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Abstract: Mobile genetic elements (MGEs), especially multidrug-resistance plasmids, are major 

vehicles for the dissemination of antimicrobial resistance determinants. Herein, we analyse the 

MGEs in three extensively drug-resistant (XDR) Klebsiella pneumoniae isolates from Germany. Whole 

genome sequencing (WGS) is performed using Illumina and MinION platforms followed by core-

genome multi-locus sequence typing (MLST). The plasmid content is analysed by conjugation, S1-

pulsed-field gel electrophoresis (S1-PFGE) and Southern blot experiments. The K. pneumoniae 

isolates belong to the international high-risk clone ST147 and form a cluster of closely related 

isolates. They harbour the blaOXA-181 carbapenemase on a ColKP3 plasmid, and 12 antibiotic resistance 

determinants on an multidrug-resistant (MDR) IncR plasmid with a recombinogenic nature and 

encoding a large number of insertion elements. The IncR plasmids within the three isolates share a 

high degree of homology, but present also genetic variations, such as inversion or deletion of genetic 

regions in close proximity to MGEs. In addition, six plasmids not harbouring any antibiotic 

resistance determinants are present in each isolate. Our study indicates that genetic variations can 

be observed within a cluster of closely related isolates, due to the dynamic nature of MGEs. The 

mobilome of the K. pneumoniae isolates combined with the emergence of the XDR ST147 high-risk 

clone have the potential to become a major challenge for global healthcare. 
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1. Introduction 

The evolution and spread of antibiotic-resistant pathogens has emerged as one of the most 

important public health problems worldwide over the last decades (https://www.who.int/en/news-

room/fact-sheets/detail/antibiotic-resistance). In bacterial genomes, capture, accumulation and 

dissemination of antibiotic resistance determinants are often associated with mobile genetic elements 

(MGEs) like plasmids, transposons and insertion sequences (ISs) [1]. Plasmids are often assemblies 

of different MGE modules and are the most efficient intra- and interspecies DNA transfer mechanism 

among prokaryotes [2]. This is well exemplified by the global spread of the KPC carbapenemase 

involving the incompatibility group FIIk (IncFIIk) plasmids in Klebsiella pneumoniae [3]. Moreover, 

blaNDM-1 in K. pneumoniae has been mainly associated with broad host range IncA/C2, IncHI1, IncX3 

and IncN2 plasmids [4]. In Acinetobacter baumannii, the transposon Tn125, harbouring the insertion 

element ISAba125, is considered as the main vehicle for the dissemination of NDM-1 enzymes [5,6]. 

K. pneumoniae, belonging to the Enterobacterales family, is a natural inhabitant of the 

gastrointestinal tract of humans and animals. Nevertheless, it is also encountered as a nosocomial 

pathogen causing various infections such as pneumonia, urinary tract infection and bloodstream 

infection [4]. Of concern is the rapid expansion of carbapenem-resistant K. pneumoniae, mainly 

associated with those carbapenemases which are endemic in certain countries, such as KPC-positive 

K. pneumoniae in Greece and Italy [7,8]. OXA-48-like is the most common carbapenemase in 

Enterobacterales in some regions of the world including Germany. Other frequently encountered 

carbapenemases in Germany include VIM-1 and NDM-1 [9,10]. The successful propagation of OXA-

48-positive Enterobacterales is reinforced by the global distribution of certain high-risk clones (e.g., 

K. pneumoniae sequence type (ST) 307 or Escherichia coli ST38) as also its association with MGEs, e.g., 

OXA-48 linked with different Tn1999 variants on highly transferable IncL plasmids [10,11]. The 

expansion of high-risk K. pneumoniae clones with a multidrug-resistant (MDR) or extensive drug-

resistant (XDR) phenotype has been observed in recent years [4]. K. pneumoniae ST147 has been 

reported as an emerging high-risk clone associated with plasmid-encoded extended-spectrum β-

lactamases (ESBLs) like blaCTX-M-15, or carbapenemases such as blaOXA-48 and blaNDM-1 [4,12–17]. 

