Tilings in randomly perturbed graphs: Bridging the gap between Hajnal-Szemerédi and Johansson-Kahn-Vu

Jie Han ${ }^{1} \mid$ Patrick Morris ${ }^{2} \mid$ Andrew Treglown ${ }^{3}$

${ }^{1}$ Department of Mathematics, University of Rhode Island, Kingston, RI, USA
${ }^{2}$ Department of Mathematics and Computer Science, Freie Universität Berlin, Berlin, Germany
${ }^{3}$ School of Mathematics, University of Birmingham, Birmingham, United Kingdom

Correspondence

Patrick Morris, Freie Universität Berlin, Berlin, Germany.
Email: pm0041@mi.fu-berlin.de

Funding information

This research was supported by the Leverhulme Trust Study Abroad Studentship, Grant/Award Number: SAS-2017-052\9 (P.M.); Engineering and Physical Sciences Research Council (EPSRC), Grant/Award Number: EP/M016641/1 (A.T.).

Abstract

A perfect K_{r}-tiling in a graph G is a collection of vertex-disjoint copies of K_{r} that together cover all the vertices in G. In this paper we consider perfect K_{r}-tilings in the setting of randomly perturbed graphs; a model introduced by Bohman, Frieze, and Martin [7] where one starts with a dense graph and then adds m random edges to it. Specifically, given any fixed $0<\alpha<1-1 / r$ we determine how many random edges one must add to an n-vertex graph G of minimum degree $\delta(G) \geq \alpha n$ to ensure that, asymptotically almost surely, the resulting graph contains a perfect K_{r}-tiling. As one increases α we demonstrate that the number of random edges required "jumps" at regular intervals, and within these intervals our result is best-possible. This work therefore closes the gap between the seminal work of Johansson, Kahn and Vu [25] (which resolves the purely random case, that is, $\alpha=0$) and that of Hajnal and Szemerédi [18] (which demonstrates that for $\alpha \geq 1-1 / r$ the initial graph already houses the desired perfect K_{r}-tiling).

KEYWORDS

clique tilings, random graphs, randomly perturbed structures

[^0]
1 | INTRODUCTION

A significant facet of both extremal graph theory and random graph theory is the study of embeddings. In the setting of random graphs, one is interested in the threshold for the property that $G(n, p)$ asymptotically almost surely (a.a.s.) contains a fixed (spanning) subgraph F. Meanwhile, a classical line of inquiry in extremal graph theory is to determine the minimum degree threshold that ensures a graph G contains a fixed (spanning) subgraph F. A much studied problem in both the extremal and random settings concerns the case when F is a so-called perfect H-tiling. In this paper we bridge the gap between the random and extremal models for the problem of perfect clique tilings.

1.1 | Perfect tilings in graphs

Given two graphs H and G, an H-tiling in G is a collection of vertex-disjoint copies of H in G. An H-tiling is called perfect if it covers all the vertices of G. Perfect H-tilings are also referred to as H-factors, H-matchings or perfect H-packings. Note that a perfect H-tiling is a generalization of the notion of a perfect matching; indeed, perfect matchings correspond to the case when H is a single edge.

One of the cornerstone results in extremal graph theory is the Hajnal-Szemerédi theorem [18] which determines the minimum degree threshold that ensures a graph contains a perfect K_{r}-tiling.

Theorem 1.1 (Hajnal and Szemerédi [18]). Every graph G whose order n is divisible by r and whose minimum degree satisfies $\delta(G) \geq(1-1 / r) n$ contains a perfect K_{r}-tiling. Moreover, there is an n-vertex graph G with $\delta(G)=(1-1 / r) n-1$ that does not contain a perfect K_{r}-tiling.

Earlier, Corrádi and Hajnal [10] proved Theorem 1.1 in the case when $r=3$. See [28] for a short proof of Theorem 1.1.

Since the proof of Theorem 1.1 there have been many generalizations obtained in several directions. For example, Kühn and Osthus [38] characterized, up to an additive constant, the minimum degree which ensures that a graph G contains a perfect H-tiling for an arbitrary graph H. Keevash and Mycroft [27] proved an analogue of the Hajnal-Szemerédi theorem in the setting of r-partite graphs, whilst there are now several generalizations of Theorem 1.1 in the setting of directed graphs (see e.g., $[11,12,48]$). See [37] for a survey including many of the results on graph tiling. There has also been significant interest in tiling problems in hypergraphs; the survey of Zhao [49] describes many of the results in the area.

1.2 | Perfect tilings in random graphs

Recall that the random graph $G(n, p)$ consists of vertex set $[n]:=\{1, \ldots, n\}$ where each edge is present with probability p, independently of all other choices. In the early 1990s, the problem of determining the threshold for the property that $G(n, p)$ contains a perfect H-tiling attracted the attention of Erdős (see the appendix of [1]). Indeed, as well as raising the general problem, Erdős particularly focused on the case when $H=K_{3}$ stating that "the correct answer will be probably about $n^{4 / 3}$ edges," though cautioned that "the lack of analogs to Tutte's theorem may cause serious trouble." This caution turned out to be well-founded as for a number of years even the case of triangles remained quite stubborn, despite some partial results towards it [29,33]. However, in 2008, spectacular work of Johannson, Kahn and Vu [25] not only resolved the problem for perfect K_{3}-tilings, but the general problem of perfect H-tilings for all so-called strictly balanced graphs H. Below we state their result only in the case of perfect clique tilings.

Theorem 1.2 (Johansson, Kahn and $\mathrm{Vu}[25])$. Let $n \in \mathbb{N}$ be divisible by $r \in \mathbb{N}$ where $r \geq 3$.

- If $p=\omega\left(n^{-2 / r}(\log n)^{2 /\left(r^{2}-r\right)}\right)$ then a.a.s. $G(n, p)$ contains a perfect K_{r}-tiling.
- If $p=o\left(n^{-2 / r}(\log n)^{2 /\left(r^{2}-r\right)}\right)$ then a.a.s. $G(n, p)$ does not contain a perfect K_{r}-tiling.

1.3 | The model of randomly perturbed graphs

Bohman, Frieze and Martin [7] introduced a model which provides a connection between the extremal and random graph settings. In their model one starts with a dense graph and then adds m random edges to it. A natural problem in this setting is to determine how many random edges are required to ensure that the resulting graph a.a.s. contains a given graph F as a spanning subgraph. For example, the main result in [7] states that for every $\alpha>0$, there is a $c=c(\alpha)$ such that if we start with an arbitrary n-vertex graph G of minimum degree $\delta(G) \geq \alpha n$ and add $c n$ random edges to it, then a.a.s. the resulting graph is Hamiltonian. This result characterizes how many random edges we require for every fixed $\alpha>0$. Indeed, if $\alpha \geq 1 / 2$ then Dirac's theorem implies that we do not require any random edges; that is any n-vertex graph G of minimum degree $\delta(G) \geq \alpha n$ is already Hamiltonian. On the other hand, if $0<\alpha<1 / 2$ then the following example implies that we indeed require a linear number of random edges: Let G^{\prime} be the complete bipartite graph with vertex classes of size $\alpha n,(1-\alpha) n$. It is easy to see that if one adds fewer than $(1-2 \alpha) n$ (random) edges to G^{\prime}, the resulting graph is not Hamiltonian.

In recent years, a range of results have been obtained concerning embedding spanning subgraphs into a randomly perturbed graph, as well as other properties of the model; see, for example, $[2,3,5,6,8,9,13,14,26,30,35,36]$. The model has also been investigated in the setting of directed graphs and hypergraphs (see e.g., $[4,23,34,41]$). Much of this work has focused on the range where the minimum degree of the deterministic graph is linear but with respect to some arbitrarily small constant α. In this range, one thinks of the deterministic graph as "helping" $G(n, p)$ to get a certain spanning structure and the observed phenomenon is usually a decrease in the probability threshold of a logarithmic factor, as is the case for Hamiltonicity as above. Recently, there has been interest in the other extreme, where one starts with a minimum degree slightly less than the extremal minimum degree threshold for a certain spanning structure and requires a small "sprinkling" of random edges to guarantee the existence of the spanning structure in the resulting graph, see for example, [14,45].

Balogh, Treglown, and Wagner [3] considered the perfect H-tiling problem in the setting of randomly perturbed graphs. Indeed, for every fixed graph H they determined how many random edges one must add to a graph G of linear minimum degree to ensure that a.a.s. $G \cup G(n, p)$ contains a perfect H-tiling. Again we only state their result in the case of perfect clique tilings.

Theorem 1.3 (Balogh, Treglown, and Wagner [3]). Let $r \geq 2$. For every $\alpha>0$, there is a $C=C(\alpha, r)>$ 0 such that if $p \geq C n^{-2 / r}$ and $\left(G_{n}\right)_{n \in r \mathbb{N}}$ is a sequence of graphs with $\left|G_{n}\right|=n$ and minimum degree $\delta\left(G_{n}\right) \geq \alpha n$ then a.a.s. $G_{n} \cup G(n, p)$ contains a perfect K_{r}-tiling.

Theorem 1.3, unlike Theorem 1.2, does not involve a logarithmic term. Thus comparing the randomly perturbed model with the random graph model, we see that starting with a graph of linear minimum degree instead of the empty graph saves a logarithmic factor in terms of how many random edges one needs to ensure the resulting graph a.a.s. contains a perfect K_{r}-tiling. Furthermore, Theorem 1.3 is best-possible in the sense that given any $0<\alpha<1 / r$, there is a constant $c=c(\alpha, r)>0$ and sequence of graphs $\left(G_{n}\right)_{n \in r \mathbb{N}}$ where G_{n} is an n-vertex graph with minimum degree at least αn so that a.a.s. $G_{n} \cup G(n, p)$ does not contain a perfect K_{r}-tiling when $p \leq c n^{-2 / r}$ (see Section 2.1 in [3]). However, as suggested in [3], this still leaves open the question of how many random edges one requires if $\alpha>1 / r$.

In this paper we give a sharp answer to this question. Before we can state our result we introduce some notation.

Definition 1.4. [Perturbed perfect tiling threshold] Given some $0 \leq \alpha \leq 1$, and a graph H of order h, the perturbed perfect tiling threshold $p(H, \alpha)$ satisfies the following.
(i) If $p=p(n)=\omega(p(H, \alpha))$, then for any sequence $\left(G_{n}\right)_{n \in h \mathbb{N}}$ of n-vertex graphs with $\delta\left(G_{n}\right) \geq \alpha n$, the graph $G_{n} \cup G(n, p)$ a.a.s. contains a perfect H-tiling.
(ii) If $p=p(n)=o(p(H, \alpha))$, for some sequence $\left(G_{n}\right)_{n \in h \mathbb{N}}$ of n-vertex graphs with $\delta\left(G_{n}\right) \geq \alpha n$, the graph $G_{n} \cup G(n, p)$ a.a.s. does not contain a perfect H-tiling.
If it is the case that every sufficiently large n-vertex graph of minimum degree at least αn contains a perfect H-tiling we define $p(H, \alpha):=0$. We say the threshold $p(H, \alpha)$ is sharp if there are constants $C(H, \alpha), D(H, \alpha)>0$ such that (i) remains valid with $p \geq C p(H, \alpha)$ and (ii) is satisfied for any $p \leq$ Dp(H, α).

Thus, Theorem 1.1 implies that $p\left(K_{r}, \alpha\right)=0$ for all $\alpha \geq 1-1 / r$ whilst Theorem 1.2 precisely states that $p\left(K_{r}, 0\right)=n^{-2 / r}(\log n)^{2 /\left(r^{2}-r\right)}$ (actually Theorem 2.3 in [25] and Theorem 3.22(ii) in [24] imply this threshold is sharp). Our main result deals with the intermediate cases (i.e., when $0<\alpha<1-1 / r$).

Theorem 1.5. Let $2 \leq k \leq r$ be integers. Then given any $1-\frac{k}{r}<\alpha<1-\frac{k-1}{r}$,

$$
p\left(K_{r}, \alpha\right)=n^{-2 / k} .
$$

Moreover, the threshold $p\left(K_{r}, \alpha\right)$ is sharp.
Thus, Theorem 1.5 provides a bridge between the Hajnal-Szemerédi theorem and the Johansson-Kahn-Vu theorem. Notice that the value of $p\left(K_{r}, \alpha\right)$ demonstrates a "jumping" phenomenon; given a fixed k the value of $p\left(K_{r}, \alpha\right)$ is the same for all $\alpha \in((r-k) / r,(r-k+1) / r)$, however if α is just above this interval the value of $p\left(K_{r}, \alpha\right)$ is significantly smaller.

Note in the case when $k=r$, Theorem 1.5 is implied by the results from [3]; whilst finalizing the paper we learned of a very recent result [45] concerning powers of Hamilton cycles in randomly perturbed graphs which implies the case when $k=2$ and r is even. To help provide some intuition for Theorem 1.5 , note that $n^{-2 / k}$ is the threshold for the property that $G(n, p)$ contains a copy of K_{k} in every linear sized subset of vertices; this property will be exploited throughout the proof. Our proof uses the absorption method, and in particular the novel "absorption reservoir method" introduced by Montgomery [42,43], where we use a robust sparse bipartite graph, which we call a template, in order to build an absorbing structure in our graph. We also use "reachability" arguments, introduced by Lo and Markstöm [40], in order to build absorbing structures. We use various probabilistic techniques throughout, such as multi-round exposure, and we appeal to Szemerédi's regularity lemma in order to obtain an "almost tiling."

The paper is organized as follows. In the next section we introduce some fundamental tools that will be applied in the proof of Theorem 1.5. Section 3 then contains the construction that provides the lower bound on $p\left(K_{r}, \alpha\right)$ in Theorem 1.5. In Section 4 we give an overview of our proof for the upper bound on $p\left(K_{r}, \alpha\right)$ in Theorem 1.5, which is given in Section 7 after developing the necessary theory in Section 5 and Section 6. Finally some open problems are raised in the concluding remarks section (Section 8).

Additional note: Since the paper was first submitted there have been some related results proven. Indeed, Knierim and Su [30], expanding on work of Nenadov and Pehova [44], considered the so-called Ramsey-Turán problem for clique tilings. They showed that for any $\alpha>1-\frac{2}{r}$, there exists an $\eta>0$ such that if G^{\prime} is a graph with $\delta\left(G^{\prime}\right) \geq \alpha n$ and independence number less than ηn, then G^{\prime} contains a perfect K_{r}-tiling. This implies Theorem 1.5 for $k=2$ and all r as if G has minimum degree αn with α as above and $p=\omega\left(n^{-1}\right)$ then $G(n, p)$ (and hence $G^{\prime}=G \cup G(n, p)$) has sublinear independence number. In a different direction, Antoniuk, Dudek, Reiher, Ruciński, and Schacht [2] explored the appearance
of powers of Hamilton cycles in randomly perturbed graphs, building on the work of Nenadov and Trujić [45]. As the k th power of a Hamilton cycle is a supergraph of a perfect K_{k+1}-tiling, their work gives bounds for the existence of clique tilings. They focus solely on G with minimum degree αn where $\alpha=j /(j+1)+\varepsilon$ for some $j \in \mathbb{N}, j \geq 1$ and they obtain tight results in certain cases. The only range where their implied results on clique tilings is tight with regards to the threshold obtained and the minimum degree condition is the case when $k=2$ and r is even in Theorem 1.5, already implied by [45] and [30] as mentioned above.

2 | NOTATION AND PRELIMINARIES

We use standard graph theory notation throughout. In particular we use $|G|$ to denote the number of vertices of a graph G. Sometimes we will also write v_{G} and e_{G} to denote the number of vertices and edges in G respectively. We write $N_{G}(v)$ to denote the neighborhood of a vertex $v \in G$. For a subset of vertices $V^{\prime} \subseteq V=V(G), G\left[V^{\prime}\right]$ denotes the graph induced by G on V^{\prime} and we use the shorthand $G \backslash V^{\prime}$ to denote $G\left[V \backslash V^{\prime}\right]$. If $V^{\prime}=\{x\}$ we simply write $G \backslash x$. Furthermore, for disjoint subsets of vertices $V^{\prime}, V^{\prime \prime} \subseteq V, G\left[V^{\prime}, V^{\prime \prime}\right]$ denotes the bipartite graph induced by G on $V^{\prime} \cup V^{\prime \prime}$ by considering only the edges of G with one endpoint in V^{\prime} and the other endpoint in $V^{\prime \prime}$. If G^{\prime} is a graph on the same vertex set as G we write $G \cup G^{\prime}$ to denote the graph on vertex set $V(G)$ with edge set $E(G) \cup E\left(G^{\prime}\right)$. We write $G-E\left(G^{\prime}\right)$ to be the graph obtained from G by deleting any edges that also lie in G^{\prime}. One key exception to the use of standard notation is our use of \bar{H}, to denote the complement of H with respect to a graph which is not complete, see Definition 6.2.

We write $K_{m_{1}, m_{2}, \ldots, m_{r}}^{r}$ to denote the complete r-partite graph with parts of size m_{1}, \ldots, m_{r}. For a graph J on r vertices $\left\{v_{1}, \ldots, v_{r}\right\}$ and $m_{1}, \ldots, m_{r} \in \mathbb{N}$, we define the blow-up of J to be the graph $J_{m_{1}, \ldots, m_{r}}$ with vertex set $P_{1} \sqcup P_{2} \sqcup \ldots \sqcup P_{r}$, such that $\left|P_{i}\right|=m_{i}$ and for all $i, j \in[r]$ and $w \in P_{i}, w^{\prime} \in P_{j}$ we have $w w^{\prime} \in E\left(J_{m_{1}, \ldots, m_{r}}\right)$ if and only if $v_{i} v_{j} \in E(J)$. Given a set A and $k \in \mathbb{N}$ we denote by A^{k} the set of all ordered k-tuples of elements from A, while $\binom{A}{k}$ denotes the set of all (unordered) k-element subsets of A. At times we have statements such as the following: "Choose constants $0 \ll c_{1} \ll c_{2} \ll \ldots \ll c_{k}$ ". This should be taken to mean that one can choose constants from right to left so that all the subsequent constraints are satisfied. That is, there exist increasing functions f_{i} for $i \in[k]$ such that whenever $c_{i} \leq f_{i+1}\left(c_{i+1}\right)$ for all $i \in[k-1]$, all constraints on these constants that are in the proof, are satisfied. Finally, we omit the use of floors and ceilings unless it is necessary, so as not to clutter the arguments.

Throughout, we will deal exclusively with ordered embeddings of graphs, which we also refer to as labeled embeddings. Thus when we refer to an embedding of H in G, we implicitly fix an ordering on $V(H)$, say $V(H):=\left\{h_{1}, \ldots, h_{\nu_{H}}\right\}$ and say that there is an embedding of H onto an (ordered) vertex set $\left\{v_{1}, \ldots, v_{v_{H}}\right\} \subseteq V(G)$ if $v_{i} v_{j} \in E(G)$ for all i and j such that $h_{i} h_{j} \in E(H)$.

In what follows, we introduce the tools that we will use in our proofs. Most of these are well known and so are stated without proof. One exception is Lemma 2.8, which is tailored to our purposes and slightly technical (but follows from well-known techniques nonetheless).

2.1 | A deterministic tiling result

Let $\chi_{c r}(H):=(\chi(H)-1) \frac{|H|}{|H|-\sigma(H)}$ where $\sigma(H)$ is the smallest size of a color class over all colorings of H with $\chi(H)$ colors. The following result of Komlós [31] is a crucial tool in the proof of Theorem 1.5. It determines the minimum degree threshold for the property of containing an "almost" perfect H-tiling.

Theorem 2.1. For every graph H and every $\alpha>0$, there exists n_{0} such that if G is a graph on $n \geq n_{0}$ vertices with $\delta(G) \geq\left(1-\frac{1}{\chi_{c r}(H)}\right) n$, then G contains an H-tiling which covers all but at most αn vertices of G.

This was later improved to a constant number of uncovered vertices by Shokoufandeh and Zhao [46], but Komlós' result suffices for our purposes. We will apply Komlós' theorem to find an almost perfect H-tiling in a reduced graph R of our (deterministic) graph G from Theorem 1.5; here H will be a carefully chosen auxiliary graph (not $K_{r}!$). We discuss this further in the proof overview section.

2.2 | Regularity

We will use the famous regularity lemma due to Szemerédi [47]. The lemma and its consequences appeared in the form we give here, in a survey of Komlós and Simonovits [32], which we also recommend for further details on the subject. First we introduce some necessary terminology. Let G be a bipartite graph with bipartition $\{A, B\}$. For nonempty sets $X \subseteq A, Y \subseteq B$, we define the density of $G[X, Y]$ to be $d_{G}(X, Y):=e(G[X, Y]) /(|X \| Y|)$. We say that G is ϵ-regular for some $\varepsilon>0$ if for all sets $X \subseteq A$ and $Y \subseteq B$ with $|X| \geq \epsilon|A|$ and $|Y| \geq \epsilon|B|$ we have

$$
\left|d_{G}(A, B)-d_{G}(X, Y)\right|<\epsilon .
$$

It is also common, when the underlying graph G is clear, to refer to (A, B) as an ε-regular pair.
We will use the following two well-known results in our proof. The so-called slicing lemma shows that regularity is hereditary, with slightly weaker parameters.

Lemma 2.2 (Slicing lemma [32, Fact 1.5]). Let G be ε-regular on parts $\{A, B\}$ with density d and let $\alpha>\varepsilon$. Let $A^{\prime} \subseteq A$ and $B^{\prime} \subseteq B$ with $\left|A^{\prime}\right| \geq \alpha|A|$ and $\left|B^{\prime}\right| \geq \alpha|B|$. Then $G\left[A^{\prime}, B^{\prime}\right]$ is $(2 \varepsilon / \alpha)$-regular with density at least $d-\varepsilon$.

The next lemma is an extremely useful tool, extending the control on the edge count in regular pairs to be able to count the number of embeddings of small subgraphs.

Lemma 2.3 (Counting lemma [32, Theorem 2.1]). Given $d>\varepsilon>0, m \in \mathbb{N}$ and H some fixed graph on r vertices, let G be a graph obtained by replacing every vertex x_{i} of H with an independent set V_{i} of size m and every edge of H with an ε-regular pair of density at least d on the corresponding sets. If $\varepsilon \leq \frac{d^{r}}{(2+r) 2^{r}}=: d_{0}$, then there are at least $\left(d_{0} m\right)^{r}$ embeddings of H in G so that each x_{i} is embedded into the set V_{i}.

We now turn to the regularity lemma, which tells us that there is a way to partition any large enough graph in such a way that the graph induces ε-regular pairs on almost all of the pairs of parts in this partition. Actually, we apply a variant of the lemma which ensures that, ignoring a small number of edges and a small exceptional set of vertices, all such pairs are ε-regular.

Lemma 2.4 (Degree form of the regularity lemma [32, Theorem 1.10]). Let $0<\varepsilon<1$ and $m_{0} \in \mathbb{N}$. Then there is an $N=N\left(\epsilon, m_{0}\right)$ such that the following holds for every $0 \leq d<1$ and for every graph G on $n \geq N$ vertices. There exists a partition $\left\{V_{0}, V_{1}, \ldots, V_{m}\right\}$ of $V(G)$ and a spanning subgraph G^{\prime} of G satisfying the following:

1. $m_{0} \leq m \leq N$;
2. $\left|V_{0}\right| \leq \epsilon n$ and $\left|V_{1}\right|=\cdots=\left|V_{m}\right|=: n^{\prime} \leq \epsilon n$;
3. for each $v \in V(G), d_{G^{\prime}}(v)>d_{G}(v)-(d+\varepsilon) n$;
4. for all pairs V_{i}, V_{j}, where $1 \leq i<j \leq k$, the graph $G^{\prime}\left[V_{i}, V_{j}\right]$ is ε-regular and has density either 0 or greater than d.

The sets V_{1}, \ldots, V_{m} are called clusters, V_{0} the exceptional set and the vertices in V_{0} are exceptional vertices.

The degree condition (3.) in Lemma 2.4 guarantees that the majority of the edges of G lie in G^{\prime}. To make this more transparent it is useful to focus on the dense ε-regular pairs and define the following auxiliary graph. The (ϵ, d)-reduced graph R is as follows: The vertex set of R is the set of clusters $\left\{V_{i}: i \in[m]\right\}$ and for each $U, U^{\prime} \in V(R), U U^{\prime}$ is an edge of R if the subgraph $G^{\prime}\left[U, U^{\prime}\right]$ is ϵ-regular and has density greater than d. The following then follows easily from Lemma 2.4.

