they have in common that unexpected

uncertainty should lead to a belief update to adjust to such changes. Across the

different forms, the framework highlights that multiple brain areas respond to

uncertainty, particularly parietal and frontal areas, including the medial PFC and

ACC.
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Box 3| Surprise
Unexpected uncertainty emerges from unsignaled changes in the environment. In changepoint models, these
unexpected events are assumed to elicit surprise to initiate an adjustment to the new outcome contingencies.
In Nassar, Bruckner, and Frank (2019), we dissociated surprising outcomes from the degree to which they
demand learning using a changepoint task, Bayesian modeling, and electroencephalography (EEG). As shown
in the figure, the task comprised two statistical contexts. a) The first one required learning under expected
and unexpected uncertainty, particularly the regulation of learning after changepoints. The dashed line
("True value") refers to the most likely trial-by-trial outcome, which corresponded to the mean of a Gaussian
distribution. Outcomes were drawn from this distribution and deviated from the mean due to considerable
variance inducing expected uncertainty. Unexpected uncertainty was due to the occasional changepoints that
led to a change in the mean of the outcome-generating distribution. b) The second context did not feature
changepoints but instead oddballs that were uninformative for future outcomes. Here "mean" similarly
refers to the most likely outcome, which, however, slowly drifted across trials in contrast to the changepoint
context. In this context, oddballs were perceptually similarly surprising as changepoints. Crucially, oddballs
should not lead to a behavioral adjustment because they do not contain any information about the mean of
the outcome-generating distribution.
This contextual manipulation allowed us to examine the regulation of learning in response to comparably
surprising outcomes (changepoints vs. oddballs) that demand opposing learning-rate adjustments. While
changepoints should lead to more learning, oddballs should reduce the learning rate because they contain no
useful information. The results showed that the P300, a well-known event-related potential linked to learning
(Ullsperger, Danielmeier, et al., 2014; Ullsperger, Fischer, et al., 2014), signals the presence of surprise. In
particular, we found that this signal is associated with greater learning in the changepoint condition but
less learning in the oddball condition. This finding suggests that the P300 component signals unexpected
outcomes, leading to an up- or down-regulation of learning depending on the current environment.
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3.2 Uncertainty biases

3.2 Uncertainty biases

In the previous section on normative computations that should determine learning

under uncertainty, I presented findings showing that humans and animals take into

consideration different forms of uncertainty during learning and decision making.

However, there is no guarantee that uncertainty shapes learning to the same extent

as in a normative model that performs at the theoretical upper limit. Instead, a

common finding is that humans and animals show specific deviations from these

models (Ma, 2019).

3.2.1 Perceptual uncertainty

Biases in considering perceptual uncertainty can lead to belief states that are too

certain. For instance, although an animal acts under bad light conditions in which the

perception of the environment is uncertain, it might conclude with 100 % confidence

that a stimulus is a strawberry and not a cherry (Figure 3a). Similar to the example,

research by Fleming et al. (2013) showed that humans sometimes consider perceptual

uncertainty insufficiently for optimizing perceptual choices. Participants reported

the predominant motion direction of moving dots in a random-dot kinematogram by

rapidly pointing to targets on a touch screen with varying target sizes. The randomly

moving dots induced perceptual uncertainty about the predominant motion direction

while the requirement to report the decision quickly induced motor uncertainty about

the chances of missing the target. Bayes-optimal decisions would consider both

forms of uncertainty to maximize the probability of obtaining a reward. However,

the results of the study indicated that participants often ignored motor uncertainty.

They placed too much weight on the perceptual information and too little on the

probability of missing the target. Fleming and colleagues suggested that this finding

reveals a phenomenon referred to as categorical perception. When confronted with

uncertain perceptual information, the perceptual system may categorically commit

to one interpretation of a stimulus while disregarding others.
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Figure 3. Uncertainty biases. Due to inherent
biases, individuals might sub-optimally consider un-
certainty during learning. a) Regarding perceptual
uncertainty, they might represent belief states that
are too certain. In the example plot showing the
agent’s belief states of strawberries and cherries, be-
lief states are categorically in favor of strawberry (e.g.,
trial 0) or cherry (e.g., trial 1). Thus, compared to
normative belief states (see Figure 2a) based on the
currently available perceptual information, categorical
belief states discard perceptual uncertainty about the
environmental state. b) Learning under expected un-
certainty can be corrupted by sub-optimal considera-
tion of belief uncertainty during learning, referred to
as uncertainty underestimation. In this example, un-
derestimation of belief uncertainty leads to inaccurate
learning of the strawberries’ expected value. In com-
parison to the normative model that optimally consid-
ers belief uncertainty (gray line), the agent learns at a
much slower pace and fails to learn an expected value
that approximates the true probability of obtaining a
good strawberry (80 %). c) Concerning unexpected
uncertainty, individuals might show biases in the ad-
justment to changes in the environment. One possi-
bility is that they underestimate the level of volatil-
ity; that is, they might assume smaller changes in the
environment. This bias leads to a slower adjustment
to changes in the outcome contingency. For exam-
ple, the animal might assume that the strawberries’
expected value changes only marginally across the year
(although it changes relatively frequently). Therefore,
its adjustment to changes in the environment is sub-
stantially slower than in the normative model (gray
line). Finally, according to changepoint models, indi-
viduals might suffer from a reduced ability to respond
to changepoints in the environment (surprise insensi-
tivity). In this case, an animal would fail to detect that
a change has taken place. Consequently and in con-
trast to the normative model (gray line), the animal
only slowly adjusts its expected value after a change
in the outcome contingencies.

A related line of work suggests that categorical perception can, in some circum-

stances, emerge from previous perceptual choices (Luu & Stocker, 2018; Stocker &

Simoncelli, 2007). In the study by Luu and Stocker (2018), participants performed a

perceptual two-stage task. In the first stage, they categorically judged the orientation

of a stimulus (e.g., left vs. right). In the second stage, they indicated the actual

orientation of the same stimulus on a continuous scale. The results showed that

categorical judgments biased continuous orientation judgments. Luu and Stocker

captured this categorical bias in a Bayesian-inference model that considered not
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3.2 Uncertainty biases

only perceptual evidence for the orientation judgments but also the prior categorical

perceptual choice. According to this modeling framework, the categorical-choice

bias arose from self-consistency during perceptual inference. In contrast to the true

task structure where the categorical and continuous judgments are independent of

each other, participants might have assumed a causal dependency between the two

stages as a result of which the continuous orientation judgment was dependent on

the initial categorical choice. More generally, this study illustrates that Bayesian

models can also be applied to study biases in uncertainty computations by examining

participants’ prior assumptions about the task structure.

Together, these findings could suggest that learning under perceptual uncertainty

is similarly affected by categorical perception. However, because previous work only

examined categorical perception with respect to perceptual decision making, it

remains an open question of how learning under perceptual uncertainty depends on

previous categorical perceptual choices.

3.2.2 Expected uncertainty

Regarding expected uncertainty, individuals can deviate from an optimal considera-

tion by assuming wrong levels of variability across outcomes. For example, when

an animal has experienced one or two bad berries and wrongly assumes minimal

expected uncertainty, it might conclude that all berries in the current context are

inedible. In line with this idea, studies on the effects of acetylcholine on learning

under expected uncertainty provided indirect evidence for human biases regarding

this form of uncertainty (Marshall et al., 2016; Moran et al., 2013; Vossel et al.,

2014). These results hint that differences in this neurotransmitter’s availability can

change the individual levels of expected uncertainty during learning. More direct

evidence suggests that expected uncertainty is substantially heterogeneous between

participants; that is, some participants tend to underestimate outcome variability

while others overestimate it (Nassar et al., 2010).
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An additional, not mutually exclusive possibility is that individuals show learning

difficulties due to biases in the computation of belief uncertainty that reflects the

reliability of the learned belief. In this scenario, the animal might have a realistic

expected-uncertainty estimate but compute too much or too little uncertainty over the

berries’ taste (Figure 3b). One line of work on pupil responses during learning under

uncertainty found that belief uncertainty is reflected in baseline pupil diameter and

varies substantially between participants (Krishnamurthy et al., 2017; Nassar et al.,

2012), suggesting that some individuals might hold more uncertain beliefs despite the

experience of similar outcome sequences. However, previous work failed to directly

estimate the influence of belief uncertainty on learning based on computational

modeling. Estimating the impact of belief uncertainty could more directly reveal

subject-specific biases in the computation of this crucial factor.

3.2.3 Unexpected uncertainty

Volatility

Concerning unexpected uncertainty, humans show biases in responding to changes

in the environment. In volatility models that assume drifting changes, individual

differences in the assumptions about volatility might lead to such biases. For example,

an animal that underestimates that the berry taste changes across time might draw

wrong conclusions about such changes (Figure 3c). In line with this idea, Behrens

et al. (2007) reported a relationship between volatility and ACC activity, suggesting

that activity in this area modulated individual differences in the regulation of

learning. Moreover, this finding indicates that beliefs about volatility itself are an

important determinant of learning differences between people, which could be related

to individual differences in levels of norepinephrine (Marshall et al., 2016).

Another possible deviation from an optimal consideration of volatility can be

ascribed to approximate algorithms that are simpler than normative inference. Thus,

in the example, the animal might not explicitly represent the concept of volatility but
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3.2 Uncertainty biases

use computationally cheaper solutions that lead to similar behavioral adjustments.

Bröker et al. (2018) provided evidence for this perspective. They showed that a simple

model in which the regulation of learning depends on adaptive forgetting of past

trials sometimes captures human behavior better than the HGF. As described above,

the HGF regulates learning according to normative computations by inferring the

environmental volatility using hierarchical Bayesian inference. This finding suggests

that humans do not necessarily form a mental model of volatility that they update

throughout the task, but they might rely on computationally cheaper alternatives to

normative computations, potentially at the cost of biases in adapting to volatility.

Changepoints

Changepoint models offer an alternative account to capture biases in responding to

changes in the environment with differences in the assumptions about the hazard

rate. Nassar et al. (2010) provided evidence for this idea based on the finding that

individual learning differences in changing environments are related to subjective

hazard rates. In particular, subjects who responded more strongly to changepoints

seemed to assume higher hazard rates than subjects who responded more weakly.

Finally, individuals might also differ in their ability to detect changes, referred

to as surprise insensitivity. That is, an animal might suffer from an impaired ability

to attribute surprising outcomes to a changepoint and instead assume that prediction

errors are due to variability between outcomes (Figure 3c). Consistent with this idea,

both Nassar et al. (2010) and Payzan-LeNestour and Bossaerts (2011) showed that

participants often insufficiently update beliefs after changepoints, which could also be

mediated by inter-individual differences in the norepinephrine system (Krishnamurthy

et al., 2017; Nassar et al., 2012; Payzan-LeNestour et al., 2013).
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3.3 Lifespan differences

Throughout the lifespan, age-related changes of brain mechanisms at a functional,

anatomical, and chemical level shape behavior (Lindenberger et al., 2006). Concerning

their sensory abilities, children show improvements across development while older

adults suffer from a decline (Bradley & Freeman, 1982; Burton et al., 1993; Dully

et al., 2018; Ellemberg et al., 1999; Elliott et al., 1990; Leat et al., 2009). Moreover,

it is well known that lifespan brain development affects a broad range of higher-level

cognitive functions related to learning and decision making (Eppinger et al., 2011;

Manning et al., 2020; Mather & Harley, 2016; Nyberg et al., 2010; Raz & Rodrigue,

2006; Toga et al., 2006). Therefore, it should come as no surprise that learning biases

and performance impairments are not only present in younger adults but also in

children and older adults, and importantly often to a different degree than in younger

adults. Previous work only rarely investigated age-related differences in learning

under uncertainty with normative computational models (De Boer et al., 2017;

Hämmerer et al., 2019). However, as described in the following sections, some results

hint that children and older adults show characteristic age-related impairments,

potentially related to each form of uncertainty and beyond.

