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Abstract
While the basal plane of graphene is inert, defects in it are centers of chemical activity. An attractive
application of such defects is towards controlled functionalization of graphene with foreign
molecules. However, the interaction of the defects with reactive environment, such as ambient,
decreases the efficiency of functionalization and makes it poorly controlled.

Here, we report a novel approach to generate, monitor with time resolution, and functionalize
the defects in situ without ever exposing them to the ambient. The defects are generated by an
energetic argon plasma and their properties are monitored using in situ Raman spectroscopy. We
find that these defects are functional, very reactive, and strongly change their density from
≈1× 1013 cm−2 to≈5× 1011 cm−2 upon exposure to air. We perform the proof of principle in
situ functionalization by generating defects using the argon plasma and functionalizing them in
situ using ammonia functional. The functionalization induces the n-doping with a carrier density
up to 5× 1012 cm−2 in graphene and remains stable in ambient conditions.

1. Introduction

While the properties of pristine graphene are now
largely understood, we are only beginning to under-
stand the potential of controllably functional-
ized graphene. During the last decade, multiple
approaches have been developed to attach foreign
molecules such as hydrogen, oxygen, fluorine, or
organic compounds to the basal plane of graphene
[1–6]. Controlled functionalization has been used
to open the band gap [7, [8]], adjust the doping
levels [9], induce defect states producing photolu-
minescence [8, 10, 11], or perhaps even to induce
magnetism in grapheme [12]. Moreover, graphene
controllably functionalized with biomolecules is in
demand for applications in filtration, biotechnology,
and biosensorics [13, 14].

In general, there are covalent and non-covalent
functionalization approaches [2, 15, 16]. In non-
covalent functionalization, a target molecule is
deposited onto graphene predominantly through
interactions like van der Waals forces or π-π stack-
ing [17]. As these interactions are relatively weak,

molecules tend to cluster [18] or may be removed
during processing of functionalized material [19].
In the covalent approach, a covalent bond forms
between graphene and a target molecule. As the
basal plane of graphene is highly inert, this func-
tionalization approach requires reactive compounds,
e.g. free radicals [2, 3, 19, 20]. At the same time,
defects in graphene are the centers of chemical activity
[21]. Therefore, many functionalization strategies
use these defects to graft desired functionalities
[22–28].

One of the most simple, cheap, and scalable tech-
niques to induce defects in graphene is the exposure
to an energetic plasma discharge [29]. The density,
type, and configuration of defects can then be tuned
by controlling the plasma type, energy, and expos-
ure duration. However, in the majority of function-
alization approaches, graphene is exposed to ambient
before coming into contact with the target molecule
[23, 30–32]. As a result, freshly-created defects react
with moisture, oxygen or hydrocarbons in the ambi-
ent reducing the efficiency and decreasing the con-
trol of functionalization [33, 34]. This hinders the
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Figure 1. Experimental setup and time-resolved Raman spectra. (a) Experimental setup for in situ generation/functionalization of
defects and their monitoring via Raman spectroscopy. (b) Time series showing the evolution of the graphene Raman spectrum.
Until 135 s the sample is kept in vacuum. Argon plasma is ignited at 135 and 470 s, the sample is vented to air at 1175 s. Time axis
contains breaks. (c) Several Raman spectra acquired at specific times marked in (b).

potential of plasma-treated graphene as the plat-
form for controllably functionalized graphene-based
hybrid materials.

Here, we overcome this problem by function-
alizing freshly prepared plasma-induced defects in
graphene without ever exposing them to the ambi-
ent. To accomplish this, we first explore the proper-
ties of plasma-induced defects in graphene. We show
that these defects are functional rather than struc-
tural and that they are stable in vacuum but strongly
react with the ambient.We then demonstrate a proof-
of-principle functionalization of Ar plasma-induced
seed-point defects with the NH3 functional. We con-
firm functionalization by examining the evolution of
carrier density, defect density, and strain extracted
from time-resolved in situRaman spectroscopymeas-
urements.