Corollary 2.5. Suppose that $0<\varepsilon \leq d \leq c$ are constants. Let G be a graph on n vertices and $\delta(G) \geq$ cn. Suppose that G has a partition $\mathcal{P}=\left\{V_{0}, V_{1}, \ldots, V_{m}\right\}$ and a subgraph $G^{\prime} \subseteq G$ as given by Lemma 2.4 and corresponding (ϵ, d)-reduced graph R. Then $\delta(R) \geq(c-d-2 \epsilon) m$.

2.3 | Supersaturation

The following phenomenon was first noticed by Erdős and Simonovits in their seminal paper [15]. It states that if there are many copies of a given small subgraph in some host graph, then we can also find many copies of a blow-up in the host graph. It can be proven easily, for example, by induction.

Lemma 2.6. Let $r, m_{1}, m_{2}, \ldots, m_{r} \in \mathbb{N}$, let J be some graph on r vertices $\left\{v_{1}, \ldots, v_{r}\right\}$ and $c>0$. Then there exists $c^{\prime}=c^{\prime}\left(r, m_{1}, m_{2}, \ldots, m_{r}, c\right)>0$ such that the following holds. Suppose G is a graph on n vertices with n sufficiently large such that there are subsets $V_{1}, \ldots, V_{r} \subset V(G)$ and G contains at least cn labeled copies of J with $v_{i} \in V_{i}$ for $i=1, \ldots, r$. Then G contains at least $c^{\prime} n^{m_{1}+\ldots+m_{r}}$ labeled copies of $J_{m_{1}, m_{2}, \ldots, m_{r}}$ with parts P_{1}, \ldots, P_{r} such that $P_{i} \subset V_{i}$ and $\left|P_{i}\right|=m_{i}$.

2.4 | Subgraph counts in random graphs

We first recall Janson's inequality (see e.g., [24, Theorem 2.14]). Let Γ be a finite set and let Γ_{p} be a random subset of Γ such that each element of Γ is included independently with probability p. Let S be a family of nonempty subsets of Γ and for each $S \in S$, let I_{S} be the indicator random variable for the event $S \subseteq \Gamma_{p}$. Thus each I_{S} is a Bernoulli random variable $\operatorname{Be}\left(p^{|S|}\right)$. Let $X:=\sum_{S \in S} I_{S}$ and $\lambda:=\mathbb{E}(X)$. Let $\Delta_{X}:=\sum_{S \cap T \neq \emptyset} \mathbb{E}\left(I_{S} I_{T}\right)$, where the sum is over not necessarily distinct ordered pairs $S, T \in S$. Then Janson's inequality states that for any $0 \leq t \leq \lambda$,

$$
\begin{equation*}
\mathbb{P}(X \leq \lambda-t) \leq \exp \left(-\frac{t^{2}}{2 \Delta_{X}}\right) \tag{2.1}
\end{equation*}
$$

Consider the random graph $G(n, p)$ on an n-vertex set V. Note that we can view $G(n, p)$ as Γ_{p} with $\Gamma:=\binom{V}{2}$. Following [24], for a fixed graph F, we define $\Phi_{F}=\Phi_{F}(n, p):=\min \left\{n^{v_{H}} p^{e_{H}}: H \subseteq\right.$ $\left.F, e_{H}>0\right\}$. This parameter helps to simplify calculations of Δ_{X} in the context of counting the number of embeddings of the graph F in $G(n, p)$. We will also be interested in the appearance of graphs in
$G(n, p)$ where we require some subset of vertices to be already fixed in place. Therefore, for a graph F, and some independent ${ }^{1}$ subset of vertices $W \subset V(F)$, we define

$$
\Phi_{F, W}=\Phi_{F, W}(n, p):=\min \left\{n^{v_{H}-v_{H[W]}} p^{e_{H}}: H \subseteq F, e_{H}>0\right\}
$$

Note that $\Phi_{F}=\Phi_{F, \emptyset}$ and $\Phi_{F, W} \geq \Phi_{F, W}$ for any F and independent set $W \subset V(F)$. If $W=\{w\}$ for a single vertex $w \in V(F)$, we drop the brackets and simply write $\Phi_{F, w}$ and $\Phi_{F \checkmark w}$. Let us collect some more simple observations concerning Φ_{F} and $\Phi_{F, W}$ which will be useful later.

Lemma 2.7. The following hold:

1. Let $C>1$ be some constant, $k \in \mathbb{N} \backslash\{1\}$ and $p=p(n) \geq C n^{-\frac{2}{k}}$. Let $k^{\prime} \leq k$ and $F_{1}:=K_{k^{\prime}}$, then we have that $\Phi_{F_{1}} \geq C n$.
2. As above, let $C>1$ be some constant, $k \in \mathbb{N} \backslash\{1\}$ and $p=p(n) \geq C n^{-\frac{2}{k}}$. Suppose now that $3 \leq k^{\prime} \leq k$ and let $F_{2}:=K_{k^{\prime}}^{-}$be the complete graph on k^{\prime} vertices with one edge missing and let $w \in V\left(F_{2}\right)$ be one of the endpoints of the missing edge. Then $\Phi_{F_{2}} \geq C n$ and $\Phi_{F_{2}, w} \geq$ $\min \left\{C n^{1-\frac{2}{k}}, C n^{\frac{2}{k}}\right\} \geq C n^{\frac{1}{k}}$.
3. Let F_{3}, F_{4} be graphs with vertex subsets $W_{3} \subset V\left(F_{3}\right), W_{4} \subset V\left(F_{4}\right)$, let $\Phi_{3}:=\Phi_{F_{3}, W_{3}}$ and $\Phi_{4}:=$ $\Phi_{F_{4}, W_{4}}$ and suppose that $\Phi_{3}, \Phi_{4} \geq 1$. Let F_{5} be the graph formed by the union of F_{3} and F_{4} meeting in exactly one vertex $x \in\left(V\left(F_{3}\right) \backslash W_{3}\right) \cap\left(V\left(F_{4}\right) \backslash W_{4}\right)$, and let F_{6} be the graph obtained by taking a disjoint union of F_{3} and F_{4}. Then letting $W_{5}:=W_{3} \sqcup W_{4}$, we have that $\Phi_{F_{5}, W_{5}} \geq$ $\min \left\{\Phi_{3}, \Phi_{4}, \Phi_{3} \Phi_{4} n^{-1}\right\}$ and $\Phi_{F_{6}, W_{5}}=\min \left\{\Phi_{3}, \Phi_{4}\right\}$.

Proof. For parts 1 and 2, it suffices to consider the case $k^{\prime}=k$. For part 1 , we have a simple calculation. Let H be a subgraph of K_{k} with v_{H} vertices and e_{H} edges. As $v_{H} \leq k$, we obtain

$$
n^{v_{H}} p^{e_{H}} \geq n^{v_{H}}\left(C n^{-\frac{2}{k}}\right)^{\frac{\left.v_{H} v_{H}-1\right)}{2}} \geq \text { Cn }^{v_{H}-\left(v_{H}-1\right)}=C n .
$$

For part 2 first note that as $F_{2} \subseteq K_{k}=F_{1}$ we have that $\Phi_{F_{2}} \geq \Phi_{F_{1}} \geq C n$. Let H be a subgraph of K_{k}^{-}. If $w \notin H$, the calculation from part 1 gives that $n^{v_{H}} p^{e_{H}} \geq C n$. So suppose $w \in H$. Now let us distinguish two cases, depending on whether the vertex u is in H, where u is the vertex in K_{k}^{-}such that $u w$ is a nonedge. If $u \in H$, we have that

$$
n^{v_{H}-1} p^{e_{H}} \geq n^{v_{H}-1} C n^{-\frac{2}{k}\left(\frac{v_{H}\left(v_{H}-1\right)}{2}-1\right)} \geq C n^{v_{H}-1-\left(v_{H}-1-\frac{2}{k}\right)} \geq C n^{\frac{2}{k}}
$$

again using that $v_{H} \leq k$. Likewise, if $u \notin H$, we have that

$$
n^{v_{H}-1} p^{e_{H}} \geq n^{v_{H}-1} p^{\binom{v_{H}}{2}} \geq C n^{\left(v_{H}-1\right)\left(1-\frac{v_{H}}{k}\right)} \geq C n^{1-\frac{2}{k}},
$$

where the last inequality follows as $\left(v_{H}-1\right)\left(1-\frac{v_{H}}{k}\right)$ is minimized in the range $2 \leq v_{H} \leq k-1$ at $v_{H}=2$ and $v_{H}=k-1$. This shows that $\Phi_{F_{2}, w}$ is bounded as desired.

Part 3 also follows from the definition. Indeed, note that one subgraph H of F_{6} that is a minimizer of the term in the definition of $\Phi_{F_{6}, W_{5}}$ must be a subgraph of F_{3} or a subgraph of F_{4}. This ensures $\Phi_{F_{6}, W_{5}}=\min \left\{\Phi_{3}, \Phi_{4}\right\}$. Similarly, one subgraph H of F_{5} that is a minimizer of the term in the definition

[^1]of $\Phi_{F_{5}, W_{5}}$ must be a subgraph of F_{3}, a subgraph of F_{4}, or a subgraph of F_{5} that contains x. This ensures $\Phi_{F_{5}, W_{5}} \geq \min \left\{\Phi_{3}, \Phi_{4}, \Phi_{3} \Phi_{4} n^{-1}\right\}$.

We now apply Janson's inequality in order to give a general result about embedding constant sized graphs into $G(n, p)$. The following lemma provides the basis for a greedy process in which we find some larger (linear size) graph in $G(n, p)$. We will require that the embedding of our larger graph has certain vertices already prescribed and repeated applications of Lemma 2.8 will then allow us to embed the remaining vertices of the graph in a greedy manner. So it is crucial that we can apply the lemma to any subset of s (remaining) indices while avoiding any small enough set of (previously used) vertices from being used.

For future applications, we state and prove the following lemma in the context of r-uniform hypergraphs (r-graphs), and the definition of Φ_{F} extends naturally to r-graphs F and $G^{(r)}(n, p)$. Recall that $G^{(r)}(n, p)$ is an r-graph on n vertices where each r-tuple of vertices forms an edge with probability p, independent of all other r-tuples.

Lemma 2.8. Let $n, t(n), s(n) \in \mathbb{N}, 0<\beta<1 / 2$ and $L, v, w, e, r \in \mathbb{N}$ such that $r \geq 2, L t, s w \leq \frac{\beta n}{4 v}$ and $\binom{t}{s} \leq 2^{n}$. Let F_{1}, \ldots, F_{t} be labeled r-graphs with distinguished vertex subsets $W_{i} \subset V\left(F_{i}\right)$ such that $\left|W_{i}\right| \leq w,\left|V\left(F_{i} \backslash W_{i}\right)\right|=v, e\left(F_{i}\right)=e$ and $e\left(F_{i}\left[W_{i}\right]\right)=0$ for all $i \in[t]$. Now let V be an n-vertex set and let $U_{1}, \ldots, U_{t} \subset V$ be labeled vertex subsets with $\left|U_{i}\right|=\left|W_{i}\right|$ for all $i \in[t]$. Finally, suppose there are families $\mathcal{F}_{1}, \ldots, \mathcal{F}_{t} \subset\binom{v}{v}$ of labeled vertex sets such that for each $i \in[t],\left|\mathcal{F}_{i}\right| \geq \beta n^{v}$.

Now suppose that $1 \leq s(n) \leq t(n)$ and $p=p(n)$ are such that

$$
\begin{equation*}
s \cdot \Phi \geq\left(\frac{2^{v+7} v!}{\beta^{2}}\right) \min \{L t \log n, n\} \text { and } \Phi^{\prime} \geq\left(\frac{2^{v+7} v!}{\beta^{2}}\right) n \tag{2.2}
\end{equation*}
$$

where $\Phi:=\min \left\{\Phi_{F_{i}, W_{i}}: i \in[t]\right\}$ and $\Phi^{\prime}:=\min \left\{\Phi_{F_{i}, W_{i}}: i \in[t]\right\}$ with respect to $p=p(n)$. Then, a.a.s., for any $V^{\prime} \subseteq V$, with $\left|V^{\prime}\right| \geq n-L t$ and any subset $S \subseteq[t]$ such that $|S|=s$ and $U_{i} \cap U_{j}=\emptyset$ for $i \neq j \in[s]$, there exists some $i \in S$ such that there is an embedding (which respects labeling) of F_{i} in $G^{(r)}(n, p)$ on V which maps W_{i} to U_{i} and $V\left(F_{i}\right) \backslash W_{i}$ to a labeled set in \mathcal{F}_{i} which lies in V^{\prime}.

Note by "labeled" here we mean that for all j, the j th vertex in W_{i} is mapped to the j th vertex in U_{i}; moreover the j th vertex in $V\left(F_{i}\right) \backslash W_{i}$ is mapped to the j th vertex in some labeled set from \mathcal{F}_{i}.

Proof. Let us fix $S \subset[t]$ with $|S|=s$ and a vertex subset $V^{\prime} \subset V$ as in the statement of the lemma. Let $U:=\cup_{i \in S} U_{i}$ and fix $V^{\prime \prime}:=V^{\prime} \backslash U$. Note that $\left(V \backslash V^{\prime}\right) \cup U$ intersects at most $\frac{\beta}{2} n^{v}$ of the elements of \mathcal{F}_{i} for each i and so we can focus on a subset \mathcal{F}_{i}^{\prime} of each \mathcal{F}_{i} of at least $\frac{\beta}{2} n^{v}$ sets which are all contained in $V^{\prime \prime}$. For each $i \in S$ and each labeled subset $X \in \mathcal{F}_{i}^{\prime}$, let $I_{X, i}$ denote the indicator random variable that $X \cup U_{i}$ hosts a labeled copy of F_{i} where W_{i} is mapped to U_{i}. To ease notation sometimes we write I_{X} instead of $I_{X, i}$. Note that $Z:=\sum\left\{I_{X, i}: X \in \cup_{i \in S} \mathcal{F}_{i}^{\prime}\right\}$ counts the number of suitable embeddings in $G^{(r)}(n, p)$. (So here if X is in a of the collections F_{i}^{\prime}, then there are a indicator random variables in this sum corresponding to X.)

An easy calculation (using the first part of (2.2)) gives that $\mathbb{E}[Z]>2$ for large enough n. We will show that

$$
\begin{equation*}
\Delta_{Z} \leq \frac{\mathbb{E}[Z]^{2}}{16 \min \{L t \log n, n\}} \tag{2.3}
\end{equation*}
$$

and thus by Janson's inequality (2.1), $\mathbb{P}[Z \leq \mathbb{E}[Z] / 2] \leq \exp (-2 \min \{L t \log n, n\})$. If $L t \log n \leq n$, taking a union bound over the (at most 2^{t}) possible sets S and the $\binom{n}{L t} \leq \exp (L t(1+\log n))$ possible V^{\prime}, we have that a.a.s., $Z \geq 1$ for all such S and V^{\prime}; if $L t \log n>n$, we instead bound both the number of V^{\prime} and the number of S by 2^{n} and draw the same conclusion. So in both cases $Z \geq 1$ a.a.s. for all such S and V^{\prime} and we are done.

Now it remains to verify (2.3). First let $Z_{i}:=\sum_{X \in \mathcal{F}_{i}^{\prime}} I_{X, i}$. Then

$$
\begin{equation*}
\mathbb{E}[Z]^{2}=\left(\sum_{i \in S} \mathbb{E}\left[Z_{i}\right]\right)^{2}=\sum_{i, j \in S} \mathbb{E}\left[Z_{i}\right] \mathbb{E}\left[Z_{j}\right] \tag{2.4}
\end{equation*}
$$

To ease notation, let $\mathcal{F}:=\cup_{i \in S} \mathcal{F}_{i}^{\prime}$ and for $X, X^{\prime} \in \mathcal{F}$, we write $X \sim X^{\prime}$ if, assuming $X \in \mathcal{F}_{i}$, $X^{\prime} \in \mathcal{F}_{j}$, the labeled copies of F_{i} on $X \cup U_{i}$ and F_{j} on $X^{\prime} \cup U_{j}$ intersect in at least one edge. We split Δ_{Z} as follows:

$$
\begin{align*}
\Delta_{Z} & =\sum_{\left\{\left(X, X^{\prime}\right) \in \mathcal{F}^{2}: X \sim X^{\prime}\right\}} \mathbb{E}\left[I_{X} I_{X^{\prime}}\right] \\
& =\sum_{i \in S} \Delta_{Z_{i}}+\sum_{\left\{(i, j) \in S^{2}:\right.} \sum_{i \neq j\}\left\{\left(X, X^{\prime}\right) \in \mathcal{F}_{i}^{\prime} \times \mathcal{F}_{j}^{\prime}: X \sim X^{\prime}\right\}} \mathbb{E}\left[I_{X} I_{X^{\prime}}\right], \tag{2.5}
\end{align*}
$$

where $\Delta_{Z_{i}}$ is defined analogously to Δ_{Z} for the random variable Z_{i}.
For integers a and b, write $(a)_{b}:=a(a-1) \ldots(a-b+1)$. Fix $1 \leq k \leq v$. There are $\binom{v}{k}(v)_{k} \leq$ $\binom{v}{k} v$! ways that two labeled v-sets share exactly k vertices. Fixing two such v-sets, there are at most $(n)_{2 v-k} \leq n^{2 v-k}$ ways of mapping their $2 v-k$ vertices into V. Let f_{k} denote the maximum number of edges of a k-vertex subgraph of $F_{i} \backslash W_{i}$, taken over all $i \in[t]$. As we explain in the next paragraph, we have that for $i \neq j$,

$$
\sum_{\left\{\left(X, X^{\prime}\right) \in \mathcal{F}_{i}^{\prime} \times F_{j}^{\prime}: X \sim X^{\prime}\right\}} \mathbb{E}\left[I_{X} I_{X^{\prime}}\right] \leq \sum_{k=1}^{v}\binom{v}{k} v!n^{2 v-k} p^{2 e-f_{k}} \leq \frac{2^{v} v!n^{2 v} p^{2 e}}{\Phi^{\prime}} \leq \frac{2^{v+2} v!\mathbb{E}\left[Z_{i}\right] \mathbb{E}\left[Z_{j}\right]}{\beta^{2} \Phi^{\prime}}
$$

Here, we crucially used that any copy of F_{i} on $X \in \mathcal{F}_{i}^{\prime}$ does not have edges intersecting U_{j} for $j \neq i$. Note that the penultimate inequality follows by definition of Φ^{\prime}. The last inequality follows as $\beta n^{v} p^{e} / 2 \leq$ $\mathbb{E}\left[Z_{i}\right]$ for all $i \in S$.

Using the above calculation (and the second part of (2.2)) to compare (2.5) and (2.4), we see that the right hand summand of (2.5) is less than $\mathbb{E}[Z]^{2} /(32 n)$. We now estimate the left hand summand of (2.5) in a similar fashion. For a fixed $i \in S$, let $1 \leq k \leq v$. We let g_{k} denote the maximum number of edges of a subgraph of F_{i} which has k vertices disjoint from W_{i}. We have, similarly to before, that

$$
\Delta_{Z_{i}} \leq \sum_{k=1}^{v}\binom{v}{k}(v)_{k}(n)_{2 v-k} p^{2 e-g_{k}} \leq \sum_{k=1}^{v}\binom{v}{k} v!n^{2 v-k} p^{2 e-g_{k}} \leq \frac{2^{v} v!n^{2 v} p^{2 e}}{\Phi}
$$

Thus,

$$
\sum_{i \in S} \Delta_{Z_{i}} \leq \frac{s 2^{v} v!n^{2 v} p^{2 e}}{\Phi} \stackrel{(2.2)}{\leq} \frac{\left(s \beta n^{v} p^{e} / 2\right)^{2}}{32 \min \{L t \log n, n\}} \leq \frac{\left(\sum_{i \in S} \mathbb{E}\left[Z_{i}\right]\right)^{2}}{32 \min \{L t \log n, n\}}=\frac{\mathbb{E}[Z]^{2}}{32 \min \{L t \log n, n\}}
$$

So bringing both summands together, (2.3) holds and we are done.

In its full generality, Lemma 2.8 will be a valuable tool in our proof. However, we will also have instances where we do not need to use the full power of the lemma. For instance, setting $r=2, s=1$ and $W_{i}=U_{i}=\emptyset$ for all $i \in[t]$, we recover a more standard application of Janson's inequality to subgraph containment which we state below for convenience.

Corollary 2.9. Let $\beta>0,1 \leq t \leq 2^{n}$ and F some fixed labeled graph on v vertices. Then there exists $C>0$ such that the following holds. If V is a set of n vertices, $\mathcal{F}_{1}, \ldots, \mathcal{F}_{t} \subset\binom{v}{v}$ are families of labeled subsets such that $\left|\mathcal{F}_{i}\right| \geq \beta n^{v}$ and $p=p(n)$ is such that $\Phi_{F} \geq C n$, then a.a.s., for each $i \in[t]$, there is an embedding of F onto a set in \mathcal{F}_{i}, which respects labeling.

3 | LOWER BOUND CONSTRUCTION FOR THE PROOF OF THEOREM 1.5

In this section we give a construction that provides the lower bound in the proof of Theorem 1.5. Our construction is a generalization of that used for the lower bound in Theorem 1.3 (see Section 2.1 of [3]). We will make use of the following result.

Theorem 3.1 ([24], part of Theorem 4.9). For every $k \geq 2$ and for every $0<\varepsilon<1$ there is a positive constant $c=c(r, \varepsilon)$ such that if $p \leq c n^{-2 / k}$,

$$
\lim _{n \rightarrow \infty} \mathbb{P}\left(G(n, p) \text { contains a } K_{k} \text {-tiling of size } \varepsilon n\right)=0
$$

Let k and r be in the statement of Theorem 1.5. Consider any $1-\frac{k}{r}<\alpha<1-\frac{k-1}{r}$ and let $\gamma>0$ such that $(1-\gamma)\left(1-\frac{k-1}{r}\right)=\alpha$. Let $n \in \mathbb{N}$ be divisible by r. Suppose G is an n-vertex graph with vertex classes A and B such that $|B|=(1-\gamma)\left(1-\frac{k-1}{r}\right) n$ and $|A|=n-|B|$, where there are all possible edges in G except that A is an independent set. So $\delta(G) \geq \alpha n$.

Choose $c^{\prime}=c^{\prime}(\gamma, k, r)=c^{\prime}(\alpha, k, r)$ sufficiently small so that, if $p=c^{\prime} n^{-2 / k}$ a.a.s. $G(n, p)[A] \cong G(|A|, p)$ does not contain a K_{k}-tiling of size $\gamma|A| / r \leq \gamma n / r$. The existence of c^{\prime} is guaranteed by Theorem 3.1 since A has size linear in n.

Observe that any copy of K_{r} in $G \cup G(n, p)$ either contains a K_{k} in A, or uses at least $r-(k-1)$ vertices in B. Thus, a.a.s., the largest K_{r}-tiling in $G \cup G(n, p)$ has size less than $|B| /(r-k+1)+\gamma n / r=$ n / r and we are done.

4 | OVERVIEW OF THE PROOF OF THE UPPER BOUND OF THEOREM 1.5

In this section we sketch some of the ideas in the remainder of our proof of Theorem 1.5. We use the by now well-known absorbing method, which reduces the problem into finding a small absorbing structure on some vertex subset A and finding a K_{r}-tiling that leaves a set U of $o(n)$ vertices uncovered. The property of the absorbing structure on A is that for any small set U with $|U| \in r \mathbb{N}$, one can find a perfect K_{r}-tiling in $(G \cup G(n, p))[A \cup U]$, which will finish the proof.

Let $p \geq C n^{-2 / k}$ and let G be an n-vertex graph with $\delta(G) \geq\left(1-\frac{k}{r}+\gamma\right) n$. Note that it might be true that both G and $G(n, p)$ are K_{r}-free (a.a.s. for $G(n, p)$). Thus, to build even a single copy of K_{r}, we may have to use both deterministic edges (from G) and random edges (from $G(n, p)$). We will use the following partition of the edge set of K_{r}.