3.3.1 Perceptual uncertainty

There is some evidence to suggest that the processing of perceptual uncertainty

in perceptual decision making changes across the lifespan. The few studies that

investigated age-related influences of perceptual uncertainty on perceptual decision

making using computational models suggest that both children and older adults

choose more cautiously, that is, take more time to accumulate perceptual evidence

compared to younger adults (Manning et al., 2020; for review focusing on older adults,

see Dully et al., 2018). Moreover, some findings suggest a lower speed of evidence

accumulation in both age groups, i.e., a lower drift rate (Forstmann et al., 2011;

Manning et al., 2020). While these results suggest age-related lifespan differences in
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perceptual uncertainty, it remains an open question of how these differences affect

learning. One hypothesis is that learning under perceptual uncertainty in both age

groups is worse compared to younger adults. In particular, it could be the case that

they show stronger biases due to categorical perception, as described above.

3.3.2 Expected uncertainty

Children and older adults suffer from learning impairments in the presence of expected

uncertainty compared to younger adults. Many studies applied probabilistic learning

tasks similar to the example in Figure 2b in which participants have to learn the

reward probabilities of two or more options from uncertain outcomes. A frequent

finding is that children (Cohen et al., 2010; Crone, Jennings, et al., 2004; Eppinger

et al., 2009; Hämmerer et al., 2011; Van den Bos et al., 2012; Van Duijvenvoorde

et al., 2013) and older adults (Chowdhury et al., 2013; Eppinger et al., 2008; Eppinger

et al., 2013; Hämmerer et al., 2011; Samanez-Larkin et al., 2010; Samanez-Larkin

et al., 2012; Samanez-Larkin et al., 2014) perform particularly worse than younger

adults when outcomes are more variable, suggesting that the underlying impairment

is related to the presence of expected uncertainty. However, from these studies, the

computations explaining these impairments remain unclear. One shortcoming is that

many studies relied on descriptive summary statistics and neither of them used a

computational model that directly captured the effects of expected uncertainty on

learning.

3.3.3 Unexpected uncertainty

Finally, several studies indicated that children and older adults show age-related

learning impairments in tasks involving unexpected uncertainty. Most studies applied

reversal-learning tasks, as illustrated in Figure 2c, where the outcome contingency

occasionally reverses. These studies showed reduced learning accuracy in children

(Van der Schaaf et al., 2011) and older adults (Mell et al., 2005; Mell et al., 2009;
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Figure 4. Simplified learning strategy in a
changepoint task. In a changing environment, ex-
pected values might be reported by relying on a de-
fault belief about the value. a) For example, in an en-
vironment where the strawberries’ availability changes
occasionally, the animal might rely on a default belief
about the value during stable periods and primarily up-
date the belief after a surprising outcome that signals
a changepoint. b) Relying on a default belief yields
learning biases due to perseverative behavior. Because
this learning strategy requires less flexible belief updat-
ing compared to belief updating based on normative
computations (gray line in (a)), it might be simpler,
especially for children and older adults.

Rutledge et al., 2009) compared to younger adults. However, it is an open question

if these impairments are directly related to the computation of unexpected uncer-

tainty. One possible explanation for these deficits is that children and older adults

systematically differ in their volatility or hazard-rate estimates. However, to the best

of my knowledge, such tasks, combined with appropriate computational modeling

to capture unexpected uncertainty, were previously not applied in developmental or

aging studies.

3.3.4 Simplified learning strategies

In the previous sections, I have collected evidence for potential learning impairments

characterized by biases on normative influences of uncertainty (e.g., different hazard

rates). However, an additional explanation for age-related learning differences is

the reliance on simplified learning strategies that are computationally cheaper and

potentially more age-appropriate given limited cognitive capacities. For example,

from a normative perspective, an animal should strongly update beliefs in response

to changepoints in the berry availability. In contrast, in the absence of a change, it

should subtly regulate learning to average out fluctuations in the berry availability

due to expected uncertainty. However, a computationally cheaper strategy would
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be that the animal relies on a default belief about the availability of berries until

the availability changes dramatically. As shown in Figure 4, according to this

simple strategy, the animal would show perseveration on a default response until the

occurrence of an obvious changepoint. Thus, this strategy partly ignores expected

uncertainty but might be sufficient to adjust to varying levels of berry availability.

As would be expected when children and older adults relied on such defaults

more strongly, they often perseverate on previous behavior (Blackwell et al., 2014;

Blackwell & Munakata, 2014; Carroll et al., 2016; Cepeda & Munakata, 2007;

Chatham et al., 2009; Crone, Jennings, et al., 2004; Crone, Ridderinkhof, et al.,

2004; Head et al., 2009; Munakata et al., 2012; Ridderinkhof et al., 2002; Rutledge

et al., 2009). For instance, during reversal learning, older adults often tend to stick

to an option (perseveration) despite the occurrence of a reversal in the outcome

contingencies (Ridderinkhof et al., 2002; Rutledge et al., 2009).

However, despite this suggestive evidence, the link between normative computa-

tions and simplified learning strategies is currently unclear. In particular, previous

work did not examine whether age-related learning differences between children and

older adults compared to younger adults emerge from differences in resorting to such

simplified strategies.
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The general aim of this dissertation is to advance our understanding of (1) how

humans should learn under uncertainty from a normative perspective, (2) which

uncertainty biases lead to deviations from normative models, and (3) the lifespan

differences in learning under uncertainty. Regarding the aim to study normative

influences, I specifically examine the questions:

1. How should perceptual uncertainty determine learning from a Bayes-optimal

perspective?

2. Do younger adults regulate learning according to perceptual uncertainty?

Regarding the aim to study biases in the consideration of uncertainty, I investigate:

3. Which uncertainty biases do younger adults show during learning under percep-

tual, expected, and unexpected uncertainty?

Finally, concerning lifespan differences in learning under uncertainty, I examine the

questions:

4. What is the role of biases while learning under expected and unexpected uncer-

tainty across the lifespan?

5. Do children and older adults rely more strongly on simplified learning strategies

than younger adults?

6. How can computational cognitive models advance our understanding of age-

related lifespan differences in learning?
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Rationale and hypotheses

Question 1. How should perceptual uncertainty determine learning from a Bayes-

optimal perspective? Previous work on perceptual uncertainty used reinforcement-

learning models (Lak et al., 2017; Lak et al., 2020, see Perceptual uncertainty),

but it is currently unclear how perceptual uncertainty should control learning from

a Bayes-optimal perspective. In Bruckner et al. (2020a), we developed a task

combining elements of perceptual and economic decision making where participants

were required to learn outcome contingencies under perceptual uncertainty. To study

learning from a normative perspective, we developed a Bayes-optimal model that

relied on belief states to regulate learning under perceptual uncertainty.

Question 2. Do younger adults regulate learning according to perceptual uncer-

tainty? It is currently unclear if humans consider perceptual uncertainty during

reward-based learning and decision making. Based on findings in perceptual deci-

sion making (Kiani & Shadlen, 2009; Whiteley & Sahani, 2008), we hypothesized

that humans would consider perceptual uncertainty for reward-based learning. In

Bruckner et al. (2020a), we formalized this hypothesis in our Bayes-optimal model

mentioned above and examined human learning behavior based on our integrated

perceptual and economic decision-making task.

Question 3. Which uncertainty biases do younger adults show during learning under

perceptual, expected, and unexpected uncertainty? Biases can affect each form of

uncertainty (see Uncertainty biases). Based on results in perceptual decision making

(Fleming et al., 2013; Luu & Stocker, 2018), we hypothesized that categorical-choice

biases lead to a lower consideration of perceptual uncertainty during learning in

human participants than in a normative Bayesian model (Bruckner et al., 2020a).

Regarding expected uncertainty, it is unclear to which degree younger adults

utilize their belief uncertainty during learning. Previous work suggests that they

take belief uncertainty into consideration (Meyniel, Schlunegger, et al., 2015; Nassar
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et al., 2010; Payzan-LeNestour & Bossaerts, 2011), but it is possible that they show

systematic biases during learning because of an over- or underestimation of belief

uncertainty (Krishnamurthy et al., 2017; Nassar et al., 2012). In Nassar et al. (2016)

and Bruckner et al. (2020b), we applied a predictive-inference task (McGuire et al.,

2014; Nassar et al., 2010) and computational modeling to systematically assess the

degree to which biases affect the regulation of learning according to belief uncertainty.

With respect to unexpected uncertainty, we built upon the predictive-inference

task mentioned above to examine two potential biases. First, whether younger adults

show biases in responding to changepoints due to surprise insensitivity. Based on

prior results (Nassar et al., 2010; Payzan-LeNestour & Bossaerts, 2011), we expected

to find an under-adjustment to changepoints compared to normative Bayesian models.

Second, whether younger adults over- or underestimate the frequency of changepoints

in the environment (hazard rate). In this case, we had no specific hypothesis about

the direction of the effect.

Question 4. What is the role of biases while learning under expected and unexpected

uncertainty across the lifespan? Previous work suggests that children and older adults

show characteristic age-related biases in learning under uncertainty (see Lifespan

differences). Concerning expected uncertainty, children and older adults might

underestimate belief uncertainty during learning compared to younger adults. Using

computational modeling and the predictive-inference task by McGuire et al. (2014),

we systematically compared learning based on belief uncertainty between younger

and older adults (Nassar et al., 2016) and across the lifespan (Bruckner et al., 2020b).

Moreover, we hypothesized that age-related learning differences could be related

to biases in responding to unexpected uncertainty, particularly because of an in-

sensitivity to surprise or a misestimation of the hazard rate leading to too strong

or too weak responses to changepoints. In Nassar et al. (2016), we tested these

hypotheses in older compared to younger adults and in Bruckner et al. (2020b) across

the lifespan.
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Question 5. Do children and older adults rely more strongly on simplified learning

strategies than younger adults? In Bruckner et al. (2020b), our initial aim was to

build upon Nassar et al. (2016) to study how learning under uncertainty differs

across the lifespan. However, consistent with previous developmental and aging work

(Blackwell et al., 2014; Blackwell & Munakata, 2014; Carroll et al., 2016; Cepeda

& Munakata, 2007; Chatham et al., 2009; Crone, Jennings, et al., 2004; Crone,

Ridderinkhof, et al., 2004; Head et al., 2009; Munakata et al., 2012; Ridderinkhof

et al., 2002; Rutledge et al., 2009), the results showed that children and older adults

frequently perseverated on previous predictions, which was initially not explained

by our Bayesian model. This finding pointed to the reliance on simplified learning

strategies in these age groups, specifically, an over-dependence on default beliefs that

they only updated after particularly unexpected outcomes. To investigate the role of

such simplified learning strategies, we conducted two age-comparative behavioral

experiments and developed a novel computational model to formalize age-related

differences in the reliance on default beliefs across the lifespan.