In the present study, we characterise the content and genetic structure of MGEs and the clonal 

relatedness of three OXA-181-producing K. pneumoniae ST147 clinical isolates recovered in Germany. 

2. Results and Discussion 

Dissemination of antibiotic resistance is driven by clonal expansion or horizontal gene transfer, 

including mainly MGEs [1,2]. In the present study, all three isolates colonising haematology/oncology 

patients were identified as K. pneumoniae ST147 and were the only representatives of this ST among 

40 in total collected K. pneumoniae isolates. The three isolates were also characterised by their capsular 

type KL64 (wzi allele 64). MDR K. pneumoniae ST147 isolates represent a successful clone with a global 

spread and these isolates are often armed with carbapenemases and ESBLs [15,18]. The German 

National Reference Centre for Multidrug-Resistant Gram-negative Bacteria and the Robert Koch 

Institute reported, between 2008 and 2014, 13 carbapenemase-producing ST147 K. pneumoniae isolates 

in Germany. In particular, 9/42 OXA-48-, 3/34 KPC-2- and 1/5 NDM-1-producing isolates were 

assigned to ST147 [19]. 

In the present study, the isolates HKP0018, HKP0064 and HKP0067 were analysed by whole 

genome sequencing (WGS) and harboured on the chromosome a gene encoding the intrinsic SHV-

11, as well as oqxAB and fosA genes, belonging to the core genome of the KpI–III phylogroups [20]. 

The plasmid-encoded resistome of the investigated isolates, summarised in Table 1, was identical and 

included beta-lactam, aminoglycoside, fluoroquinolone, tetracycline and other antimicrobial 

resistance determinants. Antimicrobial susceptibility testing showed that all three K. pneumoniae 

isolates exhibited an XDR phenotype; resistant to ampicillin, aztreonam, ceftazidime, 
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chloramphenicol, ciprofloxacin, gentamicin, imipenem, meropenem, minocycline, tetracycline, 

ticarcillin, tigecycline, and trimethoprim and susceptible only to amikacin and colistin (Table 2). MDR 

and XDR K. pneumoniae isolates involved in nosocomial outbreaks have been widely reported 

[4,21,22]. Between June and October 2109, an outbreak of XDR K. pneumoniae producing NDM-1 and 

OXA-48 was reported in four medical facilities in Mecklenburg-Western Pomerania, Germany [23]. 

Molecular characterisation using core genome multi-locus sequence typing (cgMLST) analysis 

revealed that the three investigated isolates were closely related and formed a cluster with 0–1 allelic 

differences (data not shown). One could speculate that the closely related isolates were likely 

transmitted within the hospital. All three patients had been hospitalised in the same department 

(Table 3) and two of the patients had an overlapping hospitalisation at the same ward (C5A). 

However, a direct connection to HKP0018 could not be established within the study.  

Table 1. Plasmid encoded antimicrobial resistance determinants, plasmid content and plasmid size 

of the isolates. 

Plasmid Replicon Size (bp) 
Antimicrobial Resistance 

Determinants 

Isolate No. 

HKP0018 HKP0064 HKP0067 

pHKP0018.1 ColKP3 6103 blaOXA-181 + + + 

pHKP0018.2 IncR 66,330 

blaCTX-M-15b, blaOXA-1, blaTEM-1B, 

aac(6’)Ib-cr, aac(3)-IIa, strA, 

strB, qnrS1, sul1, dfrA1, 

tet(A), catB3-like 

+ - - 

pHKP0064.2 IncR 70,762 

blaCTX-M-15b, blaOXA-1, blaTEM-1B, 

aac(6’)Ib-cr, aac(3)-IIa, strA, 

strB, qnrS1, sul1, dfrA1, 

tet(A), catB3-like 

- + + 

pHKP0018.3 IncFIB 113,014 - + + + 

pHKP0018.4 NTa 57,450  - + + + 

pHKP0018.5 Col-like 8428  - + + + 

pHKP0018.6 Col-like 5499  - + + + 

pHKP0018.7 NTa 2044  - + + + 

pHKP0018.8 Col-like 1459  - + + + 
a NT, not typeable; b gene present in two copies.  



