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From spin chains to real-time thermal field theory using tensor networks
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One of the most interesting directions in theoretical high-energy and condensed-matter physics is understand-
ing dynamical properties of collective states of quantum field theories. The most elementary tool in this quest is
retarded equilibrium correlators governing the linear response theory. In this article we examine tensor networks
as a way of determining them in a fully ab initio way in a class of (1+1)-dimensional quantum field theories
arising as infrared descriptions of quantum Ising chains. We show that, complemented with signal analysis using
the Prony method, tensor network calculations for intermediate times provide a powerful way to explore the
structure of singularities of the correlator in the complex frequency plane and to make predictions about the
thermal response to perturbations in a class of nonintegrable interacting quantum field theories.
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I. INTRODUCTION AND MOTIVATION

Much of the progress in quantum field theory (QFT)
to date has been driven by challenges posed by quantum
chromodynamics (QCD). One motivation behind this work
comes from ultrarelativistic heavy-ion collisions, which probe
collective states of QCD in a nonequilibrium setting [1]. Im-
portant insights in this context have been gained by studying
small perturbations of equilibrium in soluble models, such as
holography or kinetic theory [2]. Another motivating aspect
of our work stems from thermalization and relaxation being
important and timely areas of quantum many-body physics
[3–8].

Linear response theory provides a natural point of depar-
ture to study real-time dynamics of QFTs and is the subject
of the present article. In this framework, the response of
an equilibrium state to a (small) perturbation triggered by a
source J coupled to an operator O is captured by the retarded
thermal two-point correlator

GO
R (t, x) = i θ (t ) tr{ρβ[O(t, x),O(0, 0)]}, (1)
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where ρβ is the thermal density matrix at inverse temperature
β and θ (t ) is the Heaviside function. It is useful to express the
change in the expectation value of O in Fourier space:1

δ〈O(t, p)〉 =
∫

dω e−i ω t GO
R (ω, p)J (−ω,−p), (2)

since nonanalytic features of GR summarize important fea-
tures of the response. For instance, for holographic QFTs
[9–11], the function has simple poles which give rise to terms
exponentially decaying with time. In the QCD-like context,
these terms can be used to identify transport coefficients as
well as the time needed for hydrodynamics to apply. In the
condensed-matter studies, the exponential decay of magne-
tization with time for small perturbations of equilibrium in
the thermal Ising model [12] at criticality can be traced to a
sequence of single-pole singularities in the Fourier transform
of certain correlators [6,13,14]. In addition to single poles
there may be also branch cut singularities [15–18], which
often give rise to power-law behavior in time.

Beyond weak and strong coupling QFTs, very little is
known about the time dependence of collective states in
QFTs. In this article we explore the use of tensor networks
(TNs) [19–26], in particular matrix product operator (MPO)
methods, to study thermal retarded correlators in complexified
frequency space. We focus on a class of (1+1)-dimensional
QFTs arising as the infrared (IR) description of quantum
Ising models [27–31], which include nonintegrable interacting
theories hosting a spectrum of nonperturbative bound states.
We cross-check our numerics against exact QFT predictions

1Note that we distinguish functions from their Fourier transforms
only through arguments.
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using the Ising model in a parameter region in which the IR
is described by a free massive fermion QFT. We then study
the quantum Ising model in the presence of a longitudinal
magnetic field. We cover both the case of interacting inte-
grable QFT arising at a vanishing transverse magnetic field
and a generic nonintegrable case involving both the transverse
and longitudinal magnetic fields [27–29,31]. We focus on the
dimension-1 fermion bilinear operator and on a homogeneous
perturbation (p = 0) and use the so-called Prony method [32]
to extract the complex frequency plane structure of correlators
from the numerically obtained real-time signal.

II. ISING MODEL AND IR QFTS

The quantum Ising model is given by the Hamiltonian

H = −J

⎛
⎝L−1∑

j=1

σ j
z σ j+1

z + h
L∑

j=1

σ j
x + g

L∑
j=1

σ j
z

⎞
⎠, (3)

where J sets an overall energy scale, L denotes the total
number of spins (sites), σ

j
x, z are Pauli matrices at position j,

and g/h stand for the longitudinal/transverse (magnetic) field.
When L → ∞, there exists a scaling limit (see Appendix A)
such that the IR (long distances with respect to the lattice
spacing a ≡ 2/J) description of the Hamiltonian (3) is given
by the following Majorana fermion QFT [33]:

HIR =
∫ ∞

−∞
dx

{
i

4π
(ψ∂xψ − ψ̄∂xψ̄ ) − iMh

2π
ψ̄ψ + CM15/8

g σ

}
,

(4)

where C ≈ 0.062. The parameters Mh and Mg have dimen-
sions of mass and are related to the ones in Eq. (3) via Mh ≡
2J|1 − h| and Mg ≡ DJ |g|8/15, with D ≈ 5.416 [33,34]. The
scaling limit, in which the QFT description appears, corre-
sponds to taking Mh/J → 0 while keeping the ratio Mh/Mg

fixed (see Ref. [33] for a discussion of the QFT limit). In
addition, when temperature β−1 is included, to stay in the
continuum limit we require β J 	 1.

