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A B S T R A C T

Working memory (WM) representations are generally known to be influenced by task demands, but it is not clear
whether this extends to the somatosensory domain. One way to investigate the influence of task demands is with
categorization paradigms, wherein either a single stimulus or an associated category is maintained in WM. In the
somatosensory modality, category representations have been identified in the premotor cortex (PMC) and the
intraparietal sulcus (IPS). In this study we used multivariate-pattern-analysis with human fMRI data to investigate
whether the WM representations in the PMC, IPS or other regions are influenced by changing task demands. We
ensured the task-dependent, categorical WM information was decorrelated from stimulus features by (1) teaching
participants arbitrary, non-rule based stimulus groupings and (2) contrasting identical pairs of stimuli across
experimental conditions, where either a single stimulus or the associated group was maintained in WM. Impor-
tantly, we also decoupled the decision and motor output from the WM representations. With these experimental
manipulations, we were able to pinpoint stimulus-specific WM information to the left frontal and parietal cortices
and context-dependent, group-specific WM information to the left IPS. By showing that grouped stimuli are
represented more similarly in the Group condition than in the Stimulus condition, free from stimulus and motor
output confounds, we provide novel evidence for the adaptive nature of somatosensory WM representations in the
IPS with changing task-demands.
1. Introduction

Working memory (WM) is the ability to maintain and manipulate
representations of stimuli which are no longer being perceived (Baddeley
and Hitch, 1974) and underlies fundamental human behaviours and
abilities (Logie and Cowan, 2015). As a result, identifying the neural
correlates of WM is a major focus of scientific interest. Presently, a large
body of evidence suggests that the localization of WM content depends
on the to-be-maintained stimulus feature (Postle, 2006) as well as the
goals of the experimental condition (Lee et al., 2013). However, while
the topography of brain regions that retain specific stimulus features has
been thoroughly investigated (for a review see Christophel et al., 2017),
the influence of top-down task-demands on the localization of WM rep-
resentations is less well understood.

One means by which to investigate the influence of task-demands is
by employing categories or groups of stimuli. The act of categorizing a
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stimulus abstracts the WM representation away from the stimulus’
physical features to a label or exemplar (Seger and Miller, 2010). Pre-
vious work, wherein non-human primates (NHPs) were trained to cate-
gorize images of gradual transitions between cats and dogs found that
neurons in the lateral intraparietal cortex (LIP), analogous to the human
intraparietal sulcus (IPS, Grefkes and Fink, 2005), represented the cate-
gorical decision instead of a continuous change with the stimulus feature
(Freedman et al., 2001). Moreover, LIP neurons have also been shown to
change their categorical firing pattern with changing category definitions
(Freedman and Assad, 2006), known as adaptive coding (Duncan, 2001).
Recently, an optogenetic study in mice went a step further and showed
that parietal neurons are necessary for learning new olfactory category
boundaries and generalizing from category exemplars to novel stimuli
(Zhong et al., 2019).

While extensive work has been done exploring visual categorization
in NHPs (Fitzgerald et al., 2011; Fitzgerald et al., 2012; Freedman and
langone.org (Y.-H. Wu), titoschmi@zedat.fu-berlin.de (T.T. Schmidt), felix.
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Assad, 2016; Freedman et al., 2001; Sarma et al., 2016; Swaminathan
and Freedman, 2012), the generalizability of the findings to other mo-
dalities is poorly understood. Rossi-Pool et al. (2016) adapted the classic
delayed-match-to-sample (DMTS) comparison paradigm to explore the
neuronal response of somatosensory categorical-match decisions in
NHPs. The researchers recorded from primary somatosensory (SI) and
premotor cortices (PMC) and found distinct neuronal firing patterns for
the respective WM categories in the PMC. Moreover, a recent study using
whole-brain multivariate pattern analysis (MVPA) of human fMRI data
identified perceptual categories of vibrotactile stimulation in the PMC
(Malone et al., 2019). Interestingly, also using MVPA with fMRI data,
supramodal auditory and somatosensory category representations were
identified in the IPS (Levine and Schwarzbach, 2017). Thus, somato-
sensory categorical-information has been consistently identified in the
IPS and PMC. The present study was designed to extend this finding by
identifying brain regions which maintain somatosensory WM represen-
tations in a context-dependent manner.