Definition 4.1. For $r \in \mathbb{N}$ and $k \in \mathbb{N}$ such that $2 \leq k \leq r$, let $r^{*}, q \in \mathbb{N}$ be such that $k\left(r^{*}-1\right)+q=r$ and $0<q \leq k$. Then $H_{\text {det }}=H_{\text {det }}(r, k)$ is the complete r^{*}-partite graph with parts $V_{1}, V_{2}, \ldots, V_{r^{*}}$ such

FIGURE 1 Some examples of the graphs $H_{\text {det }}$ and $\overline{H_{\text {det }}}$ from Definition 4.1 for each case: 1. (a) $r=9, k=q=r^{*}=3$, 2. (b) $r=11, k=3, q=2, r^{*}=4$, 3. (c) $r=6, k=4, q=r^{*}=2$
that $\left|V_{1}\right|=\left|V_{2}\right|=\cdots=\left|V_{r^{*}-1}\right|=k$ and $\left|V_{r^{*}}\right|=q$, that is, $H_{\text {det }}:=K_{k, \ldots, k, q}^{r^{*}}$. We also define $\overline{H_{\text {det }}}$ to be $K_{r}-E\left(H_{\mathrm{det}}\right)$, that is, the complement of $H_{\text {det }}$ on the same vertex set.

Some examples are given in Figure 1. Note that when $k=r, H_{\text {det }}$ is simply an independent set of size $k=r$ and $\overline{H_{\text {det }}}$ is an r-clique. The motivation for this partition comes from the following observation. We can build a copy of K_{r} in $G \cup G(n, p)$ by taking $\Omega\left(n^{r}\right)$ copies of $H_{\text {det }}$ in G and then applying Janson's inequality to conclude that we can "fill up" the independent sets in some copy of $H_{\text {det }}$ by K_{k} 's and a K_{q} and obtain a copy of K_{r}. With a few more ideas, one can repeatedly apply this naive idea to greedily obtain an almost perfect K_{r}-tiling (see Theorem 5.1).

To build the absorbing set, we use the reachability arguments introduced by Lo and Markström [40]. The main part of the reachability arguments rely on the following notion of reachable paths. Given two vertices u, v, a set P of constant size is called a reachable path for u, v if both $P \cup\{u\}$ and $P \cup\{v\}$ contain perfect K_{r}-tilings. Then we meet the same problem as above, and thus need to build certain structures by deterministic edges and "fill up the gaps" by random edges. We need much more involved arguments, including building copies of K_{r} in a few different ways and making sure that we can recover the missing edges by $G(n, p)$. Moreover, when $k>r / 2$ we cannot prove the reachability between every two vertices and have to pursue a weaker property, namely, building a partition of $V(G)$ such that the reachability can be established within each part.

Once we have established the existence of reachable paths, we piece these together to form what we call "absorbing gadgets" (Definition 6.14) and then further combine these absorbing gadgets to define our full absorbing structure in $G \cup G(n, p)$. We use an idea of Montgomery [42,43] in order to define our absorbing structure, using an auxiliary "template" to dictate how we interweave our absorbing gadgets, which will ensure that the resulting absorbing structure has a strong absorbing property, in that it can contribute to a K_{r}-tiling in many ways. We will introduce the random edges of $G(n, p)$ only in the last stage, when proving the existence of the full absorbing structure in $G \cup G(n, p)$. Thus, we will first be occupied with finding many reachable paths and absorbing gadgets which use these reachable paths, restricting our attention only to the deterministic edges which will contribute to our eventual absorbing structure.

Our analysis splits into three cases depending on the structure of $H_{\text {det }}$ or equivalently, the values of r and k. The cases are as follows:

1. $H_{\text {det }}$ is balanced, that is, $q=k$ and so $r / k \in \mathbb{N}$,
2. $\chi\left(H_{\text {det }}\right)=r^{*} \geq 3$ and $H_{\text {det }}$ is not balanced, that is, $k<r / 2$ and $r / k \notin \mathbb{N}$,
3. $\chi\left(H_{\text {det }}\right)=r^{*}=2$ and $H_{\text {det }}$ is not balanced, that is, $r / 2<k<r$.

Examples of each case can be seen in Figure 1.

5 | AN ALMOST PERFECT TILING

In this section we study almost perfect tilings and prove Theorem 5.1 below. As is the case throughout, in this almost perfect tiling, the edges of G which contribute to the copies of K_{r} will be copies of $H_{\text {det }}$ as defined in Definition 4.1. We will rely on $G(n, p)$ to then "fill in the gaps," providing the missing edges, that is, $\overline{H_{\text {det }}}$, to guarantee that each copy of $H_{\text {det }}$ is in fact part of a copy of K_{r} in $G \cup G(n, p)$. Note that $\chi\left(H_{\text {det }}\right)=\lceil r / k\rceil$ and recall the definition of $\chi_{c r}$ discussed in Section 2.1. When k divides r, we have $\chi_{c r}\left(H_{\text {det }}\right)=r / k=\chi\left(H_{\text {det }}\right)$ and when k does not divide r, we have $\chi_{c r}\left(H_{\text {det }}\right)=\lfloor r / k\rfloor \frac{r}{r-(r-k\lfloor r / k\rfloor)}=r / k$.

Thus, the almost perfect tiling result of Komlós, Theorem 2.1, guarantees the existence of an $H_{\text {det }}$-tiling in G which covers almost all the vertices. However, given such a tiling we cannot guarantee that the correct edges appear in $G(n, p)$ in order to extend each copy of $H_{\text {det }}$ in the tiling to a copy of K_{r}. We aim instead to greedily build a K_{r}-tiling and guarantee that at each step there are $\Omega\left(n^{r}\right)$ copies of $H_{\text {det }}$. To achieve this, we use the regularity lemma and apply Theorem 2.1 to the reduced graph of G. Then by the counting lemma, each copy of $H_{\text {det }}$ in the reduced graph will provide many copies of $H_{\text {det }}$ in G.

Theorem 5.1. Let $2 \leq k \leq r$ and $\alpha, \gamma>0$. Then there exists $C=C(\alpha, \gamma, r, k)>0$ such that if $p \geq C n^{-2 / k}$ and G is an n-vertex graph with $\delta(G) \geq\left(1-\frac{k}{r}+\gamma\right) n$, then $G \cup G(n, p)$ a.a.s. contains a K_{r}-tiling covering all but at most αn vertices.

Proof. Apply Lemma 2.4 to G with $0<\varepsilon \ll d \ll \gamma / 4, \alpha / 4,1 / r$ and $m_{0} \in \mathbb{N}$ large, such that $d_{0}:=\frac{(d-\varepsilon)^{r}}{(2+r)^{r}} \geq 4 \varepsilon / \alpha$. We may assume that n is sufficiently large. Note that by Corollary 2.5 , the resulting (ϵ, d)-reduced graph R has $m \geq m_{0}$ vertices and satisfies $\delta(R) \geq\left(1-\frac{k}{r}+\gamma / 2\right) m$. Let the size of the clusters in the regularity partition be n^{\prime} and note that $n / N\left(\varepsilon, m_{0}\right) \leq n^{\prime} \leq \epsilon n$. Now by Theorem 2.1, as $m \geq m_{0}$ is sufficiently large, there exists an $H_{\text {det }}$ tiling \mathcal{H} covering all but at most $\alpha m / 4$ vertices of R. Let $\mathcal{V}_{1}, \ldots, \mathcal{V}_{t} \in\binom{V(R)}{r}$ such that the \mathcal{V}_{j} span disjoint copies of $H_{\text {det }}$ in \mathcal{H}.

Next, let \mathcal{F} be the collection of subsets $W \subseteq V(G)$ such that there exists some $j \in[t]$ for which W intersects each $U \in \mathcal{V}_{j}$ in at least $\alpha n^{\prime} / 2$ elements (and W contains no vertices of clusters from outside of \mathcal{V}_{j}). Here we say that \mathcal{V}_{j} corresponds to W. Moreover, we call a copy of K_{r} in W crossing if it contains precisely one vertex from each cluster in the class \mathcal{V}_{j}.

We claim that a.a.s., every W in \mathcal{F} contains a crossing copy of K_{r} in $G \cup G(n, p)$. Indeed, fix some $W \in \mathcal{F}$ and suppose \mathcal{V}_{j} corresponds to W. Then there are subsets $W_{1}, \ldots, W_{r} \subset V(G)$ and clusters $\left\{U_{1}, \ldots, U_{r}\right\}=V_{j}$ such that $W_{i} \subseteq U_{i}$,

$$
\left|W_{i}\right|=\frac{\alpha n^{\prime}}{2} \geq \frac{\alpha n}{2 N\left(\varepsilon, m_{0}\right)}
$$

$\cup_{i \in r} W_{i} \subseteq W$ and $U_{1}, U_{2}, \ldots, U_{r}$ form a copy H of $H_{\text {det }}$ in R. By Lemma 2.2, for every $U_{i} U_{j} \in E(H)$, we have that $G\left[W_{i}, W_{j}\right]$ is a $(4 \varepsilon / \alpha)$-regular pair with density at least $d-\varepsilon$. Thus by Lemma 2.3 $G[W]$ contains at least $\left(d_{0} \alpha n^{\prime} / 2\right)^{r}=\Omega\left(n^{r}\right)$ copies of $H_{\text {det }}$ where in each such copy of $H_{\text {det }}$ precisely one vertex lies in each of W_{1}, \ldots, W_{r}; let \mathcal{C}_{W} denote this collection. Now noting that $F:=\overline{H_{\text {det }}}=K_{r}-E\left(H_{\text {det }}\right)$ is a collection of disjoint cliques of size at most k, Lemma 2.7 (part 1 and 3) implies that $\Phi_{F} \geq C n$. Also, we have that $|\mathcal{F}| \leq 2^{n}$. Thus for $C>0$ sufficiently large, Corollary 2.9 gives that for every $W \in \mathcal{F}$ there is a copy of $H_{\text {det }}$ from \mathcal{C}_{W} which hosts a labeled copy of $\overline{H_{\text {det }}}$ in $G(n, p)$; thus the claim is satisfied.

One can now use the claim to greedily build the almost perfect K_{r}-tiling in $G \cup G(n, p)$. Indeed, initially set $\mathcal{K}:=\emptyset$. At each step we will add a copy of K_{r} to \mathcal{K} whilst ensuring \mathcal{K} is a K_{r}-tiling in
$G \cup G(n, p)$. Furthermore, at every step we only add a copy K of K_{r} if there is some $j \in[t]$ such that each vertex in K lies in a different cluster in \mathcal{V}_{j} (recall each \mathcal{V}_{j} consists of r clusters).

Suppose we are at a given step in this process such that there exists some cluster $U_{i} \in V_{j}$ (for some j) that still has at least $\alpha n^{\prime} / 2$ vertices uncovered by \mathcal{K}. This in fact implies that every cluster in \mathcal{V}_{j} contains at least $\alpha n^{\prime} / 2$ vertices uncovered by \mathcal{K}; these uncovered vertices correspond precisely to a set $W \in \mathcal{F}$. Hence by the above claim there is a crossing copy of K_{r} in $(G \cup G(n, p))[W]$. Add this to \mathcal{K}. Thus, we can repeat this process, increasing the size of \mathcal{K} at every step, until we find that for every $j \in[t]$, all the clusters in \mathcal{V}_{j} have at least $(1-\alpha / 2) n^{\prime}$ vertices covered by \mathcal{K}.

That is, a.a.s. there is a K_{r}-tiling in $G \cup G(n, p)$ covering all but at most

$$
\left(\alpha n^{\prime} / 2 \times m\right)+\left(\alpha m / 4 \times n^{\prime}\right)+\left|V_{0}\right| \leq \alpha n
$$

vertices, as desired. Note that the first term in the above expression comes from the vertices in clusters from the classes \mathcal{V}_{j}; the second term comes from those vertices in clusters that were uncovered by \mathcal{H}.

Note that one can in fact establish the case $k=r$ in a much simpler way because the copies of K_{r} that we look for can be completely provided by $G(n, p)$, see for example [24, Thorem 4.9].

6 | THE ABSORPTION

The aim of this section is to prove the existence of an absorbing structure \mathcal{A} in $G^{\prime}:=G \cup G(n, p)$. The main outcomes are Corollaries $6.22,6.24$ and 6.25 , which will be used in next section to prove our main result.

The key component of the absorbing structure will be some absorbing subgraph $F \subset G^{\prime}$. We will define F so that it can contribute to a K_{r}-tiling in many ways. In fact we will define F so that if we remove F from G^{\prime} and we tile almost all of what remains (Theorem 5.1), then no matter which small set of vertices remains, the properties of F allow us to complete this tiling to a full tiling of G^{\prime}. There are some complications, and the absorbing structure will have different features depending on the exact values of minimum degree and the size of the cliques that we look to tile with.

Our absorbing subgraph will be comprised of two sets of edges, namely the deterministic edges in G and the random edges in $G(n, p)$. Initially, we will be concerned with finding (parts of) the appropriate subgraph in G (Section 6.1). In fact, we will need to prove the existence of many copies of the deterministic subgraphs we want, as we will rely on there being enough of these to guarantee that one of them will match up with random edges in $G(n, p)$ (Section 6.2) to give the desired subgraph. Therefore it is useful throughout to consider, with foresight, the random edges that we will be looking for to complete our desired structure, as this also motivates the form of our deterministic subgraphs.

6.1 | The absorbing structure-deterministic edges

The smallest building block in our absorbing graph will be K_{r+1}^{-}, the complete graph on $r+1$ vertices with one edge missing, say between w_{1} and w_{2}. This is useful for the simple reason that it can contribute to a K_{r}-tiling in two ways, namely $K_{r+1}^{-} \backslash\left\{w_{i}\right\}$ for $i=1,2$. We introduce the following notation to keep track of the partition of the edges between the deterministic graph and the random graph.

Definition 6.1. Suppose $t, r, r_{1}, r_{2}, \ldots, r_{t} \in \mathbb{N}$ such that $\sum_{i=1}^{t} r_{i}=r+1$. We use the notation

$$
H:=\left(K_{r_{1}, r_{2}, \ldots, r_{t}}^{t}, i, j\right)
$$

for not necessarily distinct $i, j \in[t]$, to denote the $(r+1)$-vertex graph $K_{r_{1}, r_{2}, \ldots, r_{t}}^{t}$ with two distinct distinguished vertices: w_{1} in the ith part (which has size r_{i}) and w_{2} in the j th part (which has size r_{j}).

Definition 6.2. Let $r \in \mathbb{N}$ and consider an $(r+1)$-vertex graph F with two distinguished vertices w_{1} and w_{2}. (Typically we will take $F=H$ as in Definition 6.1.) We then write ${ }^{2} \bar{F}$ to denote the graph on the same vertex set $V\left(K_{r+1}^{-}\right)=V(F)$ such that $E(\bar{F}):=E\left(K_{r+1}^{-}\right) \backslash E(F)$, where we take the nonedge of K_{r+1}^{-}to be $w_{1} w_{2}$. Thus $K_{r+1}^{-} \subseteq F \cup \bar{F}$.

We think of H, \bar{H} and K_{r+1}^{-}as all lying on the same vertex set throughout with the two distinguished vertices w_{1}, w_{2} being defined for all three. The following graph gives the paradigm for how we split the edges of K_{r+1}^{-}between the deterministic and the random graph.

Definition 6.3. For $r \in \mathbb{N}$ and $k \in \mathbb{N}$ such that $2 \leq k \leq r$, let $r^{*}, q \in \mathbb{N}$ be such that $k\left(r^{*}-1\right)+q=r$ and $0<q \leq k$. Then $H_{0}:=\left(K_{k, \ldots, k, q+1}^{r^{*}}, r^{*}, r^{*}\right)$.

Some examples of H_{0} and $\overline{H_{0}}$ can be seen in Figures 3 and 4. Note that if w_{1} and w_{2} are the distinguished vertices of H_{0}, then $H_{0} \backslash w_{i}$ for $i=1,2$ are both copies of the graph $H_{\text {det }}$ from Definition 4.1. Also note that $\overline{H_{0}}$ is a disjoint union of k-cliques as well as a disjoint copy of K_{q+1}^{-}. Thus, when $q \leq k-1$, it follows from Lemma 2.7 and Corollary 2.9 that the graph $\overline{H_{0}}$ is abundant ${ }^{3}$ in $G(n, p)$ when $p \geq C n^{-2 / k}$ for some large enough C. Furthermore, as we will see, the minimum degree condition for G along with Lemma 2.6 will imply that there are $\Omega\left(n^{r+1}\right)$ copies of H_{0} in G. This suggests the suitability of this definition as a candidate for how to partition the edge set of K_{r+1}^{-}between deterministic and random edges. We remark that the case when $q=k$ is slightly more subtle and we have to adjust our decomposition accordingly. We will discuss this is more detail in the next section.

6.1.1 | Reachability

In this subsection, we define reachable paths and show that we can find many of these in our deterministic graph G, when the graphs used to define such paths are chosen appropriately. The main results are Propositions 6.6, 6.7 and 6.12 which deal with Case 1,2 and 3 respectively. We first define a reachable path which is a graph which connects together $(r+1)$-vertex graphs as follows.

Definition 6.4. Let $t, r \in \mathbb{N}$ and let $\boldsymbol{H}=\left(H^{1}, H^{2}, \ldots, H^{t}\right)$ be a vector of $(r+1)$-vertex graphs H^{i} such that each H^{i} has two distinguished vertices, w_{1}^{i} and w_{2}^{i}. Then an \boldsymbol{H}-path is the graph P obtained by taking one copy of each H^{i} and identifying w_{2}^{i} with w_{1}^{i+1}, for $i \in[t-1]$. We call w_{1}^{1} and w_{2}^{t} the endpoints of P.

In the case where $H^{1}=H^{2}=\ldots=H^{t}=H$ for some $(r+1)$-vertex graph H, we use the notation $\boldsymbol{H}=$ (H, t) and thus refer to (H, t)-paths. For $\boldsymbol{H}=\left(H^{1}, H^{2}, \ldots, H^{t}\right)$, we also define $\overline{\boldsymbol{H}}:=\left(\overline{H^{1}}, \overline{H^{2}}, \ldots, \overline{H^{t}}\right)$ where $\overline{H^{i}}$ is as defined in Definition 6.2.

We give some explicit examples of \boldsymbol{H}-paths later in Figure 6. In the following, as we look to find embeddings of \boldsymbol{H}-paths and larger subgraphs in G and $G(n, p)$, we will always be considering labeled embeddings. Therefore, implicitly, when we define graphs such as the \boldsymbol{H}-paths above, we think of these graphs as having some fixed labeling of their vertices. Again, the motivation for the definition

[^2]

FIGURE 2 An example of H_{1} and $\overline{H_{1}}$ for Case 1 (a) $r=9, k=q=r^{*}=3$ (see Definitions 6.1-6.2 and Proposition 6.6 for the definitions)
of \boldsymbol{H}-paths comes from considering K_{r+1}^{-}, with vertices w_{1}, w_{2} such that $w_{1} w_{2} \notin E\left(K_{r+1}^{-}\right)$. Indeed, then a ($\left.K_{r+1}^{-}, t\right)$-path P has two K_{r}-tilings missing a single vertex; one on the vertices of $V(P) \backslash w_{1}^{1}$, and one on the vertices of $V(P) \backslash w_{2}^{t}$. Our first step is to find many \boldsymbol{H}-paths in the deterministic graph G, for an appropriately defined \boldsymbol{H}. In particular, we are interested in the images of the endpoints of the paths.

Definition 6.5. Let $\beta>0, t, r \in \mathbb{N}$ and $\boldsymbol{H}=\left(H^{1}, \ldots, H^{t}\right)$ be a vector of $(r+1)$-vertex graphs (each of which is endowed with a tuple of distinguished vertices). We say that two vertices $x, y \in V(G)$ in an n-vertex graph G are $(\boldsymbol{H} ; \boldsymbol{\beta})$-reachable (or $(H, t ; \beta)$-reachable if $\boldsymbol{H}=(H, \ldots, H)=(H, t)$) if there are at least $\beta n^{t r-1}$ distinct labeled embeddings of the \boldsymbol{H}-path P in G such that the endpoints of P are mapped to $\{x, y\}$.

As discussed before, the graph H_{0} from Definition 6.3 will be used to provide deterministic edges for our absorbing structure. That is, we look for $\left(H_{0}, t\right)$-paths in G for some appropriate t. However, for various reasons there are complications with this approach. Sometimes using a slightly different graph H will allow more vertices to be reachable to each other. Also, as is the case below when $r / k \in \mathbb{N}$, it is possible that $\overline{H_{0}}$ is not sufficiently common in the random graph $G(n, p)$. Therefore, we have to tweak the graph H_{0} in order to accommodate these subtleties. This is the reason for using a vector of graphs \boldsymbol{H} as we will see. We will look first at Case 1 , when $r / k \in \mathbb{N}$ and so $\overline{H_{0}}$ contains a copy of K_{k+1}^{-}. This is too dense to appear in the random graph $G(n, p)$ with the frequency that we require and thus we define H_{1} as in the following proposition.

Proposition 6.6. Let $\gamma>0, n, r, k \in \mathbb{N}$ such that $r / k=: r^{*} \in \mathbb{N}, 2 \leq k \leq r$ and n is sufficiently large. Let $H_{1}:=J_{1} \cap K_{r+1}^{-}$where $J_{1}:=\left(K_{k, k, \ldots, k, 1}^{\left(r^{*}+1\right)}, r^{*}+1,1\right)$, as defined in Definition 6.1, and we consider K_{r+1}^{-}to be on the same vertex set as J_{1} with a nonedge between the distinguished vertices of J_{1}. Likewise, let $H_{1}^{\prime}:=\left(K_{k, k, \ldots, k, 1}^{\left(r^{*}+1\right)}, 1, r^{*}+1\right) \cap K_{r+1}^{-}$be the same graph with the labels of the distinguished vertices switched. See Figure 2 for an example of H_{1} (and H_{1}^{\prime} which is identical).

Then there exists a $\beta_{1}=\beta_{1}(r, k, \gamma)>0$ such that for any n-vertex graph G of minimum degree $\delta(G) \geq\left(1-\frac{k}{r}+\gamma\right) n$, any pair of distinct vertices in $V(G)$ are $\left(\boldsymbol{H}_{\boldsymbol{I}} ; \beta_{1}\right)$-reachable where $\boldsymbol{H}_{\boldsymbol{I}}:=\left(H_{1}, H_{1}^{\prime}\right)$.

Proof. Let w_{1}, w_{2} be the distinguished vertices of $H_{1}=\left(K_{k, k, \ldots, k, 1}^{\left(r^{*}+1\right)}, r^{*}+1,1\right) \cap K_{r+1}^{-}$as defined in Definition 6.1. Fix a pair $x, y \in V(G)$.

We will show that for any $z \in V(G) \backslash\{x, y\}$, there are at least $\beta_{1}^{\prime} n^{r-1}$ labeled embeddings of H_{1} which map w_{1} to x and w_{2} to z, for some $\beta_{1}^{\prime}=\beta_{1}^{\prime}(r, k, \gamma)>0$. Once we have established this property, this implies the proposition. Indeed, by symmetry, we can also find $\beta_{1}^{\prime} n^{r-1}$ embeddings of H_{1} which map w_{1} to y and w_{2} to z. Set $\beta_{1}:=\beta_{1}^{\prime 2} / 2$. Thus there are at least

$$
(n-2) \times \beta_{1}^{\prime} n^{r-1} \times\left(\beta_{1}^{\prime} n^{r-1}-r^{2} n^{r-2}\right) \geq \beta_{1} n^{2 r-1}
$$

FIGURE 3 An example of $H_{0}, \overline{H_{0}}, H_{0}^{\prime}$ and $\overline{H_{0}^{\prime}}$ for Case 2 (b) $r=11, k=3, q=2, r^{*}=4$ (see Definitions 6.1-6.3 and Proposition 6.7 for the definitions)
distinct embeddings of the $\boldsymbol{H}_{\boldsymbol{I}}$-path in G such that the endpoints are mapped to $\{x, y\}$, as desired. This follows as there are $n-2$ choices for z; at least $\beta_{1}^{\prime} r^{r-1}$ choices for the copy of H_{1} containing x and z; at least ($\beta_{1}^{\prime} n^{r-1}-r^{2} n^{r-2}$) choices for the copy of H_{1}^{\prime} containing z and y that are disjoint from the choice of H_{1} (except for the vertex z).