2. Results

Our overarching goal is to develop an approach
to controllably functionalize the basal plane of
graphene. Towards this goal, we monitor the forma-
tion, study the properties, and functionalize defects
in graphene without exposing these defects to ambi-
ent. To accomplish this, we have developed a setup
that allows in situ (1) generation, (2) live monit-
oring, (3) annealing, and (4) functionalization of
defects. The setup is a vacuum chamber with optical
and gas access (figure 1(a)). Defects are generated in
pristinemonolayer chemical vapor deposition (CVD)
graphene by exposure to Ar or NH3 plasmas, gen-
erated by radio frequency discharge. To characterize
defect properties, the sample is continuously mon-
itored in situ with Raman spectroscopy (Methods).
Finally, plasma-generated defects can be functional-
ized using vapor deposition technique avoiding the
exposure of the sample to ambient.

We use Raman spectroscopy to extract the defect
density, carrier density, and strain in graphene as

a function of time. The intensity, full width at half
maximum and spectral positions of graphene Raman
modes G and 2D (≈1591 cm−1 and ≈2685 cm−1,
figures 1(b), (c) are used to gauge the initial graphene
quality [35] and to extract carrier density and
strain [36, 37]. Disorder, such as structural defects
(e.g. missing carbon atom) or sp3-defects (e.g.
attached organic molecules), activates the D mode
as well as D’ and D + D’ modes in graphene
(≈1594 cm−1, ≈1625 cm−1, and ≈2930 cm−1,
respectively) [35, 38, 39]. We use the ratio between
the intensities of D and G modes to extract the dens-
ity of defects introduced during the plasma exposure
[40–42].

Our first goal is to investigate generation, stabil-
ity, and reactivity of defects introduced in graphene
via exposure to Ar plasma. At the beginning of the
experiment, the sample is loaded into the vacuum
chamber that is first pumped down to high vacuum
(p ≈ 10–5 mbar) and then filled with the Ar gas at
partial pressure p= 5 mbar (time t = 0). The Raman
spectra are continuously acquired every five seconds
(figure 1(b)). At t= 135 s, we generate defects igniting
plasma for 5 s at−2dBm power. The sample is kept in
argon, until we repeat the plasma exposure at t= 470 s
for another 10 s at−2dBm power. The sample is fur-
ther kept in argon until t = 1170 s to examine the sta-
bility of defects. Finally, at t = 1175 s the chamber is
filled with air up to ambient pressure and monitored
for≈500 s after that.

We observe stark changes in the Raman spec-
trum during the entire process. At the beginning
of the experiment, the ratio between 2D and G
modes as well as the absence of the D mode indic-
ate the negligible defect density in pristine CVD
graphene (figure 1(c), black). These spectra are uni-
form across the sample surface (supplementary figure
S1(https://stacks.iop.org/2DM/08/015022/mmedia))
and are stable over time. The first, five-second long
plasma exposure introduces defects and activates the
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D mode in graphene (figure 1(c), blue). The second
plasma exposure changes the spectra dramatically:
the intensity of a 2D mode strongly decreases, addi-
tional D’ and D+ D’ modes appear, and the D mode
further increases and begins to dominate the spec-
trum. All Raman modes shift and change relative
intensities (figure 1(c), red). Spectra remain relatively
stable while the sample is kept in medium vacuum
(pAr = 5 mbar) between t = 520 s and 1170 s. As the
sample is exposed to ambient at t ≈ 1175 s, the spec-
tra change once again: the D mode decreases, the D’
and D+ D’ modes almost completely disappear, and
the 2D/G ratio goes back to its original value. Finally,
at t ≈ 1275 s, the changes saturate and the spectra are
relatively stable (figure 1(c), green).

To quantitatively examine modifications of
graphene due to Ar plasma treatment and consec-
utive air exposure, in figure 2 we extract the time-
dependent defect density, charge carrier density, and
strain of our sample during the entire experiment
from the Raman data of figure 1(b). We discuss the
detailed analysis of the time-resolved Raman spec-
tra in the Supplementary Information. We find that
our graphene sample analyzed in figures 1 and 2 is
initially p-doped and pre-strained (supplementary
figure S2).