If Mh = Mg = 0, then the Hamiltonian describes a free
Majorana fermion (Ising) conformal field theory (CFT) with
the central charge equal to 1

2 . Operators iψ̄ψ and σ are scalar
primary Hermitian operators in this CFT of dimensions � = 1
and � = 1

8 , respectively. On the lattice, as is apparent from
the relation between Hamiltonians (3) and (4), these operators
are proportional to σ

j
x (with the proportionality constant equal

simply to −a/π ) and σ
j

z , respectively.
For the the above class of relevant deformations of the

Ising CFT, there are two kinds of deformations which give
rise to integrable QFT. For Mh 
= 0 and Mg = 0, one gets a
free fermion QFT with the fermion mass being Mh. In this
case the same continuum theory can be represented by the
spin chain in both the ferromagnetic phase (h < 1) and the
paramagnetic phase (h > 1). For Mh = 0 and Mg 
= 0, one
obtains the interacting integrable E8 QFT [27], which has
eight massive and stable particles—fermionic bound states.
The mass of the lightest, M1, is given precisely by Mg, and the
ratios of masses of the heavier particles are shown in Table I.

The general form of Eq. (4) with both iψ̄ψ and σ turned
on gives rise to an interacting nonintegrable QFT which

TABLE I. Ratios of masses of mesons extracted from
TN + Prony compared to the analytical expectations for the inte-
grable E8 theory, e.g., M2/M1 = 2 cos π

5 [27].

M2/M1 M3/M1 M4/M1 M5/M1 M6/M1 M7/M1

TN 1.6147(7) 1.962(1) 2.413(2) 2.936(3) 3.165(6) 3.52(3)
E8 1.6180 1.9890 2.4049 2.9563 3.2183 3.891

contains stable and unstable bound states [27–29,31]. We
study this regime at nonzero temperature numerically using
MPO methods in combination with Prony analysis, which we
review later.

III. RETARDED THERMAL CORRELATORS
IN SOLVABLE CASES

For the transverse field Ising model, i.e., g = 0 in Eq. (3),
and in the limit of an infinite chain L → ∞, one can use
the free fermion formulation to find a simple formula for the
retarded thermal correlator of the transverse magnetization
σ

j
x . At p = 0 one gets the following for t > 0:

G
− π

a σx

R = 2J
∫ π

−π

dk (2nk − 1) sin2 φk sin (2 εk t ), (5)

where the phases φk satisfy tan φk = sin k
h−cos k , εk =

2J
√

(1 + h2 − 2h cos k), and nk = (1 + eβ εk )−1 is the
Fermi-Dirac distribution. There is an intuitive understanding
of Eq. (5) in terms of two-particle exchanges: the integral
in Eq. (5) encapsulates σ

j
x exciting a continuum of states,

which are distinguished by the relative momentum of the two
fermions from which they are built.

The analytic structure of Eq. (5) in the complex frequency
space is ambiguous, as noted in a similar context in Ref. [17].
The natural representation is a branch cut stretching from the
IR scale, set by twice the fermion mass Mh, to the ultraviolet
(UV) scale, set by the lattice spacing a = 2/J . This is apparent
from Eq. (5), which expresses the retarded correlator as a
(continuous) sum over terms that oscillate in time with fre-
quencies ranging from 2ε0 = 2Mh to 2επ = 8J − 2Mh. This
representation is shown in blue in Fig. 1(a). However, one can
deform this branch cut to arrive at a representation which is
more natural from a QFT perspective: the UV scale and the
IR scale are now separated, connecting −2Mh with +2Mh

and the UV scale with infinity. The branch cuts along the
real axis arise through the creation of fermion pairs with
momenta ±p (i.e., zero net momentum), which act as branch
points. There are extra poles coming from the Fermi-Dirac
distribution function. These are nothing but (half of all) the
Matsubara frequencies ωn = −i π

β
(2n + 1) for integer n and

they are shown in red in Fig. 1(a). Their contribution is that of
a transient effect.

Let us stress here that so far we have not taken the QFT
limit (β J → ∞ with β Mh fixed) and, therefore, the presence
of exponentially decaying terms in time is simply a feature
of the spin chain in question. However, upon taking the
QFT limit, they indeed do become exponentially decaying
contributions known from QFT studies using CFT techniques
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FIG. 1. The expected (a) and seen by the Prony method (b) an-
alytic structure of Eq. (5). Branch cuts make it ambiguous and
two choices are illustrated by blue and red. The latter decouples
the UV scale and the IR scale which makes it more natural for
QFT and in this case single poles related to Matsubara frequencies
arise. The Prony method applied to the case Mh = 0 prefers vertical
branch cuts. Signal analysis is done for many different time windows,
characterized by the color legend. The results for each window are
concatenated into a single plot. The fuzzier a given pole is, the less
robust the result is. Branch cuts are represented by time-dependent
poles, which leads to colorful bands. The Prony method identifies
both the Matsubara poles and the UV branch cuts.

and holography and motivating to a large degree the present
work (see, e.g., Refs. [9–11]).