So let us fix $x, z \in V(G)$. The proof now follows easily from Lemma 2.6. As $k r^{*}=r$, we can express the minimum degree as $\delta(G) \geq\left(1-\frac{1}{r^{*}}+\gamma\right) n$. Thus any set of at most r^{*} vertices has at least γn common neighbors. Therefore we have at least $(\gamma n)^{r^{*}}$ labeled copies K of $K_{r^{*}}$ where $V(K)=\left\{x_{1}, \ldots, x_{r^{*}}\right\} \subset$ $N_{G}(x)$ and $\left\{x_{2}, \ldots, x_{r^{*}}\right\} \subset N_{G}(x) \cap N_{G}(z)$. This follows by first choosing $\left\{x_{2}, \ldots, x_{r^{*}}\right\}$ and then x_{1} with the right adjacencies. Thus, by Lemma 2.6 we have $\beta_{1}^{\prime} n^{r-1}$ labeled embeddings of the blow-up, $H_{1} \backslash\left\{w_{1}, w_{2}\right\}=K_{k, \ldots, k, k-1}^{r^{*}}$, of these cliques, crucially within the correct neighborhoods ($N_{G}(x)$ and $\left.N_{G}(x) \cap N_{G}(z)\right)$ to ensure that together with $\{x, z\}$ they give us the required embeddings of H_{1}.

Note that an $\overline{\boldsymbol{H}_{\boldsymbol{I}}}$-path $\overline{P_{1}}$ has endpoints which are isolated. The other vertices of $\overline{P_{1}}$ lie in copies of K_{k} and these copies are disjoint from each other except for a single pair of K_{k} s that meet at a singular vertex. See Figure 6 for an example. We now turn to Case 2, as described in Section 4. Here we can use the graph H_{0} from Definition 6.3. We also use a slight variant of H_{0} where we redefine the distinguished vertices.

Proposition 6.7. Suppose $\gamma>0, n, r, k \in \mathbb{N}$, such that n is sufficiently large, $2 \leq k<r / 2$ and $r / k \notin$ \mathbb{N}. Furthermore, let r^{*}, q and H_{0} be as defined in Definition 6.3 and let $H_{0}^{\prime}=\left(K_{k, \ldots, k, q+1}^{r *}, 1,2\right)$ be the same graph as H_{0} with distinguished vertices in distinct ${ }^{4}$ parts of size k (see Figure 3).

Then there exists $\beta_{2}=\beta_{2}(r, k, \gamma)>0$ such that for any n-vertex G of minimum degree $\delta(G) \geq\left(1-\frac{k}{r}+\gamma\right) n$, every pair of distinct vertices x, y in $V(G)$ are $\left(\boldsymbol{H}_{2} ; \boldsymbol{\beta}_{2}\right)$-reachable where $\boldsymbol{H}_{2}:=\left(H_{0}, H_{0}^{\prime}, H_{0}^{\prime}, H_{0}\right)$.

Proof. We know that $\delta(G) \geq\left(1-\frac{k}{r}+\gamma\right) n \geq\left(1-\frac{1}{r^{*}-1}+\gamma\right) n$. Therefore every set of at most $r^{*}-1$ vertices has a common neighborhood of size at least γn. We will appeal to Lemma 2.6 to give us the whole $\boldsymbol{H}_{\mathbf{2}}$-path in one fell swoop. Let J be a graph with vertex set

$$
V(J)=\left\{x_{1}, \ldots, x_{r^{*}-1}, z_{1}, w_{1}, \ldots, w_{r^{*}-2}, z_{2}, u_{1}, \ldots, u_{r^{*}-2}, z_{3}, y_{1}, \ldots, y_{r^{*}-1}\right\}
$$

and $E(J)$ consisting of r^{*}-cliques on $\left\{x_{1}, \ldots, x_{r^{*}-1}, z_{1}\right\},\left\{z_{1}, w_{1}, \ldots, w_{r^{*}-2}, z_{2}\right\},\left\{z_{2}, u_{1}, \ldots, u_{r^{*}-2}, z_{3}\right\}$ and $\left\{z_{3}, y_{1}, \ldots, y_{r^{*}-1}\right\}$. We claim that if we can find $(\gamma n)^{4 r^{*}-3} / 2$ copies of J in G such that $x_{i} \in N_{G}$

[^3](x) and $y_{i} \in N_{G}(y)$ for $i=1, \ldots, r^{*}-1$, then we are done. Indeed, consider a blow-up J^{\prime} of J with parts
\[

$$
\begin{array}{r}
\left\{X_{1}^{(k)}, \ldots, X_{r^{*}-1}^{(k)}, Z_{1}^{(k+q-1)}, W_{1}^{(q+1)}, W_{2}^{(k)}, \ldots, W_{r^{*}-2}^{(k)}, Z_{2}^{(2 k-1)},\right. \\
\left.U_{1}^{(q+1)}, U_{2}^{(k)}, \ldots, U_{r^{*}-2}^{(k)}, Z_{3}^{(k+q-1)}, Y_{1}^{(k)}, \ldots, Y_{r^{*}-1}^{(k)}\right\},
\end{array}
$$
\]

where the parts correspond to the vertices of J in the obvious way and the size of each part is indicated by the superscript. Now if we have a copy of J^{\prime} in $G \backslash\{x, y\}$ with $X_{i} \subset N_{G}(x)$ and $Y_{i} \subset N_{G}(y)$ for all $i=1, \ldots, r^{*}-1$, then this gives us an embedding of an \boldsymbol{H}_{2}-path. Indeed for $i=1,3$, arbitrarily partition $Z_{i}:=\left\{z_{i}^{\prime}\right\} \sqcup Z_{i}^{\prime} \sqcup Z_{i}^{\prime \prime}$ with $\left|Z_{i}^{\prime}\right|=q-1$ and $\left|Z_{i}^{\prime \prime}\right|=k-1$ and partition $Z_{2}:=\left\{z_{2}^{\prime}\right\} \sqcup Z_{2}^{\prime} \sqcup Z_{2}^{\prime \prime}$ with $\left|Z_{2}^{\prime}\right|=\left|Z_{2}^{\prime \prime}\right|=k-1$. Then $\left\{x, z_{1}^{\prime}\right\} \cup Z_{1}^{\prime} \cup_{i=1}^{r^{* *}-1} X_{i}$ and $\left\{y, z_{3}^{\prime}\right\} \cup Z_{3}^{\prime} \cup_{i=1}^{r^{*}-1} Y_{i}$ both give copies of H_{0} whilst $\left\{z_{1}^{\prime}, z_{2}^{\prime}\right\} \cup Z_{1}^{\prime \prime} \cup Z_{2}^{\prime} \cup_{i=1}^{r^{*}-2} W_{i}$ and $\left\{z_{2}^{\prime}, z_{3}^{\prime}\right\} \cup Z_{3}^{\prime \prime} \cup Z_{2}^{\prime \prime} \cup_{i=1}^{r^{*}-2} U_{i}$ both give copies of H_{0}^{\prime} where in all cases the distinguished vertices appear in the first set of the union.

It suffices then, by Lemma 2.6, to find $(\gamma n)^{4 r^{*}-3} / 2$ embeddings of J in G with the $x_{i} \in N_{G}(x)$ and $y_{i} \in N_{G}(y)$. We can do this greedily. Indeed if we choose the x_{i} and y_{i} first, followed by z_{1} and z_{3}, then $z_{2} \in N_{G}\left(z_{1}\right) \cap N_{G}\left(z_{3}\right)$ and then the remaining vertices, we are always seeking to choose a vertex in G which has at most $r^{*}-1$ neighbors which have already been chosen. Thus, by our degree condition, we have at least γn choices for each vertex with the right adjacencies. To ensure that these choices actually give an embedding of J we then discard any set of choices with repeated vertices, of which there are $O\left(n^{4 r^{*}-4}\right)$, and thus the conclusion holds as n is sufficiently large.

Consider an $\overline{\boldsymbol{H}_{\mathbf{2}}}$-path which we denote $\overline{P_{2}}$ (see Figure 6 for an example). It is formed by copies of K_{k} and K_{q+1}^{-}which intersect in at most one vertex and such that the endpoints of $\overline{P_{2}}$ lie in copies of K_{q+1}^{-}. Furthermore, note that the endpoints of $\overline{P_{2}}$ are in distinct connected components. This will be an important feature when we start to address the random edges of our absorbing structure as it will allow us to use Lemma 2.7 to conclude certain statements about the likelihood of finding our desired random subgraph in $G(n, p)$. This motivated the introduction of H_{0}^{\prime} in the previous proposition.

In Case 3, we cannot hope to prove reachability between every pair of vertices. Indeed our minimum degree in this case is $\delta(G) \geq\left(1-\frac{k}{r}+\gamma\right) n$ and $k>r / 2$ and so it is possible that $\delta(G)<n / 2$ and G is disconnected. Thus, as in [19,22], we use a partition of the vertices into "closed" parts, where we can guarantee that two vertices in the same part are reachable, with some set of parameters. We adopt the following notation which also allows us to consider different possibilities for what vectors we use for reachability.

Definition 6.8. Let $\boldsymbol{\mathcal { H }}$ be a set of vectors, such that the entry of each vector in $\boldsymbol{\mathcal { H }}$ is an $(r+1)$-vertex graph endowed with a tuple of distinguished vertices. We say that two vertices in G are $(\boldsymbol{\mathcal { H }} ; \beta)$-reachable if they are $(\boldsymbol{H} ; \beta)$-reachable for some $\boldsymbol{H} \in \boldsymbol{\mathcal { H }}$.

We say that a subset V of vertices in a graph G is $(\boldsymbol{\mathcal { H }} ; \beta)$-closed if every pair of vertices ${ }^{5}$ in V is $(\boldsymbol{H} ; \beta)$-reachable. We denote ${ }^{6}$ by $N_{\mathcal{H}, \beta}(v)$ the set of vertices in G that are $(\boldsymbol{\mathcal { H }} ; \beta)$-reachable to v.

Thus, in this notation, the conclusion of Proposition 6.6 states that $V(G)$ is $\left(\boldsymbol{H}_{\boldsymbol{i}} ; \boldsymbol{\beta}_{1}\right)$-closed for all G satisfying the given hypothesis (and similarly for Proposition 6.7). Notice that if a set V is $(\boldsymbol{\mathcal { H }} ; \boldsymbol{\beta})$-closed in a graph G it may be the case that two vertices $x, y \in V$ are $(\boldsymbol{H} ; \boldsymbol{\beta})$-reachable whilst two other vertices $z, w \in V$ are $\left(\boldsymbol{H}^{\prime} ; \beta\right)$-reachable for some distinct $\boldsymbol{H}, \boldsymbol{H}^{\prime} \in \boldsymbol{\mathcal { H }}$ of different lengths.

[^4]It will be useful for us to consider the following notion.
Definition 6.9. Let $\boldsymbol{\mathcal { H }}, \tilde{\mathcal{H}}$ be two sets of vectors as in Definition 6.8. Then

$$
\mathcal{H}+\tilde{\boldsymbol{\mathcal { H }}}:=\mathcal{\mathcal { H }} \cup \tilde{\mathcal{H}} \cup(\mathcal{H} \cdot \tilde{\boldsymbol{\mathcal { H }}})
$$

where $\boldsymbol{\mathcal { H }} \cdot \tilde{\boldsymbol{\mathcal { H }}}$ is defined to be the set
$\boldsymbol{\mathcal { H }} \cdot \tilde{\mathcal{H}}:=\left\{(\boldsymbol{H}, \tilde{\boldsymbol{H}}):=\left(H^{1}, \ldots, H^{t}, \tilde{H}^{1}, \ldots, \tilde{H}^{\tilde{t}}\right): \boldsymbol{H}:=\left(H^{1}, \ldots, H^{t}\right) \in \boldsymbol{\mathcal { H }}, \tilde{\boldsymbol{H}}:=\left(\tilde{H}^{1}, \ldots, \tilde{H}^{\tilde{t}}\right) \in \tilde{\boldsymbol{\mathcal { H }}}\right\}$.
That is, $\boldsymbol{\mathcal { H }}+\tilde{\mathcal{H}}$ comprises of all vectors that lie in $\boldsymbol{\mathcal { H }}, \tilde{\mathcal{H}}$, or that can be obtained by a concatenation of a vector from $\boldsymbol{\mathcal { H }}$ with a vector from $\tilde{\boldsymbol{\mathcal { H }}}$.

As an important example, defining $\boldsymbol{\mathcal { H }}(H, \leq t):=\{(H, s): 1 \leq s \leq t\}$, we have that

$$
\mathcal{H}\left(H, \leq t_{1}\right)+\mathcal{H}\left(H, \leq t_{2}\right)=\boldsymbol{\mathcal { H }}\left(H, \leq t_{1}+t_{2}\right)
$$

In what follows we will apply the following simple lemma repeatedly.
Lemma 6.10. Let $r \in \mathbb{N}$ and $\operatorname{let} \boldsymbol{\mathcal { H }}_{\boldsymbol{x}}, \boldsymbol{\mathcal { H }}_{\boldsymbol{y}}$ be two sets of vectors of $(r+1)$-vertex graphs, each of which is endowed with a tuple of distinguished vertices and suppose that $t_{x}:=\left|\boldsymbol{\mathcal { H }}_{x}\right|$ and $t_{y}:=\left|\boldsymbol{\mathcal { H }}_{y}\right|$ are both finite. Suppose G is a sufficiently large n-vertex graph and $x, y \in V(G)$. Suppose there exist $\beta_{x}, \beta_{y}, \epsilon>0$, and some subset $U \subseteq V(G)$ with $|U| \geq \epsilon n$ such that for every $z \in U, x$ and z are $\left(\boldsymbol{H}_{x} ; \beta_{x}\right)$-reachable and z and y are $\left(\boldsymbol{\mathcal { H }}_{y} ; \beta_{y}\right)$-reachable. Then x and y are $\left(\boldsymbol{\mathcal { H }}_{x}+\boldsymbol{\mathcal { H }}_{y} ; \beta\right)$-reachable for $\beta:=\frac{\epsilon \beta_{x} \beta_{y}}{2 t_{x} t_{y}}>0$.

Proof. By the pigeonhole principle, there exists some $U^{\prime} \subseteq U$ such that $\left|U^{\prime}\right| \geq \frac{\epsilon n}{t_{x} t_{y}}$ and some $\boldsymbol{H}_{x} \in \boldsymbol{H}_{x}, \boldsymbol{H}_{y} \in \boldsymbol{H}_{y}$ such that for every $z \in U^{\prime}, z$ and x are $\left(\boldsymbol{H}_{x} ; \beta_{x}\right)$-reachable and z and y are $\left(\boldsymbol{H}_{y} ; \beta_{y}\right)$-reachable. Suppose \boldsymbol{H}_{x} has length s_{x} and \boldsymbol{H}_{y} has length s_{y}. Thus, fixing $z \in U^{\prime}$, there are at least $\beta_{x} \beta_{y} n^{\left(s_{x}+s_{y}\right) r-2}$ pairs of labeled vertex sets S_{x} and S_{y} in G such that there is an embedding of an \boldsymbol{H}_{x}-path on $S_{x} \cup\{x, z\}$ mapping endpoints to $\{x, z\}$ and an embedding of a \boldsymbol{H}_{y}-path on the vertices $S_{y} \cup\{y, z\}$ which maps the endpoints to $\{y, z\}$. Of these pairs, at most

$$
s_{x} s_{y} r^{2} n^{\left(s_{x}+s_{y}\right) r-3}
$$

are not vertex disjoint or they intersect $\{x, y\}$. Hence, as n is sufficiently large we have at least $\frac{\beta_{x} \beta_{y}}{2} n^{\left(s_{x}+s_{y}\right) r-2}$ vertex disjoint pairs which together form an embedding of an $\left(\boldsymbol{H}_{x}, \boldsymbol{H}_{y}\right)$-path. As we have at least $\frac{\epsilon}{t_{x} t_{y}} n$ choices for z, this gives that x and y are $\left(\left(\boldsymbol{H}_{x}, \boldsymbol{H}_{y}\right) ; \beta\right)$-reachable and $\left(\boldsymbol{H}_{x}, \boldsymbol{H}_{y}\right) \in \boldsymbol{H}_{\boldsymbol{x}}+\boldsymbol{\mathcal { H }}_{\boldsymbol{y}}$.

We now turn to proving reachability in Case 3 . The following two lemmas together find the partition we will work on. Similar ideas have been used in [19,22].

Lemma 6.11. Suppose $\gamma>0$ and $n, r, k, q \in \mathbb{N}$ such that $r / 2<k \leq r-1, r=k+q$ and n is sufficiently large. Let $c:=\lceil r / q\rceil$ and for $t \in \mathbb{N}$ define $\boldsymbol{\mathcal { H }}^{t}:=\boldsymbol{\mathcal { H }}\left(H_{0}, \leq 2^{t}\right)=\left\{\left(H_{0}, s\right): 1 \leq s \leq 2^{t}\right\}$, where $H_{0}=\left(K_{k, q+1}^{2}, 2,2\right)$ is as defined in Definition 6.3 with distinguished vertices w_{1} and w_{2}.

Then there exists constants $0<\beta_{3}^{\prime}=\beta_{3}^{\prime}(r, k, \gamma) \ll \alpha=\alpha(r, k, \gamma)$ such that any n-vertex graph G of minimum degree $\delta(G) \geq\left(1-\frac{k}{r}+\gamma\right) n$ can be partitioned into at most $c-1$ parts, each of which is $\left(\boldsymbol{H}^{c} ; \beta_{3}^{\prime}\right)$-closed and of size at least αn.

Proof. First, observe that there is some $\eta=\eta(r, k, \gamma)>0$ such that in every set of at least c vertices, there are two vertices which are $\left(\left(H_{0}, 1\right) ; \eta\right)$-reachable. Indeed, fix some arbitrary set of vertices $S=\left\{v_{1}, \ldots, v_{c}\right\} \subset V(G)$, and for $v \in V=V(G)$, define $d_{S}(v):=\mid\left\{i \in[c]: v v_{i} \in E(G)\right\}$. Let $\bar{d}_{S}:=\sum_{v \in V} d_{S}(v) / n$ be the average. Then we have that

$$
\sum_{v \in V} d_{S}(v)=\sum_{i \in[c]} d_{G}\left(v_{i}\right) \geq c\left(1-\frac{k}{r}+\gamma\right) n \geq(1+c \gamma) n
$$

Thus $\sum_{v \in V}\binom{d_{s}(v)}{2} \geq n\binom{\bar{d}_{s}}{2} \geq \frac{(c \gamma)^{2}}{2} n$ by Jensen's inequality. By averaging over all pairs we have that there exists a pair $i \neq j \in[c]$ so that both v_{i} and v_{j} are in the neighborhood of at least $\gamma^{2} n$ vertices. That is, $\left|N_{G}\left(v_{i}\right) \cap N_{G}\left(v_{j}\right)\right| \geq \gamma^{2} n$.

Therefore there are at least $\gamma^{3} n^{2}$ edges in G with one endpoint in $N_{G}\left(v_{i}\right) \cap N_{G}\left(v_{j}\right)$. Applying Lemma 2.6 this ensures that there is $\eta=\eta(r, k, \gamma)>0$ so that there are ηn^{r-1} copies of $K_{k, q-1}^{2}$ where the first vertex class lies in $N_{G}\left(v_{i}\right) \cap N_{G}\left(v_{j}\right)$. Thus together they form copies of H_{0} with distinguished vertices v_{i} and v_{j}; so v_{i} and v_{j} are $\left(\left(H_{0}, 1\right) ; \eta\right)$-reachable in G.

Note also that there is some fixed $\alpha^{\prime}=\alpha^{\prime}(r, k, \gamma)>0$ such that $\left|N_{\left(H_{0}, 1\right), \alpha^{\prime}}(v)\right| \geq \alpha^{\prime} n$ for every $v \in V(G)$. Indeed, this follows as there are at least $(\gamma n)^{2} / 2$ edges in G with one endpoint in $N_{G}(v)$. So, by Lemma 2.6, there is a fixed $\alpha^{\prime \prime}=\alpha^{\prime \prime}(r, k, \gamma)>0$ such that there are at least $\alpha^{\prime \prime} n^{r}$ embeddings of H_{0} which map w_{1} to v. Setting $\alpha^{\prime}:=\alpha^{\prime \prime} / 3$, this implies that there are at least $\alpha^{\prime} n$ vertices which are $\left(\left(H_{0}, 1\right) ; \alpha^{\prime}\right)$-reachable to v.

Now let $0<\epsilon \ll \alpha^{\prime}, \eta=: \eta_{0}$ and $\eta_{i}:=\frac{\epsilon^{4}}{2^{2 i+1}} \eta_{i-1}$ for $i=1, \ldots, c$. Set $\beta_{3}^{\prime}:=\eta_{c}$. As in the statement of the lemma, define $\boldsymbol{\mathcal { H }}^{t}:=\boldsymbol{\mathcal { H }}\left(H_{0}, \leq 2^{t}\right)$ for values of $t \leq c$ and note that $\boldsymbol{\mathcal { H }}^{t}+\boldsymbol{\mathcal { H }}^{t}=\boldsymbol{\mathcal { H }}^{t+1}$. We will be interested in $\left(\boldsymbol{\mathcal { H }}^{t} ; \eta_{t}\right)$-reachability and so we will use the shorthand notation $\tilde{N}_{t}(v):=N_{\boldsymbol{\mathcal { H }}^{t}, n_{t}}(v)$. Let ℓ be the maximal integer such that there exists a set of ℓ vertices, v_{1}, \ldots, v_{ℓ} with v_{j} and $v_{j^{\prime}}$ not $\left(\boldsymbol{H}^{c-\ell} ; \eta_{c-\ell}\right)$-reachable for any pair $j \neq j^{\prime} \in[\ell]$.

Suppose $\ell=1$. Then $V(G)$ is $\left(\boldsymbol{\mathcal { H }}^{c-1} ; \eta_{c-1}\right)$-closed. As $\boldsymbol{\mathcal { H }}^{c-1} \subseteq \boldsymbol{\mathcal { H }}^{c}$ and $\eta_{c-1}>\beta_{3}^{\prime}$, the lemma holds in this case.

We also have that $\ell \leq c-1$ from our observations above, so we can assume $2 \leq \ell \leq c-1$. Now fix such a set of ℓ vertices, v_{1}, \ldots, v_{ℓ}. We make the following two observations:
(i) Any $v \in V(G) \backslash\left\{v_{1}, \ldots, v_{\ell}\right\}$ is in $\tilde{N}_{c-\ell-1}\left(v_{j}\right)$ for some $j \in[\ell]$ from our definition of ℓ, as otherwise v could be added to give a larger family contradicting the maximality of ℓ. Indeed, this follows because two vertices that are not $\left(\boldsymbol{\mathcal { H }}^{c-\ell} ; \eta_{c-\ell}\right)$-reachable are certainly not $\left(\boldsymbol{\mathcal { H }}^{c-\ell-1} ; \eta_{c-\ell-1}\right)$-reachable by definition.
(ii) $\left|\tilde{N}_{c-\ell-1}\left(v_{j}\right) \cap \tilde{N}_{c-\ell-1}\left(v_{j^{\prime}}\right)\right| \leq \epsilon n$ for every pair $j \neq j^{\prime} \in[\ell]$. This follows from Lemma 6.10 as otherwise we would have that v_{j} and $v_{j^{\prime}}$ are $\left(\boldsymbol{\mathcal { H }}^{c-\ell} ; \eta_{c-\ell}\right)$-reachable, a contradiction.

We define $U_{j}:=\left(\tilde{N}_{c-\ell-1}\left(v_{j}\right) \cup\left\{v_{j}\right\}\right) \backslash\left(\bigcup_{j^{\prime} \in[\ell]\{j\}} \tilde{N}_{c-\ell-1}\left(v_{j^{\prime}}\right)\right)$ for $j \in[\ell]$, and $U_{0}:=V(G) \backslash \cup_{j \in[\ell]} U_{j}$. Now for $j \in[\ell]$, we have that U_{j} is $\left(\boldsymbol{\mathcal { H }}^{c-\ell-1} ; \eta_{c-\ell-1}\right)$-closed. Indeed, if there was a $j \in[\ell]$ and $u_{1}, u_{2} \in U_{j}$ not reachable, then $\left\{u_{1}, u_{2}\right\} \cup\left\{v_{1}, \ldots, v_{\ell}\right\} \backslash\left\{v_{j}\right\}$, is a larger family contradicting the definition of ℓ. Thus, the U_{j} almost form the partition we are looking for except that it remains to consider the vertices in U_{0}. For these, we greedily add them to the other U_{j} : We have that for each $u \in U_{0}$,

$$
\begin{equation*}
\left|N_{\left(H_{0}, 1\right), \alpha^{\prime}}(u) \backslash U_{0}\right| \geq \alpha^{\prime} n-\left|U_{0}\right| \geq \alpha^{\prime} n-\binom{\ell}{2} \epsilon n \geq \ell \epsilon n . \tag{6.1}
\end{equation*}
$$

Here the second inequality holds due to (i), (ii) and the definition of the U_{j}; the final inequality holds by our choice of ϵ. Thus, there is a j such that $\left|N_{\left(H_{0}, 1\right), \alpha^{\prime}}(u) \cap U_{j}\right| \geq \epsilon n$, and we add u to this U_{j}, arbitrarily choosing such a j if there are multiple choices. Let V_{1}, \ldots, V_{ℓ} be the resulting partition.