To this end, we defined four stimuli, composed of different pulse
sequences similar to those employed by Rossi-Pool et al. (2016), which
participants were pseudorandomly trained to pair together into two
groups of two stimuli. We used a DMTS paradigm with two conditions: a
Stimulus condition where participants were instructed to maintain only
the temporal nature of the cued stimulus, and a Group condition where
participants maintained the cued stimulus’ group. Using a multivariate
ANOVA approach (MANOVA, Allefeld and Haynes, 2014) with human
fMRI data, we first identified regions maintaining condition-general
stimulus-specific WM information and, in a second step, identified
context-dependent group-specific WM information. We hypothesized
that our experimental manipulation, maintaining individual stimuli in
the Stimulus condition as opposed to groups of stimuli in the Group
condition, would result in the condition-dependent modification of the
multivariate WM representations, such that, in the Group condition, the
group members’ representations would be more similar to one another
than in the Stimulus condition.

2. Materials & methods

2.1. Participants

In total, data from 38 participants was collected and two were
excluded from the analysis due to low task performance, which was
defined as a mean performance on either condition, Stimulus or Group,
two standard deviations below the group mean. The final data set con-
sisted of 36 participants between the ages of 20 and 39 (mean 26.92 �
4.66 (SD) years, 19 male and 17 female). All participants provided
written informed consent to take part in the study which was approved
by the Ethics Committee of the Freie Universit€at Berlin and corresponded
to the Human Subject Guidelines of the Declaration of Helsinki.

2.2. Procedure

The experiment took place across two sessions: training and fMRI
data collection. The training session was used to determine the partici-
pant’s sensory threshold and to adjust the subjective amplitude as well as
familiarize participants with the stimuli (detailed in 2.3) and the
experimental procedure (detailed in 2.4).

The training session lasted between 40 min to an hour. First, the
participant-specific stimulation intensity was determined by estimating
the participant’s subjective detection threshold (mean: 2.33 mA � .75
(SD)). The chosen amplitude, about double the detection threshold, was
always below the participant’s motor and pain thresholds resulting in a
mean factor increase of 2.13 (� .50). Next, the four experimental stimuli
were presented to the participant. The participant was able to freely
replay each of the stimuli until they felt confident that they could
differentiate the stimuli. The participant was then taught their assigned
grouping. The groupings were introduced by playing the group members
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one after another and then participants were able to freely replay the
grouped stimuli. To ensure participants had learned their assigned
grouping, two stimuli were chosen at random and the participant indi-
cated whether they belonged to the same group. This was repeated ten
times. Next, the participant completed one block of each experimental
condition (see 2.4). Performance above 80% on all of the behavioural
tests was used to determine whether participants could perform the task.
The training session thus served to familiarize participants with the
stimuli, groupings and trial structure, including their assigned response
and cue-mappings.

2.3. Stimuli & groupings

Stimuli were presented to the participant’s left median nerve using a
Digitimer DS7A constant current neurostimulator (Digitimer Ltd, Hert-
fordshire, UK) with MR-compatible adhesive electrodes (GVB-geliMED
GmbH, Bad Segeberg, Germany). Four stimuli, each consisting of a
different pulse sequence lasting 0.75 s, were created and used for all
participants (Fig. 1A). The stimuli were composed of four 50 μs pulses
with two of the pulses marking the on- and offset of each stimulus. The
timing of the two remaining pulses was chosen to create a stimulus set
with similar differentiability and performance rates across the stimuli, as
assessed using behavioural pilot data. Stimuli were presented using
custom MATLAB code (R2013b, The MathWorks, Inc., Natick, Massa-
chusetts, United States) and the Psychophysics Toolbox extension
(Brainard, 1997).