Question 6. How can computational cognitive models advance our understanding

of age-related lifespan differences in learning? The final question of this dissertation

combines insights from Van den Bos et al. (2018), which was an opinion article on

computational neuroscience across the lifespan, Nassar et al. (2016), and Bruckner et

al. (2020b) on age-related learning differences. Based on these studies, I will discuss

why computational models are an important tool to better understand age-related

differences in learning but also consider some of the pitfalls of applying computational

modeling to study lifespan differences.
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5 General methodology

In this chapter, I will give a general overview of the methods of the three empirical

studies (Bruckner et al., 2020a, Nassar et al., 2016, and Bruckner et al., 2020b).

These include participant samples, experimental tasks, and computational modeling.

5.1 Participants

Study I: Perceptual uncertainty

We conducted the experiment in Bruckner et al. (2020a) at Freie Universität Berlin

and analyzed data from 52 younger adults (18 to 33 years).

Study II: Uncertainty and aging

We conducted the experiment in Nassar et al. (2016) at the Max Planck Institute

for Human Development Berlin. The effective study sample comprised 57 younger

adults (20 to 30 years) and 57 older adults (56 to 80 years).

Study III: Default beliefs in children and older adults

Bruckner et al. (2020b) consists of two experiments. We conducted the first experi-

ment at Technische Universität Dresden. Here, we analyzed data of 33 children (8 to

10 years), 29 adolescents (13 to 17 years), 32 younger adults (20 to 28 years), and

35 older adults (62 to 80 years). We conducted the second experiment at the Max

Planck Institute for Human Development Berlin with an effective sample size of 31

children (7 to 11 years), 25 younger adults (20 to 28 years), and 34 older adults (61

to 76 years).

43



5 General methodology

5.2 Experimental tasks

The studies of the dissertation build upon two experimental tasks. In Bruckner et

al. (2020a), we developed the Gabor-bandit task, a novel paradigm to study the

influence of perceptual and expected uncertainty on reward-guided learning (Figure

5a). In Nassar et al. (2016) and Bruckner et al. (2020b), we used the helicopter

task, which was developed by Nassar and colleagues (McGuire et al., 2014; Nassar

et al., 2010) to examine learning under expected and unexpected uncertainty. The

aim of this task is to maximize the number of caught bags that are dropped by a

helicopter hovering in the sky. Because of this intuitive cover story, the helicopter

task is particularly suited for participants across the lifespan (Figure 6a).

5.2.1 Gabor-bandit task

As shown in Figure 5a, the Gabor-bandit task is a combination of a perceptual

(Gabor patches) and an economic-choice task (one-armed bandit). The goal of the

task is to collect as much reward as possible, which requires reward-guided learning

under perceptual and expected uncertainty. The Gabor-bandit task consists of three

stages. In the first stage, participants report a perceptual choice about which of

the two Gabor patches displays the higher contrast. The second stage requires an

economic choice of the fractal with the higher reward probability. In the third stage,

the task delivers a probabilistic reward of either zero or one point that depends on

the participant’s economic choice.

As shown in Figure 5b, the learning problem is to infer the true but unknown

probability that governs the outcome contingency in the task. The task state ("State")

is unobservable for participants and determines both which Gabor patch has a higher

contrast and which fractal has a higher reward probability (e.g., state 0: negative

contrast differences and blue fractal better; state 1: positive contrast difference

and red fractal better). Random noise in the contrast differences induces trial-by-

trial differences in the perceptual uncertainty ("Contrast difference"). Based on the
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Figure 5. Gabor-bandit task and Bayesian inference under perceptual uncertainty. In the Gabor-bandit
task, the aim is to collect as much reward as possible, which requires reward-based learning under perceptual and
expected uncertainty. a) Task stages: 1) In the first stage, a perceptual choice about the contrast difference between
two Gabor patches has to be reported. In this example, the right patch has a stronger contrast. 2) In the second
stage, an economic choice about the fractal with the higher reward probability has to be made. The fractals’ reward
probabilities are initially unknown to the participants and must be learned throughout a block. 3) In the third
stage, participants receive a probabilistic reward for their economic choice (either 0 or 1 point). b) Task structure.
At each trial, the state is either 0 or 1. The state determines the outcome contingency in a trial, i.e., the position
of the high-contrast Gabor patch and the reward probabilities of the fractals. In this example, state 0 leads to
a negative contrast difference between the Gabor patches, i.e., the left patch has a higher contrast and the blue
fractal a higher reward probability (80 %) than the red fractal (20 %). In state 1, contrast differences are positive;
that is, the right patch has a higher contrast and the red fractal a higher reward probability (80 %) than the blue
fractal (20 %). Note that the participants’ perceptual decisions have no consequences for the reward delivery. c)
Trial-by-trial example and normative computational model that we developed to examine reward-based learning
under perceptual uncertainty. "State": Task state governing the outcome contingency. "Contrast difference": The
exact contrast differences are drawn from a uniform distribution, which induces varying perceptual uncertainty
in the task. For example, in trial 0, the model observes an intermediate positive contrast difference (right patch
stronger), while in trials 1 and 2, a weakly negative difference (left patch stronger). "Belief state": Based on the
perceived contrast differences, the model computes the belief about the task state of the current trial (belief state).
Moreover, based on the belief state, the model reports its perceptual choice about the contrast difference (not shown
here). "EV (Expected Value) and choice": In the economic-choice stage, the model computes its expected value
(red line) about the high-reward fractal as a function of the belief state and the learned outcome contingency, and
reports its economic choice (black dots, 0 indicates red choice, 1 indicates blue choice). "Reward and learning":
During reward-based learning, the model regulates learning of the outcome contingency (probability of reward if
high-reward fractal given state is chosen) according to the belief state and tends to learn more from an outcome
when the belief state signals low perceptual uncertainty about the contrast differences (red line).

contrast differences, participants can compute belief states reflecting the probability

of the current task state ("Belief state"). During the presentation of the fractals, they

compute their expected value (red line) and indicate their economic choice about

the high-reward fractal (black dots) ("EV and choice"). Here, the fractals’ reward

probabilities lead to expected uncertainty because they only deliver a reward in 80 %

45



5 General methodology

of the correct economic choices (black dots) ("Reward and learning"). Based on these

variable rewards, participants are required to learn the contingency between states,

choices, and rewards (red line).

5.2.2 Helicopter task

As shown in Figure 6a, the helicopter task is a sequential learning task embedded in

a cover story in which a hidden helicopter drops bags that participants try to catch.

The goal of the task is to catch as many bags as possible to maximize the collected

amount of reward, which requires inferring the helicopter location under expected

and unexpected uncertainty. Participants first place a bucket at the location where

they predict the next bag to be dropped by the helicopter ("Prediction"). Next, the

helicopter drops the bag ("Outcome"), and participants see their prediction error,

indicated by a red line between the actual location of the bag and the predicted

location ("Prediction error"). Finally, participants can update their buckets to predict

the next trial’s outcome ("Update").

As shown in Figure 6b, the learning problem is to infer the true but unknown lo-

cation of the helicopter (first panel). The task takes place under expected uncertainty

because the location of the dropped bags varies across trials even if the helicopter does

not move, which is introduced as "wind" in the cover story. Unexpected uncertainty

is present because the helicopter occasionally changes its location (changepoint).

Thus, the central problem in the helicopter task is to distinguish variability across

the outcomes (expected uncertainty) from changepoints in the helicopter position

(unexpected uncertainty). Because the helicopter is not visible, participants have

to consider both sources of uncertainty during learning and more strongly adjust

their predictions after changepoints compared to outcomes that more likely lead to

prediction errors because of random variability.
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Figure 6. Helicopter task and reduced
Bayesian model. a) The aim of the task is to catch
as many bags as possible dropped by a hidden heli-
copter, which requires inferring the helicopter’s loca-
tion under expected and unexpected uncertainty. Task
stages: 1) Participants predict the location of a bag
that is dropped by a helicopter hidden behind the
clouds. 2) The helicopter drops the bag, which is dis-
torted by "wind" in the environment. 3) After the
bag is dropped, a red line indicates the prediction
error (the difference between the bag location and
the prediction). 4) Participants update their predic-
tion of the next bag location. b) Trial-by-trial ex-
ample and normative model that we used to investi-
gate learning under expected and unexpected uncer-
tainty. First panel: The location of the dropped bags
varies across trials (expected uncertainty), and after
an occasional changepoint, the helicopter changes its
position (unexpected uncertainty). The model learns
the position of the hidden helicopter based on the ob-
served outcomes. To do so, the model considers its
prediction errors (second panel) and two normative
factors—changepoint probability (CPP) and relative
uncertainty (RU) (third panel). Changepoint proba-
bility reflects the probability of a changepoint in the
helicopter location. Relative uncertainty reflects how
well the model has learned the helicopter location (be-
lief uncertainty) relative to the variability in the envi-
ronment (expected uncertainty). The combination of
changepoint probability and relative uncertainty con-
trols the model’s learning rate (LR), which determines
how strongly a prediction error drives the belief update
about the helicopter location.

5.3 Computational modeling

The essential approach to analyzing the data of the three studies is computational

modeling. As done throughout the Introduction of this dissertation, computa-

tional models can be used for simulating predictions of human and animal behavior.

Moreover, based on the estimation of computational models, one can examine the

algorithms underlying cognition and behavior and uncover latent variables that

are not directly observable in behavioral data (e.g., expected values, perceptual

uncertainty) but are essential elements of such algorithms (Wilson & Collins, 2019).

As outlined in the following sections, in all studies, we started with a normative

Bayesian computational model that learned the tasks (near-)optimally (Normative

models). We used these normative models as a theoretical upper-benchmark of how

participants would ideally behave in the task. Note that we did not expect participants
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to perform at the same level as these models, but used the normative models to

better understand which task factors should modulate learning in the tasks. Based on

these insights, we could generate testable hypotheses about how human participants

might regulate learning according to these factors. We also added uncertainty biases

to these models based on which we examined if humans systematically deviate

from the normative computational models (Uncertainty biases). To illustrate the

different hypothesized learning mechanisms, we first simulated behavioral predictions

with the models (Simulated model hypotheses). We then parameterized the models

and estimated several free parameters, allowing us to examine how well a model

accounted for the participants’ behavior (Model estimation). To test the reliability

of our models for data analysis, we also performed several model validation checks

(Model validation). We additionally compared different computational models to

find out which model of our model space explained the empirical data best (Model

comparison). In order to examine if the models accurately described the participants’

behavior, we tested whether the best-fitting models could qualitatively reproduce the

empirical data (Post-hoc simulations). Finally, we used a comparative computational

approach to investigate age-related learning differences, where we systematically

compared the estimated parameters between different age groups (Computational

modeling across the lifespan).

