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Fundamental bounds on qubit reset
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Qubit reset is a key task in the operation of quantum devices which, for many quantum hardware platforms,
presently limits device clock speed. While it is known that coupling the qubit to an ancilla on demand allows
for the fastest qubit reset, the limits on reset accuracy and speed due to the choice of ancilla have not yet been
identified—despite the great flexibility in device design for most quantum hardware platforms. Here, we derive
bounds on qubit reset in terms of maximum fidelity and minimum time, assuming control over the qubit and no
control over the ancilla. For two-level ancillas, we find a provably time-optimal protocol which consists of purity
exchange between qubit and ancilla brought into resonance. The globally minimal time can only be realized for
specific choices of coupling and control which we identify. When increasing the size of the ancilla Hilbert space,
the maximally achievable fidelity increases, whereas the reset time remains constant. Our results translate into
device design principles for realizing, in a given quantum architecture, the fastest and most accurate protocol for
qubit reset.
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I. INTRODUCTION

The ability to initialize qubits from an arbitrary mixed state
to a fiducial pure state is a basic building block in quantum
information (QI) science [1]. Initializing the qubit or, equiva-
lently, resetting it after completion of a computational task,
requires some means to export entropy. At the same time,
for device operation, the qubit needs to be well-protected
and isolated from its environment. It is thus not an option to
simply let the qubit equilibrate with its environment; rather,
active reset is indispensable. A common approach to actively
initialize a qubit uses projective measurements [2] but, for
many QI architectures, this suffers from being slow, see, e.g.,
Refs. [3,4] for the example of superconducting qubits. Rapid
reset is made possible by coupling each qubit to an ancilla in a
tunable way. This can be a fast decaying state, such as in laser
cooling, or an auxiliary system such as another qubit [5,6] or
a resonator [7–9]. Then, the coupling strength together with
either the switching time for the coupling or the ancilla decay
rate determine the overall time required to reset the qubit. This
bound on the reset protocol duration is a specific instance
of open quantum system speed limits [10]. At present, the
overall time required for qubit reset presents one of the main
limitations for device operation, especially for superconduct-
ing qubits. On the other hand, in these architectures, there
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exists a great flexibility in the design of tunable couplings
between qubit and ancilla [11], a flexibility that could be used
to improve the speed and accuracy of qubit reset.

Here, we derive bounds on reset accuracy and speed,
assuming no external control over the ancilla, and identify
device designs, in terms of the types of interaction and control,
that allow for attaining the bounds. Starting with a two-level
ancilla, where the reset dynamics is an element of SU(4), we
can leverage earlier results on the quantum optimal control
in SU(4) [12–15] for qubit reset. Making use of the Cartan
decomposition of SU(4) [16,17], we identify the qubit-ancilla
couplings which allow for qubit purification. For all Hamilto-
nians fulfilling this criterion, we use quantum optimal control
theory [18] to determine the controls on the qubit that realize
a time-optimal reset. Moreover, we identify the dynamics
for maximum purity reset when the ancilla Hilbert space
dimension is larger than two. A combination of geometric,
algebraic, and numerical tools allows us to identify ultimate
performance limits for duration and accuracy of qubit reset.

Our focus on using an ancilla to reset the qubit is motivated
by the fact that weakly coupled environmental modes cannot
be harnessed for time-optimal reset [6,19]. The ancilla can be
realized by a strongly coupled environmental mode [20,21]
but also by another engineered quantum system [8,22–24]. In
that scenario, both qubit and ancilla are weakly coupled to
the larger thermal environment, which allows the ancilla to
equilibrate after being decoupled from the qubit.

II. RESET WITH A TWO-LEVEL ANCILLA

We first consider a two-level ancilla and identify the neces-
sary conditions on the qubit-ancilla time evolution operator U
to allow for purification of the qubit. Employing the Cartan
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decomposition of SU(4), every element U ∈ SU(4) can be
written as [25]

U = KAK′, A = exp

{
i

2

3∑
k=1

ck (σk ⊗ σk )

}
, (1)

with K, K′ ∈ SU(2) ⊗ SU(2) and σk the usual Pauli matrices.
This representation allows one to separate the evolution op-
erator U into local (K, K′) and nonlocal (NL) (A) parts. In
the following, we refer to the coefficients ck ∈ [0, π ] as NL
coordinates and, for convenience, write K = kS ⊗ kB where
kS and kB are local operations on qubit and ancilla (denoted
by subscripts S and B for system and bath). Assuming the joint
initial state to be separable, ρ(0) = ρS(0) ⊗ ρB(0), the qubit
state at time t is given by

ρS(t ) = trB{U(t )ρ(0)U†(t )} = DρB(0)(t )[ρS(0)], (2)

where the dynamical map of the qubit, DρB(0), depends para-
metrically on the initial ancilla state, ρB(0). A necessary
condition for purification of a quantum system is nonunitality
[26] of its dynamical map [27]. To check unitality in Eq. (2),
we consider the initial state

ρ(0) = 1S ⊗ ρB(0), ρB(0) =
(

pe
B γB

γ ∗
B pg

B

)
, (3)

where pg
B, pe

B ∈ [0, 1] denote the ancilla ground and excited
state populations, and γB ∈ C its coherence. Using Eqs. (1),
we find

DρB(0)[1S] = trB{U(1S ⊗ ρB(0))U†}
= kStrB{A(1S ⊗ ρ ′

B)A†}k†
S, (4)

where

ρ ′
B = k′

BρB(0)k′†
B =

(
pe′

B γ ′
B

γ ′∗
B pg′

B

)

is the locally transformed ancilla state. Unitality of DρB(0) is
determined by the partial trace in Eq. (4) since kS1Sk†

S = 1S

for any kS. The partial trace yields

trB{A(1S ⊗ ρ ′
B)A†} = 1S + 2Re(γ ′

B) sin(c2) sin(c3)σ1

− 2Im(γ ′
B) sin(c1) sin(c3)σ2

− (
pg′

B − pe′
B

)
sin(c1) sin(c2)σ3. (5)

Equation (5) implies that any U ∈ SU(4) with only a single
nonvanishing ck yields a unital map for the qubit and purifica-
tion is not possible at all. Occurrence of two nonvanishing NL
coordinates is necessary but not yet sufficient for nonunitality
of DρB(0) due to the dependence on ρ ′

B, i.e., on the initial
ancilla state ρB(0) and local operation k′

B. Nonunitality of
DρB(0), independent of the ancilla, is guaranteed by three non-
vanishing NL coordinates [28].

With this observation, we can relate nonunitality of DρB(0)

with the entangling capability of U for the qubit-ancilla sys-
tem. The latter is best analyzed in the Weyl chamber [25],
which is a symmetry-reduced version of the cube spanned by
c1, c2, c3 ∈ [0, π ], obtained when eliminating redundancies in
Eqs. (1). The six symmetries are sketched in the upper part
of Fig. 1 with the Weyl chamber shown below. The shaded

FIG. 1. (Color online.) Symmetries (upper part) and construction
of the Weyl chamber (lower part) for the characterization of the non-
local content of any two-qubit operation U ∈ SU(4), cf. Eqs. (1). The
shaded polyhedron within the Weyl chamber describes all perfectly
entangling operations. The orange line highlights those U which lead
to unital maps for the qubit. The green line anticipates a time-optimal
path for qubit purification identified below. The letters mark specific
elements of SU(4) referred to in the text.

polyhedron in its center describes all perfectly entangling op-
erations and the c1 axis represents all operations with at most
one nonvanishing NL coordinate. It contains one point of the
polyhedron of perfect entanglers—the point L corresponding
to the gate cNOT and all gates that are locally equivalent to
it, including cPHASE. Albeit being perfect entanglers, cNOT
and cPHASE yield unital maps for the qubit. The capability
of U to create entanglement between qubit and ancilla is thus
a necessary but not sufficient condition for purification of the
qubit.

Next, we determine the qubit-ancilla couplings that allow
for purification of the qubit. To this end, we write the generic
qubit-ancilla Hamiltonian,

H(t ) = HS(t ) ⊗ 1B + 1S ⊗ HB + Hint, (6)

with HS(t ) = ωS
2 σ3 + E (t )Oc, HB = ωB

2 σ3, and Hint =
J (OS ⊗ OB), assuming control, via an external field E (t ),
only over the qubit. J denotes the qubit-ancilla coupling
strength [29], while ωS < ωB are the level splittings of
qubit and ancilla. For simplicity, we start by taking the
operators to be Pauli matrices, OS, OB, Oc ∈ {σ1, σ2, σ3},
and show later that our results also hold for superpositions
of Pauli operators. To relate the Hamiltonian Eq. (6) to the
purification condition, which is stated in terms of the number
Nc of nonzero NL coordinates of the joint qubit-ancilla time
evolution, we consider the dynamical Lie algebra L. Its Cartan
decomposition, L = k ⊕ p, implies that A in Eqs. (1) is an
element of the group exp{a} where a is the Cartan subalgebra,
i.e., the maximal Abelian subalgebra of p. For Hamiltonian
Eq. (6) and the control task of purifying the qubit, it turns out
that Nc = dim{a} [30]. Since a can be determined entirely
from the Hamiltonian, without any knowledge of the actual
dynamics, Nc is readily obtained. It is thus straightforward
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to identify the combinations OS, OB, Oc ∈ {σ1, σ2, σ3} for
which Nc � 2: Out of the 3 × 3 × 3 possible combinations of
OS, OB, Oc, only 16 have a Cartan subalgebra a of dimension
2, allowing for purification of the qubit [31]. Table II in the
Appendix summarizes the resulting dynamical Lie algebras
and presents possible choices for a.