Each participant was pseudorandomly assigned a grouping. For four
stimuli, three permutations of two groups of two stimuli exist (1) group
A: s1 þ s2 vs group B: s3 þ s4, 2) A: s1 þ s3 vs B: s2 þ s4, and (3) A: s1 þ
s4 vs B: s2 þ s3). To protect against potential naming confounds, three
additional groups were included with the group A vs group B label
exchanged (4) group A: s3 þ s4 vs group B: s1 þ s2, etc.). Therefore, six
stimulus groupings were used in total, and each was pseudorandomly
assigned to six participants. Arbitrary groupings were implemented
because, while neurophysiological recordings can dissociate categorical
from stimulus feature-specific neuronal activity, the distinction is more
nuanced with fMRI data. Rule-based categorization, wherein categories
are formed by applying a rule to stimulus features, is inherently coupled
with the neuronal response to the underlying features. This is in contrast
to arbitrary categorization, which we refer to as grouping, which clas-
sifies stimuli without the use of a stimulus-based rule (Seger and Miller,
2010). Consequently, a group can consist of physically unrelated mem-
bers whereas category members share common features. Therefore, the
use of arbitrary groups of stimuli, where groups are not defined according
to physical attributes, provides a means of exploring the effect of
task-demands on WM stimulus representations while maintaining the
ability to dissociate condition-effects from stimulus features with neu-
roimaging data, a technique that has previously been employed in visual
(Li et al., 2007; Fitzgerald et al., 2011; Senoussi et al., 2016) and
audiotactile (Levine and Schwarzbach, 2018) studies.

2.4. Experimental conditions and design

The experiment comprised two independent blocks of WM condi-
tions: Stimulus and Group. The trial timing and structure was identical in
the two conditions and each experimental run consisted of one Stimulus
and one Group block of trials (Fig. 1B). Each trial began with the
sequential presentation of two different 0.75 s stimuli with a 0.5 s inter-
stimulus-interval. Stimuli from the same group were never presented
together in a trial. Additionally, during stimulus presentation, the fixa-
tion cross increased in brightness to help participants attend to the
stimulus as well as ensure that the on- and offset of each stimulus was
well defined. A 0.5 s visual retro-cue, square or diamond, presented after
the second stimulus, indicated which of the two stimuli should be
maintained in WM for the following 7.5 s delay period. In the Stimulus
trials, participants were instructed to maintain only the cued stimulus. A



Fig. 1. Experimental Design. A. Visual depiction of the tactile stimuli used in the study. Four 0.75 s duration stimuli, each composed of four 50 μs electrical pulses
and participant-specific amplitude (mA), with different stimulation pulse timings were used. The stimuli were pseudorandomly grouped into two groups of two
stimuli, with group assignment balanced across participants. Six different groupings were used, for example: group A ¼ stimulus 1 þ 2 vs group B ¼ stimulus 3 þ 4. B.
The design consisted of two blocks of conditions: Stimulus and Group. For both conditions, each trial began with the sequential presentation of two different stimuli. A
visual retro-cue indicated which stimulus should be maintained in WM during the delay period. In the Stimulus trials, participants maintained only the cued stimulus,
whereas in the Group trials they were instructed to maintain the group which the cued stimulus belonged to. An example of the WM content is shown for the Stimulus
trials in the thought bubble above the experimental paradigm, and below for the Group trials. After the delay, participants indicated with a button response whether a
target stimulus matched the maintained stimulus (Stimulus trials) or was a member of the same group (Group trials). Visual feedback was provided after each trial.
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target stimulus, one of the four experimental stimuli, was presented after
the delay. In the Stimulus condition, participants decided whether the
target stimulus was identical to the maintained stimulus. In contrast, in
the Group condition, participants were instructed to maintain the group
to which the cued stimulus belonged in WM and indicated whether the
target was either the cued stimulus or it’s group member. Thus, the
target-specific decision and response differed between the two
conditions.