5.3.1 Normative models

Gabor-bandit task

Optimal learning in the Gabor-bandit task requires considering perceptual uncer-

tainty arising from noisy contrast differences between the Gabor patches and expected

uncertainty related to variability across outcomes (Figure 5b). Our newly devel-

oped Bayes-optimal agent model considered both forms of uncertainty. Perceptual

uncertainty rendered learning more cautiously. Under high perceptual uncertainty,

the model learned less from rewards because it could not reliably discriminate the
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Gabor patches from each other. In the case of maximal perceptual uncertainty, the

model did not learn at all. As a consequence of expected uncertainty, the obtained

rewards were noisy, and the model additionally suffered from belief uncertainty over

the true but unknown reward probability. The agent explicitly considered its current

belief uncertainty and tended to learn more from reward feedback when its belief

uncertainty was high (given the same belief state).

Helicopter task

Optimal learning in the helicopter task relies on considering expected uncertainty due

to variability across outcomes and unexpected uncertainty resulting from changepoints

(Figure 6b). As shown in the third panel, the model combined its trial-by-trial

uncertainty over the helicopter’s actual location (belief uncertainty) with expected

uncertainty to compute a factor called relative uncertainty (RU). Moreover, during

the observation of an outcome, the model computed changepoint probability (CPP).

To regulate how strongly a prediction error (second panel) influenced the belief

update about the hidden helicopter location, the model’s learning rate (LR) was

controlled by a combination of the trial-by-trial relative uncertainty and changepoint

probability (third panel).

5.3.2 Uncertainty biases

Gabor-bandit task

In the Gabor-bandit task, we assumed that humans might deviate from the normative

model in two principled ways. First, we tested if participants considered perceptual

uncertainty to a reduced degree due to categorical-choice biases induced by the

perceptual choice about the location of the high-contrast Gabor patch. Second, we

considered that humans might not learn according to the principles of Bayesian

inference but rather reinforcement learning. Therefore, we additionally tested several

reinforcement-learning models.
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Helicopter task

In the helicopter task, we considered three potential deviations from the norma-

tive model. In Nassar et al. (2016), we showed that differences in uncertainty

underestimation, surprise insensitivity, and the assumed hazard rate could lead to

dissociable learning impairments between age groups. Uncertainty underestimation

specifically arises from low belief uncertainty. Low surprise sensitivity leads to an

underestimation of changepoint probability, and differences in hazard rate reflect an

under- or overestimation of the prior probability of a changepoint. In Bruckner et

al. (2020b), we considered the same factors and additionally examined the role of

simplified learning strategies, particularly default beliefs, leading to perseveration

and an over-reliance on environmental information.

5.3.3 Simulated model hypotheses

In all studies, we used the computational models to illustrate our hypotheses with

simulated predictions. For example, in Nassar et al. (2016), we simulated the

effects of age-related differences between younger and older adults in uncertainty

underestimation, surprise insensitivity, and hazard rate on learning behavior in

the helicopter task. That way, we visualized our hypotheses about the underlying

computational mechanisms of age-related learning differences. Similarly, in Bruckner

et al. (2020a), we showed that Bayesian-inference and reinforcement-learning models

make dissociable predictions about learning under uncertainty.

5.3.4 Model estimation

Model estimation was the core of the computational analyses in all projects. The

term refers to the analysis step in which computational models equipped with free

parameters are estimated based on the participants’ behavioral data. An example

of such a freely estimated parameter is uncertainty underestimation (Nassar et

al. (2016)). Here, we estimated for each participant to which degree he or she
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underestimated belief uncertainty. Another example from Bruckner et al. (2020a) is

a parameter that modeled the degree of categorical influences of the past perceptual

choice on learning. In summary, model estimation allowed us to test for differences

in key parameters of the computational models that provided new insights into the

computational mechanisms that guide learning in human participants.

5.3.5 Model validation

An important part of computational analyses of behavior is the validation of several

aspects of the computational models, most importantly, to test if the models serve

as a reliable data-analysis tool. A critical part of model validation is parameter

recovery, testing how reliably the free parameters can be estimated based on simulated

experimental data. Another essential step is model recovery, which is especially

important if one compares multiple models. This refers to examining whether

the models of the model space make dissociable predictions about participants’

learning behavior. For example, in Bruckner et al. (2020a), we tested how well

we could dissociate the predicted choices of a Bayesian-inference model from the

predicted choices of a reinforcement-learning model. Both types of analyses are

essential to ensure that the conclusions drawn conditional on model-based analyses

are statistically plausible.

5.3.6 Model comparison

During model comparison, one systematically compares the models of the model

space concerning how well they capture the participants’ behavior. One important

aspect of model comparison is how likely the participants’ choices are according

to a computational model. For example, a random-choice model applied to a two-

alternative forced-choice task would assign a choice probability equal to 0.5 to both

options, thereby only explain choices at chance level. In contrast, a better model

would predict choices above chance, for example, with an average probability of
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0.7. In this case, model comparison would favor the second model. However, one

issue with model comparison based on choice probabilities is that models with more

free parameters tend to explain more variance of the data at the risk of over-fitting.

Over-fitting refers to the phenomenon that "in general, a more complex model will

fit data better than a simpler model, by capturing noise in the data" (Daw, 2011).

To account for this possibility, we used the Bayesian information criterion (BIC),

which considered the predicted choice likelihoods and penalized for complexity to

avoid over-fitting. Taken together, in the projects of this dissertation, we compared

different models to test which models described the data best, in order to draw

conclusions about the computational mechanisms potentially underlying participants’

learning behavior in the different tasks.

5.3.7 Post-hoc simulations

Moreover, we performed post-hoc simulations to check if our models accurately

described the behavioral data. This step refers to simulations based on the freely

estimated parameters to test if the estimated models qualitatively reflect the learning

and decision-making behavior of the participants (Palminteri et al., 2017). For

example, in Bruckner et al. (2020a), we plotted the participants’ learning curves in

the Gabor-bandit task together with the simulated learning curves. If the actual

and simulated learning curves are comparable, post-hoc analyses offer support for

a computational model, while substantial deviations between them indicate that a

model does not accurately capture learning behavior.

5.3.8 Computational modeling across the lifespan

Finally, computational modeling offers a principled approach to study age-related

differences in learning under uncertainty. As illustrated in Figure 7, a comparative

computational approach is based on behavioral experiments in a target age group

(e.g., older adults) and a comparison group (e.g., younger adults). The experimental
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Target age group
Behavioral experiment

in children and
older adults

Comparison group
Behavioral experiment

in younger adults

Computational model
Estimation of free parameters

(e.g., uncertainty biases)

Target group
parameters

Comparison group
parameters

Parameter comparison
Parameter differences help us

to identify age-related
differences in computational

mechanisms of learning

Figure 7. Computational modeling across the
lifespan. Age-related differences in learning under
uncertainty can be analyzed using a combination of
behavioral experiments and computational modeling.
A common approach is to conduct behavioral exper-
iments with a target age group (e.g., children, older
adults) and a comparison group (e.g., younger adults).
The corresponding data are subsequently analyzed us-
ing computational cognitive models equipped with free
parameters that capture individual differences, for ex-
ample, concerning uncertainty biases. Parameters of
the target group are systematically compared to pa-
rameters of the comparison group to examine age-
related differences in the computational mechanisms
underlying learning. This schematic is based on Maia
and Frank (2011).

data of each participant are analyzed based on computational models. This approach

particularly affords the estimation of latent participant-specific parameters indicative

of individual differences in key factors involved in such computations (e.g., uncertainty

biases) that can not directly be extracted from behavioral data (e.g., based on the

percentage of correct responses or reaction times). The estimated parameters are

subsequently compared across the target and comparison groups, which can help us

identify age-related differences in the computational mechanisms of learning.

5.4 Software and data repositories

The experimental data were analyzed in Python (Python Software Foundation)

and Matlab (The Mathworks Inc., USA). All scripts and data of Bruckner et al.

(2020a) can be found at https://github.com/rasmusbruckner/gaborbandit_analysis.

The Gabor-bandit task code is available at https://github.com/rasmusbruckner/

gaborbandit_task. All scripts and data of Bruckner et al. (2020b) can be found at

https://github.com/rasmusbruckner/adaptivelearning_analysis.
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6 Summary of the dissertation studies

In this chapter, I summarize the four studies of the dissertation.

6.1 Study I: Perceptual uncertainty

In Bruckner et al. (2020a), we examined the role of belief states and categorical-

choice biases during reward-guided learning under perceptual uncertainty. Based on

previous work in perceptual decision making (Fleming et al., 2013; Luu & Stocker,

2018; Stocker & Simoncelli, 2007), we hypothesized that normative belief states

modulate learning under perceptual uncertainty but that categorical perception

driven by categorical perceptual choices about the current state of the environment

additionally biases learning in the direction of this decision. We examined this

question based on a Bayesian-inference and reinforcement-learning framework.

We first developed a Bayes-optimal agent model to derive the normative compu-

tations that should guide reward-based learning under perceptual uncertainty. This

analysis showed that consistent with the intuition that the regulation of learning

should be more cautious under perceptual uncertainty, the belief state optimally

scales down to which degree an agent learns from reward feedback. In the case

of equal belief states indicating maximal perceptual uncertainty, the agent should

ignore feedback because it can not meaningfully interpret it. We also applied a

reinforcement-learning model that weighted the learning rate as a function of the

belief state. The comparison to the Bayes-optimal model showed that although both

models down-scaled the impact of feedback on belief updating according to the belief

state, a Bayes-optimal model learns the reward probabilities of the economic-choice

options more accurately than a reinforcement-learning model.

Next, we tested to which degree learning under perceptual uncertainty in younger

adults is modulated by the belief state and categorical-choice biases. The results

showed that both factors modulate economic decision making and learning. We
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identified that the contribution of each factor was substantially heterogeneous between

participants. That is, some participants almost entirely regulated learning according

to the belief state, while others almost exclusively relied on their previous categorical

perceptual choice during learning.

Finally, we found that a Bayes-optimal agent model that included the categorical-

choice bias described the participants’ learning data better than a belief-state

reinforcement-learning agent with a similar bias. The worse model fit of the

reinforcement-learning model was primarily the consequence of an additional free

learning-rate parameter, which we penalized in the BIC-based model comparison

(see Model comparison). Both models explained a similar amount of variance in the

participants’ behavior, and we, therefore, concluded that they similarly described

human learning under perceptual uncertainty.

In summary, Bruckner et al. (2020a) provides evidence that human participants

consider belief states to regulate learning under perceptual uncertainty. However,

learning is categorically biased due to prior perceptual choices, leading to systematic

deviations from the normative computations according to optimal Bayesian inference.

6.2 Study II: Uncertainty and aging

In Nassar et al. (2016), we aimed to examine which computational factors account

for age-related learning differences between younger and older adults. Previous work

paid attention to this question yet either without using a computational-modeling

approach or using traditional reinforcement-learning models that did not explicitly

capture uncertainty (Chowdhury et al., 2013; Eppinger et al., 2013). Therefore, we

tested whether a learning deficit in older adults is related to the three computational

factors belief uncertainty, surprise insensitivity, and hazard rate.