After identifying the cases in which Hamiltonian Eq. (6)
allows for purification of the qubit, we seek to derive the fields
E (t ) which reset the qubit in minimum time. This requires
consideration not only of the generators but also of the full
dynamics. We assume a separable initial state with the ancilla
in thermal equilibrium, i.e., without ancilla coherence:

ρ(0) =
(

pe
S γS

γ ∗
S pg

S

)
⊗

(
pe

B 0

0 pg
B

)
. (7)

Before stating the general result, we present three observa-
tions based on numerical simulations of all 16 cases. (i) For
a constant resonant field, the minimum time, Tmin, to achieve
maximal qubit purity is independent of the initial qubit state,
ρS(0). Such a field puts qubit and ancilla into resonance,
i.e., E is chosen such that λ1 − λ0 = ωB where λ0 < λ1 are
the field-dressed eigenvalues of the qubit Hamiltonian HS.
This generalizes the results of Ref. [6] to the remaining 15
cases where purification is possible. (ii) The specific value
of Tmin depends on the type of qubit-ancilla interaction and
local control, i.e., on the choice of OS, OB, Oc. (iii) When
allowing for fully time-dependent control fields E (t ), the max-
imal qubit purity cannot be reached faster than Tmin. However,
for times τ < Tmin, numerical optimizations using Krotov’s
method [32,33] lead to an upper bound for the qubit purity
PS(τ ), given in terms of the evolution of the thermal initial
state ρS(0) under resonant fields. The optimally shaped fields
saturating the bound depend both on the initial state and the
choice of OS, OB, Oc.

We discuss these observations in more detail for OS =
OB = σ1 with (a) Oc = σ1 and (b) Oc = σ3, cf. Fig. 2. These
two examples are paradigmatic, with all other combinations
of OS, OB, and Oc yielding identical results (data not shown).
In case (b), we know that time-optimal reset is achieved with
a constant field E (t ) = E that puts qubit and ancilla into
resonance [6]. A constant resonant field therefore seems to
be a suitable pilot for all numerical optimizations. For all
initial states of the qubit (randomly chosen under the con-
dition of identical purity), a maximum in the time evolution
of the purity occurs at roughly the same point in time, Tmin,
when applying the constant resonant field, cf. Fig. 2. Using
optimal control theory, we find field shapes E (t ), t ∈ [0, τ ]
that maximize PS(τ ) at a given time τ . For a few choices
of τ , the black and red dots in Fig. 2 compare the purities
obtained with constant resonant and optimized fields [34].
In all cases with τ �= Tmin, the optimized fields improve the
purity compared to the constant resonant field. For τ = Tmin,
the purities coincide (since the constant resonant field is al-
ready an optimal solution). For τ < Tmin, there exists an upper
bound for PS(τ ), which is attained by the constant resonant
field for a coherence-free initial qubit state with pg

S > pe
S. This

bound can be proven rigorously, see, e.g., Ref. [22] and Ap-
pendix A 2. While the individual optimized fields depend on
τ and, for τ �= Tmin, also on the initial state of the qubit, they

FIG. 2. (Color online.) The time evolution of the qubit purity
reveals the minimum time for qubit reset—shown here for the exam-
ples Hint = J (σ1 ⊗ σ1) with Hc(t ) = E (t ) σ1 (a) and Hc(t ) = E (t ) σ3

(b). The gray area corresponds to the superimposed evolutions of 50
different initial states ρ(0) = ρS(0) ⊗ ρB(0) with ρB(0) the thermal
equilibrium state and ρS(0) sampled randomly under the condition
of identical purity. The red (black) dots indicate the values for PS(τ )
obtained with optimized (constant resonant) E (t ). The dashed blue
lines indicate the upper and lower bounds of PS predicted by Eq. (8).
PB(0) denotes the initial ancilla purity. The parameters are ωS = 1,
ωB = 3, J = 0.1, and inverse temperature β = 1.

all exhibit a strong off-resonant initial peak which, if γS �= 0,
rotates the coherence into population or, if pg

S < pe
S, inverts

the qubit populations, before swapping the purities with the
resonant protocol [6]. When allowing for times τ > Tmin, a
purity swap between qubit and ancilla remains the optimal
strategy, with the corresponding fields being more complex
than the constant resonant solution for τ = Tmin.

Based on these numerical results, we conjecture that time-
optimal purification requires one to choose a constant and
resonant field, E (t ) = E , such that λ1 − λ0 = ωB, no matter
what the choice is of OS, OB, or Oc. For a constant and reso-
nant E (t ), an exact closed-form expression for the joint time
evolution operator can be approximated to yield an expression
for the time evolution of the qubit purity, cf. Eq. (A15). For the
example of case (a), it reads

PS(t ) ≈ [
pg

S pg
B + pg

S pe
B cos2(ηt ) + pe

S pg
B sin2(ηt )

]2

+ [
pe

S pe
B + pg

S pe
B sin2(ηt ) + pe

S pg
B cos2(ηt )

]2

+ 2|γS|2 cos2(ηt ), (8)

with

η2 = J2 + ωB

2

(
ωB −

√
ω2

B + 4B2
)
, B2 = J2 ω2

B − ω2
S

ω2
B

. (9)

Here, η denotes the effective coupling strength, the value of
which depends on the choice of OS, OB, and Oc. Maximizing
PS(t ) yields an approximated minimum time for purification,
Tmin = π/(2η), independent of the initial state. This explains
why PS(t ) displays a perfect swap of qubit and ancilla purity
at Tmin for all evolutions in Fig. 2(a). For all other Hamilto-
nians which allow for purification, we obtain the same result
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TABLE I. Minimum reset times T (i)
min for two coupled supercon-

ducting qubits [35] with three sets of experimental parameters (set
1: ωS/(2π ) = 12.8 GHz, ωB/(2π ) = 16.1 GHz, J/(2π ) = 65 MHz;
set 2: ωS/(2π ) = 9.8 GHz, ωB/(2π ) = 16.1 GHz, J/(2π ) = 200
MHz; set 3: ωS/(2π ) = 15.8 GHz, ωB/(2π ) = 16.1 GHz, J/(2π ) =
25 MHz [36]). The choice of OS, OB, Oc determines the type (i)
of the minimal time T (i)

min in Eqs. (10) with (i) indicated in the last
column.

OS ⊗ OB Oc T (i)
min (set 1) T (i)

min (set 2) T (i)
min (set 3) (i)

σ1 ⊗ σ1 σ1 191.0 ns 81.1 ns 402.3 ns (2)
σ1 ⊗ σ1 σ2 151.8 ns 49.3 ns 394.8 ns (1)
σ1 ⊗ σ1 σ3 151.8 ns 49.3 ns 394.8 ns (1)

σ1 ⊗ σ2 σ1 191.0 ns 81.1 ns 402.3 ns (2)
σ1 ⊗ σ2 σ2 151.8 ns 49.3 ns 394.8 ns (1)
σ1 ⊗ σ2 σ3 151.8 ns 49.3 ns 394.8 ns (1)

σ2 ⊗ σ1 σ1 151.8 ns 49.3 ns 394.8 ns (1)
σ2 ⊗ σ1 σ2 191.0 ns 81.1 ns 402.3 ns (2)
σ2 ⊗ σ1 σ3 151.8 ns 49.3 ns 394.8 ns (1)

σ2 ⊗ σ2 σ1 151.8 ns 49.3 ns 394.8 ns (1)
σ2 ⊗ σ2 σ2 191.0 ns 81.1 ns 402.3 ns (2)
σ2 ⊗ σ2 σ3 151.8 ns 49.3 ns 394.8 ns (1)

σ3 ⊗ σ1 σ1 250.3 ns 62.2 ns 2054.6 ns (3)
σ3 ⊗ σ1 σ2 250.3 ns 62.2 ns 2054.6 ns (3)

σ3 ⊗ σ2 σ1 250.3 ns 62.2 ns 2054.6 ns (3)
σ3 ⊗ σ2 σ2 250.3 ns 62.2 ns 2054.6 ns (3)

for PS(t ), Eq. (8), but with different expressions for effective
coupling η and and the parameter B, cf. Appendix A 2. For
example, in case (b) B = 0 and hence η = J leads to Tmin =
π/(2J ), which is much shorter than Tmin in case (a) where
B �= 0, cf. Fig. 2.

Overall, we find three distinct minimal reset times which
can be linked to a single quantity A such that Tmin ≈ π/(2|A|).
For all possible combinations of OS, OB, Oc ∈ {σ1, σ2, σ3}, A
is obtained directly from the Hamiltonian and determined by
the parameters J , ωS, and ωB, cf. Eq. (A18) and Table III.
Depending on the choice of OS, OB, Oc, the minimal times
are

T (1)
min = π

2J
, T (2)

min = π

2J

ωB

ωS
, T (3)

min = π

2J

ωB√
ω2

B − ω2
S

, (10)

see also Table I. Note that T (3)
min approaches T (1)

min for ωB 	 ωS

(recall that ωB > ωS for reset). Inspection of Table I reveals
which operator combinations give rise to the three cases,
allowing us to rationalize why T (1)

min represents the shortest
time among the three cases. First, the choice OS = σ3 is
not expected to be optimal for a protocol based on purity
exchange. In this case, an exchange interaction is generated
by commutators of Hint and Oc ⊗ 1B, but not by Hint itself.
The commutators occur only in higher order terms of a series
expansion of the time evolution operator, i.e., they require
more time to become effective. Next, if OS ⊗ OB are chosen
to directly implement an exchange interaction, the fastest reset
[cf. case (1) in Table I] is obtained if Oc does not commute
with OS. More precisely, the norm of [OS, Oc] can be related

to the rate of heat exchange between qubit and ancilla, as we
show in Appendix A 3.