For both conditions, the correct target, meaning the target matching
the cued stimulus, or the cued-stimulus’ group member in the Group
condition, was presented in 50% of trials. After the target was presented,
a question mark replaced the fixation cross and a yellow and blue circle
appeared on either side. Participants indicated whether the target was a
match to the cued stimulus by selecting, via button press using the right
index or middle finger, either the blue or yellow circle according to a
pseudorandomly-defined response mapping. The response period was
limited to 1.5 s. The quick response encouraged participants to actively
keep the maintained stimulus or group in WM, thereby allowing a fast
comparison to the target stimulus. Feedback was provided after each
trial. Importantly, we implemented retro-cues (shapes) to dissociate
perceptual processes from WM content as well as unpredictable response
colour-map locations (left, right) to prevent a direct mapping between
WM content and the decision. Furthermore, we counter-balanced the
retro-cues and response choices across participants.

For each participant, four fMRI runs of experimental data were
collected. Each run consisted of one Stimulus and one Group condition
block, the order of which was counter-balanced across runs for each
participant and was verbally communicated to the participant at the
beginning of each run. The transition between blocks was indicated by
the visual presentation of the mean performance on the first block, fol-
lowed by the fixation cross for 12 s before beginning the second block.
Moreover, we ensured that participants performed the correct task by
monitoring their performance and asking after each run. The conditions
consisted of identical trials, meaning that we presented the same stimulus
pairings in each condition, and the trial order was randomized sepa-
rately. In each condition, participants remembered each stimulus eight
times, resulting in a total of 32 trials/condition (8 repetitions x 4 stimuli)
and 64 trials/run (32 trials x 2 conditions). A trial lasted 12 s and inter-
trial intervals (2 or 4 s) were equally distributed across trials. A run lasted
15 min. Finally, after data collection was completed, participants
3

underwent a debriefing session wherein they drew a portrayal of the
stimuli and explained the approach they used to represent the stimuli and
groups.
2.5. Data acquisition

Functional imaging was performed on a 3T Siemens Tim Trio system
(Siemens Medical Solutions, Erlangen, Germany) equipped with a 32-
channel head coil at the Centre for Cognitive Neuroscience Berlin. 475
volumes were acquired in each of the four experimental runs using a
gradient-echo echoplanar T2*-weighted imaging sequence (TR ¼ 2000
ms, TE ¼ 30 ms, 37 contiguous slices, ascending order, gap ¼ 20%,
matrix size¼ 64� 64, 3� 3� 3 mm3, flip angle¼ 70�, FOV¼ 192 mm).
Additionally, a T1-weighted, whole-brain structural scan was obtained
using a Magnetization Prepared Rapid Gradient Echo sequence (TR ¼
1900 ms, TE ¼ 2.52 ms, 176 slices, matrix size ¼ 256 � 256, 1 � 1 � 1
mm3, flip angle ¼ 9�, FOV ¼ 256 mm). Furthermore, we implemented
‘delay-locked’ acquisition timing, wherein the onset of the retro-cue
coincided with the onset of a volume acquisition. Delay-locking en-
sures that a given slice is always measured at the same time relative to the
experimental paradigm (Christophel et al., 2012; Schmidt et al., 2017).
2.6. fMRI data analysis

All data analyses were performed using SPM12 (Wellcome Trust
Centre for Neuroimaging, Institute for Neurology, University College
London, London, UK) in combination with the cvMANOVA Toolbox
(Allefeld and Haynes, 2014) and custom MATLAB code (R2013b, The
MathWorks, Inc., Natick, Massachusetts, United States; code available
upon request). We hypothesized that our experimental manipulation,
maintaining individual or groups of stimuli in WM, would result in the
context-dependent modification of WM information such that the
multivariate representations of grouped stimuli should be more similar to
one another in the Group condition than in the Stimulus condition. To
identify differences between WM representations across conditions, we
took advantage of the cvMANOVA’s ability to perform interaction ana-
lyses in multivariate space. All reported coordinates correspond to MNI
space and, where possible, the SPM anatomy toolbox was used to
establish cytoarchitectonic references (Eickhoff, 2007). The brain figures
were made using MRIcron (www.nitrc.org).

http://www.nitrc.org
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2.6.1. Data pre-processing
A 1/192 Hz high pass filter was used to remove slow varying trends in

the data. To preserve the spatiotemporal structure of the data for the
cvMANOVA, pre-processing was limited to slice-time correction and
motion-correction, wherein images are initially realigned to the first
image and then to the mean using six parameter rigid body trans-
formation, to reduce slice order and movement-related artefacts. Func-
tional images were normalized to standard MNI space using SPM’s
unified segmentation. Structural images were coregistered to the mean
functional image.