Antibiotics 2020, 9, 675 4 of 13 

Table 2. Antimicrobial susceptibility of the three K. pneumoniae isolates. 

Antimicrobial Agent 
MIC (mg/L) 

Susceptibilitya 
HKP0018 HKP0064 HKP0067 

Amikacin 8 8 8 S 

Ampicillin >128 >128 >128 R 

Aztreonam >128 >128 >128 R 

Ceftazidime 128 128 128 R 

Chloramphenicol 32 32 32 R 

Ciprofloxacin 128 128 128 R 

Colistinb 1 2 1 S 

Gentamicin 128 128 128 R 

Imipenem 8 8 8 R 

Levofloxacin 64 64 64 R 

Meropenem 32 32 32 R 

Minocyclinec 64 64 64 R 

Rifampicind 64 64 64 - 

Tetracyclinec 128 128 128 R 

Ticarcillin >128 >128 >128 R 

Tigecyclineb 2 2 2 R 

Trimethoprim 128 128 128 R 

a R, resistant; S, susceptible; b tested by broth microdilution method; c only CLSI breakpoint available; 
d no breakpoint available 

Table 3. K. pneumoniae clinical isolates information. 

Isolate Date of Isolation Source Department Ward ST 

HKP0018 16.02.2015 Rectal swab Haematology/Oncology C5A 147 

HKP0064 08.05.2015 Throat swab Haematology/Oncology 1G 147 

HKP0067 19.05.2015 Rectal swab Haematology/Oncology C5A 147 

 

Phylogenetic analysis of 30 ST147 K. pneumoniae isolates from different countries showed several 

branches (Figure 1). The isolates HKP0018, HKP0064 and HKP0067 were on the same branch with 

ST147 isolates from different countries, such as Switzerland, USA, United Kingdom and Singapore, 

illustrating the worldwide spread of this clone. In addition, the three investigated isolates clustered 

together with 7 ST147 K. pneumoniae isolates recovered between 2013 and 2014 in Göttingen, 

Germany. The latter MDR isolates harboured the carbapenemase OXA-48 on a 63.6 kb IncL plasmid 

[15]. The close genetic relatedness observed between the German isolates suggests that an OXA-48-

like producing ST147 clone is circulating in the country. 
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Figure 1. Phylogenetic analysis of HKP0018, HKP0064, HKP0067 and 30 ST147 K. pneumoniae isolates. 

Phylogenetic maximum-likelihood tree was generated using the FigTree v1.4.3 software of the SNP 

analysis performed using the kSNP3 tool (Galaxy version 3.1) software at the ARIES Galaxy server 

(https://aries.iss.it/). 

In the present study, plasmid analysis revealed eight closed plasmids for each individual K. 

pneumoniae isolate. 

OXA-48-like is the most prevalent carbapenem-hydrolysing β-lactamase in Enterobacterales 

isolates from Germany [9,24]. MDR K. pneumoniae ST147 encoding OXA-48 on a conjugative IncL 

plasmid have been recently reported in Germany [15]. In the present study, all three investigated 

isolates harboured OXA-181 on an identical 6103 bp ColKP3 plasmid, pHKP0018.1. This plasmid also 

encoded the mobilisation genes mobA, mobB, mobC and mobD, and, upstream of blaOXA-181 gene, 170 bp 

of a disrupted ISEcp1 was present. A blastn analysis to compare pHKP0018.1 to sequences available 

in the GenBank database revealed high similarities mainly with three groups of plasmids, of which 