To make this point apparent, let us note that in (1+1)-
dimensional CFT the retarded two-point function on a line at
finite temperature is fixed by the conformal symmetry [9,14].
For an operator of scaling dimension � and at p = 0, the
retarded correlator has single poles at

ω = −i 2π T (� + 2 n) for n = 0, 1, . . . , (6)

which for � = 1 coincide with single poles in Eq. (5) origi-
nating from Matsubara frequencies. Indeed, for a canonically
normalized operator of dimension � = 1, the retarded CFT

correlator up to contact terms reads

GO�=1
R (t > 0, p = 0) = −4π

β
e− 2π

β
t(1 − e− 4π

β
t)−1

(7)

and has a sequence of poles at positions given by Eq. (6) with
residues − 4π

β
. One can check that Eq. (5) predicts the same

residues for Mh = 0 when β J → ∞. Therefore, for transients
at g = 0 we can use the residue, which, as detailed in the next
section, we can identify with the coefficients accompanying
the exponentials in the signal analysis, to identify the QFT
regime, and we found the CFT regime reached for βJ between
5 and 10 (cf. detailed analyses in Appendix C).

IV. TENSOR NETWORKS SETUP AND SIGNAL ANALYSIS

In order to analyze the structure of singularities beyond
exactly solvable cases, we evaluate numerically on the lattice
the time- and space-dependent two-point correlators of the
form ∼itr(ρβ[σ �

x (t ), σ 0
x ]). This is achieved using standard TN

techniques [20–22]. We use finite systems with open boundary
conditions and construct a MPO [35,36] approximation to
the thermal state using the time-evolved block decimation
(TEBD) algorithm [37] to simulate imaginary time evolution.
In this method, the evolution operator (in real or imaginary
time) is written as a sequence of discrete time steps of width δt
(Trotter step), and each of them is approximated by a sequence
of two-body operations, which are sequentially applied on the
MPO ansatz. The application of these gates would generally
increase the bond dimension of the MPO, thus a truncation
is performed to keep it bounded. The same method is later
used to evolve the MPO in real-time after having perturbed it
with a local operator, in order to produce the thermal response
functions [38,39]. Thermal states of local Hamiltonians can
be efficiently approximated by the MPO [40,41], and the nu-
merical error in this procedure is dominated by the truncation
error induced by the real-time evolution. Its magnitude can
be estimated by comparing the results obtained for different
values of the maximal allowed bond dimension χ .

To reconstruct the analytic structure of the retarded correla-
tor, we use Prony methods [32], which represent the function
as a sum of complex exponentials,

G(t ) =
N∑

k=1

cke−i �k t , (8)

where ck and �k are complex and N is chosen. Such functions
obey a linear differential equation and Prony methods exploit
linearity to determine the frequencies �k independently of the
amplitudes ck . While we specialized to the ESPRIT algorithm,
there are many implementations. Some of them are also
known as linear prediction and were used in the context of
TN studies [38,42–46].

Although the Prony method only allows for discrete poles
in frequency space, we can discover branch cuts, as they will
be represented by sequences of poles. We will apply the Prony
method to a sequence of time windows. We identify complex
frequencies that are stable across different time windows
with poles, while streaks are interpreted as branch cuts. To
make it more apparent in our plots we use different colors to
denote different time windows. The fuzzier a given structure
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is, the bigger its uncertainty is. Qualitative estimates of this
uncertainty and further details are provided in Appendix C.

In order to probe the performance of the method, we apply
it to the Ising CFT on a lattice. Figure 1(b) shows the analysis
of Eq. (5) when Mh = 0. Comparing with exact predictions
one sees that the Prony analysis identifies both branch cuts
and multiple decaying poles lying further away in the complex
plane. This should be contrasted with the standard Fourier
transform, used in a related context in, e.g., Ref. [47], which
specializes in identifying poles that are close to the real axis.

As we have remarked before, the alignment of branch
cuts and the resulting pole structure is ambiguous, so the
Prony method must implicitly make some choice here. In our
experience, the method prefers to align branch cuts vertically,
along the axis corresponding to the decay rate. Intuitively,
such a choice is very efficient at late times because most
contributions will be heavily suppressed.

In the next two sections we use TN + Prony to predict
the structure of singularities of correlators in interacting QFTs
defined by the Hamiltonian Eq. (4).

V. SINGULARITIES OF THE RETARDED THERMAL
CORRELATOR: MASSES

For a free fermion CFT, the branch cut along the real axis
at p = 0 arises from the exchange of pairs of fermions of zero
net momentum. As we already indicated, turning on a nonzero
longitudinal field leads to a confinement of fermions and
nonperturbative formation of bound states (mesons). Meson
masses are known exactly in the integrable E8 QFT and in
other cases have been determined numerically using different
methods. Our TN + Prony analysis shows that mesons enter
the retarded correlator of iψ̄ψ at nonzero temperature β−1

and vanishing spatial momentum primarily as single poles
corresponding to meson masses (and decay rate if unstable)
(see Fig. 2).