2.6.2. First-level models
General Linear Models (GLMs) were defined for each participant to

yield run-wise beta estimates of voxel-wise activation for the regressors
of interest. First, we defined a regressor for each cued stimulus for each
condition separately (4 stimuli x 2 conditions ¼ 8 regressors). The re-
gressor onsets coincided with the retro-cue offset and spanned the WM
delay period. We refer to the Stimulus condition regressors as S1, S2, S3,
and S4 and the associated Group condition regressors as A1, A2, B3, and
B4. The regressor label indicates the stimulus number (1:4) as well as the
associated group (A, B). Importantly, the regressors for both conditions,
Stimulus and Group, were defined according to the participant-specific
grouping. Thus, the regressors S1 and A1 refer to the same physical
stimulus in the Stimulus and Group condition respectively. Nine impulse
regressors of no interest were included with the onsets defined according
to the respective trial timing: stimulus perception collapsed over first and
second presentation (4 stimuli), visual retro-cues (2 cues), target pre-
sentation (1) and response (2 options). Thus, each run was modelled with
17 regressors and the first level models included 72 regressors ((17 re-
gressors x 4 runs) þ 4 run constants) which were convolved with the
hemodynamic response function.

2.6.3. Searchlight cvMANOVA
The resulting run-wise beta parameter estimates were used in a

whole-brain searchlight, cross-validated, multivariate analysis of vari-
ance (cvMANOVA, Allefeld and Haynes, 2014) which allowed the iden-
tification of WM information in a spatially-unbiased manner
(Kriegeskorte et al., 2006). Analogous to well-established multivariate
decoding methods such as support vector machines, the cvMANOVA
identifies brain regions which show a difference between the multivar-
iate BOLD activation patterns for contrasted stimuli. In the present study,
the cvMANOVA was chosen instead of other multivariate decoding
methods for a number of reasons. First, the cvMANOVA provides a
parameter-free analysis built on a data-specific probabilistic model.
Second, the resulting pattern distinctness value (Ds) directly estimates
the amount of multivariate variance accounted for by the contrast. Thus,
the pattern distinctness value indicates the dissimilarity of, in the present
case, the contrasted WM representations. Third, and most importantly,
the cvMANOVA enables interaction analyses to be performed in multi-
variate space which is not possible using classifiers (for a more in-depth
description, see Allefeld and Haynes, 2014).

Using the cvMANOVA toolbox (https://github.com/allefeld/cvmano
va), a 4-voxel radius searchlight was defined (~257 voxels) which
delineated which voxels would be included in the analysis. The run-wise
beta estimates for voxels contained within the searchlight were then fit
with a multivariate normal distribution for each contrasted condition
separately (e.g. S1 – S2). The pattern distinctness is defined as the
magnitude of the covariance between contrasted conditions normalized
with respect to the error covariance. Thus, the pattern distinctness esti-
mates the amount of variance which can be explained by the contrast,
measured in error variance units (Allefeld and Haynes, 2014). In other
words, the larger the pattern distinctness, the more variance is accounted
for by the contrast, the more distinctive the WM representations. More-
over, we employed a cross-validation approach wherein data from three
of the four runs were used to fit the multivariate normal distributions and
the remaining data were used to test the generalizability of the fit. This
4

cross-validated, pattern distinctness estimate (Ds) was recorded as the
value at the centre of the searchlight. The searchlight then progressed,
voxel by voxel, through the brain producing a participant-specific,
whole-brain pattern distinctness image for the contrast of interest. A
whole-brain searchlight analysis was performed because, while we had a
strong a priori hypothesis regarding the cortical regions (IPS, PMd),
mainly from NHPs, the relevant subregions were unknown.