Carbapenemase OXA-232_ColKP3 (Acc. No CP050165), pKP3-A (Acc. No JN205800) and 

p50595_OXA_181 (Acc. No CP050375) were chosen as exemplars for a more detailed comparison. The 

first one, with a size of 6141 bp, showed an identity of 99.98% to our plasmid, has a longer fragment 

of the interrupted ISEcp1 (208 bp) and carries the blaOXA-232 gene, a blaOXA-181 variant from which it 

differs by a single nucleotide, leading to the Arg214-Ser amino acid substitution, and from which it 

probably originated (Figure 2) [25]. Plasmid pKP3-A, obtained from a clinical K. pneumoniae isolate 

in 2010, is a ColKP3 plasmid carrying blaOXA-181, proved to be mobilisable but not self-transmissible. It 

showed 99.95% similarity when compared to pHKP0018.1, from which it differs by the presence of 

the complete ISEcp1 element. In this plasmid, the carbapenemase gene was described as part of the 

Tn2013 transposon, made up by the 3139 bp module ISEcp1-blaOXA-181-ΔlysR-ΔereA [26]. In plasmid 

pHKP0018.1 this transposon was disrupted, with only the two right inverted repeats (IRR1 and IRR2) 

and the 3′ target site duplication (ATATA) still identifiable (Figure 2) [26]. Lastly, p50595_OXA_181 

plasmid depicts the group of X3-ColKP3 plasmids of approximately 51 kb in size, which held 50% of 

the pHKP0018.1 plasmid, with an identity of 100%. This portion contained the interrupted Tn2013 
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(ΔISEcp1-blaOXA-181-ΔlysR-ΔereA) and an almost complete repA gene of ColKP3, inserted between the 

two insertion sequences IS3000 and ISKpn19 (Figure 2). The sequence comparative analysis also 

showed that blaOXA-181 seems to be almost uniquely located on X3-ColKP3 plasmids, frequently 

harboured by E. coli isolates, while its variant blaOXA-232 is primarily located on ColKP3 plasmids 

harboured predominantly by K. pneumoniae. Nevertheless, both variants are distributed on a global 

scale, including not only clinical isolates but also animal and environmental ones. Indeed, OXA-181 

and OXA-232 represent, respectively, the second and third most common and widespread OXA-48-

like enzyme and both are described as part of the Tn2013 transposon, which, together with its 

localisation on plasmids like ColE-type, IncX3, IncN1 and IncT, is responsible for their dissemination 

[10]. 

 

Figure 2. Graphical representation of blaOXA-181/blaOXA-232-carrying plasmids sequence comparison. 

Starting from the inner ring: GC content of pKP3-A plasmid sequenced (here used as reference), blaOXA-

181-positive pKP3-A plasmid sequence (JN205800), pKP3-A CDSs, blaOXA-181-positive pHKP0018.1 

plasmid sequence (CP061063.1), pHKP0018.1 CDSs, blaOXA-232-positive Carbapenemase (OXA-

232)_ColKP3 plasmid sequence (CP050165), blaOXA-181-positive p47733_OXA_181 plasmid sequence 

(CP050368), blaOXA-181-positive p50595_OXA_181 plasmid sequence (CP050375). CDS’s arrows indicate 

their transcription direction. Hypothetical proteins are not displayed. The figure was generated with 

BRIG v0.95. 