When allowing OS, OB, and Oc to be arbitrary elements
of su(2) = span{σ1, σ2, σ3} including superpositions of Pauli
operators, we still find the respective minimum times for the
purity swap to be lower bounded by T (1)

min. Our proof makes use
of the time-optimal tori theorem for SU(4) [12], the details
of which are presented in Appendix A 1. Here, we briefly
highlight the major points. The time-optimal tori theorem
derives a lower bound on the time to realize an arbitrary
unitary U ∈ SU(4) of the form Eqs. (1). To this end, full
controllability is assumed, i.e., controls can, unlike in our
setting, also act on the ancilla. As a result, any local oper-
ation K, K′ ∈ SU(2) ⊗ SU(2) can be generated. Under these
conditions, the minimal time to realize an arbitary U ∈ SU(4)
is determined by the NL part A of U. Accounting for the
nonuniqueness of the NL coordinates ck , it is given by the
smallest possible value of Tmin = ∑

k
ck
2J . In view of qubit re-

set, we are interested in a specific unitary, namely, the one that
maximizes the qubit purity when starting from a completely
mixed state, ρS(0) = 1S/2. In other words, we need to find
those NL coordinates ck that not only minimize Tmin = ∑

k
ck
2J

but also maximize

PS = tr

{
tr2

B

{
A

(
1S

2
⊗ ρ ′

B

)
A†

}}

= 1

2
+

((
pg′

B

)2 + (pe′
B)2 − 1

2

)
sin2(c1) sin2(c2)

+ 2Re(γ ′
B)2 sin2(c2) sin2(c3)

+ 2 Im(γ ′
B)2 sin2(c1) sin2(c3), (11)

where we have used Eq. (5). We find maxima of the qubit
purity PS in Eq. (11) if two of the ck are equal to π/2 while
the third one vanishes. This results in a global minimum for
the reset time, Tmin = π/(2J ). Remarkably, the global mini-
mum coincides with the minimal reset time T (1)

min that we have
identified above under the assumption of control over the qubit
but not the ancilla.

Table I shows exemplary minimum reset times Tmin for a
physical realization of two coupled superconducting qubits
[35,36], illustrating the role of device design in terms of the
choice of OS, OB, and Oc as well as the parameters ωS, ωB,
and J . In case of the optimal choice of OS, OB, and Oc such
that Tmin = T (1)

min (independently of ωB), ωB should still be
chosen as large as possible to increase the maximum achiev-
able purity. An option to effectively enlarge ωB is to utilize
ancilla levels above the two-level subspace. This raises the
question whether our findings on minimum protocol duration
and maximum reset fidelity also hold for ancillas with Hilbert
space dimension larger than two.

III. RESET WITH A MULTILEVEL ANCILLA

We now inspect ancillas with Hilbert space dimension
d > 2 since most quantum systems that can act as ancilla
intrinsically possess more than two levels. Here, we explore
whether additional levels, energetically above the ground and
first excited state, are potentially beneficial for fast on-demand
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FIG. 3. Purity evolution of a qubit interacting with a qutrit ancilla
under a constant, resonant field (blue line). The resonance condition
is set with respect to the |0〉 ↔ |1〉 transition in the qutrit, as these
are the initially most populated levels. With numerically optimized
fields, we also obtained the maximal purity for specific times (red
dots). Parameters as in Fig. 2 and ωB,1 = 3 and ωB,2 = 2.

reset. We discuss both aspects of reset, i.e., the minimal reset
time as well as the maximal achievable qubit purity.

To investigate whether an increase of the Hilbert space
dimension d of the ancilla allows for faster purification, we
first choose the ancilla to be a qutrit (d = 3). In the following,
we focus on a local σ3 control on the qubit and generalize
the previously discussed σ1 ⊗ σ1 qubit-ancilla-interaction, cf.
Fig. 2, which for two-level ancillas yields the globally mini-
mal purification time Tmin = π/(2J ), to the qubit-qutrit case.
To this end, we write the interaction Hamiltonian as Hint =
J[σ1 ⊗ (a + a†)], where a and a† are the truncated lower-
ing and raising operators, respectively. The ancilla (or bath)
Hamiltonian is given by HB = diag{ωB,2, 0,−ωB,1}, with ωB,1

and ωB,2 the transition frequencies between the qutrit’s ground
and first excited state, respectively, first and second excited
state. As before, we assume uncorrelated initial thermal states
on the system and ancilla.

To examine a possible change in the minimal reset time
due to the addition of a third level, we have numerically
maximized the qubit purity for different final times T , cf.
Fig. 3. The highest purity in Fig. 3 is observed for times
equal or larger than Tmin, i.e., the minimum time to achieve
maximum purity is identical to the case of a two-level ancilla.
Analogous simulations for d = 4 (data not shown) yield the
same minimum purification time. We therefore conjecture that
Tmin is independent of the ancilla Hilbert space dimension.

Moreover, we observe that, for all T < Tmin in Fig. 3, a
resonant guess field (blue line) yields the maximally achiev-
able qubit purity, where the resonance is taken with respect to
ωB,1. We therefore conjecture, based on numerical evidence,
that resonant fields also remain an optimal reset strategy for
ancillas with Hilbert space dimension d > 2.

Figure 3 allows for another important observation: While
the minimum reset time Tmin is unchanged for d = 3 com-
pared to d = 2, the maximal achievable purity increases, cf.
the red dots and dashed horizontal line which corresponds
to the maximal qubit purity in case of a two-level ancilla.
Remarkably, the maximal achievable qubit purity is no longer

upper bounded by the initial ancilla purity, PB(0). This raises
the question whether the maximal qubit purity can be further
enhanced by allowing for even larger d . We will answer this
question in its most general form, i.e., considering a system
and ancilla with Hilbert space dimensions dS and dimension
dB, respectively. The following proposition links the maximal
achievable system purity to the ancilla dimension dB and its
initial state.

Proposition 1. Let HS and HB be Hilbert spaces with di-
mensions dS and dB, respectively, and LHS and LHB their
corresponding Liouville spaces. Let ρB ∈ LHB be a den-
sity matrix with at least �dB(dS − 1)/dS eigenvalues below
ε/[2dB(dS − 1)] with small ε > 0, where �· denotes the ceil-
ing function. Then, for all density matrices ρS ∈ LHS , there
exists a U ∈ SU(dSdB) such that

1 − tr
{
ρ ′2

S

}
� ε, ρ ′

S = trB{U(ρS ⊗ ρB)U†}, (12)

i.e., the purity of ρ ′
S gets ε-close to unity.

While the technical details and proof of this proposition
are discussed in Appendix B, here we focus on the interesting
physical implications of this proposition. To this end, let us
consider the requirements for the perfect purification of a
qubit, i.e., dS = 2 and ε = 0, by an ancilla with Hilbert space
dimension dB. For the special case of a two-level ancilla, as
discussed earlier, we find �dB(dS − 1)/dS = �2(2 − 1)/2 =
1. According to Proposition 1, this implies that the initial
ancilla state ρB needs to have one vanishing eigenvalue for
the final qubit state ρ ′

S to become pure. In other words, per-
fect purification of the qubit is only possible with initially
pure ancillas. For dB = 3, we find �dB/2 = 2, which means
that we still require a pure initial ancilla state for successful
purification of the qubit. However, starting from dB = 4, it
is possible to fully purify the qubit even if more than one
eigenvalue of ρB is large. In other words, for dB � 4, the
initial ancilla state ρB does not need to be pure for perfect
purification.

Proposition 1 furthermore implies that even if perfect pu-
rification of the system is not possible, the system can still be
purified beyond a simple swap of purities as long as dB > 2
holds. To illustrate this, let us again consider the purification
of a qubit (ωS = 1) and let us assume an ancilla with equidis-
tant energy levels (ωS = 3). We assume thermal initial states
with inverse thermal energy β = 1 on both qubit and ancilla.
In this scenario, starting again with dB = 2, the maximally
achievable qubit purity is Pmax

S ≈ 0.905, which amounts ex-
actly to a swap of purities as observed earlier. In contrast, for
dB = 3 and dB = 4, we find Pmax

S ≈ 0.970 and Pmax
S ≈ 0.995,

respectively, which illustrates the potential improvement in
resetting the qubit by employing higher dimensional ancillas.
The illustrated conditions can easily be realized by utilizing
higher excited levels of transmon qubits or superconducting
resonators. Such ancillas would also provide for complete
controllability [7–9], which may be required to realize the
spectral reshuffling of the joint initial state that implements
an optimal reset dynamics, as we discuss in more detail in
Appendix B.

It should be noted, however, that for an initial thermal
population distribution on the ancilla, a qubit purity of exactly
one can only be reached if ρB is initially pure. This result
agrees with the findings of Ref. [37], which show that if the

013110-5



DANIEL BASILEWITSCH et al. PHYSICAL REVIEW RESEARCH 3, 013110 (2021)

system and a thermal bath are initially factorized, then cooling
the system to a pure state is only possible if the bath is initially
at zero temperature. Proposition 1 allows us to go one step
further by showing that it is possible to get ε close to unit pu-
rity, even if the bath is initially in a mixed state, under certain
conditions (namely, ensuring that δ � ε/[2dB(dS − 1)], where
δ represents an upper bound for a sufficient number of ancilla
eigenvalues at initial time).

Moreover, our findings are in accordance with a theorem
showing that cooling the system ε close to a pure state is
possible as long as the bath initial state is sufficiently close
to a so-called subsystem pure state initialization [22]. While
Ref. [22] quantifies closeness primarily via the trace distance,
our derivation yields a bound on the achievable system purity
as a function of the spectral properties of the initial bath state.