Applications of Lemma 6.10 show that each V_{j} is $\left(\boldsymbol{\mathcal { H }}^{c} ; \eta_{c}\right)$-closed. Indeed suppose, for example, that w_{1} and w_{2} are two vertices that lie in U_{0} and are added to U_{j} in the process of defining V_{j}. Then for each $i=1,2$, taking $W_{i}=N_{\left(H_{0}, 1\right), \alpha^{\prime}}\left(w_{i}\right) \cap U_{j}$, an application of Lemma 6.10 with $U=W_{1}$ gives that for any $x \in U_{j}, w_{1}$ and x are $\left(\boldsymbol{\mathcal { H }}^{\prime} ; \eta^{\prime}\right)$-reachable where $\boldsymbol{\mathcal { H }}^{\prime}=\boldsymbol{\mathcal { H }}\left(H_{0}, \leq 2^{c-\ell-1}+1\right)$ and $\eta^{\prime}=$ $\varepsilon \alpha^{\prime} \eta_{c-\ell-1} / 2^{c-\ell}$. Another application of Lemma 6.10, this time with $U=W_{2}$ then gives that w_{1} and w_{2} are $\left(\boldsymbol{\mathcal { H }}^{\prime \prime} ; \eta^{\prime \prime}\right)$-reachable with $\boldsymbol{\mathcal { H }}^{\prime \prime}=\boldsymbol{\mathcal { H }}\left(H_{0}, \leq 2^{c-\ell-1}+2\right) \subseteq \boldsymbol{\mathcal { H }}^{c}$ and $\eta^{\prime \prime}=\varepsilon \eta^{\prime} \alpha^{\prime} /\left(2^{c-\ell}+2\right)>\eta_{c-\ell}>\beta_{3}^{\prime}$. Showing other cases of reachability within each V_{j} are similar. We are now done since for each $j \in[\ell]$,

$$
\left|V_{j}\right| \geq\left|U_{j}\right| \geq\left|N_{\left(H_{0}, 1\right), \alpha^{\prime}}\left(v_{j}\right) \backslash\left(N_{\left(H_{0}, 1\right), \alpha^{\prime}}\left(v_{j}\right) \cap U_{0}\right)\right| \stackrel{(i i)}{\geq} \alpha^{\prime} n-\ell \epsilon n=\alpha n,
$$

where $\alpha:=\alpha^{\prime}-\ell \epsilon \gg \eta_{c-\ell} \geq \eta_{c}=\beta_{3}^{\prime}$.
The rough idea for how to handle Case 3 is to run the same proof as in the other cases on each part of the partition given by Lemma 6.11. The point of Lemma 6.11 is that we recover the reachability within each part, albeit at the expense of allowing a family of possible paths used for reachability. However, in the process, we lose the minimum degree condition within each part. The purpose of the next proposition is to fix this, by adjusting parameters and making the partition coarser. Thus, we recover a minimum degree condition which is not quite as strong as what we had previously but good enough to work with in what follows.

Proposition 6.12. Suppose $\gamma>0$ and $n, r, k, q \in \mathbb{N}$ such that $r / 2<k \leq r-1, r=k+q$ and n is sufficiently large. Let $c:=\lceil r / q\rceil$ and let $H_{0}=\left(K_{k, q+1}^{2}, 2,2\right)$ as defined in Definition 6.3 and $H_{0}^{\prime}=$ $\left(K_{k, q+1}^{2}, 1,2\right)$ be the same graph with distinguished vertices in distinct parts of the bipartition ${ }^{7}$ (see Figure 4). We define the following family of vectors of $(r+1)$-vertex graphs (endowed with tuples of vertices):

$$
\boldsymbol{H}_{3}:=\bigcup_{t=3}^{c\left(2^{c+1}+1\right)}\left\{\boldsymbol{H} \in\left\{H_{0}, H_{0}^{\prime}\right\}^{t}: \boldsymbol{H}[1]=\boldsymbol{H}[t]=H_{0} \text { and } \boldsymbol{H}[i]=H_{0}^{\prime} \text { for some } 2 \leq i \leq t-1\right\},
$$

where $\boldsymbol{H}[i]$ denotes the $i^{\text {th }}$ entry of \boldsymbol{H}.
Then for all $\varepsilon>0$, there exists constants $0<\beta_{3}(r, k, \gamma, \varepsilon) \ll \alpha(r, k, \gamma)$ such that for any n-vertex graph G with minimum degree $\delta(G) \geq\left(1-\frac{k}{r}+\gamma\right)$ n there is a partition \mathcal{P} of $V(G)$ into at most $c-1$ parts such that each part $U \in \mathcal{P}$ satisfies the following:
(i) $|U| \geq \alpha n$;
(ii) All but at most εn vertices $v \in U$ satisfy $\left|N_{G}(v) \cap U\right| \geq\left(1-\frac{k}{r}+\frac{\gamma}{2}\right)|U|$;
(iii) U is $\left(\boldsymbol{H}_{3} ; \beta_{3}\right)$-closed.

Proof. This is a simple case of adjusting the partition already obtained after applying Lemma 6.11. Let $\alpha, \beta_{3}^{\prime}$ be defined as in the outcome of Lemma 6.11 and let \mathcal{P}^{\prime} be the partition of $V(G)$ obtained, with vertex parts denoted V_{1}, \ldots, V_{s}. Fix $\mu:=\varepsilon \alpha \gamma / 2 c^{3}$. We create an auxiliary graph J on vertex

[^5]

FIGURE 4 An example of $H_{0}, \overline{H_{0}}, H_{0}^{\prime}$ and $\overline{H_{0}^{\prime}}$ for Case 3 (c) $r=6, k=4, q=r^{*}=2$ (see Definitions 6.1-6.3 and Proposition 6.12 for the definitions)
set $\left\{V_{1}, \ldots, V_{s}\right\}$ where for $i \neq j \in[s]$ we have an edge $V_{i} V_{j}$ in J if and only if there are at least μn^{2} edges in G with one endpoint in V_{i} and one in V_{j}. Then our new partition \mathcal{P} in G will come from the connected components of J. That is, if C_{1}, \ldots, C_{t} are the components of J, then for $i \in[t]$, we define $U_{i}:=\mathrm{U}_{j: V_{j} \in C_{i}} V_{j}$ and let \mathcal{P} consist of the U_{i} with $i \in[t]$. Then certainly point (i) of the hypothesis is satisfied for all U_{i}. Also (ii) is satisfied. Indeed, suppose there exists $i \in[t]$, with $d_{U_{i}}(v):=\mid N_{G}(v) \cap$ $\left.U_{i}\left|<\left(1-\frac{k}{r}+\frac{\gamma}{2}\right)\right| U_{i} \right\rvert\,$ for at least εn vertices of U_{i}. Thus, for such vertices $\left|N_{G}(v) \cap\left(V(G) \backslash U_{i}\right)\right| \geq \frac{\gamma \alpha}{2} n$ and by averaging there exists some $V_{j(v)} \in \mathcal{P}^{\prime}$ such that $V_{j(v)} \cap U_{i}=\emptyset$ and $d_{V_{j(v)}}(v) \geq \frac{\gamma \alpha}{2 c} n$. We average again to conclude that there is some $j, j^{\prime} \in[s]$ such that $V_{j} \subset U_{i}, V_{j^{\prime}} \cap U_{i}=\emptyset$ and V_{j} contains at least $\varepsilon n / c^{2}$ vertices v which have degree into $V_{j^{\prime}} d_{V_{j^{\prime}}}(v) \geq \frac{\gamma \alpha}{2 c}$. This contradicts our definition of J as then $V_{j} V_{j^{\prime}}$ should be an edge of J and thus in the same part of \mathcal{P}.

Thus it only remains to establish reachability. We begin by proving the following claim which is a slight variation of Lemma 6.10.

Claim 6.13. Let $\boldsymbol{\mathcal { H }}^{c}$ be as defined in Lemma 6.11. Suppose $x, y \in V(G)$ and that there exist (not necessarily disjoint) sets $S_{x}, S_{y} \subset V(G)$ such that for any $z_{x} \in S_{x}, x$ and z_{x} are $\left(\mathcal{H}^{c} ; \beta_{3}^{\prime}\right)$-reachable and for any $z_{y} \in S_{y}, y$ and z_{y} are $\left(\boldsymbol{\mathcal { H }}^{c} ; \beta_{3}^{\prime}\right)$-reachable. If there exists at least μn^{2} edges with one endpoint in S_{x} and one endpoint in S_{y}, then x and y are $\left(\boldsymbol{H} ; \beta_{3}^{\prime \prime}\right)$-reachable for some $\beta_{3}^{\prime \prime}=\beta_{3}^{\prime \prime}\left(\mu, \beta_{3}^{\prime}, c\right)>0$ and $\boldsymbol{H} \in \boldsymbol{H}_{3}$ of length at most $2^{c+1}+1$.

Indeed letting $w_{1}^{\prime}, w_{2}^{\prime}$ be the distinguished vertices of H_{0}^{\prime}, we have, by Lemma 2.6, that there are at least $\mu^{\prime} n^{r+1}$ embeddings of H_{0}^{\prime} into G which map w_{1}^{\prime} to S_{x} and w_{2}^{\prime} to S_{y} for some $\mu^{\prime}=\mu^{\prime}(\mu)>0$. By averaging, there exists $\boldsymbol{H}_{x}, \boldsymbol{H}_{y} \in \boldsymbol{\mathcal { H }}^{c}$ such that there are $\frac{\mu^{\prime}}{2^{2 c}} n^{r+1}$ embeddings of H_{0}^{\prime} such that the image of w_{1}^{\prime} and x are $\left(\boldsymbol{H}_{x} ; \beta_{3}^{\prime}\right)$-reachable and the image of w_{2}^{\prime} and y are $\left(\boldsymbol{H}_{y} ; \beta_{3}^{\prime}\right)$-reachable. By considering the embeddings of $\boldsymbol{H}_{x}, \boldsymbol{H}_{y}$ and H_{0}^{\prime} which join to give an embedding of an $\left(\boldsymbol{H}_{x}, H_{0}^{\prime}, \boldsymbol{H}_{y}\right)$-path (that is, ignoring choices of embeddings which are not vertex disjoint), we see that x and y are $\left(\left(\boldsymbol{H}_{x}, H_{0}^{\prime}, \boldsymbol{H}_{y}\right), \beta_{3}^{\prime \prime}\right)$-reachable with $\beta_{3}^{\prime \prime}:=\frac{\mu^{\prime} \beta_{3}^{\prime 2}}{2^{2 c+1}}$. This completes the proof of the claim.

Recall the partition $\mathcal{P}^{\prime}=\left\{V_{1}, V_{2}, \ldots, V_{s}\right\}$. Further consider any part $U \in \mathcal{P}$. First suppose $U=V_{j}$ for some j. Now given any $x, y \in U$, by Lemma 6.11, x and y are already $\left(H_{0}, s\right)$-reachable for some $s \leq 2^{c}$. However, $\left(H_{0}, s\right)$ does not contain a copy of H_{0}^{\prime} and so is not a valid vector in the family $\boldsymbol{\mathcal { H }}_{3}$. We therefore apply Claim 6.13 with $S_{x}=S_{y}=V_{j} \backslash\{x, y\}$, to conclude that x and y are $\left(\boldsymbol{H} ; \beta_{3}^{\prime \prime}\right)$-reachable for some $\boldsymbol{H} \in \boldsymbol{\mathcal { H }}_{3}$ of length at most $2^{c+1}+1$. Indeed since V_{j} sends fewer than μn^{2} edges out to any other part V_{i} of \mathcal{P}^{\prime} and $\left|V_{j}\right| \geq \alpha n$, the minimum degree condition on G ensures that there are at least $2 \mu n^{2}$ edges in $G\left[V_{j}\right]$ and hence μn^{2} edges in $S_{x}=S_{y}$ allowing Claim 6.13 to be applied.

Next suppose U is the union of more than one part from \mathcal{P}^{\prime}. If $x \in V_{i} \subseteq U$ and $y \in V_{j} \subseteq U$, for $i \neq j \in[s]$ and $V_{i} V_{j} \in E(J)$ as defined above, we can again can apply Claim 6.13 to conclude x and y are $\left(\boldsymbol{H} ; \boldsymbol{\beta}_{3}^{\prime \prime}\right)$-reachable for some $\boldsymbol{H} \in \boldsymbol{H}_{3}$ of length at most $2^{c+1}+1$. Therefore, we just need to

FIGURE 5 An $\left(\underline{\boldsymbol{H}}, K_{3}\right)$-absorbing gadget with $\underline{\boldsymbol{H}}:=\left\{\boldsymbol{H}_{i, j}: i \in[3], j \in[4]\right\}$ such that each $\boldsymbol{H}_{i, j}=\left(K_{4}^{-}, 3\right)$. The base set of the absorbing gadget is $W:=\left\{w_{1}, w_{2}, w_{3}, w_{4}\right\}$
establish reachability for vertices x, y such that $x \in V_{i}, y \in V_{j}$ with $V_{i} V_{j} \notin E(J)$ but such that V_{i} and V_{j} are in the same component of J. If $i \neq j$, there is a path of (at most c) edges from V_{i} to V_{j} in J; if $i=j$ there is a walk of length $2 \leq c$ in J that starts and ends at $V_{i}=V_{j}$ (i.e., traverse a single edge in J). In both cases we can repeatedly apply Lemma 6.10 to derive that x and y are $\left(\boldsymbol{\mathcal { H }}_{3} ; \beta_{3}\right)$-reachable with $\beta_{3}:=\left(\frac{\alpha \beta_{3}^{\prime \prime}}{2^{\left(2^{c+1}+2\right)}}\right)^{c}$. It is crucial here that we apply Claim 6.13 in all cases to establish the reachability here (even when $i=j$) in order to guarantee that the vectors witnessing the reachability contain a copy of H_{0}^{\prime} and hence indeed lie in $\boldsymbol{\mathcal { H }}_{3}$.

We remark that the reason for the introduction of H_{0}^{\prime} in Proposition 6.12 is two-fold. First, it allows us to establish reachability between parts from Lemma 6.11 which have many edges between them. Moreover, as in Proposition 6.7, we have that for every $\boldsymbol{H} \in \boldsymbol{\mathcal { H }}_{3}$, if $\overline{\boldsymbol{P}}$ is an $\overline{\boldsymbol{H}}$-path, then the endpoints of \bar{P} are in distinct connected components on \bar{P} (see Figure 6 for an example), which is something that we will require later.

6.1.2 | Absorbing gadgets

In this section, we will focus on larger subgraphs which we look to embed in our graph and which will be used as part of an absorbing structure. These are formed by piecing together the \boldsymbol{H}-paths of the previous section and the aim will be to obtain subgraphs with even more flexibility, in that they will be able to contribute to a tiling in many ways. The key definition is a graph which we call an absorbing gadget.

Definition 6.14. Let $r, s \in \mathbb{N}$, let H be an r-vertex graph and let $\underline{\boldsymbol{H}}:=\left\{\boldsymbol{H}_{i, j}: i \in[r], j \in[s]\right\}$ be a labeled family of vectors of $(r+1)$-vertex graphs (with tuples of distinguished vertices). Then an $(\underline{\boldsymbol{H}}, H)$-absorbing gadget is a graph obtained by the following procedure. Take disjoint $\boldsymbol{H}_{i, j}$-paths for $1 \leq i \leq r$ and $1 \leq j \leq s$ and denote their endpoints by $u_{i, j}$ and $v_{i, j}$. Place a copy of H on $\left\{v_{\mathrm{i}, j}: i \in[r]\right\}$ for each $j \in[s]$. For $2 \leq i \leq r$, identify all vertices $\left\{u_{i, j}: 1 \leq j \leq s\right\}$ and relabel this vertex u_{i}. Finally relabel $u_{1, j}$ as w_{j} for $j \in[s]$ and let $W:=\left\{w_{1}, w_{2}, \ldots, w_{s}\right\}$, which we refer to as the base set of vertices for the absorbing gadget.

An example of an absorbing gadget is given in Figure 5. Recall that we always consider K_{r+1}^{-}to have two distinguished vertices which form the only nonedge of the graph. In the previous section we
commented on how a ($\left.K_{r+1}^{-}, t\right)$-path P with endpoints x and y has two K_{r}-tilings covering all but one vertex; the first misses x, the other misses y. The point of the absorbing gadget is to generalize this property, giving a graph which can use any one of a number of vertices (the base set) in a K_{r}-tiling. In more detail, suppose $s, t^{*} \in \mathbb{N}$ and $\boldsymbol{\mathcal { H }}=\boldsymbol{\mathcal { H }}\left(K_{r+1}^{-}, \leq t^{*}\right)=\left\{\left(K_{r+1}^{-}, t\right): 1 \leq t \leq t^{*}\right\}$ as defined in the previous subsection. Let $\underline{\boldsymbol{H}}:=\left\{\boldsymbol{H}_{i, j}: i \in[r], j \in[s]\right\}$ where each $\boldsymbol{H}_{i, j}$ is an element from $\boldsymbol{\mathcal { H }}$. Then an $\left(\underline{\boldsymbol{H}}, K_{r}\right)$-absorbing gadget F with base set $W=\left\{w_{1}, \ldots, w_{s}\right\}$ has the property that for any $j \in[s]$, there is a K_{r}-tiling covering precisely $(F \backslash W) \cup\left\{w_{j}\right\}$. Indeed, we have that for all $j^{\prime} \neq j$ and $i \in[r]$, there is a K_{r}-tiling of the $\boldsymbol{H}_{i, j^{\prime}}$-path $P_{i, j^{\prime}}$ which uses ${ }^{8} v_{i, j^{\prime}}$ and not the other endpoint of $P_{i, j^{\prime}}$. Then there is a tiling of the $\boldsymbol{H}_{1, j}$-path which uses w_{j}, a tiling of the $\boldsymbol{H}_{i, j}$-path for $2 \leq i \leq r$ which uses u_{i} and a copy of K_{r} on $\left\{v_{i, j}: i \in[r]\right\}$ which completes the desired K_{r}-tiling.

As in the previous subsection, we begin by showing that there are many absorbing gadgets in the deterministic graph. Again, although we are interested in $\left(\underline{\boldsymbol{H}}, K_{r}\right)$-absorbing gadgets for some $\underline{\boldsymbol{H}}$ consisting of vectors, all of whose entries are K_{r+1}^{-}, we split the edges of our absorbing gadget and rely on the deterministic graph to provide many copies of a subgraph of the gadget. In particular, we will use here our paradigm $H_{\text {det }}$, defined in Definition 4.1. The following general proposition allows us to show that we can find many absorbing gadgets if all the vertices which we hope to map the base set to, are reachable to each other.

Definition 6.15. Let $r, s \in \mathbb{N}$. Let $\boldsymbol{\mathcal { H }}$ be a finite set of vectors, such that each entry of each vector in $\boldsymbol{\mathcal { H }}$ is an $(r+1)$-vertex graph with a tuple of distinguished vertices. We write $\boldsymbol{\mathcal { H }}(r \times s)$ for the collection of all ordered labeled sets $\underline{\boldsymbol{H}}:=\left\{\boldsymbol{H}_{i, j}: i \in[r], j \in[s]\right\}$ where each $\boldsymbol{H}_{i, j}$ is an element from $\boldsymbol{\mathcal { H }}$. If $\boldsymbol{\mathcal { H }}$ consists of a single vector \boldsymbol{H} we write $\boldsymbol{H}(r \times s):=\boldsymbol{\mathcal { H }}(r \times s)$. That is, $\boldsymbol{H}(r \times s)$ is the ordered labeled (multi)set with each element a copy of \boldsymbol{H}.

Proposition 6.16. Let $\alpha, \gamma, \beta^{\prime}>0, q, k, r \in \mathbb{N}$ and let $\boldsymbol{\mathcal { H }}$ be a finite set of vectors, such that each entry of each vector in $\boldsymbol{\mathcal { H }}$ is an $(r+1)$-vertex graph with a tuple of distinguished vertices.

Then there exists $\beta=\beta\left(\alpha, \gamma, \beta^{\prime}, q, k, r, \boldsymbol{\mathcal { H }}\right)>0$, such that for sufficiently large n, if G is an n-vertex graph with vertex subset $U \subseteq V(G)$ such that U is $\left(\boldsymbol{\mathcal { H }} ; \beta^{\prime}\right)$-closed, $|U| \geq \alpha$ n and $\delta(G[U]) \geq\left(1-\frac{k}{r}+\right.$ $\gamma)|U|$, then for any set $X=\left\{x_{1}, \ldots, x_{s}\right\} \subset U$ with $|X| \leq q$, there exists some $\underline{\boldsymbol{H}} \in \boldsymbol{\mathcal { H }}(r \times s)$ and some $\left(\underline{\boldsymbol{H}}, H_{\text {det }}\right)$-absorbing gadget F with base set $W=\left\{w_{1}, \ldots, w_{s}\right\}$ such that there are at least $\beta n^{v(F)-s}$ embeddings of F in G which map w_{i} to x_{i} for $i \in[s]$.

Proof. First notice that for a fixed $s \leq q$, there is a finite number (i.e., $\left.|\boldsymbol{\mathcal { H }}|^{r s}\right)$ of $\left(\underline{\boldsymbol{H}}, H_{\text {det }}\right)$-absorbing gadgets F such that $\underline{\boldsymbol{H}} \in \boldsymbol{\mathcal { H }}(r \times s)$ and F has a base set of size s. Let \mathcal{F}_{s} be the set of all such absorbing gadgets, let $f:=\left|\mathcal{F}_{s}\right|$ and set $Q:=\max \left\{|F|-s: F \in \mathcal{F}_{s}\right\}$. We claim that there is some $\beta^{\prime \prime}=$ $\beta^{\prime \prime}\left(\alpha, \gamma, \beta^{\prime}, q, k, r, \boldsymbol{\mathcal { H }}\right)>0$ such that with G and U as in the statement of the proposition and $X \subset U$ of size s, there are at least $\beta^{\prime \prime} n^{Q}$ subsets $S \subseteq V(G) \backslash X$ of Q ordered vertices such that there is an embedding of some $F \in \mathcal{F}_{s}$ in G which maps the base set of F to X and the other vertices to a subset ${ }^{9}$ of S. Given this claim, the conclusion of the proposition follows easily. Indeed, by averaging we get that there is some $F \in \mathcal{F}_{s}$ and at least $\left(\beta^{\prime \prime} / f\right) n^{Q}$ ordered subsets S of Q vertices in $V(G)$ as above, that correspond to an embedding of F. Then setting $\beta:=\beta^{\prime \prime} /(Q!f)$, we get that there must be at least $\beta n^{|F|-s}$ embeddings of F in G which map the base set to X. Indeed for each such embedding F^{\prime} of F, the vertex set $V\left(F^{\prime}\right) \backslash X$ lies in at most $Q!n^{Q-(|F|-s)}$ different ordered sets of vertices $S \subseteq V(G)$.

So it remains to find these $\beta^{\prime \prime} n^{Q}$ ordered subsets S. We will show that S can be generated in a series of steps so that every time we choose some a vertices, we have $\Omega\left(n^{a}\right)$ choices. We will use the

[^6]notation of Definition 6.14. First we select $r-1$ vertices $Y=\left\{y_{2}, y_{3}, \ldots, y_{r}\right\}$ in $U \backslash X$ which we can do in $\binom{|U \backslash X|}{r-1}=\Omega\left(n^{r-1}\right)$ many ways. Now repeatedly find disjoint copies of H_{det} in $U \backslash(X \cup Y)$ and label these $\left\{z_{i, j}: 1 \leq i \leq r, 1 \leq j \leq s\right\}$ such that $\left\{z_{i, j}: 1 \leq i \leq r\right\}$ comprise a copy of $H_{\text {det }}$ for each $j \in[s]$. In order to do this we repeatedly apply Lemma 2.6 and the degree condition which we can take to be $\delta(G[U]) \geq\left(1-\frac{k}{r}+\frac{\gamma}{2}\right)|U|$ (ignoring any neighbors of vertices that have already been chosen in S). Hence there are $\Omega\left(n^{r s}\right)$ choices for these copies of $H_{\text {det }}$.