Regarding the accuracy of our prediction, in Table I we
benchmark the results of a low-temperature (basically vac-
uum) simulation extracted using TN + Prony with the analytic
results for seven out of eight mesons existing in the E8 QFT.
In all the cases but the most massive meson we detect, our
predictions match analytics within 1.5% and in three cases
within a fraction of percent (see Appendix D for a discus-
sion of quenches at zero temperature). We then consider an
interacting nonintegrable case starting with a low temperature
(with respect to the mass of the lightest meson M1). The result
from TN + Prony is shown in Fig. 2(a). As in the E8 case,
the frequencies agree with masses previously calculated in
Refs. [29,31]. However, some poles also develop an imaginary
part, a signal that they are unstable. In particular, the ratio
between the imaginary parts of the fourth and fifth mesons
[see inset in Fig. 2(a)] from TN + Prony is 0.22 ± 0.04, which
should be compared with the value obtained in Ref. [28],
0.233. This feature comes from the absence of integrability
and the presence of continuum of states starting from the
threshold of twice the mass of the lightest meson M1.

Apart from the mesons, there is a fuzzy structure appearing
at a frequency slightly below M1 as well as another pole with
frequency slightly above M3. This lower frequency arises due
to open boundary conditions, which support excitations living

FIG. 2. Prony analysis of the retarded correlator of iψ̄ψ near the
vacuum (a) and for the highest achieved temperature (b) in a non-
integrable ferromagnetic case. The shaded region shows frequencies
with wavelengths not fitting in the signal window. The vertical lines
indicating masses are taken from Ref. [29]. (a) The dashed lines
mark the continuum threshold of 2M1 and a boundary state calculated
with a density-matrix renormalization group (DMRG) algorithm.
The inset zooms in on the fourth and the fifth meson to show their
imaginary parts. All values are consistent with QFT. (b) The dashed
lines indicate differences in masses appearing as a result of heating
the system. Simulation parameters: L = 200, χ = 170, Jδt = 0.02,
Jtmax = 50, second-order Trotter decomposition.

close to the edges of the chain and is consistent with the result
of a DMRG [21,48,49] calculation (dashed line). The higher
frequency lies at 2M1 [dashed line in Fig. 2(a)], which is
the threshold of the two mesons’ continuum indexed by their
relative momenta. This should be associated with a branch
cut, i.e., a time-dependent pole, and we believe this to be the
source of the fuzziness.

Calculations are harder when the temperature is raised
and become intractable in the regime where βM1 ∼ 1. The
clearest signature of thermal effects (understood as features
of the correlator not present at very low temperatures) is the
appearance of poles at locations corresponding to differences
in masses [see Fig. 2(b)]. Only M12 = M1 − M2 appears as a
clean pole, but there are signs of more. Up to our accuracy,
we are not able to assess whether the mass or decay rates
of mesons change with increasing temperature, but we can
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FIG. 3. Prony reconstruction of the retarded correlator of i ψ̄ψ

in the nonintegrable ferromagnetic case for the continuum limit. The
circles represent vacuum meson masses [29] and the leading transient
for the free fermion QFT case, respectively. The numerical results
are in reasonable agreement with these data. Dashed lines indicate
mass differences. Poles on the positive imaginary axis are attributed
to numerical artifacts. Simulation parameters: L = 200, χ = 250,
Jδt = 0.005, Jtmax = 50, second-order Trotter decomposition.

say that residues associated with these single poles in the
correlators decrease. In practice, what we mean by this is
that the corresponding coefficients ck in Eq. (8) decay with
temperature at fixed values of Mh/Mg and Mg/J . It is in line
with the expectation that at sufficiently high temperatures the
natural degrees of freedom become fermions.

VI. SINGULARITIES OF THE RETARDED THERMAL
CORRELATOR: THE LEADING TRANSIENT

Beyond meson signatures, an intrinsically thermal feature
of the linear response theory is single poles in the complex
frequency plane that lead to features of the correlator decay-
ing exponentially in time (transients). In Fig. 1(b) one sees
indications that the CFT prediction for the two least-damped
contributions to the retarded correlator of iψ̄ψ is captured by
the Prony method applied to Eq. (5). A Similar finding also
holds when one applies a TN to the same setup.

Based on this observation, we investigate whether it is
possible to simultaneously identify the leading transient and
meson states through Prony analyses. Such a nonintegrable
example is shown in Fig. 3. The decaying pole is naturally
most visible at early time windows in the Prony analyses,
while the first two meson states are best visible at late times.
This demonstrates that the correlator signal contains proper
information on the QFT regime (through the existence of non-
perturbative QFT bound states) and thermal effects (decaying
poles).

The question that we want to systematically address now
is: what happens to singularities of the retarded correlator
residing in free QFTs at locations specified by Eq. (6) when

FIG. 4. Extraction of the least-damped transient pole for the
nonintegrable case using TN + Prony. The continuum limit is
approached (by increasing βJ) in the ferromagnetic phase (a) and the
paramagnetic phase (b) for fixed βMh = 0.5 and for different values
of βMg.

we turn on interactions, i.e., for nonzero g (or, equivalently,
Mg 
= 0)? To shed light on this issue, we fix the transverse field
by βMh = 0.5 and investigate the behavior as the longitudinal
field is increased as βMg ≈ {0.27, 0.54, 1.08, 1.62}. The con-
tinuum limit is approached by increasing βJ = 6, 8, and 10.
TN simulations of the correlator are then performed for a spin
chain of size L = 100 in a time interval up to Jtmax = 10.