We first used a regression approach to test these three hypotheses. This analysis

showed that the idea of belief-uncertainty underestimation in older adults explained

our empirical data best. This result was consistent with a model that simulated
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uncertainty underestimation in older adults and correctly indicated that older adults

would show weaker influences of small prediction errors and relative uncertainty on

learning.

Finally, we directly estimated several computational models to dissociate the

computational impairments related to belief uncertainty, surprise insensitivity, and

hazard rate in more detail. We equipped a Bayesian learning model (Nassar et

al., 2010) with multiple free parameters to quantitatively estimate the degree of

uncertainty underestimation, surprise insensitivity, and the individual assumption

about the hazard rate. Consistent with our regression results, individual parameter

estimates showed a more substantial degree of belief-uncertainty underestimation in

older adults compared to younger participants.

In summary, Nassar et al. (2016) was the first study comparing learning under

uncertainty using normative computational models between younger and older adults.

The study provides evidence that older adults underestimate belief uncertainty

yielding lower learning flexibility than in younger adults.

6.3 Study III: Default beliefs in children and older adults

In Bruckner et al. (2020b), our initial aim was to build upon the results of Nassar et al.

(2016) to examine if children show similar computational learning impairments as older

adults. Consistent with our previous results, we found some evidence for uncertainty

underestimation in older adults. However, these differences insufficiently explained

the performance differences that we identified across the lifespan, particularly less

accurate learning in children and older adults than in adolescents and younger adults.

We found that these performance differences were primarily related to age-related

differences in perseveration on previous predictions. To account for these differences

in our computational analyses, we developed a novel mixture model that captured

both the regulation of learning according to principles of Bayesian belief updating

and perseveration on previous predictions. Specifically, this model indicated that
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perseveration in children and older adults was particularly frequent in the range of

small and intermediate prediction errors.

These results strongly suggested that we might rescue performance differences

between the age groups if perseveration is reduced or eliminated. To test this idea,

we conducted a follow-up experiment with children, younger adults, and older adults.

We found that a manipulation that randomly replaced the participants’ default

prediction about the helicopter location eliminated perseveration in all age groups.

However, the lower perseveration levels came at the cost of increased performance

differences between the age groups, and in particular, lower performance in children

and older adults. These performance impairments resulted from a stronger impact

of the randomly initialized default predictions on learning in these age groups. We

referred to this effect as environmental control (Lindenberger & Mayr, 2014) of

learning because the externally determined default predictions partly controlled the

learning behavior, particularly in children and older adults. Thus, children and older

adults showed not only more perseveration (first experiment) but also environmental

control of learning (follow-up experiment), depending on the exact task condition.

Therefore, the results of the two experiments indicated an increased reliance

on default-belief settings in children and older adults. In the first experiment, the

participants’ previous predictions internally generated the default belief. In the

follow-up experiment, the randomized default predictions generated it externally.

Thus, relying on the default belief in an environment where the default emerges from

past predictions leads to perseveration, whereas in the presence of random influences

on the default, it leads to stronger environmental control of learning.

We formally captured this relationship between perseveration and environmental

control in a new computational model that reproduced our empirical results across

the two experiments by assuming age-related differences in how strongly default-belief

settings influence learning behavior across the lifespan. In particular, this model

assumed age-related differences in how quickly participants are satisfied with relying
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on the default belief. Accordingly, beliefs are adjusted away from default values

until reaching a criterion value of plausibility. Lower criterion values captured both

perseveration and environmental control along with age differences therein, providing

the first comprehensive understanding of how developmental groups can rely more

on internal and external information under different conditions.

In summary, Bruckner et al. (2020b) shows that perseveration, as well as an

over-reliance on externally provided information during learning under uncertainty

in children and older adults, can both be explained in terms of insufficient updating

from a default belief yielding lower learning performance in these age groups.

6.4 Study IV: Computational modeling across the lifespan

In Van den Bos et al. (2018), we discussed how computational cognitive models

could improve our understanding of learning and decision making across the lifespan.

Although developmental cognitive neuroscience has generated a considerable amount

of data and theories about developmental differences and aging, the field suffers from

two explanatory problems — the specificity and identity problems — that hinder

progress in understanding the link between (brain-)development and behavior.

First, neuro-cognitive theories are often not specific enough to be translated

into behavioral and neuroscientific predictions. One reason for this problem is that

previous work almost exclusively formulated those theories verbally. Consequently,

in some circumstances, the same data set can support or reject a verbally-formulated

theory. Formalized computational models can increase the specificity of developmental

theories because they can strongly constrain the predicted effects and, importantly,

indicate which effects falsify a theory.

Second, it is often hard to identify the cognitive and neural processes that

underlie developmental differences in behavior. One reason for this problem is that

many variables required to explain developmental differences are latent, i.e., they

are not directly observable, such as learned beliefs about outcome probabilities or
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expected uncertainty. Computational modeling can increase our ability to identify

those underlying processes because they allow us to define and measure latent

variables.

We illustrated the potential of computational modeling to deal with these issues

using three popular domains of developmental and aging research as an example —

risk-taking, strategy selection, and reinforcement learning. Next to demonstrating

the advantages of computational models for studying lifespan development, we offered

a general overview of how researchers can tackle potential pitfalls. This discussion

addressed how one should deal with group differences in how well a model fits

the data, potential solutions to parameter estimation based on sparse data using

hierarchical estimation approaches, and the proper link of parameter estimates and

neuroimaging data.

In summary, in Van den Bos et al. (2018), we argued that the specificity of

model-based predictions and the possibility to define and measure latent variables in

a computational model substantially improves research on age-related differences in

learning and decision making across the lifespan.
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I will begin this chapter by discussing the six research questions of my dissertation.

I will then link perceptual, expected, and unexpected uncertainty to a broader

literature in psychology and cognitive neuroscience. Subsequently, I will argue that

one can interpret the findings of my studies regarding categorical-choice biases and

default beliefs as rational processes in the face of limited cognitive resources. Finally,

I will embed the three forms of uncertainty into the cycle of adaptive behavior with

which I introduced the dissertation.

7.1 Discussion of the research questions

Question 1. How should perceptual uncertainty determine learning from a Bayes-

optimal perspective? In Bruckner et al. (2020a), we developed a Bayes-optimal

agent model that performed belief-state inference based on perceptual information

(Daw, 2014; Dayan & Daw, 2008) and subsequently regulated reward-based learning

according to the belief state. This optimal model demonstrates that more perceptual

uncertainty, i.e., weaker belief states, should lead to more cautious learning behavior

by scaling down the impact of new observations on updated beliefs about the

outcome contingency. The model highlights that maximal levels of perceptual

uncertainty should lead an agent to ignore reward feedback completely. Therefore,

when the learner has no access to relevant information about the current state of

the environment, reward feedback is useless and therefore discarded. We showed

that these normative computations are dissociable from the computations of belief-

state reinforcement-learning agents (Chrisman, 1992) used in past work on learning

under perceptual and other forms of uncertainty about the state of the environment

(Babayan et al., 2018; Lak et al., 2017; Lak et al., 2020; Starkweather et al., 2017). The

reinforcement-learning agent scaled-down learning differently according to the belief

state and in particular failed to ignore reward feedback when perceptual uncertainty
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was at the maximum level. These differences resulted in worse learning accuracy

compared to the Bayes-optimal agent, suggesting that reinforcement-learning agents

integrate belief states and uncertain outcome feedback less efficiently.

Future studies could build upon this result to examine belief-state-based learning

with Bayes-optimal models compared to reinforcement-learning approaches. It is

possible that, depending on the task, Bayes-optimal models capture learning in

humans and other animals better than reinforcement learning, which could lead to

different conclusions about the computational and neural underpinnings of belief-

state-guided learning.

Question 2. Do younger adults regulate learning according to perceptual uncer-

tainty? In Bruckner et al. (2020a), we tested to which degree younger adults follow

the normative computations of our optimal agent model to adjust reward-guided

learning as a function of perceptual uncertainty. These model-based analyses showed

that younger adults regulate learning similarly, although, to a lower degree than

dictated by our normative agent model. Therefore, younger adults sub-optimally

consider perceptual uncertainty because their learning is biased by categorical choices

about the most likely state of the environment (as further discussed below).

The finding that humans take into account perceptual uncertainty agrees with

previous work on perceptual decision making in animals (Lak et al., 2017; Lak et al.,

2020). These studies suggest that belief states modulate the activity of dopamine

neurons in the striatum, signaling reward prediction errors, and activity in the medial

prefrontal cortex, signaling the expected value of a choice option during decision

making. Thus, at a neural level, belief states could reduce reward expectations

and prediction errors used for learning to take into consideration when perceptual

information is uncertain. Similar evidence was provided by Stolyarova et al. (2019) in

a reversal-learning task under perceptual uncertainty, where activity in the basolateral

amygdala and ACC covaried with perceptual uncertainty levels. Analogously to

our study, these authors suggested that this mechanism might improve an animal’s
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ability to integrate reward feedback more strongly when perceptual information is

more reliable.

While the studies mentioned above provide evidence for effects of perceptual

uncertainty on prediction errors and expected values, they did not address how the

brain computes perceptual uncertainty as such and how these signals ultimately

reach higher-order regions such as the striatum and medial PFC (Lak et al., 2017;

Lak et al., 2020; Stolyarova et al., 2019). As shown in Introduction, perceptual

decision-making studies in humans and animals indicate that sensory, parietal, and

frontal areas play a role in representing perceptual uncertainty (Kiani & Shadlen,

2009; Mulder et al., 2012; Summerfield & Koechlin, 2010).

Moreover, a recent theoretical (Ma et al., 2006) and empirical (Van Bergen

& Jehee, 2017; Van Bergen et al., 2015) line of research investigates the neural

representations of perceptual uncertainty in visual brain areas. Based on fMRI-data

from a perceptual decision-making task, these authors successfully predicted percep-

tual decision-making performance as a function of a decoded perceptual uncertainty

measure. Under the assumption that participants internally represent perceptual

uncertainty in visual brain areas, this decoding approach explicitly modeled subjec-

tive probability distributions over the presented stimuli. Based on this approach,

future work could aim at decoding belief-state representations during learning in the

Gabor-bandit task to examine the effect of belief states on the striatum and medial

PFC.

Question 3. Which uncertainty biases do younger adults show during learning under

perceptual, expected, and unexpected uncertainty? Regarding perceptual uncertainty,

Bruckner et al. (2020a) identified a substantial bias on learning and economic

decision making under perceptual uncertainty, driven by a categorical choice about

the most likely yet uncertain state of the environment. Both the Bayesian-inference

and reinforcement-learning agents showed that younger adults not only take into

account perceptual uncertainty. The commitment to a categorical perceptual choice
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considerably biases learning and economic decision making into the direction of this

choice at the cost of lower learning accuracy.

While our results are the first to demonstrate this categorical-choice bias during

reward-guided learning, previous work has hinted that this might be the case. In a

perceptual choice task, Fleming et al. (2013) demonstrated that the commitment

to a categorical interpretation of uncertain sensory information could lead to a

substantially lower consideration of uncertainty due to categorical perception. Re-

search suggesting such categorical biases can emerge from previous perceptual choices

supplemented these results (Luu & Stocker, 2018; Stocker & Simoncelli, 2007; Urai

et al., 2019). From this perspective, our results are the consequence of self-consistent

information processing of the brain. This means that categorical choices about

the Gabor patches nudged learning from reward feedback into the direction of the

chosen interpretation of the stimuli. Consequently, behavior across the perceptual,

economic-choice, and learning stage of the Gabor-bandit task was self-consistent at

the cost of a sub-optimal consideration of perceptual uncertainty.