Now for $2 \leq i \leq r$ and $1 \leq j \leq s$, we have that y_{i} and $z_{i, j}$ are $\left(\boldsymbol{H}_{i, j}, \boldsymbol{\beta}^{\prime}\right)$-reachable for some $\boldsymbol{H}_{i, j} \in \boldsymbol{\mathcal { H }}$ of length $t_{i, j}$ say. Thus there are $\beta^{\prime} n^{r t_{i j}-1}$ embeddings of an $\boldsymbol{H}_{i, j}$ - path P in G which map the endpoints of P to $\left\{y_{i}, z_{i, j}\right\}$. We ignore those choices of embeddings of P which use previously chosen vertices of S, of which there are $O\left(n^{r t_{i j}-2}\right)$. Similarly, for $1 \leq j \leq s, x_{j}$ and $z_{1, j}$ are $\left(\boldsymbol{H}_{1, j}, \boldsymbol{\beta}^{\prime}\right)$-reachable for some $\boldsymbol{H}_{1, j} \in \boldsymbol{\mathcal { H }}$, so select an embedding of an $\boldsymbol{H}_{1, j}$-path in G which maps the endpoints to $\left\{x_{j}, z_{1, j}\right\}$ and has all other vertices disjoint from previously chosen vertices. This gives an embedding of an $\left(\underline{\boldsymbol{H}}, H_{\text {det }}\right)$-absorbing gadget in G which maps the base set W to $X, u_{i, j}$ to $z_{i, j}$ for $i \in[r], j \in[s]$ and maps u_{i} to y_{i} for $i \in[r]$. Choosing unused vertices arbitrarily until we have a set S of Q vertices, the claim and hence the proof of the proposition are settled.

6.2 | The absorbing structure—random edges

In this section, we will introduce the edges of $G(n, p)$ and show that $G \cup G(n, p)$ contains the absorbing structure we desire. The absorbing structure will be formed by choosing absorbing gadgets rooted on certain prescribed sets of vertices. The absorbing gadgets will be (\boldsymbol{H}, K_{r})-absorbing gadgets F^{*} for some $\underline{\boldsymbol{H}}$ consisting of vectors whose entries are all K_{r+1}^{-}. In order to obtain these absorbing gadgets, we consider the absorbing gadgets of just deterministic edges which we looked at in the previous section and show that with high probability, one of these matches up with random edges to get the required subgraph F^{*}. We begin by investigating the absorbing gadgets that we look for in the random graph.

6.2.1 | Absorbing gadgets in the random graph

Recalling Definitions 4.1 and 6.14, let $\underline{\boldsymbol{H}}:=\left\{\boldsymbol{H}_{i, j}: i \in[r], j \in[s]\right\}$ be a labeled family of vectors of $(r+1)$-vertex graphs and suppose that there is an embedding ϕ of an $\left(\boldsymbol{H}, H_{\text {det }}\right)$-absorbing gadget F^{\prime} in G which maps the base set of the gadget to some $U \subset V(G)$, with $|U|=s$. Recalling Definition 6.4, define $\overline{\overline{\boldsymbol{H}}}:=\left\{\overline{\boldsymbol{H}_{i, j}}: i \in[r], j \in[s]\right\}$. Now in order to complete this absorbing gadget F^{\prime} into one which has the form that we require, we have to find a labeled embedding of an $\left(\underline{\overline{\boldsymbol{H}}}, \overline{H_{\text {det }}}\right)$-absorbing gadget F onto the ordered vertex set $\phi\left(V\left(F^{\prime}\right)\right)$ in $G(n, p)$. The following lemma will be used to show that there are sufficiently many embeddings in $G(n, p)$ of the necessary F s defined as above. It is worth noting that as F is uniquely defined by F^{\prime}, it is in fact the way that we chose our deterministic absorbing gadgets, that guarantees the following conclusions.

Lemma 6.17. Let $k, r, s \in \mathbb{N}$ and $C>1$, with $2 \leq k \leq r$ and suppose $p=p(n) \geq C n^{-2 / k}$. Suppose $\underline{\boldsymbol{H}}$ is such that:

1. $\underline{\boldsymbol{H}} \in \boldsymbol{H}_{\boldsymbol{I}}(r \times s)$ if $r / k \in \mathbb{N}$, recalling the definition of $\boldsymbol{H}_{\boldsymbol{I}}$ from Proposition 6.6;
2. $\underline{\boldsymbol{H}} \in \boldsymbol{H}_{2}(r \times s)$ if $r / k \notin \mathbb{N}$ and $k<r / 2$, recalling the definition of \boldsymbol{H}_{2} from Proposition 6.7;
3. $\underline{\boldsymbol{H}} \in \boldsymbol{\mathcal { H }}_{3}(r \times s)$ if $k>r / 2$, recalling the definition of $\boldsymbol{\mathcal { H }}_{3}$ from Proposition 6.12.

Then if F is an $\left(\overline{\overline{\boldsymbol{H}}}, \overline{H_{\text {det }}}\right)$-absorbing gadget with base set W such that $|W|=s$, we have that $\Phi_{F, W} \geq C n$ and $\Phi_{F, W} \geq C n^{1 / k}$.

FIGURE 6 Some examples of \boldsymbol{H}-paths for various \boldsymbol{H} (see Definition 6.4 and Propositions 6.6,6.7 and 6.12 for relevant definitions): 1. (a) An $\overline{\boldsymbol{H}_{I}}$ path with $r=9$ and $k=q=r^{*}=3$. 2. (b) An $\overline{\boldsymbol{H}_{2}}$ path with $r=11, k=3, q=2$ and $r^{*}=4$. 3. (c) An $\overline{\boldsymbol{H}_{3}}$-path where $\boldsymbol{H}_{3}=\left(H_{0}, H_{0}^{\prime}, H_{0}^{\prime}, H_{0}\right) \in \boldsymbol{H}_{3}$ and we have $r=6, k=4$ and $q=r^{*}=2$

Proof. We recommend that the reader refers to the examples in Figure 6 to help visualize some of the ideas in this proof. Note that as the endpoints of an $\overline{\boldsymbol{H}_{\boldsymbol{I}}}$-path are isolated, we have that the base set of an $\left(\overline{\boldsymbol{H}_{\boldsymbol{I}}}(r \times s), \overline{H_{\text {det }}}\right)$ absorbing gadget F is also an isolated set of vertices and so $\Phi_{F, W}=\Phi_{F, W}$. Defining $K_{k}+K_{k}$ as two copies of K_{k} which meet in a singular vertex, we have that $F \backslash W$ consists of disjoint copies of K_{k} and $r \times s$ disjoint copies of $K_{k}+K_{k}$, one for each $\overline{\boldsymbol{H}_{l}}$-path used in F. Therefore Lemma 2.7 (1) shows that $\Phi_{K_{k}} \geq C n$, and repeated applications of Lemma 2.7 (3) show that $\Phi_{K_{k}+K_{k}} \geq C n$ and in turn $\Phi_{F \backslash W} \geq C n$ as required.

Case 2 is similar. Here we have that $q=r-k\lfloor r / k\rfloor<k$ and each of the base vertices w of F lie in a copy, say F_{w}, of the graph defined as follows. Take a copy of K_{q+1}^{-}and a copy of K_{k} that meet in exactly one vertex, which is one of the vertices of the nonedge in K_{q+1}^{-}. Furthermore, we have that the base vertex w is the other vertex in the nonedge of this copy of K_{q+1}^{-}. We have that each of the F_{w} is disconnected from the rest of F and an application of Lemma 2.7 (1), (2) and (3) gives that $\Phi_{F_{w} w} \geq C n$ and $\Phi_{F_{w}, w} \geq C n^{1 / k}$ if $q \geq 2$. If $q=1$, then F_{w} is an isolated vertex w and a copy of K_{k} so we have $\Phi_{F_{w}, w}=\Phi_{F_{w} w} \geq C n$. Now note that $F \backslash\left(\cup_{w \in W} F_{w}\right)$ consists of copies of $K_{k}, K_{q+1}^{-}, K_{q+1}$ and a copy of K_{q} (in the copy of $\overline{H_{\text {det }}}$ in F) which intersect each other in at most one vertex. Furthermore, one can view $F \backslash\left(\mathrm{U}_{w \in W} F_{w}\right)$ as being "built up" from these copies in the following way: there is an ordering (starting with $\overline{H_{\text {det }}}$) on these copies of $K_{k}, K_{q+1}^{-}, K_{q+1}$ and K_{q} such that, starting with the empty graph and adding these copies in this order, each new copy shares at most one vertex with the previous copies already added, and at the end of the process we obtain $F \backslash\left(\cup_{w \in W} F_{w}\right)$. Each time we add a copy, we can apply Lemma 2.7 (3) and then again to add in the F_{w} (to obtain F). This leads us to conclude that $\Phi_{F, W} \geq C n$ and $\Phi_{F, W} \geq C n^{1 / k}$ as required.

In Case 3, let $q=r-k<k$ and let us fix some $\underline{\boldsymbol{H}} \in \boldsymbol{\mathcal { H }}_{3}(r \times s)$ which then defines our F. For each $w \in W$, let F_{w} be the connected component of F which contains w. Due to the definition of $\boldsymbol{\mathcal { H }}_{3}$, and in particular the fact that each $\boldsymbol{H} \in \boldsymbol{H}_{3}$ contains a copy of H_{0}^{\prime} as defined in Proposition 6.12, we have that $F_{w} \neq F_{w^{\prime}}$ for all $w \neq w^{\prime} \in W$. Also, for $q \geq 2$, it can be seen that F_{w} is a graph obtained by sequentially "gluing" copies of K_{q+1}^{-}to vertices of degree $q-1$ and that w is a vertex of degree $q-1$ in the resulting graph. Similarly to the previous case, applications of Lemma 2.7 (2) and (3) imply that $\Phi_{F_{w} w} \geq C n$ and $\Phi_{F_{w}, w} \geq C n^{1 / k}$ if $q \geq 2$ and if $q=1$, we see that F_{w} is an isolated vertex, namely w itself. Also as before, we have that $F \backslash\left(\cup_{w \in W} F_{w}\right)$ consists of copies of $K_{k}, K_{q+1}^{-}, K_{q+1}$ and a copy of K_{q} which
intersect each other in at most one vertex. Thus, introducing the ordering of these copies as in Case 2, we can apply Lemma 2.7 repeatedly to obtain the desired conclusion.

We will use Lemma 6.17 to prove the existence of our desired absorbing gadgets in $G^{\prime}=G \cup G(n, p)$. Before embarking on this however, we need to know how we wish our absorbing gadgets (in particular their base sets) to intersect in G^{\prime}. This is given by the notion of a template in the following subsection.

6.2.2 | Defining an absorbing structure

A template T with flexibility $m \in \mathbb{N}$ is a bipartite graph on $7 m$ vertices with vertex classes I and $J_{1} \sqcup J_{2}$, such that $|I|=3 m,\left|J_{1}\right|=\left|J_{2}\right|=2 m$, and for any $\bar{J} \subset J_{1}$, with $|\bar{J}|=m$, the induced graph $T[V(T) \backslash \bar{J}]$ has a perfect matching. We call J_{1} the flexible set of vertices for the template. Montgomery first introduced the use of such templates when applying the absorbing method in his work on spanning trees in random graphs [42,43]. There, he used a sparse template of maximum degree 40 , which we will also use. It is not difficult to prove the existence of such templates for large enough m probabilistically; see, for example, [42, Lemma 2.8]. The idea has since be used by various authors in different settings [16,17,20,21,39,44]. We will use a template here as an auxiliary graph in order to build an absorbing structure for our purposes.

Definition 6.18. Let $m, t^{*} \in \mathbb{N}$ and $T=\left(I=\{1, \ldots, 3 m\}, J_{1} \sqcup J_{2}=\{1, \ldots, 2 m\} \sqcup\{2 m+1, \ldots\right.$, $4 m\}, E(T)$) be a bipartite template with maximum degree $\Delta(T) \leq 40$ and flexibility m as defined above. Furthermore, let

$$
\boldsymbol{\mathcal { H }}:=\boldsymbol{\mathcal { H }}\left(K_{r+1}^{-}, \leq t^{*}\right)=\left\{\left(K_{r+1}^{-}, t\right): 1 \leq t \leq t^{*}\right\}
$$

be the set of vectors of length at most t^{*} whose entries are all K_{r+1}^{-}.
A (t^{*}-bounded) absorbing structure $\mathcal{A}=\left(\Phi, Z, Z_{1}\right)$ of flexibility m in a graph G^{\prime} consists of a vertex set $Z=Z_{1} \sqcup Z_{2} \subset V\left(G^{\prime}\right)$ which we label $Z_{1}:=\left\{z_{1}, \ldots, z_{2 m}\right\}$ and $Z_{2}:=\left\{z_{2 m+1}, \ldots, z_{4 m}\right\}$ and a set $\Phi:=\left\{\phi_{1}, \ldots, \phi_{3 m}\right\}$ of embeddings of absorbing gadgets into G^{\prime}. We require the following properties:

- For $i \in[3 m]$, setting $N(i):=\{j:(i, j) \in E(T) \subset I \times J\}$ and $n(i):=|N(i)|$, we have that ϕ_{i} is an embedding of some $\left(\underline{\boldsymbol{H}}, K_{r}\right)$-absorbing gadget F_{i} such that $\underline{\boldsymbol{H}} \in \boldsymbol{\mathcal { H }}(r \times n(i))$ and the base set of F_{i}, which we denote W_{i}, is mapped to $\left\{z_{j}: j \in N(i)\right\} \subseteq Z$ by ϕ_{i}.
- The embeddings of the absorbing gadgets are vertex disjoint other than the images of the base sets. That is, for all $i \in[3 m], \phi_{i}\left(V\left(F_{i}\right) \backslash W_{i}\right) \subseteq V\left(G^{\prime}\right) \backslash Z$ and $\phi_{i}\left(V\left(F_{i}\right) \backslash W_{i}\right) \cap \phi_{i^{\prime}}\left(V\left(F_{i^{\prime}}\right) \backslash W_{i^{\prime}}\right)=\emptyset$ for all $i \neq i^{\prime} \in[3 m]$.

We call Z_{1} the flexible set of the absorbing structure.
Thus the absorbing structure is an embedding of a larger graph which is formed of $3 m$ disjoint absorbing gadgets whose base vertices are then identified according to a template of flexibility m. We will refer to the vertices of \mathcal{A} which are the vertices which feature in the embedding of this larger graph. That is,

$$
V(\mathcal{A}):=\bigsqcup_{i \in[3 m]} \phi\left(V\left(F_{i}\right) \backslash W_{i}\right) \bigsqcup Z .
$$

Remark 6.19. If \mathcal{A} is a t^{*}-bounded absorbing structure of flexibility m, then it has less than $125 t^{*} r^{2} m$ vertices in total.

In our proof, we will bound t^{*} by a constant and look for an absorbing structure on a small linear number of vertices. The key property of the absorbing structure is that it inherits the flexibility of the template that defines it, but in the context of K_{r}-tilings, as detailed in the following remark.

Remark 6.20. If G^{\prime} contains an absorbing structure $\mathcal{A}=\left(\Phi, Z, Z_{1}\right)$ of flexibility m, then for any subset of vertices $\bar{Z} \subset Z_{1}$ such that $|\bar{Z}|=m$, there is a K_{r}-tiling in G^{\prime} covering precisely $V(\mathcal{A}), \bar{Z}$.

Indeed given such a \bar{Z}, letting \bar{J} be the corresponding indices from J, we have that $T \backslash \bar{J}$ has a perfect matching. The matching then indicates, for each $i \in[3 m]$, which vertex $z_{j_{i}}$ of Z to use in a tiling of the corresponding absorbing gadget. That is, for each i, if ϕ_{i} is "matched" to $z_{j_{i}}$ by the perfect matching, then we take the K_{r}-tiling covering $\phi_{i}\left(F_{i} \backslash W_{i}\right) \cup\left\{z_{j_{i}}\right\}$ (which exists by the key property of the absorbing gadget mentioned after Definition 6.14) and then take their union.

6.2.3 | The existence of an absorbing structure

In order to prove the existence of an absorbing structure, we must find embeddings of absorbing gadgets in our graph. In the previous section we found many embeddings of certain absorbing gadgets with deterministic edges and thus it remains to find embeddings of complementary absorbing gadgets, using only random edges. Therefore we will turn to Lemma 2.8, which is a general result regarding embeddings in random graphs. However, there is still some work to do in the application of this lemma and the following proposition shows how we can use Lemma 2.8 repeatedly in order to embed a larger graph. We state the proposition in a more general form than just for showing the existence of absorbing structures as we will also use the result at other points in the proof. As the statement of the proposition is somewhat technical, we recommend that the reader sees how it is applied in Corollaries 6.22,6.24 and 6.25 to help digest the statement.

Proposition 6.21. Let $\kappa_{d}, \kappa_{w}, \kappa_{e}, \kappa_{v}, k, \in \mathbb{N}$ and $\beta>0$. Then there exists $\eta_{0}>0$ and $C>0$ such that the following holds for any $0<\eta<\eta_{0}, n \in \mathbb{N}$ and $t=\eta n \in \mathbb{N}$.

Suppose that F_{1}, \ldots, F_{t} are labeled graphs with distinguished base vertex sets $W_{i} \subset V\left(F_{i}\right)$ such that $\left|W_{i}\right| \leq \kappa_{w}, v_{i}:=\left|V\left(F_{i}\right) \backslash W_{i}\right| \leq \kappa_{v}, e\left(F_{i}\left[W_{i}\right]\right)=0$ and $e\left(F_{i}\right) \leq \kappa_{e}$ for all $i \in[t]$. Suppose that $p=p(n)$ such that $\Phi_{F_{i}, W_{i}}=\Phi_{F_{i}, W_{i}}(n, p) \geq C n$ and $\Phi_{F_{i}, W_{i}}=\Phi_{F_{i}, W_{i}}(n, p) \geq C n^{\frac{1}{k}}$ for all $i \in[t]$. Let V be an n-vertex set, and $U_{1}, \ldots, U_{t} \subset V$ be subsets such that $\left|U_{i}\right|=\left|W_{i}\right|$ for each $i \in[t]$, and defining

$$
d(i):=\left|\left\{j \in[t]: U_{i} \cap U_{j} \neq \emptyset\right\}\right|,
$$

we have that $d(i) \leq \kappa_{d}$. Finally, suppose that $\mathcal{F}_{1}, \mathcal{F}_{2}, \ldots, \mathcal{F}_{t}$ are families of vertex sets such that each \mathcal{F}_{i} contains $\beta n^{v_{i}}$ ordered subsets of V of size v_{i}.

Then a.a.s. there is a set of embeddings $\phi_{1}, \phi_{2}, \ldots, \phi_{t}$ such that each ϕ_{i} embeds a copy of F_{i} into $G(n, p)$ on V with W_{i} being mapped to U_{i} and $V\left(F_{i}\right) \backslash W_{i}$ being mapped to a set in \mathcal{F}_{i} which does not intersect $\cup_{i \in[t]} U_{i}$. Furthermore for $i \neq i^{\prime}$, we have that $\phi_{i}\left(V\left(F_{i}\right) \backslash W_{i}\right) \cap \phi_{i^{\prime}}\left(V\left(F_{i^{\prime}}\right), W_{i^{\prime}}\right)=\emptyset$.

Proof. Fix $\kappa_{v}^{\prime}:=\kappa_{v}+2 \kappa_{e}$ and let $\eta_{0}<\beta^{2} 2^{-\left(\kappa_{v}^{\prime}+2 \kappa_{e}+9\right)}\left(\kappa_{v}^{\prime}!\left(\kappa_{v}^{\prime}+\kappa_{e}+\kappa_{w}\right)\right)^{-1}$. The idea here is to greedily extract the desired embeddings, finding them one at a time in $G(n, p)$. To achieve this, we use the multi-round exposure trick, having a constant number of phases such that in each phase we find a collection of embeddings. At the beginning of each phase we "reveal" another copy of $G(n, p)$ on the same vertex set and focus only on the indices for which we have not yet found a suitable embedding, showing that in any sufficiently large subset of these indices there is an index for which we can find
a suitable embedding. At each phase, we will apply Lemma 2.8 and so we first need to slightly adjust the sets we are considering in order to be in the setting of that lemma.

First let us adjust each F_{i} so that it has κ_{v}^{\prime} nonbase vertices and κ_{e} edges. To each F_{i} add $\kappa_{e}-e\left(F_{i}\right)$ isolated edges. Then add isolated vertices until the resulting graph has $\kappa_{v}^{\prime}+\left|W_{i}\right|$ vertices and redefine F_{i} as the resulting graph. Note that if $p=p(n)$ is such that $\Phi_{F_{i}, W_{i}}(n, p) \geq C n$ and $\Phi_{F_{i}, W_{i}}(n, p) \geq C n^{\frac{1}{k}}$ for the original F_{i} as in the statement of the proposition, then these conditions are preserved under the above changes to F_{i} for each i, by Lemma 2.7. We also arbitrarily extend each set in each \mathcal{F}_{i} to get sets of size κ_{ν}^{\prime}. As we can extend with any vertices not already in the set, it can be seen that we can have families \mathcal{F}_{i} of size at least $\beta^{\prime} n^{n_{v}^{\prime}}$ for some $\beta^{\prime}>\beta /\left(2^{\kappa_{v}^{\prime}}\right)$ which we now fix. Clearly, a set of valid embeddings of these new F_{i} (where the new vertices of F_{i} are mapped to the new vertices from a set in $\mathcal{F}_{i}{ }^{10}$) will also yield a set of embeddings of the original graphs we were interested in.

Now let us turn to the phases of our algorithm. We will generate $G(n, p)$ in $k+1$ rounds so that $G(n, p)=\cup_{j=1}^{k+1} G_{j}$ with each G_{j} an independent copy of $G\left(n, p^{\prime}\right)$, where p^{\prime} is such that $(1-p)=\left(1-p^{\prime}\right)^{k+1}$. Note that for any graph F, vertex subset $W \subset V(F)$, constant $c>0$ and probability p, one has that $\Phi_{F \backslash W}(n, c p)=c^{\prime} \Phi_{F, W}(n, p)$ for some constant $c^{\prime}=c^{\prime}$ between 1 and $c^{e(F)}$. Likewise, multiplication of the probability by some constant $c>0$ results in multiplication of $\Phi_{F, W}$ by some constant factor. Hence, choosing $C>0$ sufficiently large, we can guarantee that if $\Phi_{F_{i} W_{i}}(n, p) \geq$ $C n$ and $\Phi_{F_{i}, W_{i}}(n, p) \geq C n^{\frac{1}{k}}$ as in the statement of the proposition, then $\Phi_{F_{i}, W_{i}}\left(n, p^{\prime}\right) \geq C^{\prime} n$ and $\Phi_{F_{i}, W_{i}}\left(n, p^{\prime}\right) \geq C^{\prime} n^{\frac{1}{k}}$ with C^{\prime} such that $C^{\prime} \geq \frac{2^{k_{v}^{\prime}+9} \kappa_{v}^{\prime}!K_{v}^{\prime}}{\beta^{\prime 2}}$. We fix such a $C>0$ and for $j=1, \ldots, k$, we define $t_{j}:=\eta n^{1-\frac{j-1}{k}}\left(\left(\kappa_{d}+1\right) \log n\right)^{j-1}$ and $s_{j}:=t_{j} n^{-\frac{1}{k}} \log n=\eta n^{1-\frac{j}{k}}\left(\kappa_{d}+1\right)^{j-1}(\log n)^{j}$. We also define $t_{k+1}:=\left(\kappa_{d}+1\right) s_{k}=\eta\left(\left(\kappa_{d}+1\right) \log n\right)^{k}, s_{k+1}:=1$ and $t_{k+2}:=0$.

Now, as discussed, we look to choose embeddings one by one in order to reach the desired conclusion. Therefore, for the sake of brevity, at any point in the argument let us say that an embedding ϕ_{i} of F_{i} is valid if it maps W_{i} to U_{i} and maps $V\left(F_{i} \backslash W_{i}\right)$ to a set in \mathcal{F}_{i} which is disjoint from $U:=\cup_{i \in[t]} U_{i}$ and also disjoint from $\phi_{i^{\prime}}\left(V\left(F_{i^{\prime}} \backslash W_{i^{\prime}}\right)\right)$ for all indices $i^{\prime} \in[t]$ for which we have already chosen an embedding. Our claim is that a.a.s. (with respect to $G(n, p)$) we can repeatedly choose valid embeddings until we have found embeddings for all t indices in $T:=\{1, \ldots, t\}$. We therefore need to show that we never get stuck and that this greedy algorithm always finds a valid embedding. In order to do this, we split the algorithm into $k+1$ phases and rely on the edges of G_{j} in the $j^{\text {th }}$ phase where we will find $t_{j}-t_{j+1}$ valid embeddings. We will show that for all $j \in[k+1]$, conditioned on the fact that the algorithm has succeeded so far, we have that a.a.s (with respect to $G_{j}=G\left(n, p^{\prime}\right)$) the algorithm will succeed for a further phase. The conclusion then follows easily as there are constantly many phases.