IV. SUMMARY

We have shown that there exists a globally minimal time
(among all Hamiltonians) to reset a qubit with maximal fi-
delity when making use of an ancilla and time-dependent
external control fields over the qubit. For two-level ancillas,
a time-optimal protocol ensures resonance between qubit and
ancilla and swaps their purities. The reset fidelity is then
determined by the initial ancilla purity, making it crucial to
engineer a sufficiently high ancilla purity or, respectively,
low ancilla temperature. Due to its nontrivial dependence on
the effective qubit-ancilla coupling strength, there exists an
optimal choice for qubit-ancilla interaction and type of local
control for the time-optimal reset. Thanks to the Cartan de-
composition of SU(4), this choice can be determined at the
level of the algebra, i.e., the Hamiltonian, and does not require
knowledge of the actual reset dynamics. For ancillas with
Hilbert space dimension larger than three, the qubit purity can
be brought arbitrarily close to one by proper spectral reshuf-
fling of the joint qubit ancilla state, provided at least half of the
ancilla levels have negligible population. The corresponding
experimental conditions on ancilla state and control are easily
met by, e.g., current superconducting qubit technology. Our
results provide the guiding principles for device design to
realize the fastest and most accurate protocol for qubit reset
in a given QI architecture.
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APPENDIX A: TWO-LEVEL ANCILLAS

In the following, we provide the details of our calculations
for two-level ancillas in Sec. II. In particular, in Table II, we
present a detailed overview over the dynamical Lie algebras
for the 27 possible choices of qubit-ancilla interaction and
local control in Hamiltonian Eq. (6). In Appendix A 1, we
use the time-optimal tori theorem of Ref. [12] to deduce the
quantum speed limit time for qubit reset. We present details

of the derivation of Eq. (8) in Appendix A 2 and discuss an
extension of our model to superpositions of Pauli operators in
the interaction and control Hamiltonians in Appendix A 3.

1. Quantum speed limit

We construct the globally minimal time to reset a qubit
using a two-level ancilla, starting from a fully controllable
two-qubit system and employing the time-optimal tori theo-
rem [12]. Assuming local control over both qubit and ancilla
allows us to derive the minimal time from the time-optimal
tori theorem. Since our model in the main text does not in-
clude control over the ancilla, the minimum time derived here
from the time-optimal tori theorem will be a lower bound for
qubit reset. We show that when relaxing the controllability
assumption to local control over the system qubit only, the
bound is tight and can be attained for specific choices of the
qubit-ancilla Hamiltonian.

For the sake of completeness, we first recall Theorems 2
and 10 of Ref. [12] in the notation of our study. We consider
a system qubit coupled to a bath qubit (ancilla), described by
the Hamiltonian

H = HS ⊗ 1B + 1S ⊗ HB + Hint, (A1)

with

HS = u1,S σ1 + u2,S σ2 + u3,S σ3,

HB = u1,B σ1 + u2,B σ2 + u3,B σ3,

Hint = J σk ⊗ σl ,

where σk, σl ∈ {σ1, σ2, σ3}, and J is a constant coupling
strength. In contrast to our study, Ref. [12] assumes com-
plete controllability, i.e., local controls on qubit and ancilla
generating the subgroup K = SU(2) ⊗ SU(2). The dynami-
cal Lie algebra corresponding to Eq. (A1) is thus su(4). No
limitations on the maximum intensity of the control fields ui,S

and ui,B are imposed so any local operation can be realized in
arbitrarily short time, which can be neglected compared to the
timescale of the interaction 1/J .

Theorem 1 (time-optimal tori theorem [12]). For the sys-
tem described by Eq. (A1), the minimum time to generate a
unitary propagator UF ∈ SU(4) corresponds to the smallest
value of

∑
k ck , where ck ∈ [0, π ], such that

UF = Ke
i
2

∑
k ckσk⊗σk K′,

with K, K′ ∈ K . The minimum time T is given by T =
1

2J

∑
k ck .

The proof of Theorem 1 [12] is based on the same Cartan
decomposition of SU(4) as used in the main text. A minimum-
time control strategy can be derived from Theorem 1 by
expressing the propagator UF as

UF = K

(
3∏

k=1

e
i
2 ckσk⊗σk

)
K′

= K′
1e

i
2J c1Hint K′

2e
i

2J c2Hint K′
3e

i
2J c3Hint K′

4,

where K′
1, K′

2, K′
3, K′

4 ∈ K are chosen such that they rotate Hint

into the corresponding term of σk ⊗ σk . The control proto-
col thus consists in a series of local pulses (which take no
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TABLE II. Dynamical Lie algebras L, their respective Cartan decompositions L = k ⊕ p and a possible choice for the Cartan subalgebra
a ⊂ p for all possible variants of Hamiltonian (6). The interaction part and the qubit control are given by Hint = J (OS ⊗ OB) and Hc(t ) =
E (t )Oc, respectively.

OS ⊗ OB Oc k p a

σ1 ⊗ σ1 σ1 1 ⊗ σ3, σ1 ⊗ 1, σ2 ⊗ 1, σ3 ⊗ 1 σ1 ⊗ σ1, σ1 ⊗ σ2, σ2 ⊗ σ1, σ2 ⊗ σ2, σ3 ⊗ σ1, σ3 ⊗ σ2 σ1 ⊗ σ1, σ2 ⊗ σ2

σ1 ⊗ σ1 σ2 1 ⊗ σ3, σ1 ⊗ 1, σ2 ⊗ 1, σ3 ⊗ 1 σ1 ⊗ σ1, σ1 ⊗ σ2, σ2 ⊗ σ1, σ2 ⊗ σ2, σ3 ⊗ σ1, σ3 ⊗ σ2 σ1 ⊗ σ1, σ2 ⊗ σ2

σ1 ⊗ σ1 σ3 1 ⊗ σ3, σ3 ⊗ 1 σ1 ⊗ σ1, σ1 ⊗ σ2, σ2 ⊗ σ1, σ2 ⊗ σ2 σ1 ⊗ σ1, σ2 ⊗ σ2

σ1 ⊗ σ2 σ1 1 ⊗ σ3, σ1 ⊗ 1, σ2 ⊗ 1, σ3 ⊗ 1 σ1 ⊗ σ1, σ1 ⊗ σ2, σ2 ⊗ σ1, σ2 ⊗ σ2, σ3 ⊗ σ1, σ3 ⊗ σ2 σ1 ⊗ σ1, σ2 ⊗ σ2

σ1 ⊗ σ2 σ2 1 ⊗ σ3, σ1 ⊗ 1, σ2 ⊗ 1, σ3 ⊗ 1 σ1 ⊗ σ1, σ1 ⊗ σ2, σ2 ⊗ σ1, σ2 ⊗ σ2, σ3 ⊗ σ1, σ3 ⊗ σ2 σ1 ⊗ σ1, σ2 ⊗ σ2

σ1 ⊗ σ2 σ3 1 ⊗ σ3, σ3 ⊗ 1 σ1 ⊗ σ1, σ1 ⊗ σ2, σ2 ⊗ σ1, σ2 ⊗ σ2 σ1 ⊗ σ1, σ2 ⊗ σ2

σ1 ⊗ σ3 σ1 1 ⊗ σ3, σ1 ⊗ 1, σ2 ⊗ 1, σ3 ⊗ 1 σ1 ⊗ σ3, σ2 ⊗ σ3, σ3 ⊗ σ3 σ3 ⊗ σ3

σ1 ⊗ σ3 σ2 1 ⊗ σ3, σ1 ⊗ 1, σ2 ⊗ 1, σ3 ⊗ 1 σ1 ⊗ σ3, σ2 ⊗ σ3, σ3 ⊗ σ3 σ3 ⊗ σ3

σ1 ⊗ σ3 σ3 1 ⊗ σ3, σ3 ⊗ 1 σ1 ⊗ σ3, σ2 ⊗ σ3 σ1 ⊗ σ3

σ2 ⊗ σ1 σ1 1 ⊗ σ3, σ1 ⊗ 1, σ2 ⊗ 1, σ3 ⊗ 1 σ1 ⊗ σ1, σ1 ⊗ σ2, σ2 ⊗ σ1, σ2 ⊗ σ2, σ3 ⊗ σ1, σ3 ⊗ σ2 σ1 ⊗ σ1, σ2 ⊗ σ2

σ2 ⊗ σ1 σ2 1 ⊗ σ3, σ1 ⊗ 1, σ2 ⊗ 1, σ3 ⊗ 1 σ1 ⊗ σ1, σ1 ⊗ σ2, σ2 ⊗ σ1, σ2 ⊗ σ2, σ3 ⊗ σ1, σ3 ⊗ σ2 σ1 ⊗ σ1, σ2 ⊗ σ2

σ2 ⊗ σ1 σ3 1 ⊗ σ3, σ3 ⊗ 1 σ1 ⊗ σ1, σ1 ⊗ σ2, σ2 ⊗ σ1, σ2 ⊗ σ2 σ1 ⊗ σ1, σ2 ⊗ σ2

σ2 ⊗ σ2 σ1 1 ⊗ σ3, σ1 ⊗ 1, σ2 ⊗ 1, σ3 ⊗ 1 σ1 ⊗ σ1, σ1 ⊗ σ2, σ2 ⊗ σ1, σ2 ⊗ σ2, σ3 ⊗ σ1, σ3 ⊗ σ2 σ1 ⊗ σ1, σ2 ⊗ σ2

σ2 ⊗ σ2 σ2 1 ⊗ σ3, σ1 ⊗ 1, σ2 ⊗ 1, σ3 ⊗ 1 σ1 ⊗ σ1, σ1 ⊗ σ2, σ2 ⊗ σ1, σ2 ⊗ σ2, σ3 ⊗ σ1, σ3 ⊗ σ2 σ1 ⊗ σ1, σ2 ⊗ σ2