What we observe is that the single-pole singularity gov-
erning the leading exponential decay not only survives in
the presence of interactions but also, quite surprisingly, for
the value of parameters we consider, we do not observe
significant systematic deviations from the free fermion QFT
result 1

2π
Im(β ω) = −1 (see Fig. 4). (We refer the reader

to Appendix B for details on the MPO simulations and to
Appendix C for details on the uncertainty estimation based on
the Prony analyses.) This conclusion holds for both the fer-
romagnetic phase and the paramagnetic phase. In particular,
when increasing the interaction scale Mg with respect to both
β and Mh, and also when increasing β J , the uncertainty in de-
termining the value of the corresponding complex frequency
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grows up to 13% in the ferromagnetic phase and 5% in the
paramagnetic phase.

VII. SUMMARY

Although real-time simulations with TNs are usually re-
liable only for a finite time window, we have shown here
that combining moderate time TN runs with a Prony analysis
allows us to extract the analytic structure of the retarded
thermal two-point function in the complex frequency plane,
which provides an invaluable insight into dynamics. Notice
that our method does not try to reconstruct the full details of
time-evolved correlators beyond the time window in which
simulations are reliable, but utilizes these data to extract
relevant features of the model, to identify the frequency poles.
By suitably choosing parameter regimes, this strategy enables
us to make ab initio predictions about the response of thermal
states to perturbations, for a class of nonintegrable interacting
QFTs.

We have probed the accuracy of the method in the in-
tegrable cases of the free fermionic Ising model and the
interacting E8 QFTs. Also for nonintegrable QFTs we repro-
duced both the real and the imaginary parts of several meson
frequencies that were earlier found in Refs. [27–29,31]. For
increasing temperatures, we find that residues of meson poles
decrease, and poles start appearing at frequencies correspond-
ing to differences in masses. Our results are stable with respect
to variations in the system size, the bond dimension, and other
numerical parameters.

Another effect triggered by the temperature are transient
contributions to the correlator, which in the free fermion
case can be related to Matsubara frequencies [17] and for
holographic CFTs correspond to quasinormal modes of anti-
de Sitter black holes [10,11]. We have also extracted these
numerically, and within our numerical precision and in the ex-
plored regime, these transients are not affected by interactions
or integrability breaking.
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APPENDIX A: JORDAN-WIGNER TRANSFORMATION
AND QFT LIMIT

It is well known that one can define complex fermionic
operators b j via the Jordan-Wigner transformation [51], in
terms of which

σ j
x = 1 − 2 b†

j b j and σ j
z =

⎛
⎝∏

l< j

(1 − 2 b†
l bl )

⎞
⎠(b j + b†

j ).

(A1)

FIG. 5. (a) Comparison of the transverse (solid curves) and
longitudinal (dash-dotted curves) response function obtained with
MPO simulations (for βMh = 0.2 and βMg = 0 in the ferromagnetic
phase) and two values of the lattice spacing corresponding to βJ =
4 and βJ = 32. Note that the longitudinal response is oscillating
on a much longer timescale. (b) Comparison between the MPO
simulations (solid lines) and the exact results from free fermions
(black dotted lines) for the transverse response function at the critical
point (βMh = βMg = 0). We observe an excellent agreement for all
the lattice spacing values βJ . Numerical parameters: L = 100, χ =
200, Jδt = 0.005, Jtmax = 10, second-order Trotter decomposition.
Both plots are scaled with respect to the minimum of the correlation
function for visual purposes.
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FIG. 6. Frequency analysis from Prony for the continuum limit in the integrable case. The figures show the complex values ω/J found
by the Prony analysis in a particular time window as indicated by the color bar. The left column (a), (c) is based on the analytical result for
the response function and the right column (b), (d) is obtained with MPO simulations. The imaginary axis is scaled by β/(2π ), such that the
first two transient poles are located at −1 and −3. Numerical parameters: L = 100, χ = 200, Jδt = 0.005, Jtmax = 10, second-order Trotter
decomposition.

When the longitudinal field vanishes (g = 0), Eq. (3) reduces
to a free fermion Hamiltonian.

We can now define two independent Majorana fermion
fields as ψ (x = ja) = √

π/a(b†
j + b j ) and ψ̄ (x = ja) =

−i
√

π/a(b†
j − b j ), where we have introduced a lattice spacing

a that we take to be a = 2/J , which implies that the speed
of light is 1. With this prescription, in the continuum limit
a → 0 the fields anticommute with each other and, on top
of this, satisfy {ψ (x), ψ (y)} = {ψ̄ (x), ψ̄ (y)} = 2π δ(x − y).
The latter conditions ensure that their two-point correla-
tion functions in the vacuum in the conformal field theory
(CFT) regime (see below) decay precisely as 1

x−y at long
distances.

APPENDIX B: GENERALITIES ABOUT THE MPO
SIMULATIONS

The central quantity in our studies is the retarded two-point
function at nonzero temperature. This linear response function
can be calculated with respect to the longitudinal or transverse

magnetization. As discussed in the main text, the scaling
dimensions of the corresponding relevant CFT operators differ
by a factor of 8. This means that the decay and oscillation rates
for the longitudinal response are too slow to observe within a
timescale which our simulations are able to cover. This applies
also to the UV frequencies as visible in Fig. 5(a), in which
the longitudinal response oscillates with a much longer time
period.