At the beginning of the experiment the defect
density is near-zero; pre-strain is low and initial car-
rier density is ≈ −2.2 × 1012 cm−2, with minus sign
corresponding to hole-doping. Both plasma expos-
ure steps change defect density, doping, and strain.
The defect density after the second discharge is
≈1.6 × 1013 cm−2 and rapidly (≈50 s) decreases to
≈6× 1012 cm−2 after the plasma is turned off. Plasma
exposures induce n-doping of ≈7 × 1011 cm−2 and
strain of≈0.1%.

After the fast dynamic following the plasma
exposures, the sample is stable in argon (pAr = 5
mbar) as the carrier density, strain, and defect dens-
ity remain stable in the interval t = 520–1170 s. At the
time t = 1175 s, we start filling the chamber with air.
We observe a rapid decrease of the defect density by
an order ofmagnitude, to≈5× 1011 cm−2 within 40 s
(figure 2(a)). Simultaneously, we observe p-doping
from air exposure, ≈5 × 1012 cm−2 (figure 2(b)),
accompanied by the relaxation of strain (figure 2(c)).
We note that changes in the carrier density affect the
intensity ratio I(D)/I(G) used to extract the defect
density [43, 44]. These effects are accounted for in
the analysis of figure 2 (supplementary information).
Following these initial fast changes, we observe slow
dynamics on the time scale of hours. During that
time, the defect density decreases by more than a
factor of two and the carrier density increases by an
order of magnitude (supplementary figure S5).

To summarize our observations so far, the data
of figures 1–2 show that in situ plasma-induced
defects in graphene are stable in argon but react
with air. The density of these defects decreases by an

Figure 2. Time-resolved changes in sample properties after
plasma exposure and venting to air. Time-dependent (a)
defect density, (b) doping density and (c) strain extracted
from the Raman spectra with 5 sec. resolution using the
procedure described in the text. The time axis is the same as
in figure 1(b)

order of magnitude from ≈6 × 1012 cm−2 in argon
to ≈5 × 1011 cm−2 in air. However, the question
remains: what is the chemical/physical nature of these
defects?

In general, the defects produced by plasma expos-
ure [29] can be structural (i.e. missing carbon atom)
[24] or functional (sp3-like defects interactingwith an
external atom/molecule) [2, 32]. These defect types
are distinguished by their energy and related stabil-
ity [24]. To estimate this energy scale, we thermally
anneal our samples. Figure 3 shows the evolution of
the Raman spectra and calculated defect density for
the sample annealed in situ in vacuum right after the
introduction of defects. The D mode in figure 3(a)
almost completely disappears after a relatively mild
annealing at 85 ◦C, and the apparent defect dens-
ity drops to the same value as in pristine graphene
(figure 3(b)). It is known that structural defects (miss-
ing carbon atoms) are stable up to much higher tem-
peratures of 800 ◦C–900 ◦C [45, 46]. However, the
presence of additional impurity atoms, like carbon
[47] or silicon [48] may influence the stability tem-
perature. On the other hand, most of the organic
functionalities are known to desorb at temperatures
below 100 ◦C [21, 49, 50]. The strong decrease of
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Figure 3. Reversibility of plasma-induced defects upon in situ annealing. (a) Evolution of Raman spectra of graphene. A defect
mode appears in pristine graphene (black) upon plasma exposure (blue). After in situ annealing to 85 ◦C the mode disappears
(red). (b) The defect density extracted for each step in (a).

the density of defects upon the exposure to ambient
points towards their reactivity. This suggest that the
defects produced by Ar plasma in our experiment in
situ are mainly functional. The remaining concentra-
tion of defects after the exposure to ambient suggests
that functional defects may have reacted with ambi-
ent, whereas the structural defects remained. How-
ever, the precise microscopic mechanism should be
the subject of future TEM and XPS studies.

To figure out the type of functional attached to
the carbon atoms, we performed DFT calculations
of binding energies, induced doping, and strain for
H-, OH- and O- functional defects (supplementary
figure S6). The lowest binding energy of −0.839 eV
as well as induced electron doping and strain below
0.2% qualitatively suggest hydrogen as the most likely
defect type induced by Ar plasma in situ at mbar
pressures. Indeed, a similar behavior was observed
for weakly bound functional defects in hydrogen-
ated graphene [50–52]. In addition, hydrogen func-
tionalities are expected to produce charge trans-
fer and electron-doping [4, 53] similar to the one
observed in figure 2(b) as well as induce signific-
ant strain[54] due to modification of bond lengths,
the behavior is seen in figure 2(c). Finally, while the
C-H bond is strong in bulk compounds, it is much
more reactive in the case of graphene [4, 33, 55].
Therefore, it is not surprising that H-functionalities
are removed from graphene upon exposure to
ambient.