S1-PFGE, Southern blot and WGS analysis revealed that all three isolates harboured an IncR 

plasmid, pHKP0018.2, pHKP0064.2 and pHKP0067.2, presenting only the repB gene and lacking the 

repE and repA genes and encoding the same antibiotic resistance determinants (Figure 3). The MDR 

region included a mosaic structure of 12 antibiotic resistance genes, including β-lactamases blaCTX-M-15 

(present in two copies on each IncR plasmid), blaOXA-1, blaTEM-1B, aminoglycoside modifying enzymes 

aac(6’)Ib-cr, aac(3)-IIa, strA, strB, as well as the resistance determinants qnrS1, sul1, dfrA1, tet(A) and 

catB3-like (Table 1). The MDR region was highly recombinogenic and encoded several copies of 

different ISs (n = 9). Furthermore, pHKP0018.2, pHKP0064.2 and pHKP0067.2 encoded a higB/higA 

toxin-antitoxin (TA) module and parA/parB partitioning genes, contributing to plasmid stabilisation 

and inheritance. As many others previously described, containing only the repB gene alone, the IncR 

plasmid of this study did not harbour known conjugative loci, and consequently attempts to transfer 

by conjugation IncR and to mobilise the ColKP3-OXA-181 into E. coli J53 were not successful. The 
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IncR plasmids showed high sequence homology to IncR plasmids pKp_Goe_304-4 (Acc. No 

CP018724.1), pKp_Goe_021-4 (Acc. No CP018718.1), pKp_Goe_024-4 (Acc. No CP018705.1), and 

CP017989.1 of a ST147 K. pneumoniae isolate collected in Germany in 2014, and to the IncR plasmid 

pSg1-NDM (Acc. No CP011839.1) identified in a ST147 K. pneumoniae isolate from Singapore [18]. 

Sequence analysis revealed that pHKP0064.2 and pHKP0067.2 were identical and 70,762 bp in 

size. Nevertheless, comparative analysis revealed a rearrangement of a composite transposon flanked 

by two inverted copies of IS26 and containing catB3-like, aac(6’)Ib-cr and blaOXA-1 genes. This 3826 bp 

region was inserted in the same position in the two IncR plasmids but in opposite orientation. 

Similarly, another reshuffling of a 13,957 bp region was observed for pHKP0064.2 and pHKP0067.2. 

This genomic region was flanked by two copies of ISEcp1 in inverse orientation and harboured a 

truncated transposase, Tn3 resolvase, blaTEM-1B, qnrS1, recombinase, ISKpn19, umuC, HAMP-domain 

and IS26 (Figure 3). In the isolate HKP0018 an IncR plasmid, pHKP0018.2, with a size of 66,330 bp 

was identified. The plasmids pHKP0064.2 and pHKP0067.2 shared a high degree of sequence 

homology with pHKP0018.2, apart from a 4432 bp region which was missing from the latter plasmid. 

The missing region was part of the 13,957 bp genomic region involved in the rearrangement in 

pHKP0064.2 and pHKP0067.2. This subregion was comprised of genes encoding for the error-prone 

DNA polymerase V subunit (umuC) and a sensor histidine kinase (HAMP-domain) followed by the 

MGE ISKpn19 (Figure 3). These results indicate that within a group of clonal isolates, diversity can 

still be observed. Genetic variation within clonal bacterial groups caused by homologous 

recombination has been described in E. coli [27]. While genetic rearrangement, such as inversion or 

duplication, caused by MGEs have been confirmed by diverse studies [28–30]. 

 

Figure 3. Major structural features of the IncR plasmids, pHKP0018.2 (a), pHKP0064.2 (b) and 

pHKP0067.2 (c), identified in K. pneumoniae isolates HKP0018, HKP0064 and HKP0067, respectively. 

Arrows indicate the deduced open reading frames (ORFs) and their orientations. Hypothetical 

proteins are not shown. The figure was generated with EasyFig 2.1 [31]. 
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An identical 113,014 bp IncFIB-like plasmid, pHKP0018.3, was identified in the K. pneumoniae 

isolates and did not encode any known antibiotic resistance determinants (Figure S1). However, this 

plasmid harboured a tellurite/colicin resistance determinant, phage-related genes, and was lacking 

known conjugative transfer genes. Furthermore, the plasmid harboured two members of the IS3 

family, ISKpn1 and IS2. The IncFIB-like plasmid showed high homology (coverage 97%, identity 

100%) to pSG1.1 (Acc. No CP012427.1) from an NDM-1 positive ST147 K. pneumoniae isolate from 

Singapore and also with other ST147 IncFIB plasmids (Acc. No CP021940.1, CP021945.1 and 

CP014756.1), indicating that this plasmid might be intrinsic to this ST [18]. 