In the absence of the longitudinal field, we can exploit
the mapping to free fermions in order to compare the MPO
simulations to the analytical results. Figure 5(b) shows the
(scaled) transverse response function at criticality for a large
range of temperatures. The MPO simulations (colored solid
curves) are superimposed with the integrable solution (dash-
dotted curves), demonstrating very good agreement over the
whole time range. Near the ground state for βJ = 8, the
signal shows some qualitative variation compared to higher
temperatures. This is also the regime which is relevant for
taking the continuum limit βJ → ∞, which is described in
detail in the next section.
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APPENDIX C: THE QUANTUM FIELD THEORY LIMIT

1. The integrable free fermion case

When Mg = 0, the Hamiltonian can be exactly solved by
mapping to free fermions as sketched in the main text. We can
thus apply the Prony analysis to the exact results and compare
to the TN numerics.

We set βMh = 0.2 and approach the continuum limit by
increasing βJ , using the values βJ = {2, 4, 8, 12, 16, 32}.
Going to the continuum limit means that the IR length scale
gets larger and we must make sure that it does not exceed the
spin chain size. For a chain of L = 100 sites, the length scale
of the mass compared to the chain is J/(LMh), which may
be too large for βJ > 12. The sequence of βJ corresponds
to a series of increasing values of the transverse field h =
{0.95, 0.975, 0.9875, 0.991667, 0.99375, 0.996875}, i.e., ap-
proaching the critical point at h = 1 from the ferromagnetic
phase.

In Fig. 6 the result of the Prony analysis is shown for two
selected values of βJ . The left column in Fig. 6 is based on the
analytical result for the infinite system while the right column
is based on MPO simulations for a L = 100 spin chain. From
the analytical structure of the correlator, we know that there
is a branch cut stretching between the two points ±2Mh (near
the real axis) and another pair of cuts starting at 8J − 2Mh

stretching out to infinity. These figures demonstrate how the
latter branch cuts are approximated by Prony analysis through
a nearly vertical line of poles in the lower imaginary plane.
Furthermore, there are purely decaying transient poles on the
imaginary axis, located at − 2π

βJ (2n + 1) for n = 0, 1, 2, . . .

[9]. In Fig. 6, these transient poles would be located at
−1,−3, . . . on the rescaled imaginary axis. The first transient
pole is for both values of βJ clearly visible in the analytical
result as well as in the MPO simulation. For βJ = 8 also
the second pole is visible in both results, while at βJ = 32 the
second pole is visible only in the analytical case. Overall,
the analytic and tensor network pictures agree very well. Since
the values of the masses are small compared to the time
windows, the branch cut between ±2Mh cannot be clearly
resolved. At βJ = 32, one would expect strong finite-size
effects for a L = 100 chain, and indeed, the Prony result
contains many spurious and erratic poles.

Figure 7 shows how the position of the transient poles is
consistent with the expectation as we approach the continuum
limit by increasing βJ . The results from the Prony analysis
based on the free fermion calculation [blue, Fig. 7(a)] and
the MPO simulation [green, Fig. 7(b)] are represented by
the error bars. These should be compared to the analytical
values for the first and second transients: − 1

2π
Re(βω) = 1

and − 1
2π

Re(βω) = 3. For this analysis, we have applied
the Prony method on 75% of all discrete points in the time
evolution and then successively shifted the analysis window
towards later times. Based on the statistics obtained in this
way, we calculated the mean value and the standard devia-
tion of all poles around the analytical positions. A selected
example of such an analysis is shown in Fig. 8(a) for the
first transient. Therein, the location of the first decaying pole
on the imaginary axis is plotted for every time window. At
early times, the identification is rather unstable, which is
presumably related to the fact that higher-order transients are

FIG. 7. Extraction of the purely decaying transient poles for the
integrable case, based on Prony analyis applied to analytical results
(a) and the MPO simulation (b). Error bars denote the calculated
location including an uncertainty measure, see the detailed discus-
sion in the text. The gray lines represent the correct result. As βJ
increases, one is approaching the continuum limit and there are two
explanations for why the results start to deviate. Either the chain is
too small or the time window is too short. Since also the free fermion
calculation suffers (which uses an infinite chain), it must be the time
window.

not yet decayed and overlapping the signal. We thus choose
a late enough time window to calculate the mean value and
deviation of the pole (indicated by the red lines). The resulting
uncertainty of this analysis is plotted in Fig. 7. The first
transient pole can be identified in the whole temperature or
mass range. For βJ � 8 the pole can be resolved with an
accuracy below 1%. For βJ = 32 the uncertainty increases
to 5% (free fermions) or 18% (MPO). The values based on
the analytical result and the MPO simulation differ otherwise
only marginally.