There are two possible mechanisms for hydro-
gen functionalization in our experiments. First, H2

that is present in trace concentrations in our cham-
ber in medium vacuum becomes ionized together
with Ar due to similar ionization energies [51] and
may react with grapheme [26],52. Second, moisture
and hydrocarbons could be adsorbed on our pristine
CVD-grown graphene samples during the fabrica-
tion [56, 57] and may dissociate under ion/electron
bombardment [58]. This could also lead to hydrogen

functionalization. We note that more precise analyt-
ical techniques such as in situ XPS may distinguish
between the proposed scenarios.

One particularly attractive application of reactive
plasma-induced functional defects is for the further
controlled chemical functionalization of graphene.
Hydrogenated graphene is an interesting candidate
for further chemical functionalization due to its react-
ivity [4, 27, 33, 55]. The results above show that
plasma-induced defects in graphene react with air.
This greatly reduces their density and limits the ex situ
functionalization potential. To overcome this limita-
tion, we propose a new in situ functionalization path-
way. The idea behind the approach is to introduce
target molecular species into a vacuum chamber with
freshly in situAr-induced functional defects before the
defects react with air. We expect that the target spe-
cies should attach to a large density of ‘seed-points’ in
graphene while these defects are still reactive. In the
rest of the paper, we show the proof-of-principle of
such two-step functionalization process.

To demonstrate the viability of our approach, we
chose ammonia (NH3) as our target functional. The
interaction of ammonia with graphene is well under-
stood and is commonly used to introduce a large car-
rier density in graphene [30, 31, 59], e.g. for applica-
tions in transparent conductive electrodes. In a proof-
of-principle experiment, we first generated defects
using Ar plasma as discussed above (10 s, 1 dBm,
0.1 mbar). In the second step, without breaking the
vacuum, we introduced NH3-plasma (15 s, 1 dBm,
0.2 mbar) to functionalize the defects created dur-
ing the first step. Finally, the sample was exposed to
the ambient. Defect density and charge carrier dens-
ity at each step of the functionalization process are
shown in figure 4 (red points). For comparison, in the
same graph we show a sample that was exposed to Ar
plasma only (15 s,−2 dBm, 5mbar, green points) and
another sample that was exposed to NH3 plasma only
(50 s, 2 dBm, 0.2 mbar, blue points).
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Figure 4. In situ two-step functionalization of graphene. The carrier density and the defect density shown for each step of the
two-step functionalization approach of graphene (red). In that approach, anchor points are created via argon plasma exposure
and are functionalized by exposure to NH3 plasma. For comparison, the samples exposed just to Ar plasma (green) and just to
NH3 plasma (blue) are also shown. The carrier density shown here is relative to the pristine state, to ease the comparison between
the samples.

We first examine reference Ar-only and NH3-
only samples. In the Ar-only sample, as discussed
above in figures 1 and 2, we created the defect dens-
ity of ≈6 × 1012 cm−2, which induced a slight n-
doping of ≈7 × 1011 cm−2 (figure 4, green points).
This defect density drops by more than one order of
magnitude upon exposure to ambient. In contrast,
NH3-plasma exposure generates, by itself, a large n-
doping of ≈7 × 1012 cm−2, while generating the
defect density of ≈2 × 1011 cm−2 (figure 4, blue
points). After exposure to ambient, the concentration
of defects is only slightly reduced, while the doping
is reduced strongly. Similar results for NH3 samples
have been reported previously [29–31, 59]. We con-
clude that both plasma treatments induce functional
defects with different functional groups. The func-
tional groups produced byAr plasma (likely hydrogen
functionalities) induce electron doping and appear
to be reactive. In contrast, the groups produced by
the NH3 plasma (ammonia) induce electron dop-
ing and do not interact with ambient air strongly
[24, 29, 31, 59–62]. The hole doping seen in both
samples upon air exposure likely results from adsorp-
tion of water from ambient.