Southern blot and WGS revealed that the ST147 isolates carried also an identical 54,750 bp 

plasmid, pHKP0018.4 (Figure S2). The plasmid showed similarity (coverage 78%, identity 99%) to K. 

pneumoniae ST147 plasmids recovered from Singapore, pSg1-3 (Acc. No CP012429) [18]. pHKP0018.4 

exhibited also similarity (coverage 62%, identity 83%) to phiKO2 of a Klebsiella oxytoca isolate which 

was described as a prophage able to replicate as linear plasmids with covalently closed ends [32]. 

Small plasmids, often present in high copy numbers, can serve as an important reservoir for 

antibiotic resistance determinants, such as small ColE plasmid derivatives encoding qnrS1 in 

Salmonella enterica [33–35]. In the present study, apart from the ColKP3 blaOXA-181-encoding plasmid, 

the ST147 K. pneumoniae isolates harboured in addition four identical small plasmids, which varied 

in size from 1.4 kb to 8.4 kb and did not encode known antimicrobial resistance determinants. An 

identical 8428 bp plasmid, pHKP0018.5, was identified in the three isolates. The plasmid carried two 

Col-like replication initiation proteins and showed similarity to pKpvST147B_4 (Acc. No CP040727.1, 

coverage 56%, identity 100%) from a ST147 K. pneumoniae isolate recovered at a hospital in south-east 

England (Figure S3). Another plasmid, 5499 bp in size and identical for the investigated ST147 isolates 

(pHKP0018.6), was detected and typed as a Col-like plasmid (Figure S4).  

Moreover, a 2044 bp plasmid identical for the three K. pneumoniae plasmids, pHKP0018.7, was 

detected and encoded two hypothetical proteins, with no conserved domains. This plasmid could not 

be assigned to a replicon type and was identical (coverage 100%, identity 100%) to plasmids p4_1_2.4 

(Acc. No CP023843.1) and pDA33140-2 (Acc. No CP029584.1) both from ST147 K. pneumoniae isolates 

recovered in Sweden (plasmid map not shown). Finally, an identical 1459 bp plasmid, pHKP0018.8, 

replicon typed as Col-like and bearing a hypothetical protein was identified. The Col-like plasmid 

was identical (coverage 100%, identity 100%) to plasmids found in E. coli, such as pEC881_8 (Acc. No 

CP019021.1) and pEC648_7 (Acc. No CP008721.1), which can be a result of interspecies plasmid 

transfer (plasmid map not shown). 

3. Materials and Methods  

3.1. Bacterial Isolates and Transformants 

The isolates HKP0018, HKP0064 and HKP0067 were recovered in 2015 from throat and rectal 

swabs of three patients on admission to a university hospital in northern Germany (Table 3). The 

isolates were collected as part of the CONTAIN multicentre cohort study of the German Centre for 

Infection Research (DZIF) on the efficiency of infection control measures to prevent the transmission 

of ESBL producing Enterobacterales in haematology/oncology units [36]. The selection of the three 

isolates for further investigation was based on their clonal relatedness, ST, and acquired resistome. 

The surveillance swabs were plated on selective media (chromID® ESBL; bioMérieux, Nürtingen, 

Germany) and incubated for 18–24 h. The species identification was performed with MALDI-TOF 

mass spectrometry. Additionally, plasmid DNA was extracted from the isolate HKP0018 with the 

PureYield Plasmid Midiprep System (Promega, Madison, WI, USA) and then used to transform One 

Shot MAX Efficiency DH5α-T1R Competent Cells (Thermo Fisher Scientific, Waltham MA, USA). 