The second pole can be only identified in the temperature
(or, equivalently, lattice spacings) range βJ = 8 . . . 32 (ana-
lytical case) or βJ = 8 . . . 16 (MPO simulations) with large
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FIG. 8. Example of the Prony analysis for the MPO simulation
of the retarded correlator at βJ = 8. Panel (a) shows the position of
the first transient on the imaginary axis for every time window (with
time increment step δt = 0.005). Panel (b) plots the corresponding
coefficient, multiplied with the inverse time dependence exp[2πt/β].
For time windows later than the vertical red dashed line indicates,
the average value shown by the horizontal red dashed line was
calculated.

uncertainty. The reason for this behavior is the fact that at low
βJ the branch cut stretching from the UV scale obscures the
poles on the imaginary axis. On the other hand, at large βJ ,
the correlation length increases such that finite-size and finite-
time effects become important in MPO simulations. Since the
analytic results agree with the MPO results, it is finite time
rather than finite size that is responsible for the deviations.

In addition, Fig. 9 shows the corresponding residues of the
first transient in the continuum limit. Figure 9(a) is based on
the Prony analysis for the critical Ising chain, while Fig. 9(b)
is for the ferromagnetic phase with the same parameters as
before in this section. The values of the residues and their
uncertainties are calculated identically to the procedure for
the pole location. An example of this method is shown in
Fig. 8(b), where the coefficients of the complex exponentials
in the Prony analysis are multiplied with the inverse time
dependence (because of their decay in time). The residue
is then calculated as the mean value of sufficient late time
windows. From Fig. 9 it is seen that the residues approach
the analytical value of the continuum limit [calculated from
Eq. (5)] with increasing values of βJ . Although the numerical
resolution is not optimal, there seems to be a clear shift in

FIG. 9. Extraction of the residue of the first transient in the
continuum limit based on the analytical results (blue error bars) and
MPO simulations (green error bars). Panel (a) is at the critical point
and panel (b) is calculated for finite transverse mass in the ferromag-
netic phase. Gray lines represent the analytical results. Based on the
free fermion mapping, the MPO simulations are rescaled to take the
finite chain length for a proper normalization into account.

the data between the critical case [βMh = 0, Fig. 9(a)] and
the ferromagnetic phase [βMh = 0.2, Fig. 9(b)]. This suggests
that the Prony analysis is sensitive enough to capture the effect
of the finite transverse mass and, importantly, shows that for
large enough βJ the result is indeed a signal in the QFT
regime. In more detail, the data in Fig. 9 also show that the
residue for very large values of βJ is not correctly captured in
the MPO simulation, most likely because of finite-size effects
and short time windows.

2. The nonintegrable case

In Fig. 10, examples of the Prony analysis of the retarded
transverse correlation function are shown for two values of
βMg. In the left column, the critical point is approached from
the ferromagnetic phase (h < 1) and in the right column it is
approached from the paramagnetic phase (h > 1). Similarly
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FIG. 10. Frequency analysis from the Prony method for the continuum limit in the nonintegrable case. The left column (a), (c) is in the
ferromagnetic phase and the right column (b), (d) is in the paramagnetic phase. The imaginary axis is scaled with βJ/(2π ). The two rows
correspond to two values of the integrability breaking βMg at βJ = 10. Numerical parameters: L = 100, χ = 200, Jδt = 0.005, Jtmax = 10,
second-order Trotter decomposition.

to the graph in the integrable case in Fig. 1, the UV branch
cut is approximated by the Prony method through the nearly
vertical line of poles at β/(2π ) Re(ω) ≈ 13. In all examples,
the first transient pole on the imaginary axis is visible at

1
2π

Im(βω) ≈ −1. For the largest value of the integrability
breaking βMg ≈ 1.62, the corresponding uncertainty is larger
in the ferromagnetic phase [Fig. 10(c)], which is visible as a
blurred set of poles in the Prony picture. The second decaying
pole is only partially visible; we therefore focus on the first
pole and neglect meson frequencies for this particular study,
since these would require much larger time intervals.

The position of the extracted transient poles is shown in
the main text in Fig. 4 for the ferromagnetic phase [panel
(a)] and the paramagnetic phase [panel (b)]. The data are
generated with several parameters in the Prony method (to
strengthen the robustness of our numerics). In particular, we
have chosen a cutoff value ε in the range 10−6 � ε � 10−4

(capturing how significant modes must be to be included) and
the time interval, on which the Prony analysis is applied, is
within the range 75–85% of the total simulation time. As

for the integrable case described above, the Prony analysis
for the shifted time windows yields an average pole position
and standard deviation. The overall uncertainty is estimated
by taking the mean value of several combinations of these
parameters, which then is plotted in Fig. 4. When increasing
the perturbation, and also when increasing βJ , this uncertainty
is growing up to 13% in the ferromagnetic phase [Fig. 4(a)],
while the maximum value does not exceed 5% in the para-
magnetic phase [Fig. 4(b)]. This difference is related to the
nonsymmetric appearance of meson/particle states in the two
phases, i.e., the continuum limit is not identical. Figure 4
shows that, at fixed βMh = 0.5, the position of the thermody-
namic poles is stable and consistent with the CFT prediction

1
2π

Im(βω) = −1 (shown as a gray dashed line), when the
longitudinal perturbation is varied. To confirm this result, we
have also checked different values of βMh for the fixed ratio
Mh/Mg ≈ 0.4616 ≡ const, and we have probed the continuum
limit by taking βJ = {6, 8, 10} in the ferromagnetic phase.
The results are shown in Fig. 11. Note that the data points
at βMh = 0.5 correspond precisely to the third set of poles in
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FIG. 11. Extraction of the least damped transient pole in the
continuum limit for the nonintegrable case using TN + Prony. The
critical point is approached from the ferromagnetic phase for differ-
ent values of βMh and βMg such that Mh/Mg ≈ 0.4616 ≡ const.