In light of the discussion on the neural representations of perceptual uncertainty,

future work should also examine the nature of categorical representations. Research

in monkeys suggests that such representations might emerge already in visual areas

(Nienborg & Cumming, 2009). Moreover, the study by Akrami et al. (2018) could

indicate that parietal areas are similarly involved in the implementation of choice-

history biases. This study examined neural representations and behavioral effects of

the stimulus history on perceptual decision making and provided compelling evidence

for a causal involvement of the posterior parietal cortex. Although it remains unclear

whether this finding generalizes to effects of the choice history, it hints that parietal

areas could play a similar role in our categorical-choice bias on learning.

With respect to expected uncertainty resulting from variability across outcomes,

Nassar et al. (2016) and Bruckner et al. (2020b) found evidence for biases in belief

uncertainty. Belief uncertainty reflects how well the expected value of a variable, e.g.,
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the probability of obtaining a tasty berry or the helicopter location, has been learned.

This form of uncertainty emerges from the presence of variability across outcomes

through expected uncertainty; that is, when the learner has only experienced a few

outcomes, belief uncertainty is higher than after a greater amount of experiences.

Importantly, more belief uncertainty should lead to more learning to reduce uncer-

tainty by incorporating new outcome information into the belief. Both Nassar et al.

(2016) and Bruckner et al. (2020b) showed that younger adults underestimate belief

uncertainty, i.e., they learned less during times of higher belief uncertainty than they

should have, compared to a normative Bayesian model. Explicitly modeling an un-

derestimation of belief uncertainty extends previous computational models (Behrens

et al., 2007; Meyniel, Schlunegger, et al., 2015; Payzan-LeNestour & Bossaerts, 2011)

because it allowed us to quantify the deviation from normative belief updating.

Moreover, our approach extends previous models assuming a dynamic regulation of

learning depending on the amount of learning experiences that, unlike our model,

did not explicitly link these adjustments to changes in belief uncertainty (Fischer &

Ullsperger, 2013; Krugel et al., 2009).

Finally, concerning unexpected uncertainty that emerges from surprising changes

in the environment, Nassar et al. (2016) and Bruckner et al. (2020b) replicated

important findings in younger adults. The hazard rate reflecting the assumption

about the prior probability of changepoints is crucial for appropriately adjusting to

changing environments. Consistent with previous work (Nassar et al., 2010; Wilson

et al., 2010), we found substantial heterogeneity between younger adults and a

tendency to overestimate hazard rates. Another critical factor is the actual response

to changepoints as such. We estimated individual levels of surprise insensitivity,

which showed that younger adults are partly insensitive to surprise, that is, adjust

learning less strongly after a changepoint than a normative model (Nassar et al.,

2010; Payzan-LeNestour & Bossaerts, 2011).
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Question 4. What is the role of biases while learning under expected and unexpected

uncertainty across the lifespan? In Nassar et al. (2016) and Bruckner et al. (2020b),

we directly examined this question in order to increase our understanding of age-

related learning deficits in children and older adults. In particular, we investigated

age-related biases in belief uncertainty, surprise insensitivity, and hazard rate. Nassar

et al. (2016) indicated that deficits to utilize belief uncertainty in the service of

learning provided a better explanation for age-related learning differences between

younger and older adults than differences in surprise insensitivity or individual

assumptions about the hazard rate. In Bruckner et al. (2020b), we found similar

evidence for reduced consideration of uncertainty in older compared to younger

adults. However, after accounting for the observed perseveration that was especially

evident in children and older adults, these uncertainty differences were considerably

smaller. The perseveration parameters of our model in Bruckner et al. (2020b) most

likely captured variance that we previously ascribed to uncertainty underestimation

and therefore led to lower age-related differences in the parameter estimates than in

Nassar et al. (2016).

Importantly, these results are in line with each other but differ in their interpre-

tation of the specific learning impairments in older adults. Both belief-uncertainty

underestimation and perseveration capture a lower regulation of learning in the range

of small and intermediate prediction errors. However, while underestimating belief

uncertainty results in a constant under-adjustment of outcome predictions in this

range, perseveration leads to the exact repetition of the previous prediction on a sub-

set of trials, resulting in a similar under-adjustment of predictions on average. Thus,

uncertainty underestimation and perseveration are both related to belief updating in

the lower range of prediction errors, make similar predictions about learning behavior

on average, but differ in their predictions at the trial-by-trial level. Our most recent

results in Bruckner et al. (2020b) more strongly support the idea that perseveration

underlies the observed performance differences between younger and older adults.
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Taken together, Nassar et al. (2016) and Bruckner et al. (2020b) indicate that

uncertainty underestimation plays a role in older adults. However, across the lifespan,

differences in learning according to normative factors (belief uncertainty, surprise,

hazard rate) do not sufficiently explain age-related performance differences. As

further discussed below, age-related performance differences emerge from relying on

simplified learning strategies, particularly an over-dependence on default beliefs, in

children and older adults.

Question 5. Do children and older adults rely more strongly on simplified learning

strategies than younger adults? In Bruckner et al. (2020b), we found that persevera-

tion and influences of random environmental information on learning (environmental

control) were responsible for a lower learning performance in children and older

adults compared to younger adults. This result shows that age-related learning

differences are not necessarily related to a biased consideration of expected or un-

expected uncertainty but primarily to simplified learning strategies in children and

older adults.

In particular, across our two experiments, we demonstrated that both persever-

ation and environmental control are the consequence of a more substantial reliance

on default beliefs during learning in children and older adults compared to younger

adults. Relying on default beliefs is a computationally cheap strategy to regulate

learning in changing and uncertain environments but leads to lower performance

than Bayes-optimal learning according to environmental statistics. Past choices can

lead to the establishment of a default belief, yielding perseveration. In contrast,

environments that hinder such internally generated default beliefs can externally

establish a default belief. Externally generated default beliefs, conversely, lead to

environmental control of learning.
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The default-belief model not only explains our findings but also provides a

unifying framework for similar lifespan findings across multiple tasks. In both

children and older adults, perseveration frequently occurs in tasks such as reversal-

learning or task switching (Blackwell et al., 2014; Blackwell & Munakata, 2014;

Carroll et al., 2016; Cepeda & Munakata, 2007; Crone, Jennings, et al., 2004; Crone,

Ridderinkhof, et al., 2004; Head et al., 2009; Munakata et al., 2012; Ridderinkhof

et al., 2002; Rutledge et al., 2009). While prior work primarily linked these deficits

to executive control impairments, our model provides a formal and mechanistic

interpretation of perseveration in terms of default beliefs. Accordingly, default beliefs

could emerge from the repetition of a response (e.g., before a reversal or a task

switch) and lead to perseveration when children and elderly participants are satisfied

with the accuracy of the default response.

Similarly, earlier work demonstrated environmental control in task-switching,

working-memory, and attention tasks in both children and older adults (Alarcón &

Bonardi, 2020; Craik & Bialystok, 2006; Lindenberger & Mayr, 2014). One such

example is a cognitive-control task requiring flexible responses to different types of

stimuli (AX-CPT, see Chatham et al. (2009)). A frequently observed pattern in this

task is that children behave reactively, that is, they tend to provide their answers in

response to external task cues instead of based on internal task representations that

are independent of such external cues (Chatham et al., 2009; Gonthier et al., 2019;

Troller-Renfree et al., 2020). These studies also primarily explained those differences

between children and younger adults with deficits in executive functions. Yet, a

testable prediction of our model is that externally provided cues might generate a

default belief and therefore yield stronger environmental control of behavior.

Thus, while existing accounts provide explanations either for perseveration

(Gershman, 2020; Miller et al., 2019; Urai et al., 2019) or a more substantial reliance

on environmental information in children and younger adults (Chatham et al., 2009;

Lindenberger & Mayr, 2014), they have not yet uncovered the relationship between
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them. Our default-belief model might provide this missing link because it can explain

both of these ubiquitous effects based on a common cause within a single framework.

In summary, our study re-characterizes age-related learning differences in terms of

default beliefs. It serves as a proof-of-concept for the idea that apparent deficits

in learning under uncertainty can result from computationally cheaper strategies

that might be more appropriate for children and older adults in the face of lower

cognitive resources.

Question 6. How can computational cognitive models advance our understanding of

age-related lifespan differences in learning? In Van den Bos et al. (2018), we identified

two important explanatory problems for developmental cognitive neuroscience that

one can address with the application of computational cognitive models. First, the

specificity problem indicates that many current theories about development and aging

are verbally formulated, leading to a lack of specificity in empirical predictions to test

those theories. Second, the identity problem states that the mechanisms underlying

age-related differences are often hard to identify without an explicit computational

model of the cognitive processes that lead to these differences.

In order to address these problems, the dissertation studies followed a principled

computational approach. We first analyzed the normative computations that an

agent should perform to solve a task according to principles of Bayesian inference. We

then considered potential biases, that is, deviations from the normative solution, such

as uncertainty underestimation or surprise insensitivity. That way, we could derive

specific predictions about age-related learning differences that could be falsified based

on experimental data. Furthermore, based on the specific, model-based predictions,

we addressed the identity problem, particularly by testing which of these predictions

provided the best explanation for the behavior of our target age groups. As similarly

argued in Hauser et al. (2019), a computational approach thus affords a mechanistic

understanding of development and aging that goes beyond analyses building upon

descriptive summary statistics such as the percentage of correct responses.
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Nevertheless, a computational approach does not come without potential pitfalls.

The development of our conclusions about belief uncertainty versus default beliefs as

the primary contributor to age-related learning limitations highlights the importance

of the model space considered in a study (Nassar & Frank, 2016). While we

considered quantitative deviations from the normative models in Nassar et al. (2016)

(i.e., uncertainty biases), we only tested qualitative deviations in Bruckner et al.

(2020b) (i.e., perseveration and environmental control). The conclusions drawn in

these studies were thus strongly contingent on the set of specific models included

in the analysis, which clearly shows that it is essential to ask whether other models

could account for behavioral data even better than the best-fitting model.

A related issue is that children and older adults often use different task strategies

compared to younger adults. For example, in a working-memory task comparing

younger and older adults longitudinally, older adults tended to use different working-

memory updating strategies depending on the exact task demands (Shing et al., 2012).

This finding suggests that older adults might switch to simpler strategies when task

demands exceed their cognitive capacities. In Bruckner et al. (2020b), we probably

encountered a similar situation because the helicopter task was potentially more

difficult for children and older adults compared to younger adults. Consequently,

both age groups relied more strongly on default beliefs that either led to perseveration

or environmental control of belief updating depending on the task condition.

Concerning the application of computational modeling to samples of different

ages, this demonstrates that although it is reasonable to use a computational model

validated in younger adults for lifespan studies, one should consider the possibility

that children or older adults might use different strategies than younger adults. A

potential way of accounting for such differences is to include age-related behavioral

effects in a computational model documented in the literature, such as perseveration

and environmental control a priori. That way, one can begin a study of age-related

differences based on a computational model that already captures such effects instead
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of modifying the model space a posteriori. As further illustrated in Van den Bos et al.