Selection of transformants was performed using ampicillin (40 mg/L) and tetracycline (30 mg/L) and 

was confirmed by PCR (Supplementary data). 
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3.2. Antimicrobial Susceptibility Testing 

MICs for ampicillin, tetracycline, trimethoprim, gentamicin (Sigma–Aldrich, Steinheim, 

Germany), amikacin, aztreonam, imipenem, meropenem, minocycline, rifampicin, (Molekula, 

Newcastle-upon-Tyne, UK), levofloxacin (Sanofi Aventis, Frankfurt, Germany), ciprofloxacin (Bayer 

Pharma AG, Berlin, Germany) and ticarcillin (Carl Roth GmbH, Karlsruhe, Germany) were 

determined using the agar dilution method [37]. MICs for colistin and tigecycline were determined 

by broth microdilution method (Merlin Diagnostika GmbH, Bornheim, Germany). E. coli ATCC 

25922, Pseudomonas aeruginosa ATCC 27853, and Staphylococcus aureus ATCC 25923 were used as 

quality control strains. MICs were interpreted using the resistance breakpoints for Enterobacterales 

from EUCAST (Version 10.0, January 2020, http://www.eucast.org/clinical_breakpoints/) and CLSI 

(https://clsi.org/standards/products/microbiology/documents/m100/). 

3.3. S1-Pulsed-Field Gel Electrophoresis (S1-PFGE) and Southern Blot Hybridisation 

Plasmid linearisation by S1 nuclease followed by PFGE was used to determine the size and total 

number of plasmids. Bacterial DNA embedded in agarose plugs was digested using 50 Units S1 

nuclease (Thermo Fisher Scientific, Waltham, MA, USA) per plug slice and incubated according to 

the manufacturer’s instructions. Samples were run on a CHEF-DR II system (Bio-Rad, Munich, 

Germany) for 17 h at 6 V/cm and 14 °C while initial and final pulses were conducted at 4 and 16 s, 

respectively. The Lambda PFG Ladder and λ DNA-Mono Cut Mix (New England Biolabs, Frankfurt, 

Germany) were used as markers. The approximate plasmid size was calculated using Image LabTM 

software (Bio-Rad, Munich, Germany). 

Southern blot hybridisation was performed to determine the plasmid/chromosomal gene 

location by hybridisation with digoxigenin (DIG)-labelled probes (Roche, Mannheim, Germany). For 

the IncR replicon and strA of pHKP0018.2 and for the terminase pHKP0018.4 specific probes were 

used respectively (Table S1). Signal detection was performed according to the manufacturer’s 

instructions using CDP-Star ready-to-use (Roche, Mannheim, Germany) chemiluminescent 

substrate by autoradiography on a X-ray film (GE Healthcare, Buckinghamshire, United Kingdom). 

Chromosomal location was shown by colocalisation with a rpoB probe. 

3.4. Whole Genome Sequencing (WGS) and Bioinformatics 

Total DNA from the bacterial isolates and transformants was extracted using the MagAttract 

HMW DNA Kit (Qiagen, Hilden, Germany) and plasmid DNA was extracted using PureYield 

Plasmid Midiprep System according to manufacturer’s instructions and used for short-read 

sequencing. Sequencing libraries were prepared using a Nextera XT library prep kit (Illumina GmbH, 

Munich, Germany) for a 250 bp paired-end sequencing run on an Illumina MiSeq platform. The 

obtained reads were de novo assembled with the Velvet assembler integrated in the Ridom 

SeqSphere+ v. 7.2.1 software, and SPAdes 3.11 [38]. Finally, where necessary, overlapping assembly 

contigs and predicted gaps were filled and confirmed by PCR-based gap closure as described 

previously [39]. 

DNA extraction for long-read sequencing was performed using the Genomic-Tips 100/G kit and 

Genomic DNA Buffers kit (Qiagen, Hilden, Germany) according to the manufacturer’s instructions. 