Finally, we examine the sample exposed to the
two-step in situ functionalization process (figure 4,
red). The first Ar plasma treatment results in the
defect density≈8× 1011 cm−2. The following expos-
ure to NH3 plasma during the second step does not
change the extracted defect density. Despite that, the
carrier density increases to≈5× 1012 cm−2. Import-
antly, the defect density remains near constant upon

exposure to ambient. All of that suggests that dur-
ing the second functionalization step NH3 derivatives
bind to the reactive functional ‘seed-point’ defects in
graphene produced byAr plasma in the first function-
alization step (probably forming mostly graphitic-N
type of defects [31, 60, 63]) rather than additionally
attach directly to graphene. Indeed, if latter was the
case, we would expect to see an increase in the defect
density upon NH3 plasma exposure in the second
step. In addition, the stability of the defect density in
the two-step process suggests that functionalization of
the defects is stable, unlike the case we observed for
Ar plasma, but similar to what we have seen for NH3

plasma. Finally, large electron doping after the two-
step process suggests efficient NH3 functionalization.
All of that constitutes the proof of principle for our
functionalization strategy.

Utilizing in situ functionalization method used
here, other organic or inorganic functional can be
introduced to graphene [27, 33]. The advantage
of this approach is the possibility to create high
densities of ‘freshly-generated’ reactive defects that
could generate large doping of >1013 cm−2, facilit-
ate close packing of molecules, and allow the func-
tionalization of graphene with previously inactive
reagents.

In summary, we developed a new in situ approach
to generate and monitor defects in graphene. We
have shown that defects in graphene created via
Ar plasma exposure are stable in vacuum but react
with the ambient. Both the defect density and the
carrier density in graphene decrease by about an
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order of magnitude upon exposure to ambient. We
demonstrated a two-step in situ functionalization of
graphene. In this process, we functionalized graphene
with NH3 functional at high density utilizing the
reactive ‘seed-point’ defects created via Ar plasma
without exposure to ambient.We confirmed the func-
tionalization by continuously analyzing defect dens-
ity, carrier density, and strain in our samples through
in situ Raman spectroscopy. Overall, we believe
that our novel in situ functionalization approach
using reactive defects opens the possibility to intro-
duce various chemical functionalities to graphene
and thereby providing a pathway towards scalable
creation of various hybrid organic/inorganic 2D
materials.

3. Methods

3.1. Sample synthesis
Single layer graphene is synthesized on the copper
substrate by CVD. The mixture of methane (5 sccm),
hydrogen (10 sccm), and argon (5 sccm) is let into
the CVD chamber, which is kept at 1035 ◦C. The
growth time is 7 min. After the growth, graphene is
transferred onto the Si/SiO2 substrate by a standard
method [64].

3.2. Setup
The vacuum chamber is pumped down to p ≈ 10–5

mbar. The working gas (Ar or NH3) is let into the
chamber with the partial pressures of 0.1–5 mbar.
The plasma is generated via capacitive coupling of
a top plate electrode and the chamber, using the
microwave signal from HP8648B microwave gener-
ator at a constant frequency of 13.56 MHz amplified
by 50 dB with the amplifier. The chamber is kept at
the ground potential. The sample is located at the
sample holder halfway between the electrode and the
bottom of the chamber. The sample holder is elec-
trically isolated from the electrode and the ground.
No additional bias potential was used. The sample
holder is electrically contacted for in situ annealing
purposes. The concentration of defects in graphene
can then be controlled by adjusting the discharge
power and plasma exposition time. The sample is
monitored with in situ Raman spectroscopy in a
modified Witec Alpha setup using 532 nm excitation
wavelength.

3.3. DFT calculations
DFT calculations are carried out with the all-electron
code FHI-aims [65]. Geometry optimization is per-
formed within the generalized gradient approxim-
ation for the exchange-correlation functional using
the Perdew–Burke–Ernzerhof parametrization [66].
Van der Waals interactions are included with the
Tkatchenko-Scheffler scheme [67]. We employ tight
integration grids and TIER2 basis sets [68], and the

atomic positions are relaxed until the Hellmann-
Feynman forces are smaller than 10–3 eV/Å.
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