σ2 ⊗ σ2 σ3 1 ⊗ σ3, σ3 ⊗ 1 σ1 ⊗ σ1, σ1 ⊗ σ2, σ2 ⊗ σ1, σ2 ⊗ σ2 σ1 ⊗ σ1, σ2 ⊗ σ2

σ2 ⊗ σ3 σ1 1 ⊗ σ3, σ1 ⊗ 1, σ2 ⊗ 1, σ3 ⊗ 1 σ1 ⊗ σ3, σ2 ⊗ σ3, σ3 ⊗ σ3 σ3 ⊗ σ3

σ2 ⊗ σ3 σ2 1 ⊗ σ3, σ1 ⊗ 1, σ2 ⊗ 1, σ3 ⊗ 1 σ1 ⊗ σ3, σ2 ⊗ σ3, σ3 ⊗ σ3 σ3 ⊗ σ3

σ2 ⊗ σ3 σ3 1 ⊗ σ3, σ3 ⊗ 1 σ1 ⊗ σ3, σ2 ⊗ σ3 σ1 ⊗ σ3

σ3 ⊗ σ1 σ1 1 ⊗ σ3, σ1 ⊗ 1, σ2 ⊗ 1, σ3 ⊗ 1 σ1 ⊗ σ1, σ1 ⊗ σ2, σ2 ⊗ σ1, σ2 ⊗ σ2, σ3 ⊗ σ1, σ3 ⊗ σ2 σ1 ⊗ σ1, σ2 ⊗ σ2

σ3 ⊗ σ1 σ2 1 ⊗ σ3, σ1 ⊗ 1, σ2 ⊗ 1, σ3 ⊗ 1 σ1 ⊗ σ1, σ1 ⊗ σ2, σ2 ⊗ σ1, σ2 ⊗ σ2, σ3 ⊗ σ1, σ3 ⊗ σ2 σ1 ⊗ σ1, σ2 ⊗ σ2

σ3 ⊗ σ1 σ3 1 ⊗ σ3, σ3 ⊗ 1 σ3 ⊗ σ1, σ3 ⊗ σ2 σ3 ⊗ σ1

σ3 ⊗ σ2 σ1 1 ⊗ σ3, σ1 ⊗ 1, σ2 ⊗ 1, σ3 ⊗ 1 σ1 ⊗ σ1, σ1 ⊗ σ2, σ2 ⊗ σ1, σ2 ⊗ σ2, σ3 ⊗ σ1, σ3 ⊗ σ2 σ1 ⊗ σ1, σ2 ⊗ σ2

σ3 ⊗ σ2 σ2 1 ⊗ σ3, σ1 ⊗ 1, σ2 ⊗ 1, σ3 ⊗ 1 σ1 ⊗ σ1, σ1 ⊗ σ2, σ2 ⊗ σ1, σ2 ⊗ σ2, σ3 ⊗ σ1, σ3 ⊗ σ2 σ1 ⊗ σ1, σ2 ⊗ σ2

σ3 ⊗ σ2 σ3 1 ⊗ σ3, σ3 ⊗ 1 σ3 ⊗ σ1, σ3 ⊗ σ2 σ3 ⊗ σ1

σ3 ⊗ σ3 σ1 1 ⊗ σ3, σ1 ⊗ 1, σ2 ⊗ 1, σ3 ⊗ 1 σ1 ⊗ σ3, σ2 ⊗ σ3, σ3 ⊗ σ3 σ3 ⊗ σ3

σ3 ⊗ σ3 σ2 1 ⊗ σ3, σ1 ⊗ 1, σ2 ⊗ 1, σ3 ⊗ 1 σ1 ⊗ σ3, σ2 ⊗ σ3, σ3 ⊗ σ3 σ3 ⊗ σ3

σ3 ⊗ σ3 σ3 1 ⊗ σ3, σ3 ⊗ 1 σ3 ⊗ σ3 σ3 ⊗ σ3

time) and field-free evolutions under the interaction Hamil-
tonian Hint [of duration ck/(2J )]. We now apply Theorem 1
to qubit reset, taking the initial state as ρ(0) = 1/2 ⊗ ρB(0)
with PB(0) = tr{ρ2

B(0)} the initial ancilla purity. To simplify
the description, we assume the qubit to be initially in the
maximally mixed state, which is the state requiring the largest
entropy or purity change. The initial ancilla state is written as

ρB(0) =
(

pe
B γB

γ ∗
B pg

B

)
,

with PB(0) = (pg
B)2 + (pe

B)2 + 2|γB|2. Denoting the evolu-
tion operator that realizes the qubit reset in minimum time,
Tmin, by UF and using Theorem 1, we obtain

ρS(Tmin) = trB{UFρ(0)U†
F}.

Inserting UF from Theorem 1 leads to

ρS(Tmin) = 1/2 + Re(γ ′
B) sin(c2) sin(c3) σ1

−Im(γ ′
B) sin(c1) sin(c3) σ2

− 1
2

(
pg′

B − pe′
B

)
sin(c1) sin(c2) σ3,

where pg′
B, pe′

B, and γ ′
B are the matrix elements of ρB(0) in a

new basis, (
pe′

B γ ′
B

γ ′∗
B pg′

B

)
= kB

(
pe

B γB

γ ∗
B pg

B

)
k†

B

with kB being a unitary local operation on the ancilla. The
coefficients pg′

B, pe′
B and γ ′

B fulfill the constraint

PB(0) = (
pg′

B

)2 + (
pe′

B

)2 + 2|γ ′
B|2, (A2)

since local operations cannot change the ancilla purity. The
qubit purity at time Tmin becomes

PS(Tmin) = tr
{
ρ2

S(Tmin)
}

= 1
2 + ((

pg′
B

)2 + (
pe′

B

)2 − 1
2

)
sin2(c1) sin2(c2)

+ 2Re(γ ′
B)2 sin2(c2) sin2(c3)

+ 2 Im(γ ′
B)2 sin2(c1) sin2(c3) (A3)

and is upper bounded by

PS(Tmin) �
(
pg′

B

)2 + (
pe′

B

)2 + 2Re(γ ′
B)2 + 2 Im(γ ′

B)2

= PB(0),
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i.e., the maximum qubit purity PS(Tmin) is the initial purity
PB(0) of the ancilla [22].

This upper bound can be attained, for instance, if c1 =
c2 = c3 = π

2 . Employing Theorem 1, this leads to a control
time T = 3π

4J . Note that this control strategy works for any
value of pg′

B, pe′
B, and γ ′

B. However, this time is not the min-
imum time and shorter durations can be found under certain
assumptions on pg′

B, pe′
B, and γ ′

B, or rather on the local transfor-
mation kB, as we show next.

Direct analysis of Eq. (A3) reveals that the maximum pu-
rity can be attained in time T = π/(2J ) for three symmetric
processes in which one of the three parameters ck is zero
and the other two equal π/2. Whether it is possible to utilize
one of these strategies depends on the local transformation
kB of the ancilla. If, for example, γ ′

B = 0 and hence PB(0) =
(pg′

B )2 + (pe′
B)2, setting c3 = 0 yields a purification time T =

π/(2J ). These requirements are fulfilled if the ancilla is ini-
tially in thermal equilibrium and the local transformation kB

is generated only by σ3. Similarly, we find for Re(γ ′
B)2 =

PB(0)
2 − 1

4 that c1 = 0 allows for fast purification and with
c2 = 0 this time can be achieved if Im(γ ′

B)2 = PB(0)
2 − 1

4 . We

prove in Theorem 2 that these protocols are the time-optimal
strategies for qubit reset with the Hamiltonian Eq. (A1).

Theorem 2. Given Eq. (A1), the minimum time to reset the
qubit and reach the maximum possible purity from a maxi-
mally mixed state is Tmin = π/(2J ). The time-optimal control
strategies correspond to the cases where two of the ck in UF

are equal to π/2 and the third one is zero. The control protocol
depends on the local operation on the ancilla characterized
by the parameters pg′

B, pe′
B, and γ ′

B and is optimized to attain
maximum purity.

Proof. Using Eq. (A2), we find for the qubit purity

PS(Tmin) = 1
2 + (

PB(0) − 1
2

)
sin2(c1) sin2(c2)

+ 2Re(γ ′
B)2 sin2(c2)[sin2(c3) − sin2(c1)]

+ 2Im(γ ′
B)2 sin2(c1)[sin2(c3) − sin2(c2)], (A4)

i.e., the qubit purity can be interpreted as a function Fγ ′
B

of
(c1, c2, c3) ∈ [0, π ]3 parameterized by γ ′

B. A maximum of Fγ ′
B

fulfills the necessary conditions ∂c1 Fγ ′
B

= ∂c2 Fγ ′
B

= ∂c3 Fγ ′
B

=
0, where ∂ck denotes the partial derivative with respect to ck .
We obtain the following system of equations:

sin(2c1)

[(PB(0)

2
− 1

4
− Re(γ ′

B)2 − Im(γ ′
B)2

)
sin2(c2) + Im(γ ′

B)2 sin2(c3)

]
= 0, (A5a)

sin(2c2)

[(PB(0)

2
− 1

4
− Re(γ ′

B)2 − Im(γ ′
B)2

)
sin2(c1) + Re(γ ′

B)2 sin2(c3)

]
= 0, (A5b)

sin(2c3)

[
Re(γ ′

B)2 sin2(c2) + Im(γ ′
B)2 sin2(c1)

]
= 0. (A5c)

We study below the different extrema of Fγ ′
B

that allow us to
achieve maximum purity in a time shorter or equal to π/(2J ),
i.e., for c1 + c2 + c3 � π . We do not consider the other
cases.