So let us analyze the $j^{\text {th }}$ phase and condition on the fact that the process has been successful so far and so there are t_{j} indices that remain for us to find embeddings for. Let us further fix a specific set ${ }^{11}$ of t_{j} indices $T_{j} \subseteq T$ that remain and some set of already chosen valid embeddings $\left\{\phi_{i}: i \in R_{j}\right\}$ where $R_{j}:=T \backslash T_{j}$. By the law of total probability, it suffices to condition on this fixed set of embeddings so far and show that a.a.s. (with respect to G_{j}) we can repeatedly find valid embeddings, each time removing the corresponding index from T_{j}, until there are t_{j+1} indices remaining. So let $V_{j}^{\prime \prime}:=\cup_{i \in R_{j}} \phi_{i}\left(V\left(F_{i}\right)\right) \cup U$ and for $i \notin R_{j}$, define $\mathcal{F}_{i}^{(j)}:=\left\{S \in \mathcal{F}_{i}: S \cap V_{j}^{\prime \prime}=\emptyset\right\}$. We have that $\left|\mathcal{F}_{i}^{(j)}\right| \geq \frac{\beta^{\prime}}{2} n^{\kappa_{v}^{\prime}}$ as $\left|V_{j}^{\prime \prime}\right|<\frac{\beta^{\prime}}{2} n$ due to our condition on η_{0}. We then apply Lemma 2.8 to the sets $\mathcal{F}_{i}^{(j)}$ such that $i \in T_{j}$, and where $t_{j}, s_{j}, \frac{\beta^{\prime}}{2}, \kappa_{v}^{\prime}, \kappa_{v}^{\prime}, \kappa_{w}, \kappa_{e}$ and p^{\prime} play the role of t, s, β, L, v, w, e and p respectively. Let us check that the conditions needed for the lemma are satisfied. Indeed, we certainly have that $\kappa_{v}^{\prime} t_{j} \leq \kappa_{\nu}^{\prime} t \leq \frac{\beta^{\prime} n}{8 \kappa_{v}^{\prime}}, s_{j} \kappa_{w} \leq$

[^7]$\frac{\beta^{\prime} n}{8 \kappa_{v}^{\prime}}$ and $\binom{t_{j}}{s_{j}} \leq\binom{ n}{s_{j}} \leq 2^{n}$. Moreover, when $1 \leq j \leq k$,
$$
C^{\prime} s_{j} n^{\frac{1}{k}}=C^{\prime} t_{j} \log n \geq\left(\frac{2^{k_{v}^{\prime}+9} \kappa_{v}^{\prime}!\kappa_{v}^{\prime}}{\beta^{\prime 2}}\right) t_{j} \log n \text { and } C^{\prime} n \geq\left(\frac{2^{\kappa_{v}^{\prime}+9} \kappa_{v}^{\prime}!}{\beta^{\prime 2}}\right) n
$$
by our definition of C^{\prime} whilst for $j=k+1, C^{\prime} s_{k+1} n^{\frac{1}{k}}=\omega\left(t_{k+1} \log n\right)$. This verifies the conditions in (2.2) in all cases and so we conclude that a.a.s., given any set V_{j}^{\prime} of at most $\kappa_{v}^{\prime} t_{j}$ vertices and any set S_{j} of s_{j} indices in T_{j} such that the sets U_{i} with $i \in S_{j}$ are pairwise disjoint, there is an index $i^{*} \in S_{j}$ and a valid embedding of $F_{i^{*}}$ in G_{j} which avoids V_{j}^{\prime}. This then implies that the greedy process will succeed throughout this phase. Indeed, we can now initiate with $V_{j}^{\prime}=\emptyset$ and repeatedly find indices $i \in T_{j}$ for which we have a valid embedding ϕ_{i}. We add this embedding to our chosen embeddings, add the vertices of it to V_{j}^{\prime} and delete the index i from T_{j}. The conclusion that we drew from Lemma 2.8 above asserts that we continue this process until we have t_{j+1} indices remaining in T_{j}, which is precisely what we need. Indeed, for $1 \leq j \leq k$, if we have more than t_{j+1} indices in T_{j} left then by the upper bound on $d(i)$ for i in T_{j} taking a maximal set $S \subset T_{j}$ such that U_{i} are all pairwise disjoint for $i \in S$, we have that $|S| \geq t_{j+1} /\left(\kappa_{d}+1\right) \geq s_{j}$. In the final phase when $j=k+1$ we can simply find embeddings one at a time as $s_{k+1}=1$. This concludes the proof.

As corollaries, we can conclude the existence of absorbing structures in $G \cup G(n, p)$. We split the cases here as Case 1 and 2 are much simpler.

Corollary 6.22. Let $k, r \in \mathbb{N}$ such that either $2 \leq k \leq r / 2$ or $k=r$ and let $\gamma>0$. There exists $\eta_{0}>0$ and $C>0$ such that if $p \geq C n^{-2 / k}$ and G is an n-vertex graph with minimum degree $\delta(G) \geq\left(1-\frac{k}{r}+\gamma\right) n$, then for any $0<\eta<\eta_{0}$ and any set of $2 \eta n$ vertices $X_{1} \subseteq V(G)$, a.a.s. there exists a 4-bounded absorbing structure $\mathcal{A}=\left(\Phi, Z, Z_{1}\right)$ in $G^{\prime}:=G \cup G(n, p)$ of flexibility $m:=\eta n$, which has flexible set $Z_{1}=X_{1}$.

Proof. We look to apply Proposition 6.21 and simply need to establish the hypothesis of the proposition. Consider a bipartite template $T=\left(I=\{1, \ldots, 3 m\}, J_{1} \sqcup J_{2}=\{1, \ldots, 2 m\} \sqcup\{2 m+1, \ldots\right.$, $4 m\}, E(T)$) as in Definition 6.18; recall such a template exists [42]. Fix $Z_{1}=X_{1}=\left\{z_{1}, \ldots, z_{2 m}\right\}$ and choose an arbitrary set of $2 m$ vertices $Z_{2} \subset V(G) \backslash Z_{1}$ which we label $\left\{z_{2 m+1}, \ldots, z_{4 m}\right\}$. Now towards applying Proposition 6.21 , we set $t:=3 m$ and for $i \in[t]$ we define the sets $U_{i}:=\left\{z_{j}: j \in N(i)\right\}$ where $N(i)$ is as in Definition 6.18. Note that we can set $\kappa_{d}:=1600$ as we start with a template T with $\Delta(T) \leq 40$, so for any set $N(i) \subset J$ (of at most 40 vertices), there are at most 1600 indices $i^{\prime} \in I=[3 \mathrm{~m}]$ such that $N\left(i^{\prime}\right) \cap N(i) \neq \emptyset$.

Now, fixing i, the collection \mathcal{F}_{i}, which we will use when applying Proposition 6.21 , will be obtained from Proposition 6.16. Indeed, this proposition implies, along with Propositions 6.6 and 6.7, that there is some $\beta>0$ such that the following holds with $a=1$ if $r / k \in \mathbb{N}$ (Case 1) and $a=2$ otherwise (Case 2).

Claim 6.23. For any set U of at most 40 vertices, there is an $\left(\boldsymbol{H}_{a}(r \times|U|), H_{\text {det }}\right)$-absorbing gadget ${ }^{12}$ F^{\prime} such that there are at least $\beta n^{\left|F^{\prime}\right|-|U|}$ embeddings of F^{\prime} in G which map the base set of the absorbing gadget to U.

[^8]For each i, apply Claim 6.23 with U_{i} playing the role of U to obtain a collection \mathcal{F}_{i} of ordered vertex sets from $V(G)$ that combined with U_{i} each span such an absorbing gadget $F_{i}^{\prime}=F \prime$. For each such embedding of F_{i}^{\prime}, if we have an ordered $\left(\overline{\boldsymbol{H}_{a}}\left(r \times\left|U_{i}\right|\right), \overline{H_{\text {det }}}\right.$)-absorbing gadget F_{i} (in $G(n, p)$), on the same vertex set, then we obtain the desired embedding ϕ_{i} of a $\left(\boldsymbol{K}_{a}\left(r \times\left|U_{i}\right|\right), K_{r}\right)$-absorbing gadget in $G \cup G(n, p)$, where \boldsymbol{K}_{a} is a $\left(K_{r+1}^{-}, 2 a\right)$-path. Applying Proposition 6.21 with small enough $\eta>0$ thus gives us the absorbing structure, upon noticing that the conditions on $\Phi_{F_{i}, W_{i}}$ and $\Phi_{F_{i}, W_{i}}$ are satisfied by Lemma 6.17.

The third case, when $r / 2<k \leq r-1$, follows the exact same method of proof. The main difference comes from the fact that we do not have many absorbing gadgets for all small sets of vertices in the deterministic graph but only for sets which lie in one part of the partition dictated by Lemma 6.12 . Therefore we look to find an absorbing structure in each part of the partition. Thus when we apply Proposition 6.21, we do so to find all these absorbing structures at once, in order to guarantee that these absorbing structures are disjoint. The conclusion is as follows.

Corollary 6.24. Let $r / 2<k \leq r-1$ be integers, and define $q:=r-k, c:=\lceil r / q\rceil$ and $\gamma>0$. Then there exists $\alpha>0$ such that the following holds for all $0<\varepsilon<\alpha \gamma / 4$. There exists $C=C(r, k, \gamma, \varepsilon)>0$ and $\eta_{0}=\eta_{0}(r, k, \gamma, \varepsilon)>0$ such that if $p \geq C n^{-2 / k}$ and G is an n-vertex graph with minimum degree $\delta(G) \geq\left(1-\frac{k}{r}+\gamma\right) n$, then for any $0<\eta<\eta_{0}$ there is a partition $\mathcal{P}=\left\{V_{1}, V_{2}, \ldots, V_{\rho}, W\right\}$ of $V(G)$ into at most c parts with the following properties:

- $\left|V_{i}\right| \geq \alpha n$ for $i \in[\rho]$;
- $|W| \leq \varepsilon n$;
- $\delta\left(G\left[V_{i}\right]\right) \geq\left(1-\frac{k}{r}+\frac{\gamma}{4}\right)\left|V_{i}\right|$ for each $i \in[\rho]$;
- For any collection of subsets $X_{i} \subset V_{i}$ such that $1.8 \eta\left|V_{i}\right| \leq\left|X_{i}\right| \leq 2 \eta\left|V_{i}\right|$ for all $i \in[\rho]$, there a.a.s. exists a set of $c\left(2^{c+1}+1\right)$-bounded absorbing structures $\left\{\mathcal{A}_{i}=\left(\Phi_{i}, Z_{i}, Z_{i 1}\right): i \in[\rho]\right\}$ in $G^{\prime}:=G \cup G(n, p)$ such that each \mathcal{A}_{i} has flexibility $m_{i}:=\left|X_{i}\right| / 2$ and has flexible set $Z_{i 1}=X_{i}$. Furthermore $V\left(\mathcal{A}_{i}\right) \cap V\left(\mathcal{A}_{i^{\prime}}\right)=\emptyset$ for all $i \neq i^{\prime} \in[\rho]$.

Proof. We begin by applying Proposition 6.12 to get a vertex partition \mathcal{P} with at most $c-1$ parts and in each part $U \in \mathcal{P}$ we remove any vertex v which has internal degree $d_{U}(v)=\left|N_{G}(v) \cap U\right|<$ $\left(1-\frac{k}{r}+\frac{\gamma}{2}\right)|U|$, and add v to W. The resulting partition is the partition we will use. Choosing $\epsilon_{6.12}$ in the application of Proposition 6.12 to be less than ε / c, we have that the first three bullet points are satisfied. Below we show the last bullet point, and to aid readability we temporarily fix $i=1$.

Now given a set of $X_{1} \subset V_{1}$ we choose a set $Z_{2} \subset V_{1} \backslash X_{1}$ such that $\left|Z_{2}\right|=2 m_{1}$. Furthermore, according to some template $T=\left(I=\left\{1, \ldots, 3 m_{1}\right\}, J_{1} \sqcup J_{2}=\left\{1, \ldots, 2 m_{1}\right\} \sqcup\left\{2 m_{1}+1, \ldots, 4 m_{1}\right\}, E(T)\right)$ as in Definition 6.18, we label X_{1} according to J_{1} and Z_{2} according to J_{2} and identify sets $U_{i^{\prime}} \subseteq X_{1}$ for each $i^{\prime} \in\left[3 m_{1}\right]$ according to the neighborhood of i^{\prime} in T. As in Corollary 6.22, by Propositions 6.12 and 6.16 there exists some $\beta>0$ such that for each $i^{\prime} \in\left[3 m_{1}\right]$, fixing $s_{i^{\prime}}=\left|U_{i^{\prime}}\right|$ the following holds. There is some $\underline{\boldsymbol{H}}_{i^{\prime}} \in \boldsymbol{\mathcal { H }}_{3}\left(r \times s_{i^{\prime}}\right)$ and some $\left(\underline{\boldsymbol{H}}_{i^{\prime}}, H_{\text {det }}\right)$-absorbing gadget $F_{i}^{\prime \prime}$ such that there are at least $\beta n^{\left|F f_{i j}\right|-s_{i \prime}}$ embeddings of $F i^{\prime \prime}$ in G which map the base set of $F_{i}^{\prime \prime}$ to $U_{i^{\prime}}$. Each of these embeddings gives a candidate vertex set for which we could embed an $\left(\overline{\boldsymbol{H}}_{i^{\prime}}, \overline{H_{\text {det }}}\right)$-absorbing gadget, say $F_{i^{\prime}}$ to get a copy of a $\left(\underline{\boldsymbol{K}}, K_{r}\right)$-absorbing gadget in G^{\prime}, with base set $U_{i^{\prime}}$, where $\underline{\boldsymbol{K}} \in \boldsymbol{\mathcal { H }}\left(r \times s_{i^{\prime}}\right)$ and $\boldsymbol{\mathcal { H }}=\boldsymbol{\mathcal { H }}\left(K_{r+1}^{-}, \leq c\left(2^{c+1}+1\right)\right.$). Using Lemma 6.17, we can now apply Proposition 6.21 (provided $\eta>0$ is sufficiently small) to get the desired embeddings of all the $F_{i^{\prime}}$ which an absorbing structure \mathcal{A}_{1} as in the statement of the corollary. We in fact apply Proposition 6.21 for all $i \in[\rho]$ at once which gives the collection of absorbing structures as required.

Before proving the upper bound in our main result, Theorem 1.5, we give one last consequence of Proposition 6.21 which will be useful for us.

Corollary 6.25. Suppose that $2 \leq k \leq r$ and $\gamma, \beta>0$. Then there exists $\alpha=\alpha(r, k, \gamma, \beta)>0$ and $C>0$ such that the following holds. Suppose G is an n-vertex graph with disjoint vertex sets U, W such that $|U| \leq \alpha n,|W| \geq \beta n$ and for all $v \in U \cup W,\left|N_{G}(v) \cap W\right| \geq\left(1-\frac{k}{r}+\gamma\right)|W|$ and $p=p(n)$ is such that $p \geq C n^{-2 / k}$. Then a.a.s. in $G \cup G(n, p)$ there is a set of $|U|$ disjoint copies K_{r} so that each copy of K_{r} contains a vertex of U and $r-1$ vertices of W.

Proof. First, let $r^{*}:=\lceil r / k\rceil$. By the fact that $\left|N_{G}(v) \cap W\right| \geq\left(1-\frac{k}{r}+\gamma\right)|W|$ for all $v \in U \cup W$, we have that each vertex $u \in U$ is in at least $\left(\frac{\beta \gamma}{2} n\right)^{r^{*}}$ distinct copies of $K_{r^{*}+1}^{-}$in G such that the other vertices of each copy lie in W, and u is contained in the nonedge of each $K_{r^{*}+1}^{-}$. Thus by Lemma 2.6, there exists some $\beta^{\prime}>0$ such that each $u \in U$ is in $\beta^{\prime} n^{r-1}$ copies of $H_{\text {det }}$ with the other vertices of each copy in W, and u in the part of size $q:=r-\left(r^{*}-1\right) k$ in $H_{\text {det }}$. Let \mathcal{F}_{u} be the collection of $(r-1)$-sets of vertices in W that, together with u, give rise to these copies of $H_{\text {det }}$ containing u. Set $F_{u}:=\overline{H_{\text {det }}}=K_{r}-E\left(H_{\text {det }}\right)$ with an identified vertex w_{u} in the clique of size q in $\overline{H_{\text {det }}}$. Thus an ordered embedding in $G(n, p)$ of F_{u} which maps w_{u} to u and $V\left(F_{u}\right) \backslash\left\{w_{u}\right\}$ to an ordered set in \mathcal{F}_{u} will give an embedding of K_{r} in $G \cup G(n, p)$ containing u and vertices of W. By Lemma 2.7 we have that $\Phi_{F_{u}, w_{u}} \geq C n^{1 / k}$ and $\Phi_{F_{u} w_{u}} \geq C n$. Thus, provided $\alpha>0$ is sufficiently small, an application of Proposition 6.21 gives the desired set of embeddings of K_{r} in $G \cup G(n, p)$.

7 | PROOF OF THE UPPER BOUND OF THEOREM 1.5

In this section we prove the upper bound of Theorem 1.5. Fix some sufficiently large $n \in r \mathbb{N}$ and let G be an n-vertex graph with $\delta(G) \geq\left(1-\frac{k}{r}+\gamma\right) n$. We will show that there exists $C=C(\gamma, k, r)>0$ such that if $p \geq C n^{-2 / k}$, then $G^{\prime}:=G \cup G(n, p)$ a.a.s. contains a perfect K_{r}-tiling. Again, we split the proof according to the parameters. We first treat Cases 1 and 2 together (i.e., when $2 \leq k \leq r / 2$ or $k=r$). Here we avoid many of the technicalities which occur in Case 3 and the main scheme of the proof is clear.

Proof of Cases 1 and 2. Suppose $2 \leq k \leq r / 2$ or $k=r$, and let $C, C^{\prime}>0$ be chosen such that we can express $G(n, p)=\cup_{j=1}^{4} G_{j}$ with each G_{j} a copy of $G\left(n, p^{\prime}\right)$ where $p^{\prime} \geq C^{\prime} n^{-2 / k}$ and $C^{\prime}>0$ is large enough to be able to draw the desired conclusions in what follows. Now fix $0<\eta<\min \left\{\frac{\gamma}{2000 r^{2}}, \eta_{0}\right\}$ where η_{0} is as in Corollary 6.22 and consider $X^{\prime} \subseteq V(G)$ to be the subset generated by taking every vertex in $V(G)$ in X^{\prime} with probability 1.9η, independently of the other vertices. With high probability, by Chernoff's theorem, we have that $1.8 \eta n \leq\left|X^{\prime}\right| \leq 2 \eta n$ and for every vertex $v \in V(G),\left|N_{G}(v) \cap X^{\prime}\right| \geq\left(1-\frac{k}{r}+\frac{3 \gamma}{4}\right)\left|X^{\prime}\right|$. Take an instance of X^{\prime} where this is the case and let $X:=X^{\prime}$ if $\left|X^{\prime}\right|$ is even and $X:=X^{\prime} \cup\{x\}$ for some arbitrary vertex $x \in V(G) \backslash X^{\prime}$ if $\left|X^{\prime}\right|$ is odd. Apply Corollary 6.22 to get a 4-bounded absorbing structure $\mathcal{A}=\left(\Phi, Z, Z_{1}\right)$ in $G \cup G_{1}$ with flexibility $|X| / 2$ and flexible set $Z_{1}=X$. Remark 6.19 implies $|V(\mathcal{A})| \leq$ $500 r^{2} \eta n \leq \gamma n / 4$.

Then letting $V^{\prime}:=V(G) \backslash V(\mathcal{A})$, we have that $\delta\left(G\left[V^{\prime}\right]\right) \geq\left(1-\frac{k}{r}+\frac{\gamma}{2}\right)\left|V^{\prime}\right|$. Choose $\alpha:=$ $\min \left\{\alpha_{6.25}, \frac{\gamma \eta}{4 r}\right\}$, where $\alpha_{6.25}$ is the constant obtained when applying Corollary 6.25 with $r, k, \gamma / 2, \eta$ playing the role of r, k, γ, β respectively.

Apply Theorem 5.1 to obtain a K_{r}-tiling \mathcal{K}_{1} in $\left(G \cup G_{2}\right)\left[V^{\prime}\right]$ covering all but at most αn vertices of V^{\prime}. Let Y denote the set of those vertices in V^{\prime} uncovered by \mathcal{K}_{1}. Apply Corollary 6.25 to obtain a K_{r}-tiling \mathcal{K}_{2} in $\left(G \cup G_{3}\right)[X \cup Y]$ which covers Y and covers precisely $(r-1)|Y| \leq \gamma \eta n / 2 \leq \gamma|X| / 2$ vertices of X. Let \tilde{X} be the set of those vertices in X not covered by \mathcal{K}_{2}. We have that $\delta(G[\tilde{X}]) \geq$
$\left(1-\frac{k}{r}+\frac{\gamma}{4}\right)|\tilde{X}|$ so we can apply Theorem 5.1 to obtain a K_{r}-tiling \mathcal{K}_{3}^{\prime} in $\left(G \cup G_{4}\right)[\tilde{X}]$ which covers all but at most $|X| / 4$ vertices of \tilde{X}.

By Remark 6.20 we know that for any subset X_{1} of X of size $|X| / 2$, there is a K_{r}-tiling covering precisely $V(\mathcal{A}) \backslash X_{1}$. Thus, $|V(\mathcal{A})|-|X| / 2$ is divisible by r. Therefore, as the only vertices in $V(G)$ uncovered by $V\left(\mathcal{K}_{1} \cup \mathcal{K}_{2}\right)$ are those from $(V(\mathcal{A}) \backslash X) \cup \tilde{X}$, there must be a subtiling $\mathcal{K}_{3} \subseteq \mathcal{K}_{3}^{\prime}$ which covers all but exactly $|X| / 2$ vertices of \tilde{X}.

Let \bar{X} be the set of vertices of X that are covered by cliques in $\mathcal{K}_{2} \cup \mathcal{K}_{3}$. Thus $|\bar{X}|=|X| / 2$ and by Remark 6.20 there is a K_{r}-tiling \mathcal{K}_{4} in $G \cup G_{1}$ covering precisely $V(\mathcal{A}) \backslash \bar{X}$. Hence, $\mathcal{K}:=\mathcal{K}_{1} \cup \mathcal{K}_{2} \cup$ $\mathcal{K}_{3} \cup \mathcal{K}_{4}$ gives a perfect K_{r}-tiling of $G \cup G(n, p)$ as required.

If $r / 2<k \leq r-1$, we have to overcome a few technicalities. The idea is to apply Corollary 6.24 and to apply the same approach as above in each of the parts of the resulting partition to find a K_{r}-tiling. Of course we also have to incorporate the vertices of the exceptional class W into copies of cliques in our tiling; this is straightforward using Corollary 6.25. So we cover these vertices first before embarking on tiling the majority of the graph.

More subtle is a problem that arises from divisibility. That is, when we tile each part according to the scheme above, we cannot guarantee that we are left with a subset of the flexible set of the right size to apply the key property of the absorbing structure. Therefore we embed "crossing" copies of K_{r} in our flexible sets in order to resolve this divisibility hurdle at the end of our process. We find these copies in the following manner. Consider the graph $F:=K_{\left\lceil\frac{r-1}{2}\right\rceil,\left\lfloor\frac{r-1}{2}\right\rfloor}$. Because of our minimum degree condition and Lemma 2.6, every part V_{i} contains at least $\gamma^{\prime} n^{r-1}$ copies of F for some $\gamma^{\prime}>0$. Now let \bar{F} be the graph consisting of a copy of $K_{\left\lceil\frac{r-1}{2}\right\rceil+1}$ and a copy of $K_{\left\lfloor\frac{r-1}{2}\right\rfloor+1}$ joined at a single vertex x, say. If we consider F and $\bar{F}-x$ to have the same vertex set so that $\bar{F}-x=K_{r-1}-E(F)$, then $F \cup \bar{F}$ is a copy of K_{r}. Also note that it follows from Lemma 2.7 that $\Phi_{\bar{F}} \geq C^{\prime} n$ for $p \geq C^{\prime} n^{-2 / k}$. We will look for embeddings of $K_{r}=F \cup \bar{F}$ in $G \cup G(n, p)$ such that the vertex x is mapped to one part of the partition and the $r-1$ other vertices lie in another part of the partition.