(2018), there is a branch of computational modeling that studies strategy differences

between age groups, which could provide a starting point for tackling this issue in

future research.

Another important lesson of the dissertation and as also argued in Van den

Bos et al. (2018) is that proper experimental design is at least as important as

the model space to dissociate competing theories. In Bruckner et al. (2020b), the

results of the first experiment suggested that perseveration was an important factor

for understanding age-related learning differences. However, it remained an open

question of why it occurred exactly. One possibility was that participants perseverated

on the default prediction irrespective of its exact location, potentially to finish the

task quickly. However, an alternative possibility was that the acceptance of the

default depended on the default’s accuracy with respect to the hidden helicopter

location. Only the additional experimental manipulations of the default belief in the

follow-up experiment made it possible to dissociate these two possibilities. That way,

we found evidence for a stronger reliance on default-belief settings in children and

older adults, indicating that they only perseverated when default beliefs provided an

acceptable level of accuracy.

Finally, lifespan results have implications for computational approaches that

primarily concern healthy younger adults. For example, one potential reason why

previous work on learning in an uncertain and changing environment has not system-

atically examined perseveration is that younger adults show this effect considerably

less frequently than children and older adults. Nevertheless, our results clearly

showed perseveration in younger adults too, and by adjusting the model primarily

to understand development and aging better, our default-belief model offered a new

perspective on habitual and goal-directed behavior (Miller et al., 2019; Wood &

Rünger, 2016) that provides a mechanism to explain within-trial dynamics of both

default beliefs and goal-directed influences on behavior.
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After discussing the research questions, I now turn to a more general discussion

of perceptual, expected, and unexpected uncertainty in light of related topics such

as confidence and risk, as well as potential questions for future research.

7.2 Perceptual uncertainty

An obvious question concerning perceptual uncertainty and, in particular, our

formalization in terms of the belief state is its relationship to confidence. Many

approaches define confidence as a subjective probability of a choice being correct

(Pouget et al., 2016), a definition that stresses that confidence is a particular form

of uncertainty about a decision. In our work, the belief state (at the time of the

perceptual choice) is computed independently of the choice itself. Our definition of

the belief state is, therefore, more in line with a confidence definition in terms of

Bayesian probability independent of decision making (Meyniel, Sigman, et al., 2015).

Importantly, however, many previous studies found that subjective confidence reports

reflect not only stimulus probabilities that directly follow from Bayesian inference, but

also higher-order factors such as error monitoring, past choices, attentional processes,

and seemingly irrelevant stimulus properties (Fleming & Daw, 2017; Fleming & Lau,

2014; Frömer et al., 2020; Yeung & Summerfield, 2012). The belief state of our

Bayes-optimal agent is agnostic to such higher-order influences, but, likely, they were

also at play in our study.

In particular, our finding that younger adults did not only consider the optimal

belief state during reward-guided learning but also took into account their perceptual

choice suggests that a choice-congruent sense of confidence instead of the optimal

belief state guides learning under perceptual uncertainty (Peters et al., 2017). This

perspective stresses the need to build upon our work by explicitly asking participants

to report their confidence levels. A related extension could compare confidence

reports in our current task version to a version without an explicit categorical

perceptual choice. The absence of a categorical commitment in such a version could
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eliminate or reduce the impact of categorical biases on learning through categorical

perception.

Another interesting link to previous work is that perceptual uncertainty requires

inferences about hidden states of the environment to deal with limited and ambiguous

information. Previous work not only examined the role of belief states in learning

under perceptual but also state uncertainty due to uncertain temporal or reward-

magnitude information (Babayan et al., 2018; Starkweather et al., 2017). Both of

these studies suggest that belief states modulate dopaminergic prediction-error signals

to regulate learning in the face of state uncertainty. More generally, theoretical

(Wilson et al., 2014) and empirical (Nassar, McGuire, et al., 2019; Schuck et al.,

2016) results provide evidence that learning significantly depends on the ability to

infer hidden environmental states.

Therefore, it could be relevant to study if learning under perceptual uncertainty

can be interpreted as a particular form of state inference that is comparable across

tasks requiring hidden state inference. Conversely, our results on categorical-choice

biases suggest that humans and animals exhibit categorical-choice biases previously

ignored in the literature.

Finally, an exciting avenue for future research is to investigate learning under

perceptual uncertainty in children and older adults. As argued in Lifespan differences,

children and older adults likely show stronger signatures of categorical learning under

perceptual uncertainty than younger adults. This hypothesis is plausible because

previous research in these age groups showed age-related differences in decision

making under perceptual uncertainty (Dully et al., 2018; Manning et al., 2020),

which, however, did not not further examine the relationship to learning processes

as in Bruckner et al. (2020a).
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7.3 Expected uncertainty

A crucial difference between expected uncertainty in the Gabor-bandit and helicopter

task is that expected uncertainty is directly related to the parameter governing the

outcome contingency in the first case (state-dependent fractal reward probability)

but not in the second (helicopter location). In the Gabor-bandit task, the reward

probability of the fractals directly relates to expected uncertainty. If the reward

probability is equal to 0.8, then the expected probability of not receiving a reward is

1− 0.8 = 0.2. This simple example shows that a model that accurately learns the

outcome contingency directly knows the level of expected uncertainty in the Gabor-

bandit task. In contrast, in the helicopter task, the helicopter location followed from

the mean of a Gaussian distribution, and the variance of this distribution governed

the variability across outcomes.

Therefore, a more sophisticated computational model of the helicopter task also

learns the magnitude of unexpected uncertainty (variance of the outcome-generating

distribution) next to the location of the helicopter itself (mean of the distribution).

To address this problem, we tested several models in Nassar et al. (2016) that

assumed incomplete knowledge of the amount of expected uncertainty. These models

quantitatively described the data better than models with fixed expected-uncertainty

parameters indicating that the participants’ representations of expected uncertainty

deviated from our assumed values. However, the better fit of these models came

at the cost of worse parameter recoverability (see Model validation), and the main

conclusions were still in line with the simpler models with better recoverability.

Relying on simpler models assuming accurate knowledge of expected uncertainty

was thus a reasonable compromise between model fit and parameter recoverability.

Nevertheless, future work should develop more reliable models that allow us to

examine age-related differences in representations of expected uncertainty.

Finally, expected uncertainty is related to the economic concept of risk, referring

to the known probability of outcomes (Dayan, 2012; Mohr et al., 2010). Both
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concepts share the idea that one can not predict outcomes corrupted by variability

perfectly. However, it might be more sensible to use the term expected uncertainty

when studying learning problems. Primarily because in learning research, the exact

representation of outcome variability in the environment often has to be learned

across time, whereas economic risk is assumed to be known.

7.4 Unexpected uncertainty

With respect to unexpected uncertainty, an interesting follow-up question concerns

the representation of environmental changes in humans and animals. This dissertation

has shown that volatility and changepoint models differ in their assumptions about

whether changes occur slowly and continuously (volatility models) or abruptly at

discrete time points (changepoint models). There is evidence that both types of

models can be dissociated based on simulated experimental data (Marković & Kiebel,

2016). Therefore, an important direction for future research is to systematically

assess if empirical, experimental data in humans generally favor one type of model.

One possibility is that the response to changes depends on the exact environment

such that in some circumstances (e.g., small and/or slow changes in the presence

of high outcome variability), individuals behave more like volatility models but in

other circumstances (e.g., large changes in the presence of low outcome variability)

more similar to changepoint models.

Finally, one might criticize the term unexpected uncertainty as such. In par-

ticular, one potential concern is that unexpected uncertainty is not unexpected as

soon as an agent expects changes in the environment (e.g., assuming a hazard rate

of changes). However, in this scenario, a change is "more" unexpected than small

fluctuations in the outcomes due to variability. Therefore, unexpected uncertainty

primarily emerges when prediction errors are larger than expected conditional on

the amount of expected uncertainty in the environment (Yu & Dayan, 2005).
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7.5 Resource rationality

Across the two learning tasks used in the dissertation, the results highlight that past

choices and environmental cues strongly influence human behavior (categorical-choice

bias, default beliefs), although, from the perspective of our normative belief-updating

models, they should not play a considerable role (Bruckner et al., 2020a; Bruckner

et al., 2020b). As a consequence of limited cognitive resources, both the effects of

categorical perceptual choices and default beliefs could be similar manifestations of

a general tendency of the brain to reduce the cognitive resources that are required

to solve a learning and decision-making problem.

In Bruckner et al. (2020a), participants who relied more strongly on their per-

ceptual choices during learning potentially experienced considerably more difficulties

in holding the relevant sensory information about the Gabor patches in working

memory. Therefore, they partly replaced this representation with the less complex

representation of the perceptual choice as such (Luu & Stocker, 2018). Our Bayes-

optimal agent did not suffer from similar difficulties to maintain information in

working memory, but it would be possible that it shows similar biases on learning

under limited working-memory resources (Qiu et al., 2020).

In line with the idea that normative computations require higher resources than

simplified learning strategies, the default-belief model that we proposed in Bruckner

et al. (2020b) regarded normative belief updating as a costly deviation from relying

on the default belief. Maybe children and older adults relied more strongly on their

defaults to adapt their behavioral strategies to their lower cognitive resources.

Therefore, another future direction is to directly assume limited cognitive

resources in the computational cognitive models used in the dissertation projects. An

appealing approach could be to formulate resource-rational models that, given their

limited resources (e.g., working-memory capacity), demonstrate how a normative

agent would behave in a task (Gershman, 2020; Griffiths et al., 2015; Lieder et

al., 2018). Especially from a lifespan perspective, this approach could help us to
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understand learning differences in the face of resource limitations in children and

older adults better. In fact, studying lifespan development in terms of resource

rationality could highlight that age-related differences reflect not only behavioral

impairments but also reasonable adaptions to changes in cognitive capacities.

7.6 Uncertainty in the cycle of adaptive behavior

I started this dissertation by showing how learning occurs during interaction with

the environment (Rangel et al., 2008) but stressed that different forms of uncertainty

often plague adaptive behavior during this interaction. Now I conclude by explicitly

connecting the cycle of adaptive behavior with uncertainty based on the dissertation

studies and the literature discussed throughout the dissertation (Figure 8).

An agent needs a representation of the set of possible actions and the environ-

mental and internal states. In this step, the dissertation highlights the importance

of perceptual uncertainty about environmental states. Extending the framework by

Rangel et al. (2008), we found that the amount of perceptual uncertainty is a critical

factor that directly influences learning. Another important topic of the studies was

expected uncertainty, emerging from variability across outcomes. Because the learner

is assumed to expect and tolerate the presence of outcome variability (Yu & Dayan,

2005), I propose to interpret expected uncertainty as a part of the agent’s set of

representations about the environment. Similarly, subjective representations of the

hazard rate and volatility determine how strongly an agent responds to changes in

the environment and are, therefore, part of the representation of the environment.