First, we examine Eq. (A5c) and realize that it is satisfied if
sin(2c3) = 0, leading to c3 = 0 or c3 = π/2 (the case c3 = π

is not relevant). In the former case, we can deduce from
Eqs. (A4) and (A5) that c1 = c2 = π/2 is a solution under
the requirement Re(γ ′

B) = Im(γ ′
B) = 0. This is, as before, a

condition on the local operation kB. The other choice, c3 =
π/2, yields two possible solutions for c1 and c2, which again
are constrained by the local transformation kB. If Im(γ ′

B)2 =
PB(0)

2 − 1
4 , the equations are solved with c1 = π/2 and c2 = 0,

while for Re(γ ′
B)2 = PB(0)

2 − 1
4 , the solution reads c1 = 0 and

c2 = π/2. This leaves us with three possible control strate-
gies, but all of them obey c1 + c2 + c3 = π and therefore lead
to a reset time of Tmin = π/(2J ). Finally, we also have to
consider Re(γ ′

B)2 sin2(c2) + Im(γ ′
B)2 sin2(c1) = 0, which is,

in addition to sin(2c3) = 0, the second solution to Eq. (A5c).
The only relevant case corresponds to Re(γ ′

B) = Im(γ ′
B) = 0,

which leads to c1 = c2 = π/2 and we retrieve one of the
previous solutions. The same analysis can be carried out for
the other two equations, leading to the same solutions. This
indeed shows that considering all possibilities, it is not pos-
sible to solve Eqs. (A5) with c1 + c2 + c3 < π and therefore
completes the proof. �

Theorem 2 tells us that the shortest possible time Tmin to
reset the qubit is

Tmin = π

2J
.

We show in the main text that this lower bound can be attained
for several choices of control and interaction Hamiltonians,
highlighting the tightness of the bound. Attaining the bound
for qubit reset is possible without the need for local control
over the ancilla, i.e., without complete controllability. Note
that the control procedure derived in the main text, i.e., the res-
onant protocol, is completely different from the time-optimal
strategy predicted by Theorem 1, consisting in a concatenation
of local hard pulses and free evolutions [12].

Most importantly, our results imply that local control over
the qubit ancilla does not allow us to improve the reset time.

2. Maximum purity and minimum reset time
for qubit and ancilla on resonance

We explain now how to obtain the closed-form expression
for the time evolution of the qubit purity, Eq. (8) of the main
text, given that the joint qubit-ancilla dynamics is described
by Hamiltonian Eq. (6). We present a detailed derivation for
Hint = J (σ1 ⊗ σ1) and Hc = Eσ1, i.e., OS = OB = Oc = σ1

and explain how to extend the derivation to all other possi-
ble combinations of OS, OB, Oc ∈ {σ1, σ2, σ3} which fulfill
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dim{a} = 2, cf. Table II, presenting all possible realizations
for Hamiltonian Eq. (6).

We start by applying a transformation T = TS ⊗ 1B, where
TS is chosen such that it diagonalizes HS. The transformed
Hamiltonian H′ = T†HT for a constant and resonant field E
becomes

H′ =

⎛
⎜⎜⎝

ωB B 0 A
B 0 A 0
0 A 0 −B
A 0 −B −ωB

⎞
⎟⎟⎠, (A6)

with A = JωS/ωB and B = 2JE/ωB. The resonance con-
dition for this choice of Hamiltonian implies E (t ) = E =√

ω2
B − ω2

S/2 and, as a consequence, |A|2 + |B|2 = J2. For the

constant resonant field, the time-evolution operator U(t ) can
be calculated analytically,

U(t ) = e−iH′t =

⎛
⎜⎜⎝

u11 u12 u13 u14

u12 u22 u23 u13

u13 u23 u∗
22 u∗

12

u14 u13 u∗
12 u∗

11

⎞
⎟⎟⎠, (A7)

with

u11 = δ+
2

cos(�+) + δ−
2

cos(�−)

− i
1

η+

(
δ+ωB

2
+ |B|2

�

)
sin(�+)

− i
1

η−

(
δ−ωB

2
− |B|2

�

)
sin(�−), (A8a)

u12 = B

�
(cos(�+) − cos(�−))

− i
B

2

(
δ+
η+

sin(�+) + δ−
η−

sin(�−)

)
, (A8b)

u13 = −i
AB

�

(
1

η+
sin(�+) − 1

η−
sin(�−)

)
, (A8c)

u14 = −i
A

2

(
δ+
η+

sin(�+) + δ−
η−

sin(�−)

)
, (A8d)

u22 = δ+
2

cos(�−) + δ−
2

cos(�+)

− i
|B|2
η+�

sin(�+) + i
|B|2
η−�

sin(�−), (A8e)

u23 = −i
A

2

(
δ+
η−

sin(�−) + δ−
η+

sin(�+)

)
, (A8f)

where δ± = 1 ± ωB/�, � =
√

ω2
B + 4|B|2,

η± =
√

J2 + ωB

2
(ωB ± �) (A9)

and �±(t ) = η±t . Note that �±(t ) is the only time-dependent
quantity in Eqs. (A8).

We can approximate Eqs. (A7) and (A8), which are exact,
to derive an expression for the qubit purity:

PS(t ) = tr
{
tr2

B{U(t )ρ(0)U†(t )}}. (A10)

Each element of the time-evolution operator is given by a
sum of trigonometric functions. We thus compare their am-
plitudes to identify the dominating terms. As an illustration,
the approximations will be explicitly shown for the ampli-
tude of the final term of u11 in Eq. (A8a), but the procedure
is equivalent for all other contributions. Using the relation
J =

√
|A|2 + |B|2, we express all variables in terms of A, B,

and ωB. For the final term in Eq. (A8a), this results in

δ− = 1 − ωB

2
√

ω2
B + |B|2

(A11a)

and

η− =
√

|A|2 + |B|2 + ω2
B

2
− ωB

2

√
ω2

B + 4|B|2. (A11b)

Typically, J � ωB. Since |B| � J , this suggests an expansion
of all variables in B,

δ− ≈ 2|B|2
ω2

B

+ O(|B|4), (A12a)

η− ≈ |A| + O(|B|4), (A12b)

� ≈ ωB + 2|B|2
ω2

B

+ O(|B|4). (A12c)

With the approximated variables, we find

i

η−

(
δ−ωB − 2|B|2/�) ≈ O(|B|4), (A13)

i.e., we can neglect the final term in Eq. (A8a). Carrying out
similar approximations for the other amplitudes in Eqs. (A8)
leads to

u11 ≈ cos(�+) − i sin(�+), (A14a)

u12 ≈ 0, (A14b)

u13 ≈ 0, (A14c)

u14 ≈ 0, (A14d)

u22 ≈ cos(�−), (A14e)

u23 ≈ i sin(�−). (A14f)

The corresponding approximated time-evolution operator al-
lows us to obtain a closed-form expression for the time
evolution of the qubit purity PS(t ). To derive it, we addition-
ally assume the initial state of qubit and ancilla to be separable
and the ancilla to be in thermal equilibrium with its bath, cf.
Eq. (7) in the main text. The qubit purity, cf. Eq. (A10), is then
given by

PS(t ) = [
pe

S pe
B|u11|2 + pe

S pg
B|u22|2 + pg

S pe
B|u23|2

]2

+ [
pg

S pg
B|u11|2 + pg

S pe
B|u22|2 + pe

S pg
B|u23|2

]2

+ 2|γS|2|u11|2|u22|2. (A15)

Note that the qubit purity PS(t ) depends only on η−. While
u11 depends on η+, cf. Eq. (A14), it enters PS(t ) as |u11|2 ≈
1 such that the dependence on η+ disappears when inserting
Eq. (A14) and �± = η±t into Eq. (A15). Relabeling η− by η,
we obtain Eq. (8) of the main text.
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For all the other combinations in Table II with dim{a} = 2,
one just has to consider slightly modified forms of the Hamil-
tonian H′

1 = H′ in Eq. (A6), namely,

H′
2 =

⎛
⎜⎜⎝

ωB B 0 −A
−B 0 A 0
0 −A 0 −B
A 0 B −ωB

⎞
⎟⎟⎠, (A16a)

or

H′
3 =

⎛
⎜⎜⎝

ωB 0 0 −A
0 0 −A 0
0 A 0 0
A 0 0 −ωB

⎞
⎟⎟⎠, (A16b)

or

H′
4 =

⎛
⎜⎜⎝

ωB 0 0 A
0 0 −A 0
0 −A 0 0
A 0 0 −ωB

⎞
⎟⎟⎠, (A16c)

with A and B given in Table III. The respective time-evolution
operators are found to be

U2(t ) =

⎛
⎜⎜⎝

u11 u12 u13 −u14

−u12 u22 u23 u13

u13 −u23 u∗
22 −u∗

12

u14 u13 u∗
12 u∗

11

⎞
⎟⎟⎠, (A17a)

or

U3(t ) =

⎛
⎜⎜⎝

u11 0 0 −u14

0 u22 −u23 0
0 u23 u∗

22 0
u14 0 0 u∗

11

⎞
⎟⎟⎠, (A17b)

or

U4(t ) =

⎛
⎜⎜⎝

u11 0 0 u14

0 u22 −u23 0
0 −u23 u∗

22 0
u14 0 0 u∗

11

⎞
⎟⎟⎠, (A17c)

where the ui j refer to those used for U1(t ) = U(t ) in Eqs. (A8)
but need to be evaluated for the proper values of A and B,
as listed in Table III. It is straightforward to check that the
qubit purity PS(t ) for U2(t ), U3(t ), and U4(t ) is also given by
Eq. (A15), with the ui j modified as just described.

To determine the minimum time for purification, Tmin,
we demand ṖS(t ) = 0 and P̈S(t ) < 0. Inserting the ui j from
Eq. (A14) into Eq. (A15), we find

Tmin = π

2η−
≈ π

2|A| , (A18)

where, in the second step, we have used the approximation
of Eq. (A12b). Equation (A18) implies that minimizing the
purification time corresponds to maximizing the amplitude of
the antidiagonal of H′ in Eq. (A6) for the case OS = OB =
Oc = σ1. For the other cases, the formula for the minimal time
Tmin, cf. Eq. (A18), is identical since PS(t ) depends only on
the moduli of the ui j .