Proof of Case 3. Suppose $r / 2<k \leq r-1, q:=r-k$ and $c:=\lceil r / q\rceil$. Now let $C, C^{\prime}>0$ be chosen so that we can express $G(n, p)=\cup_{j=1}^{4} G_{j} \cup_{i=1}^{c}\left(G_{i 1} \cup G_{i 2}\right)$ with each $G_{j}, G_{i 1}$ and $G_{i 2}$ a copy of $G\left(n, p^{\prime}\right)$ where $p^{\prime} \geq C^{\prime} n^{-2 / k}$ and $C^{\prime}>0$ is large enough to be able to draw the desired conclusions in what follows.

We use our first copy of $G\left(n, p^{\prime}\right)$ to find the crossing copies of K_{r} discussed above. Apply Corollary 6.24, letting $\alpha_{1}>0$ be the outcome of the corollary with input r, k, γ. Choose $0<$ $\varepsilon<\min \left\{\alpha_{1} \gamma /(8 r), \alpha_{6.25}\right\}$, where $\alpha_{6.25}$ is the constant obtained when applying Corollary 6.25 with $r, k, \gamma / 4,1 / 2$ playing the roles of r, k, γ, β respectively. Thus, Corollary 6.24 yields a partition $V_{1}, \ldots, V_{\rho}, W$ of $V(G)$ where $\rho \leq c$ and $|W| \leq \varepsilon n$. Note $\delta\left(G\left[V_{i}\right]\right) \geq\left(1-\frac{k}{r}+\frac{\gamma}{4}\right)\left|V_{i}\right|$ for each $i \in[\rho]$. Thus for each $i \in[\rho-1]$ and every subset $V^{\prime} \subseteq V(G)$ of at least $n-c(r-1) r$ vertices, Lemma 2.6 implies there exists some $\gamma^{\prime}=\gamma^{\prime}(r, k, \gamma)>0$ such that there are at least $\gamma^{\prime} n^{r}$ choices of pairs $(S, v) \in\binom{V^{\prime} \cap V_{i+1}}{r-1} \times\left(V^{\prime} \cap V_{i}\right)$ such that S hosts a copy of the graph $F:=K_{\left\lceil\frac{r-1}{2}\right\rceil,\left\lfloor\frac{r-1}{2}\right\rfloor}$ discussed above.

Therefore, using that $\Phi_{\bar{F}} \geq C^{\prime} n$ with the graph \bar{F} as described above, we can apply Corollary 2.9 to conclude that for any subset V^{\prime} of vertices of at least $n-c(r-1) r$ vertices and any $i \in[\rho-1]$, there is a copy of K_{r} in $G \cup G_{1}$ which has $r-1$ vertices in V_{i+1} and one vertex in V_{i}. Therefore, we can greedily choose copies of K_{r} so that we have a set $\mathcal{R}:=\cup_{i \in[\rho-1]} \mathcal{R}_{i}$ of disjoint copies of K_{r} in $G \cup G_{1}$ such that \mathcal{R}_{i} contains $r-1$ copies of K_{r} with one vertex in V_{i} and $r-1$ vertices of V_{i+1}. Let $\mathcal{R}_{\rho}:=\emptyset$ and $R_{i}:=V(\mathcal{R}) \cap V_{i}$ for $i \in[\rho]$, where $V(\mathcal{R})$ denotes the vertices which feature in cliques in \mathcal{R}. Note that $\left|R_{1}\right|=r-1,\left|R_{2}\right|=\left|R_{3}\right|=\cdots=\left|R_{\rho-1}\right|=r(r-1)$ and $\left|R_{\rho}\right|=(r-1)^{2}$. We will incorporate these
R_{i} into our flexible sets in order to use the copies of K_{r} that they define to fix divisibility issues that arise in the final stages of the argument.

Now fix $0<\eta<\min \left\{\frac{\gamma}{4000 c^{c} r^{2}}, \eta_{0}\right\}$ where η_{0} is as in Corollary 6.24 and for each $i \in[\rho]$ consider $X_{i}^{\prime} \subseteq V(G)$ to be a subset selected by taking every vertex in $V_{i} \backslash R_{i}$ with probability 1.9η, independently of the other vertices. With high probability, by Chernoff's theorem, we have that $1.8 \eta\left|V_{i}\right| \leq\left|X_{i}^{\prime}\right| \leq$ $2 \eta\left|V_{i}\right|-r(r-1)$ and for every vertex $v \in V_{i},\left|N_{G}(v) \cap X_{i}^{\prime}\right| \geq\left(1-\frac{k}{r}+\frac{\gamma}{8}\right)\left|X_{i}^{\prime}\right|$. Therefore, for each i, take an instance of $X i^{\prime}$ where this is the case and let $X_{i}:=X_{i}^{\prime} \cup R_{i}$ if $\left|X_{i}^{\prime}\right|+\left|R_{i}\right|$ is even and $X_{i}:=$ $X_{i}^{\prime} \cup R_{i} \cup\{x\}$ for some arbitrary vertex $x \in V_{i} \backslash\left(X_{i}^{\prime} \cup R_{i}\right)$ if $\left|X_{i}^{\prime}\right|+\left|R_{i}\right|$ is odd. Apply Corollary 6.24 to get a collection $\left\{\mathcal{A}_{i}=\left(\Phi_{i}, Z_{i}, Z_{i 1}\right): i \in[\rho]\right\}$ of absorbing structures in $G \cup G_{2}$ such that each \mathcal{A}_{i} has flexibility $\left|X_{i}\right| / 2$ and flexible set $Z_{i 1}=X_{i}$. By Remark 6.19 we have that $A:=\cup_{i \in[\rho]} V\left(\mathcal{A}_{i}\right)$ is such that $|A| \leq 125 c 2^{c+2} r^{2} \eta n \leq \gamma n / 8$.

Therefore, setting $V^{\prime}:=V(G) \backslash(W \cup A)$, we have that for every $w \in W \cup V^{\prime},\left|N_{G}(w) \cap V^{\prime}\right| \geq(1-$ $\left.\frac{k}{r}+\frac{\gamma}{4}\right)\left|V^{\prime}\right|$ and so an application of Corollary 6.25 yields a K_{r}-tiling \mathcal{K}_{1} in $G \cup G_{3}$ of $|W|$ cliques, each using one vertex of W and $r-1$ vertices of V^{\prime}. Setting $V^{\prime \prime}:=V(G) \backslash\left(A \cup V\left(\mathcal{K}_{1}\right)\right)$, we have that $\delta\left(G\left[V^{\prime \prime}\right]\right) \geq\left(1-\frac{k}{r}+\frac{\gamma}{8}\right)\left|V^{\prime \prime}\right|$. So, as in the previous proof, we let $\alpha_{2}:=\min \left\{\alpha_{6.25}, \frac{\gamma \eta}{16 r}\right\}$, where $\alpha_{6.25}$ is obtained from Corollary 6.25 (where $\gamma / 8$ and η play the roles of γ and β respectively), and we apply Theorem 5.1 to obtain a K_{r}-tiling \mathcal{K}_{2} in $\left(G \cup G_{4}\right)\left[V^{\prime \prime}\right]$ covering all but at most $\alpha_{2} n$ vertices of $V^{\prime \prime}$. Let Y be the set of vertices from $V^{\prime \prime}$ uncovered by \mathcal{K}_{2} and set $Y_{i}:=Y \cap V_{i}$ for each $i \in[\rho]$.

Now for each $i \in[\rho]$ a simple application of Corollary 6.25 yields a K_{r}-tiling $\mathcal{K}_{i 1}$ in $G \cup G_{i 1}$ which covers Y_{i} and uses precisely $(r-1)\left|Y_{i}\right| \leq \gamma \eta n / 16 \leq \gamma\left|X_{i}^{\prime}\right| / 16$ vertices of X_{i}^{\prime}. Note that we do not use any vertices of $R=\cup_{i \in[\rho]} R_{i}$ in these cliques. For each $i \in[\rho]$ let \tilde{X}_{i} be the vertices of $X_{i} \backslash R_{i}$ not involved in copies of K_{r} in $\mathcal{K}_{i 1}$. As $\delta\left(G\left[\tilde{X}_{i}\right]\right) \geq\left(1-\frac{k}{r}+\frac{\gamma}{16}\right)\left|\tilde{X}_{i}\right|$, we can apply Theorem 5.1 to obtain a K_{r}-tiling \mathcal{K}_{i}^{\prime} in $\left(G \cup G_{i 2}\right)\left[\tilde{X}_{i}\right]$ which covers all but at most $\left|X_{i}\right| / 4$ vertices of \tilde{X}_{i}, for each $i \in[\rho]$.

Note that we will not use the full tilings \mathcal{K}_{i}^{\prime} in our final tiling. So (ignoring for now the tilings \mathcal{K}_{i}^{\prime}), it remains to cover the vertices in $\left(V\left(\mathcal{A}_{i}\right) \backslash X_{i}\right) \cup R_{i} \cup \tilde{X}_{i}$ for each $i \in[\rho]$. We do so by means of the following algorithm. We initiate with the $\mathcal{K}_{i}^{\prime}, \mathcal{R}_{i}$ as above and set $\bar{Z}_{i}:=V\left(\mathcal{K}_{i 1}\right) \cap X_{i}$ and $\mathcal{K}_{i 2}:=\emptyset$ for all $i \in[\rho]$ and $i^{\prime}=1$. Now whilst $\left|\bar{Z}_{i^{\prime}}\right| \leq\left|X_{i^{\prime}}\right| / 2-r+1$, remove a clique from $\mathcal{K}_{i^{\prime}}^{\prime}$, add it to $\mathcal{K}_{i^{\prime} 2}$ and add its vertices to $\bar{Z}_{i^{\prime}}$. Once this process stops, add $\left|X_{i^{\prime}}\right| / 2-\left|\bar{Z}_{i^{\prime}}\right|$ copies of K_{r} in $\mathcal{R}_{i^{\prime}}$ to $\mathcal{K}_{i^{\prime}}$, and add all their vertices in X_{j} to \bar{Z}_{j} for $j=i^{\prime}, i^{\prime}+1$. If $i^{\prime} \leq \rho-1$, repeat this process, setting $i^{\prime}=i^{\prime}+1$. Note that when $i^{\prime}=\rho, \mathcal{R}_{i^{\prime}}=\emptyset$ and there are no cliques which we could add in this process. However, setting $\mathcal{K}_{0}=\mathcal{K}_{1} \cup \mathcal{K}_{2} \cup_{i \in[\rho]}\left(\mathcal{K}_{i 1} \cup \mathcal{K}_{i 2}\right)$ we have that $\left|V\left(\mathcal{K}_{0}\right)\right|, n$, and $\left|V\left(\mathcal{A}_{i}\right)\right|-\left|X_{i}\right| / 2$ are divisible by r for each i, so we can deduce that the algorithm takes no cliques from \mathcal{R}_{ρ} and terminates with $\left|\bar{Z}_{i}\right|=\left|X_{i}\right| / 2$ for all $i \in[\rho]$.

Finally, by the key property of the absorbing structure (Remark 6.20), we have that for each $i \in[\rho]$, there is a K_{r}-tiling $\mathcal{K}_{i 3}$ in $G \cup G_{2}$ covering $V\left(\mathcal{A}_{i}\right), ~ \bar{Z}_{i}$ and thus $\cup_{i \in[\rho]} \mathcal{K}_{i 3} \cup \mathcal{K}_{0}$ is the desired perfect K_{r}-tiling in $G \cup G(n, p)$.

8 | CONCLUDING REMARKS

In this paper we have almost completely resolved the perfect K_{r}-tiling problem for randomly perturbed graphs. The only cases that Theorem 1.5 does not resolve is when $\alpha=1 / r, 2 / r, \ldots,(r-2) / r$. Note however for $\alpha:=1-k / r$ where $2 \leq k \leq r-1$ we know that

$$
n^{-2 / k} \leq p\left(K_{r}, \alpha\right) \leq n^{-2 /(k+1)}
$$

In fact, one can slightly improve the lower bound, giving that $p\left(K_{r}, \alpha\right) \geq p\left(K_{k}, 0\right)=n^{-2 / k}(\log n)^{\frac{2}{k^{2}-k}}$. Indeed, as in our lower bound construction (Section 3), take G to be complete graph on n vertices with
a clique of size $k n / r$ removed. Letting A be the resulting independent set of vertices, if $p=o\left(p\left(K_{k}, 0\right)\right)$ then a.a.s. we have that the number of copies of K_{k+1} in $G(n, p)$ is less than, say, $(\log n)^{3}$ by Markov's inequality, whilst the number of vertices in A which do not lie in copies of K_{k} is at least $n^{1-o(1)}$, as can be seen by a second moment calculation (see e.g. [24, Theorem 3.22]). This precludes the existence of a perfect K_{r}-tiling in $G \cup G(n, p)$, as the average intersection of a clique in such a tiling with the vertex set A would be k and we cannot tile $G(n, p)[A]$ with a family of cliques whose average size is k given the restrictions above. This leaves a gap between the upper and lower bounds and it would be very interesting to resolve the problem for these "boundary" cases.

It is also of interest to consider the analogous problem for perfect H-tilings for arbitrary graphs H. Note that whilst the main result from [3] determines $p(H, \alpha)$ for all graphs H and $0<\alpha<1 /|H|$, the problem is still wide open for larger values of α. The methods from our paper are likely to be useful for the general problem, though we suspect how $p(H, \alpha)$ "jumps" as α increases will depend heavily on the structure of H. Thus we believe it would be a significant challenge to prove such a general result.

ACKNOWLEDGMENTS

Much of the research in this paper was undertaken whilst the authors were visiting the Instituto Nacional de Matemática Pura e Aplicada in Rio de Janeiro as part of the Graphs@IMPA thematic program in 2018. We are grateful to IMPA for the nice working environment. We are also extremely grateful to Louis DeBiasio and Shagnik Das for many useful conversations and to the referees for their careful reviews and their suggestions. In particular, we thank one of the referees who brought our attention to the improvement on the lower bound in the concluding remarks. Open access funding enabled and organized by Projekt DEAL.

REFERENCES

1. N. Alon and J.H. Spencer, The probabilistic method (1st ed.), John Wiley \& Sons, 1992.
2. S Antoniuk, A. Dudek, C. Reiher, A. Ruciński, and M. Schacht. High powers of Hamiltonian cycles in randomly augmented graphs, 2020, arXiv preprint arXiv:2002.05816.
3. J. Balogh, A. Treglown, and A.Z. Wagner, Tilings in randomly perturbed dense graphs, Combin. Probab. Comput. 28 (2019), 159-176.
4. W. Bedenknecht, J. Han, Y. Kohayakawa, and G.O. Mota, Powers of tight Hamilton cycles in randomly perturbed hypergraphs, Random Structures Algorithms 55 (2019), 795-807.
5. P. Bennett, A. Dudek, and A. Frieze. Adding random edges to create the square of a Hamilton cycle, 2017, arXiv preprint arXiv:1710.02716.
6. T. Bohman, A. Frieze, M. Krivelevich, and R. Martin, Adding random edges to dense graphs, Random Structures Algorithms 24 (2004), 105-117.
7. T. Bohman, A. Frieze, and R. Martin, How many random edges make a dense graph Hamiltonian?, Random Structures Algorithms 22 (2003), 33-42.
8. J. Böttcher, J. Han, Y. Kohayakawa, R. Montgomery, O. Parczyk, and Y. Person, Universality for bounded degree spanning trees in randomly perturbed graphs, Random Structures Algorithms 55 (2019), 854-864.
9. J. Böttcher, R. Montgomery, O. Parczyk, and Y. Person, Embedding spanning bounded degree graphs in randomly perturbed graphs, Mathematika 66 (2020), 422-447.
10. K. Corrádi and A. Hajnal, On the maximal number of independent circuits in a graph, Acta Math. Hungar. 14 (1963), 423-439.
11. A. Czygrinow, L. DeBiasio, H.A. Kierstead, and T. Molla, An extension of the Hajnal-Szemerédi theorem to directed graphs, Combin. Probab. Comput. 24 (2015), 754-773.
12. A. Czygrinow, L. DeBiasio, T. Molla, and A. Treglown, Tiling directed graphs with tournaments, Forum Math., Sigma 6 (2018), e2.
13. S. Das and A. Treglown, Ramsey properties of randomly perturbed graphs: cliques and cycles, Combin. Probab. Comput. 29 (2020), 830-867.
14. A. Dudek, C. Reiher, A. Ruciński, and M. Schacht, Powers of Hamiltonian cycles in randomly augmented graphs, Random Structures Algorithms 56 (2020), 122-141.
15. P. Erdős and M. Simonovits, Supersaturated graphs and hypergraphs, Combinatorica 3 (1983), 181-192.
16. A. Ferber, G. Kronenberg, and K. Luh, Optimal threshold for a random graph to be 2-universal, Trans. Am. Math. Soc. 372 (2019), 4239-4262.
17. A. Ferber and R. Nenadov, Spanning universality in random graphs, Random Structures Algorithms 53 (2018), 604-637.
18. A. Hajnal and E. Szemerédi, Proof of a conjecture of P. Erdös, Combin. Theory Appl. 2 (1970), 601-623.
19. J. Han, Decision problem for perfect matchings in dense k-uniform hypergraphs. Transactions of the American Mathematical Soc., pp. 5197-5218, 2017.
20. J. Han, Y. Kohayakawa, P. Morris, and Y. Person, Clique-factors in sparse pseudorandom graphs, Eur. J. Combin. 82 (2019), 102999.
21. J. Han, Y. Kohayakawa, P. Morris, and Y. Person, Finding any given 2-factor in sparse pseudorandom graphs efficiently, J. Graph Theory (2020), 1-22.
22. J. Han and A. Treglown, The complexity of perfect matchings and packings in dense hypergraphs, J. Combin. Theory Ser. B 141 (2020), 72-104.
23. J. Han and Yi Zhao, Hamiltonicity in randomly perturbed hypergraphs, J. Combin. Theory Ser. B 144 (2020), 14-31.
24. S. Janson, T. Łuczak, and A. Ruciński, Random graphs. John Wiley \& Sons, New York, 2010.
25. A. Johansson, J. Kahn, and V. Vu, Factors in random graphs, Random Structures Algorithms 33 (2008), 1-28.
26. F. Joos and J. Kim, Spanning trees in randomly perturbed graphs, Random Structures Algorithms 56 (2020), 169-219.
27. P. Keevash and R. Mycroft, A multipartite Hajnal-Szemerédi theorem, J. Combin. Theory, Ser. B 114 (2015), 187-236.
28. H.A. Kierstead and A.V Kostochka, A short proof of the Hajnal-Szemerédi theorem on equitable colouring, Combin. Probab. Comput. 17 (2008), 265-270.
29. J.H. Kim, Perfect matchings in random uniform hypergraphs, Random Structures Algorithms 23 (2003), 111-132.
30. C. Knierim and P. Su. K_{r}-factors in graphs with low independence number, 2019, arXiv preprint arXiv:1912.00230.
31. J. Komlós, Tiling Turán theorems, Combinatorica 20 (2000), 203-218.
32. J Komlós and M. Simonovits (1996). Szemerédi's regularity lemma and its applications in graph theory.
33. M. Krivelevich, Triangle factors in random graphs, Combin. Probab. Comput. 6 (1997), 337-347.
34. M. Krivelevich, M. Kwan, and B. Sudakov, Cycles and matchings in randomly perturbed digraphs and hypergraphs, Combin. Probab. Comput. 25 (2016), 909-927.
35. M. Krivelevich, M. Kwan, and B Sudakov, Bounded-degree spanning trees in randomly perturbed graphs, SIAM J. Discrete Math. 31 (2017), 155-171.
36. M. Krivelevich, B. Sudakov, and P. Tetali, On smoothed analysis in dense graphs and formulas, Random Structures Algorithms 29 (2006), 180-193.
37. D. Kühn and D. Osthus, Embedding large subgraphs into dense graphs. In Surveys in combinatorics (pp. 137-167), London. Math. Soc. Lecture Notes, vol. 365: Cambridge University Press. Huczynska, S., Mitchell, J. D., Roney-Dougal, C. M. editors., 2009.
38. D. Kühn and D. Osthus, The minimum degree threshold for perfect graph packings, Combinatorica 29 (2009), 65-107.
39. M. Kwan. Almost all Steiner triple systems have perfect matchings, 2016, arXiv preprint arXiv:1611.02246.
40. A. Lo and K. Markström, F-factors in hypergraphs via absorption, Graphs Combin. 31 (2015), 679-712.
41. A. McDowell and R. Mycroft, Hamilton ℓ-cycles in randomly-perturbed hypergraphs, Electr. J. Combin. 25 (2018), P4.36.
42. R. Montgomery. Embedding bounded degree spanning trees in random graphs, 2014, arXiv preprint arXiv:1405.6559.
43. R. Montgomery, Spanning trees in random graphs, Adv. Math. 356 (2019), 106793.
44. R. Nenadov and Y. Pehova, On a Ramsey-Turán variant of the Hajnal-Szemerédi theorem, SIAM J. Discrete Math. 34 (2020), 1001-1010.
45. R. Nenadov and M. Trujić. Sprinkling a few random edges doubles the power, 2018, arXiv preprint arXiv:1811.09209.
46. A. Shokoufandeh and Y. Zhao, Proof of a tiling conjecture of Komlós, Random Structures Algorithms 23 (2003), 180-205.
47. E. Szemerédi, Regular partitions of graphs. In Problémes combinatoires et théorie des graphes colloques internationaux CNRS 260 (pp. 399-401), 1978.
48. A. Treglown, On directed versions of the Hajnal-Szemerédi theorem, Combin. Probab. Comput. 24 (2015), 873-928.
49. Y. Zhao, Recent advances on Dirac-type problems for hypergraphs. In Recent trends in combinatorics (A. Beveridge, J. Griggs, L. Hogben, G. Musiker, P. Tetali, eds.) (pp. 145-165), IMA Volumes in Mathematics and its Applications, vol. 159. New York: Springer, Cham, 2015.

How to cite this article: Han J, Morris P, Treglown A. Tilings in randomly perturbed graphs: Bridging the gap between Hajnal-Szemerédi and Johansson-Kahn-Vu. Random Struct Alg. 2021;58:480-516. https://doi.org/10.1002/rsa. 20981

[^0]: This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
 © 2020 The Authors. Random Structures and Algorithms published by Wiley Periodicals LLC.

[^1]: ${ }^{1}$ With respect to F, that is, $E(F[W])=\emptyset$.

[^2]: ${ }^{2}$ Note that our use of the notation \bar{F} is nonstandard here.
 ${ }^{3}$ Specifically, one can see that any linear sized set in $V(G(n, p))$ contains a copy of $\overline{H_{0}}$ a.a.s..

[^3]: ${ }^{4}$ Note that this is possible as we are in the case where the number of parts, r^{*} of H_{0} is at least 3 .

[^4]: ${ }^{5}$ Note that we do not require the vertices of the \boldsymbol{H}-paths which give the reachability to lie in V.
 ${ }^{6}$ If $\boldsymbol{\mathcal { H }}$ consists of just one vector \boldsymbol{H}, we simply refer to sets being $(\boldsymbol{H} ; \boldsymbol{\beta})$-closed and use $N_{\boldsymbol{H}, \boldsymbol{\beta}}(v)$ to denote the closed neighborhood of a vertex.

[^5]: ${ }^{7}$ This is analogous to the graph H_{0}^{\prime} defined in Proposition 6.7.

[^6]: ${ }^{8}$ We label all vertices in this discussion as in Definition 6.14.
 ${ }^{9}$ In particular, if $|F|<Q$ then not all of the vertices of S are used in this embedding.

[^7]: ${ }^{10}$ This will be guaranteed in applications of Lemma 2.8 as the lemma is concerned with labeled embeddings.
 ${ }^{11}$ Note that when $j=1$ we must have that $T_{1}=T$.

[^8]: ${ }^{12}$ Recall here the definition of \boldsymbol{H}_{1} from Proposition 6.6, of \boldsymbol{H}_{2} from Proposition 6.7 and $H_{\text {det }}$ from Definition 4.1. The notation $\boldsymbol{H}_{a}(r \times|U|)$ is also defined as in Definition 6.15.