The valuation step refers to the assignment of expected values to actions at the

time of a choice (Rangel et al., 2008). The dissertation indicates the importance

of belief uncertainty about the learned expected values (Bruckner et al., 2020a,

Nassar et al., 2016, and Bruckner et al., 2020b). Belief uncertainty emerges from

variability across outcomes through expected uncertainty in the environment and

should, from a normative perspective, determine how strongly a new outcome affects
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1. Representation

Set of feasible actions,
environmental, and

internal states

Perceptual uncertainty,
Expected uncertainty,
Hazard rate, Volatility

2. Valuation

Expected value of each
action given states

Belief uncertainty,
Default belief

3. Decision making

Comparison of values,
commitment to a choice

Categorical-choice
bias on learning

4. Outcome evaluation

Desirability of outcome,
prediction error

Unexpected
uncertainty

5. Learning
Dynamic integration
under consideration

of uncertainty

Figure 8. Uncertainty in the cycle of adaptive behavior. In the first step, representations of states required
for adaptive behavior are often uncertain. This dissertation has particularly focused on perceptual uncertainty
about environmental states and shows that weak and unreliable perceptual information about the environment is
often plagued by uncertainty, which directly controls the regulation of learning in response to new outcomes. More-
over, adaptive behavior in uncertain environments requires representations of the variability of outcomes (expected
uncertainty) and the degree of change in the environment (hazard rate, volatility). Second, in the valuation step,
humans and animals have belief uncertainty about their expected values as a consequence of expected uncertainty.
From a normative computational perspective, belief uncertainty should regulate how strongly new outcomes in-
fluence an update of the expected value. Moreover, next to learned expected values, default beliefs exert strong
influences on human behavior across the lifespan, which, depending on the environment, either yield perseverative
or environmentally-controlled behavior. Third, decision making is not only based on these expected values and
default beliefs but prior perceptual choices themselves influence learning through categorical-choice biases. Fourth,
during outcome evaluation, humans assess whether the environment has changed or not (unexpected uncertainty),
next to whether an outcome is desirable or not. Taken together, the dissertation highlights that multiple forms of
uncertainty dynamically evolving across the various steps of the cycle of adaptive behavior shape learning.

an agent’s update of the expected value. Furthermore, in Bruckner et al. (2020b), we

demonstrated the importance of default beliefs during learning. The study indicates

that default beliefs can be generated internally through a commitment to a previous

choice, or externally, through environmental information. Adaptive behavior thus

not only depends on learned expected values but also on default beliefs independent

of experienced outcomes.
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Decision making refers to the step in which the learner selects an action based

on the expected values of the choice options. An essential insight of Bruckner et al.

(2020a) is that previous perceptual choices directly influence reward-based learning

under perceptual uncertainty as a consequence of categorical perception, showing

that decision making not only depends on previously learned expected values, but

past choices themselves exert clear influences on learning.

During outcome evaluation, an agent evaluates the desirability of a received

outcome, which subsequently guides learning. The dissertation primarily contributes

to a better understanding of outcome evaluation concerning unexpected uncertainty

arising during the evaluation of a surprising outcome. We showed that unexpected

uncertainty strongly modulates the amount of learning to adjust behavior to changes

in the environment (Nassar et al., 2016; Bruckner et al., 2020b).

Finally, learning is not merely driven by the evaluation of the latest outcome

but also the result of integrating prior representations, expected values, and choices.

The dissertation highlights the multiple forms of uncertainty that determine how

much humans learn from an outcome and indicates that learning behavior changes

across the lifespan substantially, mainly because of age-related biases regarding the

consideration of uncertainty.

7.7 Conclusion

To conclude, this dissertation offers a theoretical framework of the normative compu-

tations that should determine learning under several dissociable forms of uncertainty.

The studies show that people consider uncertainty during learning but are affected

by biases amplified at both ends of the lifespan.
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9 Appendix

9.1 Deutsche Zusammenfassung

Adaptives Verhalten verlangt eine ständige Verarbeitung von neuen Ereignissen sowie

eine Reaktion auf diese. In der Psychologie und den Neurowissenschaften wird dies

als Lern- und Entscheidungsprozess bezeichnet. Solche Prozesse finden in der Regel

in Situationen statt, in denen Unsicherheit über aktuelle und zukünftige Ereignisse

herrscht. Um sich in derartigen Situationen erfolgreich zurechtfinden zu können,

muss man aus den Erfahrungen der Vergangenheit Vorhersagen über zukünftige

Ereignisse ableiten.

Die Dissertation behandelt folgende Themen:

1. Normative Berechnungen, die dem Lernen unter Unsicherheit zugrunde liegen

sollten.

2. Verzerrungen, die bei der Berücksichtigung von Unsicherheit zu Abweichungen

vom normativen Lernen führen.

3. Altersrelatierte Unterschiede über die Lebensspanne, die beim Lernen unter

Unsicherheit charakteristisch sind.

Der Begriff normative Berechnungen aus dem Forschungsfeld Computational Neu-

roscience bezieht sich in dieser Dissertation auf Berechnungen, die zu einer optimalen

Lösung eines Lern- und Entscheidungsproblems führen. Meine Dissertationsstudien

basieren auf Computermodellen, die normative Berechnungen implementieren und

Unsicherheit formal definieren. Anhand dieser Modelle wird systematisch unter-

sucht, inwieweit Menschen im jüngeren Erwachsenenalter und über die Lebensspanne

Unsicherheit berücksichtigen, um aus ihren Erfahrungen zu lernen.

Zu Beginn der Dissertation wird demonstriert, dass adaptives Verhalten aus

mehreren Schritten besteht, von der Repräsentation der Umgebung über die Entschei-

dungsfindung bis hin zu Lernprozessen (Introduction). Auf dieser Grundlage stelle
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ich zunächst ein Modell vor, das Unsicherheit in drei Formen unterteilt: Perzeptuelle

Unsicherheit, erwartete Unsicherheit und unerwartete Unsicherheit (Normative com-

putations). Perzeptuelle Unsicherheit hängt mit der Verarbeitung sensorischer

Informationen zusammen, erwartete Unsicherheit ergibt sich aus der Variabilität

von Ereignissen und unerwartete Unsicherheit ist die Folge von Veränderungen in

der Umgebung. Für jede dieser drei Formen beschreibe ich, wie Unsicherheit beim

Lernen aufgrund von normativen Berechnungen berücksichtigt werden sollte. Danach

zeige ich, dass Verzerrungen, also Abweichungen von den normativen Berechnungen,

durch die man sich an Unsicherheit anpasst, charakteristisch für menschliches Lernen

sind (Uncertainty biases). Abschließend erfolgt eine Darstellung, die verdeutlicht,

warum die Erfassung dieser Verzerrungen mit Computermodellen nützlich ist, um

altersrelatierte Unterschiede über die Lebensspanne beim Lernen unter Unsicherheit

besser verstehen zu können (Lifespan differences).

In der ersten Dissertationsstudie (Bruckner et al., 2020a) wurde untersucht,

welche normativen Berechnungen beim Lernen unter perzeptueller Unsicherheit

wichtig sind, in welchem Maße jüngere Erwachsene dementsprechend lernen und wie

dieser Prozess durch vorherige perzeptuelle Entscheidungen verzerrt wird. In der

zweiten Studie (Nassar et al., 2016) wurde Lernen unter erwarteter und unerwarteter

Unsicherheit bei jüngeren und älteren Erwachsenen untersucht. Insbesondere wurde

hier erforscht, inwiefern Verzerrungen bei der Berücksichtigung dieser Unsicherheiten

altersrelatierte Lernunterschiede erklären. Die dritte Studie (Bruckner et al., 2020b)

hat darauf aufgebaut und speziell bei Kindern und älteren Erwachsenen untersucht,

inwiefern sie auf vereinfachte Lernstrategien zurückgreifen und auf normative Berech-

nungen verzichten. Die vierte Studie (Van den Bos et al., 2018) hat schließlich

beschrieben, wie Computermodelle die Erforschung altersrelatierter Lernunterschiede

über die Lebensspanne unterstützen können.

Die Ergebnisse der oben genannten Studien werden im Folgenden kurz zusam-

mengefasst. In Bruckner et al. (2020a) konnten wir zeigen, dass perzeptuelle Un-
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sicherheit beim Lernen zu vorschnellen Schlussfolgerungen auf Basis von Fehlinter-

pretationen einer Wahrnehmung führen kann. Um vorschnelle Schlussfolgerungen zu

vermeiden, sollte man sich beim Lernen unter perzeptueller Unsicherheit vorsichtiger

verhalten als in perzeptuell eindeutigen Situationen. Wir fanden in dieser Studie

heraus, dass Menschen perzeptuelle Unsicherheit beim Lernen berücksichtigen. Zu-

sätzlich stellten wir allerdings eine Verzerrung bei der Berücksichtigung perzeptueller

Unsicherheit aufgrund von früheren perzeptuellen Entscheidungen beim Lernen fest,

die wiederum zu einer weniger vorsichtigen Anpassung des Lernverhaltens führt.

In Nassar et al. (2016) fanden wir Hinweise darauf, dass altersrelatierte Lernun-

terschiede mit Verzerrungen bei der Anpassung an erwartete Unsicherheit zusammen-

hängen. Insbesondere stellten wir fest, dass ältere Erwachsene (60 bis 80 Jahre) dazu

neigen, die Unsicherheit über ihre Erwartungen im Vergleich zu jüngeren Erwachsenen

(20 bis 30 Jahre) zu unterschätzen. Diese Form der Unsicherheitsunterschätzung führt

zu einem weniger flexiblen Lernverhalten im Vergleich zu jüngeren Erwachsenen.

In Bruckner et al. (2020b) wurde gezeigt, dass altersrelatierte Unterschiede beim

Lernen unter Unsicherheit damit zusammenhängen, dass Kinder (7 bis 11 Jahre) und

ältere Erwachsene häufig auf vereinfachte Lernstrategien zurückgreifen, was dazu

führt, dass Verhalten wiederholt (Perseveration) oder stärker durch die Umgebung

beeinflusst wird (externe Kontrolle).

Abschließend wurde in Van den Bos et al. (2018) argumentiert, dass Computer-

modellierung eine wichtige Methode ist, um altersrelatierte Unterschiede beim Ler-

nen und in der Entscheidungsfindung besser zu verstehen. Hier wurden sowohl die

Vorteile der Anwendung von Computermodellen zur Erforschung altersrelatierter

Verhaltensunterschiede (in Bezug auf Risikobereitschaft, Strategieauswahl und Ver-

stärkungslernen) als auch potenzielle Fallstricke aufgezeigt.

Nach der Diskussion der Dissertationsprojekte (General discussion and future

directions) stelle ich ein kognitives Modell zum Lernen unter Unsicherheit vor, das

auf den neuen Erkenntnissen meiner Studien und früheren Arbeiten aus der Literatur
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basiert (Uncertainty in the cycle of adaptive behavior). Zusammenfassend legt meine

Dissertation dar, dass Lernen ein dynamischer Prozess ist, der von vielfältigen Formen

der Unsicherheit beeinflusst wird. Menschen berücksichtigen ihre Unsicherheit beim

Lernen, weisen aber charakteristische Unsicherheitsverzerrungen auf, die sich im

Laufe der Lebensspanne erheblich verändern.
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