Note that Tmin is only determined by η−, cf. Eq. (A12b),
and thus essentially by |A|. The latter should be as large

TABLE III. Summary of the parameters A and B for all inter-
actions Hint = J (OS ⊗ OB) and local controls Hc(t ) = E (t )Oc with
OS, OB, Oc ∈ {σ1, σ2, σ3}. The third column indicates the form (i) of
the Hamiltonian H′

i, cf. Eqs. (A16). The last column states the min-
imal time Tmin, cf. Eq. (A18), for purification of the qubit, evaluated
with the same parameters as in Fig. 2.

OS ⊗ OB Oc Form A B Tmin

σ1 ⊗ σ1 σ1 (1) JωS/ωB 2JE/ωB 46.9
σ1 ⊗ σ1 σ2 (3) −iJ 0 15.7
σ1 ⊗ σ1 σ3 (1) J 0 15.7

σ1 ⊗ σ2 σ1 (2) iJωS/ωB −2iJE/ωB 46.9
σ1 ⊗ σ2 σ2 (4) J 0 15.7
σ1 ⊗ σ2 σ3 (2) iJ 0 15.7

σ1 ⊗ σ3 σ1 – – – –
σ1 ⊗ σ3 σ2 – – – –
σ1 ⊗ σ3 σ3 – – – –

σ2 ⊗ σ1 σ1 (3) iJ 0 15.7
σ2 ⊗ σ1 σ2 (1) JωS/ωB 2JE/ωB 46.9
σ2 ⊗ σ1 σ3 (3) iJ 0 15.7

σ2 ⊗ σ2 σ1 (4) −J 0 15.7
σ2 ⊗ σ2 σ2 (2) iJωS/ωB −2iJE/ωB 46.9
σ2 ⊗ σ2 σ3 (4) −J 0 15.7

σ2 ⊗ σ3 σ1 – – – –
σ2 ⊗ σ3 σ2 – – – –
σ2 ⊗ σ3 σ3 – – – –

σ3 ⊗ σ1 σ1 (1) −2JE/ωB JωS/ωB 16.7
σ3 ⊗ σ1 σ2 (1) −2JE/ωB JωS/ωB 16.7
σ3 ⊗ σ1 σ3 – – – –

σ3 ⊗ σ2 σ1 (2) −2iJE/ωB −iJωS/ωB 16.7
σ3 ⊗ σ2 σ2 (2) −2iJE/ωB −iJωS/ωB 16.7
σ3 ⊗ σ2 σ3 – – – –

σ3 ⊗ σ3 σ1 – – – –
σ3 ⊗ σ3 σ2 – – – –
σ3 ⊗ σ3 σ3 – – – –

as possible for Tmin to be minimal. Given a specific choice
of OS, OB, Oc ∈ {σ1, σ2, σ3}, A and B are determined by the
resonance condition λ1 − λ0 = ωB, with λ0 < λ1 the eigen-
values of the qubit Hamiltonian HS, and cannot be chosen at
will. Rather, there exist certain combinations of qubit-ancilla
interaction and qubit control that maximize |A|. This is sum-
marized in Table III, which also indicates B and the respective
form of the Hamiltonian, H′

i, i = 1, . . . , 4, cf. Eqs. (A6) and
(A16), that generates the dynamics, cf. Eqs. (A7) and (A17).

The fact that, for all choices of qubit-ancilla interaction
and qubit control, only |A| affects the minimal purification
time Tmin readily explains the analytical and numerical results
obtained in Fig. 2 of the main text. Table III also shows that,
while purification is possible with several different interac-
tions Hint = J (OS ⊗ OB), the specific choice of local control
Hc(t ) = E (t )Oc crucially determines the achievable purifica-
tion time for that interaction.

3. Superpositions of Pauli operators in Hint and Hc(t )

Next, as a generalization, we drop the restriction to Pauli
operators (OS, OB, Oc ∈ {σ1, σ2, σ3}) and instead allow for
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operators of the form Hint = J (OS(ϕS, θS) ⊗ OB(ϕB, θB)) and
a local control given by Hc(t ) = E (t )Oc(ϕc, θc) with

Ok (ϕk, θk ) = cos(ϕk ) sin(θk )σ1 + sin(ϕk ) sin(θk )σ2

+ cos(θk )σ3, (A19)

where the angles are chosen as ϕk ∈ [0, 2π ] and θk ∈ [0, π ]
with k ∈ {c, S, B}. Performing the same transformations as
described above, i.e., diagonalizing the qubit Hamiltonian HS,
one arrives at

H′ =

⎛
⎜⎜⎜⎜⎝

ωB − B+
c B+

s e−iϕB A∗
c A∗

s e−iϕB

B+
s eiϕB B+

c A∗
s eiϕB −A∗

c

Ac Ase−iϕB −B−
c B−

s e−iϕB

AseiϕB −Ac B−
s eiϕB −ωB + B−

c

⎞
⎟⎟⎟⎟⎠,

(A20)

where

Ac = Ā cos(θB), (A21a)

As = Ā sin(θB), (A21b)

Ā = J

(
ω+ + ω−

2ωB
sin(θS) cos(ϕc − ϕS)

− 2E cos(θS) sin(θc)

ωB

− i sin(θS) sin(ϕc − ϕS)

)
, (A21c)

B±
c = J

cos(θB)

�+
±

(cos(θS)�−
± − ξω±), (A21d)

B±
s = J

sin(θB)

�+
±

(cos(θS)�−
± + ξω±), (A21e)

ξ = 4E sin(θS) sin(θc) cos(ϕc − ϕS), (A21f)

ω± = 2E cos(θc) + ωS ± ωB, (A21g)

�+
± = 4E2 sin2(θc) + ω2

±, (A21h)

�−
± = 4E2 sin2(θc) − ω2

±. (A21i)

Equation (A20) is a generalization of the Hamiltonians in
Eqs. (A6) and (A16), and Eqs. (A21) generalizes the variables
accordingly. In particular, Ā is related to A, which determines
the minimum reset time for Pauli operators and is listed in
Table III, by A = ĀeiϕB sin(θB).

In the general case, Eq. (A19), it is not obvious how to
obtain an analytical expression for the time-evolution oper-
ator. Nevertheless, generalizing the specific cases presented
in Table III provides some insight: According to Table III,
purification requires OB �= σ3; otherwise the Cartan subalge-
bra is one-dimensional and purity exchange between qubit
and ancilla not possible. We therefore expect that a σ3 com-
ponent in OB will not be helpful for faster purification. To
have no σ3 component in OB, we have to choose θB = π/2.
This implies in particular that the variables Ac and B±

c van-
ish, cf. Eqs. (A21), which eliminates the additional entries
of the generalized Hamiltonian H′ compared to the special
cases in Eqs. (A6) and (A16). Furthermore, this choice of
θB maximizes the magnitude of the antidiagonal, As = Ā. If
we assume that, as before, an optimal purification strategy is

FIG. 4. Behavior of Ā and the numerically obtained inverse pu-
rification time 1/Tmin as the control operator is varied via θc from a
pure σ3 control at θc = 0 to σ1-control at θc = π/2 back to a pure σ3

control at θc = π , but with opposite sign. The other angles are chosen
such that there is a σ3 ⊗ σ1 interaction between qubit and ancilla.

to maximize the magnitude of the antidiagonal, i.e., |Ā|, also
with respect to the other angles, then the angle ϕB cannot be
important, since it does not modify the magnitude of any term
in Eq. (A20), in other words, ϕB is only responsible for a
complex phase. Hence the task of minimizing the purifica-
tion time Tmin in the generalized case reduces to solving a
three-angle problem involving θc, θS, ϕc − ϕS. Based on this
picture, we now conjecture that our result for the case of
the Pauli operators (OS, OB, Oc ∈ {σ1, σ2, σ3})—namely, that
maximal |A|, cf. Table III, yields an optimal solution—holds
true also for generalized interactions and control operators.
This is supported by numerical data, cf. Fig. 4, showing that
maximal 1/Tmin, hence minimal Tmin, concurs with maximal
Ā also for generalized control fields.

Given the importance of Ā, respectively A, the lack of a
physical interpretation of this quantity is dissatisfying. To gain
more insight, we revisit Table III, which reveals maximal A as
a condition for minimal purification time. Beyond that, given
a certain interaction, the purification time is also minimized
if the commutator of the control Hamiltonian, Oc ⊗ 1B, and
the interaction Hamiltonian, Hint = J (OS ⊗ OB), has maxi-
mum norm. The latter information can be compressed into
the quantity C = 1

2
√

2
‖[OS, Oc]‖, which allows for a physical

interpretation: One can show that the norm of the commutator
of Oc and OS sets an upper limit to the energy (or, more
specifically, heat) exchange between the qubit and ancilla:

|Q̇| = tr(ρ̇SHS)

�
√

2J (E‖[OS, Oc]‖ + ωS

2
‖[σ3, OS]‖). (A22)

One may now wonder whether C, relevant for the rate of heat
exchange, is related to Ā, whose maximum is a condition for
minimal purification time.

To check whether maximizing |Ā| corresponds to the same
purification strategy as maximizing C, we evaluate the two
quantities for different interactions and control fields and de-
pict the corresponding values in Fig. 5. The results show that
although the two quantities behave very similarly, they only
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FIG. 5. The figure shows the values of |Ā| (left column) and C
(right column) for different interactions and control fields. These are
determined by θS = π/4 in (a), (b); θS = π/2 in (c), (d); and θS =
3π/2 in (e), (f); and the axes represent the angles θc and ϕc − ϕS. The
solid blue line indicates the maximum value of 1 for the respective
quantity, |Ā| or |C|, while the dashed line depicts the maximum value
for the other quantity (|C| or |Ā|) to ease comparison. Except for
(c) and (d), the lines do not coincide and therefore the limit on the
energy exchange between qubit and ancilla, which is determined by
C, cf. Eq. (A22), does not fully explain the physical role of Ā.

coincide for certain cases, namely, those indicated by the ver-
tical lines in Figs. 5(c) and 5(d). Incidentally, these are exactly
the pure Pauli operator choices for which the global minimum
of the purification time can be realized, cf. Tmin = π/(2J )
corresponding to T (1)

min in the main text and resulting in the
value of 15.7 in Table III. In these cases, both C and |Ā|
are maximal. This underpins our claim of having identified
the globally minimal purification time. On the other hand,
the different behavior of C and |Ā| as a function of the angles
in general indicates that the heat exchange argument made in
Eq. (A22) alone cannot fully explain the significance of Ā.
This requires further investigation, which will be the subject
of future research.