Fig. 4, at βMg ≈ 1.08. For all perturbations, the resulting pole
position is again consistent with the CFT result. Within the
uncertainties of the MPO simulations and numerical analysis
with the Prony method, we therefore conclude with the pre-
diction that the analytic structure of the retarded transverse
correlation function and the thermodynamic pole position
does not change for (nonintegrable) perturbations of the Ising
CFT.

For the same Prony parameters and with the methodology
described in the free fermion case above, we calculated the
corresponding residue r1 of the first decaying pole. Figure 12
shows the resulting uncertainties of |r1|β/2π in dependence
of the inverse temperature for the ferromagnetic phase [panel
(a)] and the paramagnetic phase [panel (b)]. For a comparison,
the analyses was also applied to the integrable case by set-
ting βMg = 0 (black error bars). Its corresponding analytical
value in the continuum limit is shown as a gray dashed line.
Similarly to the pole locations, the uncertainty is increasing
for larger values of βJ and βMg. For larger longitudinal
perturbations, the residues seem to exhibit the tendency to
decrease in the ferromagnetic phase and increase in the para-
magnetic phase for larger values of βJ . The orange error bars
correspond to the situation when the transverse perturbation
(βMh = 0.5) and the longitudinal perturbation (βMg ≈ 0.54)
are nearly at the same order. The corresponding data seem to
be consistent with the integrable result, i.e., the longitudinal
perturbation does not seem to influence the residue.

APPENDIX D: GROUND-STATE QUENCH

While the present article is devoted to thermal QFT prop-
erties from spin chain simulations, we finally also want to
demonstrate the applicability of our methodology to ground-
state quenches, i.e., the structure of the retarded two-point
function in the vacuum. For this purpose, we choose the set
of mass parameters that were used for the meson studies
in the main text [cf. Fig. 2(a)]. The ground state |0〉 for
this nonintegrable ferromagnetic phase is calculated using

FIG. 12. Extracted residues from Prony’s method for the nonin-
tegrable regime in the ferromagnetic phase (a) and the paramagnetic
phase (b) towards the continuum limit. The data are shown in
dependence on βJ = {6, 8, 10} for several values of the integrability
breaking βMg. Black error bars denote the analytical values for the
integrable case (βMg = 0). The curves are shown slightly displaced
for graphical purposes.

the DMRG algorithm with bond dimension
√

χ , such that
the projector |0〉〈0| can be represented as a MPO with bond
dimension χ . The MPO simulation of the correlator is then
performed using the same mass parameters as for the thermal
state. The result of the Prony analysis is shown in Fig. 13.

Similarly to the result of the thermal state at very low
temperature in Fig. 2(a), the first three stable mesons can
be identified very accurately. While the continuum threshold
2M1 is visible as a branch cut stretching vertically in the
Prony reconstruction, the boundary state is not seen. The
ratio of imaginary parts of the fifth and the fourth meson
agrees equally well with the prediction in Ref. [28] as in the
low-temperature simulation. The Prony reconstruction at high
frequencies becomes more fuzzy, although some structures
at the known masses are identifiable. These results clearly
demonstrate that the effects at higher temperature, which we
discussed in the main text, indeed have a thermal origin.
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FIG. 13. Prony reconstruction of the retarded correlator of iψ̄ψ

in the vacuum (i.e., for the ground state) in a nonintegrable ferromag-
netic case as in Fig. 2(a). The solid vertical lines indicating masses
are taken from Ref. [29]. The dashed line indicates the continuum
threshold 2M1. All values are consistent with QFT. Simulation pa-
rameters: L = 200, χ = 170, Jδt = 0.02, Jtmax = 50, second-order
Trotter decomposition.

Furthermore, our findings demonstrate that results obtained
from the vacuum density matrix constructed from the TEBD
algorithm as limβ→∞ e−βH and from the DMRG algorithm as
|0〉〈0| agree. Instead of evolving the MPO |0〉〈0|, one could
also evolve just |0〉 as a matrix product state (MPS). This saves
us from squaring the bond dimension, enabling us to evolve

FIG. 14. Prony reconstruction of the retarded correlator of iψ̄ψ

in the ground state (using MPS) in a nonintegrable ferromagnetic
case as in Fig. 2(a). The solid vertical lines indicating masses are
taken from Ref. [29]. The dashed lines indicates different continuum
thresholds. 2M1 and M1 + M2 can be seen clearly, but higher ones
cannot be clearly distinguished from each other and the closely ly-
ing mesons. Simulation parameters: L = 200, χ = 150, Jδt = 0.02,
Jtmax = 80, fourth-order Trotter decomposition.

the correlator for longer time and hence more accurately. The
result is shown in Fig. 14. The main gain is in enabling us to
see the start of the M1 + M2 continuum, as well as making the
higher mesons sharper.
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