Libraries were prepared using the 1D Ligation Sequencing Kit (SQK-LSK108) in combination with 

Native Barcoding Kit (EXP-NBD103) and Rapid Barcoding Kit (SQK-RBK004) in accordance with the 

manufacturer’s instructions (Oxford Nanopore Technologies, Oxford, United Kingdom) and were 

loaded onto a R9.4 flow cell (Oxford Nanopore Technologies, Oxford, United Kingdom). The run was 

performed on a MinION MK1b device (Oxford Nanopore Technologies, Oxford, United Kingdom). 

Collection of raw electronic signal data and live base-calling was performed using the MinKNOW 

software and Albacore (Oxford Nanopore Technologies, Oxford, United Kingdom). De novo assembly 

of the MinION long-reads was performed using Canu [40]. The Illumina short-reads were assembled 

with the MinION long-reads using hybridSPAdes and Unicycler [41,42]. Additionally, 

plasmidSPAdes was implemented to identify plasmid sequences [43]. 
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The assembled genomes generated in this project have been deposited in the NCBI under the 

BioProject ID PRJNA660340 (BioSample accessions: HKP0018, SAMN15946735; HKP00164, 

SAMN15946736; HKP0067, SAMN15946737). 

3.5. Molecular Epidemiology, Resistome, Mobilome and Genome Annotation 

The Pasteur multi-locus sequence typing (MLST) scheme was used to assign the ST 

(https://bigsdb.pasteur.fr/index.html). The molecular epidemiology was investigated with a 

validated cgMLST scheme, including 2358 target alleles, using the Ridom SeqSphere+ v. 7.2.1 

software [44]. Capsular type (KL-type) were assigned using Kaptive Web [45]. The resistome and 

plasmidome were analysed using ResFinder v.3.2.0 (https://cge.cbs.dtu.dk/services/ResFinder/) and 

PlasmidFinder v.2.0.1 [46,47]. Genome sequences were annotated using the RAST server 

(http://rast.nmpdr.org/) and partially manually edited. Plasmids were graphically depicted using 

SnapGene (http://www.snapgene.com/).  

3.6. Conjugation Experiments 

Broth mate conjugation experiments were performed using the sodium azide-resistant E. coli J53 

as recipient. Selection of transconjugants was performed using sodium azide (200 mg/L) and 

ampicillin (40 mg/L), or tetracycline (30 mg/L). Transconjugants were tested by PCR for the presence 

of the blaOXA-181 and tet(A) genes, while their susceptibility to meropenem (10 μg) and tetracycline (30 

μg) was tested using the disk diffusion method, according to EUCAST recommendations (Version 

10.0, January 2020, http://www.eucast.org/clinical_breakpoints/). 

4. Conlusions 

In conclusion, the present study describes a complex variety of plasmids within three clonal 

ST147 K. pneumoniae isolates recovered from haematology/oncology patients hospitalised in the same 

German hospital. The ST147 K. pneumoniae isolates harboured the blaOXA-181 carbapenemase gene on a 

small ColKP3 plasmid, but also a complex array of 12 antibiotic resistance determinants on an MDR 

IncR plasmid, severely limiting treatment options. The recombinogenic nature of the MDR IncR 

plasmid encoding a large number of ISs can serve as genome plasticity mediators. The IncR plasmids 

of the studied isolates differed overall in a 4 kb region which could be attributed to an IS transposition 

event, as also in the opposite orientation of two composite transposons (3.8 kb and 13 kb). These 

results indicate that within a cluster of closely related isolates, variation can be observed due to the 

dynamic nature of MGEs. The abundant mobilome and resistome of the K. pneumoniae isolates 

combined with the emergence of ST147 as an international high-risk clone has the potential to become 

a major challenge for the healthcare setting and requires special attention and vigilance. 
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