APPENDIX B: MAXIMALLY ACHIEVABLE QUBIT
PURITY EMPLOYING QUDIT ANCILLAS

In this Appendix, we turn toward ancillas with Hilbert
space dimension dB > 2. While we discuss the impact of such
higher dimensional ancillas on the reset time in Sec III, here
we entirely focus on their impact on the maximal achievable
qubit purity, i.e., on the motivation and proof of proposition 1.
To keep the results as general as possible, we do not assume
any specific Hamiltonian for the bipartite system of qubit and
ancilla.

As before, we assume an initially separable state of qubit
and ancilla, ρ = ρS ⊗ ρB, where the ancilla Hilbert space has
dimension dB. We seek to find those unitary transformations
U ∈ SU(2dB) such that the purity of the time-evolved qubit,

ρ ′
S = trB{UρU†} = DρB [ρS], (B1)

is maximized—irrespective of the Hamiltonian and control
fields that generate those unitaries. First, we demand the state
ρ ′ yielding maximal purity to be separable, ρ ′ = ρ ′

S ⊗ ρ ′
B.

Since the ultimate goal is to purify the qubit, which includes
erasing all correlations with the ancilla, it is natural to consider
a separable target state.

Next, we write the initial states of qubit and ancilla in the
respective eigenbases, {|s1〉 , |s2〉} and {|b1〉 , . . . , |bdB〉},

ρS =
2∑

i=1

si |si〉 〈si|, ρB =
dB∑
j=1

b j |b j〉 〈b j |. (B2)

The eigenvalues of ρS and ρB obey 0 � s1, s2 � 1 and 0 �
b1, . . . , bdB � 1 with s1 + s2 = 1 and

∑dB
j=1 b j = 1. Thus, the

joint initial state reads

ρ =
2∑

i=1

dB∑
j=1

λi, j |si〉 〈si| ⊗ |b j〉 〈b j |, λi, j = sib j . (B3)

Since we demand the final state to be separable as well, we
can write, using prime for all transformed quantities,

ρ ′ =
2∑

i=1

dB∑
j=1

λ′
i, j |s′

i〉 〈s′
i| ⊗ |b′

j〉 〈b′
j |. (B4)

Due to the unitary nature of the transformation, the spectra
{λi, j} and {λ′

i, j} of the joint states ρ and ρ ′ are identical.
However, U allows for spectral reordering, which is what ulti-
mately allows purification of the qubit. Due to the separability
of ρ ′, the qubit purity becomes

PS = tr
{
ρ ′2

S

} =
2∑

i=1

s′2
i , s′

i =
dB∑
j=1

λ′
i, j . (B5)

We can interpret the elements of the qubit spectrum after
the reset, {s′

1, s′
2}, as entries of a vector, s′ = (s′

1, s′
2)�. By

means of Karamata’s inequality and using the concept of
majorization, we can construct an operation U that yields
maximal PS.

Definition (majorization). Let a, b ∈ Rd , d ∈ N, and let
a↓, b↓ be reshuffled vectors a, b with their elements sorted in
descending order. The vector a majorizes the vector b, i.e.,
a � b, if

∑d
n=1 an = ∑d

n=1 bn and
∑k

n=1 a↓
n � ∑k

n=1 b↓
n for all

k = 1, . . . , d .
Theorem 3 (Karamata’s inequality). Let I be an interval of

the real line, I ⊂ R, and f : I → R a convex function. If a �
b for a, b ∈ Id , d ∈ N, then

d∑
n=1

f (ai ) �
d∑

n=1

f (bi ).

If f is strictly convex then
∑d

n=1 f (ai ) = ∑d
n=1 f (bi ) iff

a = b.
Taking into account the strict convexity of the function

f (x) = x2, we know that, if s′∗ � s′, then

PS(s′∗) =
∑

i

f (s′∗
i ) �

∑
i

f (s′
i) = PS(s′). (B6)
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FIG. 6. Sketch of the reshuffling operation on the joint qubit ancilla spectrum that maximizes the qubit purity.

Thus, for maximal qubit purification, we have to find a
vector s′∗ that majorizes all other vectors accessible via
spectral reshuffling from {λi, j} to {λ′

i, j}. With the con-
straint s′∗

1 + s′∗
2 = 1 for a qubit, majorization of s′∗ im-

plies, without loss of generality, maximization of s′∗
1 =∑dB

j=1 λ′
1, j , cf. Eqs. (B5). Hence, the unitary transforma-

tion U ∈ SU(2dB) needs to reshuffle the 2dB elements from
the initial set {λ1,1, . . . , λ1,dB , λ2,1, . . . , λ2,dB}, which can be
in any order, such that the first half of the reordered set
{λ′

1,1, . . . , λ
′
1,dB

, λ′
2,1, . . . , λ

′
2,dB

} contains the dB largest eigen-
values and the second half the remaining ones. The reshuffling
is sketched in Fig. 6. Karamata’s inequality then guarantees
that this gives the largest achievable qubit purity.

A possible choice for U is given by the per-
mutation matrix that transforms the vector λ =
(λ1,1, . . . , λ1,dB , λ2,1, . . . , λ2,dB )� into the vector λ′ =
(λ′

1,1, . . . , λ
′
1,dB

, λ′
2,1, . . . , λ

′
2,dB

)�. Note that U is not unique
since, for instance, any local operation on either the qubit or
the ancilla leaves the qubit purity invariant.

The protocol described so far can easily be generalized to
arbitrary qudit-qudit systems. One only needs to ensure that
the unitary U reshuffles all elements from {λi, j} such that
the vector s′∗ = (s′∗

1 , s′∗
2 , . . . )� majorizes all other accessible

vectors.
The above results have an interesting implication. Let us

assume that at least half (rounded up) of the initial eigenvalues
{b1, . . . , bdB} of ρB are zero. As a consequence, at least half
of the eigenvalues {λi, j} of the initial qubit-ancilla state will
be zero. Assuming full unitary controllability, these eigen-
values can be reshuffled such that the first half, namely λ′

1, j
with j = 1, . . . , dB, contains all nonzero eigenvalues whereas
the other half, λ′

2, j with j = 1, . . . , dB, contains only zeros.
Equations (B5) then imply s′

1 = 1 and s′
2 = 0, i.e., we obtain a

pure state PS = 1—independently of the initial qubit state ρS

and despite the fact that ρB is mixed. For ancillas with Hilbert

space dimension larger than two, it is therefore possible to
purify the qubit beyond a simple swap of purities.

We can generalize our observation to arbitrary Hilbert
space dimensions of system and ancilla. The following propo-
sition reveals the relation between Hilbert space dimensions
and achievable purity.

Proposition. Let HS and HB be Hilbert spaces with di-
mension dS and dB, respectively, and LHS and LHB their
corresponding Liouville spaces. Let ρB ∈ LHB be a den-
sity matrix with at least �dB(dS − 1)/dS eigenvalues below
ε/[2dB(dS − 1)] with small ε > 0, where �· denotes the ceil-
ing function. Then, for all density matrices ρS ∈ LHS , there
exists a U ∈ SU(dSdB) such that

1 − tr
{
ρ ′2

S

}
� ε, ρ ′

S = trB{U(ρS ⊗ ρB)U†}, (B7)

i.e., the purity of ρ ′
S gets ε-close to unity.

Proof. Let {λi, j} and {λ′
i, j} be the spectra of the states

ρ = ρS ⊗ ρB and ρ ′ = UρU† = ρ ′
S ⊗ ρ ′

B, defined in the same
way as in Eqs. (B3) and (B4). Since U is unitary, these
spectra are identical up to reshuffling. The purity of ρ ′

S reads
PS = tr{ρ ′2

S } = ∑dS
i=1 s′2

i with s′
i = ∑dB

j=1 λ′
i, j . Exploiting unit

trace,
∑dS

i=1 s′
i = 1, we can rewrite the purity as PS = 1 +

2
∑dS

i=2 s′
i(s

′
i − 1), from which we deduce that

1 − PS � ε ⇔
dS∑

i=2

s′
i(s

′
i − 1) � ε

2
. (B8)

Since s′
i ∈ [0, 1], i = 1, . . . , dS, one option to ensure the latter

inequality is

dS∑
i=2

s′
i �

ε

2
, (B9)
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since
∑dS

i=2 s′
i(s

′
i − 1) � ∑dS

i=2 s′
i. We now assume that n < dB

eigenvalues of ρB are below some small δ > 0. Thus, we
know that dSn eigenvalues in {λi, j} will be below δ. If dSn �
dB(dS − 1), which implies n � dB(dS − 1)/dS, then we can
reshuffle {λi, j} into {λ′

i, j} in such a way that all elements λ′
i, j �

δ for i = 2, . . . , dS and j = 1, . . . , dB. Hence, we find s′
i =∑dB

j=1 λ′
i, j � δdB, i = 2, . . . , dS. Plugging this into Eq. (B9),

we obtain

dS∑
i=2

s′
i � (dS − 1)dBδ � ε

2
. (B10)

This can be guaranteed if δ � ε/[2dB(dS − 1)] and the propo-
sition follows. �
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