2.6.4. Stimulus-specific WM information
First, for each participant, we performed pair-wise stimulus contrasts

to identify brain regions maintaining stimulus-specific WM information
in both, Stimulus and Group, experimental conditions. To ensure that the
cvMANOVA identified stimulus-specific information and not information
relating to the different experimental conditions, stimuli in each condi-
tion were first contrasted separately and a second level conjunction
analysis (Nichols et al., 2005) was used to identify stimulus-specific WM
information across both conditions (explained in detail below). More-
over, to ensure that the identified information related to the cued and not
the uncued stimulus on each trial, pair-wise contrasts were performed on
a specific set of stimulus comparisons. The experimental design
comprised trials where stimuli from the same participant-specific group
were never presented together (i.e., A1 and A2 or B1 and B2). Thus, on
trials when A1 was cued to be maintained in WM, B3 or B4 was the
uncued stimulus. The same is true for trials where A2 was cued: B3 or B4
was uncued. Thus, regressors for A1 and A2 (and B3 and B4) were
defined using trials where the cued stimulus differed (A1 or A2) but the
uncued stimuli are the same within a regressor (B3, B4). We refer to these
regressors as matched with respect to the uncued stimuli. Consequently,
regressors for A1 and B3 were not matched with respect to the uncued
stimuli. The same was true for the Stimulus condition: S1 and S2, S3 and
S4 are matched for the uncued stimuli. To ensure that the WM infor-
mation was specific to the cued stimuli and not confounded by activation
relating to the uncued stimuli, only regressors matched for the uncued
stimuli were contrasted (condition-specific contrast matrices: Ds(Stimu-
lus condition) ¼ mean([(S1 – S2), (S3 – S4)]), Ds(Group condition) ¼
mean([(A1 – A2), (B3 – B4)]). Thus, the stimulus-specific WM analysis
identified brain regions with pattern distinctness estimates greater than
zero (Ds > 0). Thereby identifying regions with multivariate represen-
tations for contrasted stimuli in the Stimulus and Group conditions
respectively. The complete contrast matrices are provided in the Sup-
plemental Table 1a.

The resulting whole-brain, participant-specific pattern distinctness
(Ds) images for both the Stimulus and Group condition contrasts were
normalized to MNI space, smoothed with an 8 mm FWHM kernel and
entered into a second-level repeated-measures ANOVA. A conjunction
across the two experimental conditions identified brain regions main-
taining condition-general stimulus-specific WM information (Ds > 0)
regardless of the experimental task demands (Ds(Stimulus-specific) ¼
mean([(S1 – S2), (S3 – S4)]) \ mean([(A1 – A2), (B3 – B4)]).

All statistical maps were thresholded at p < 0.05 family-wise error
(FWE) corrected at the cluster level with a cluster-defining threshold of p
< 0.001. In SPM, FWE correction relies on random field theory assuming
smooth spatial maps of activation (for a description see Ostwald et al.,
2019).

2.6.5. Context-dependent WM information
Next, as the core test of group-specific WM, we identified brain re-

gions maintaining context-dependent WM information. We hypothesized
that our experimental manipulation, forming groups of stimuli in the
Group condition, would result in the modification of the multivariate
representation of stimuli from the same group such that the stimuli share
a more similar WM representation in the Group condition than in the
Stimulus condition. Thus, the experimental manipulation should result in
an interaction across conditions such that the pattern distinctness esti-
mates between group members should differ in the two conditions
(Ds(Group condition) < Ds(Stimulus condition)). Note, it is insufficient

https://github.com/allefeld/cvmanova
https://github.com/allefeld/cvmanova
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to identify group-specific WM information by contrasting the groups
against one another ([A1, A2] - [B3, B4]) because the groups were
composed of physically distinct stimuli. Thus, contrasting group A
against group B would identify a mixture of stimulus- and group-specific
WM information. Instead, to isolate context-dependent, group-specific
information, we performed an interaction analysis across the Stimulus
and Group conditions (interaction contrast matrix Ds(interaction) ¼
mean([(A1 – A2) – (S1 – S2)], [(B3 – B4) – (S3 – S4)]). Importantly,
analogous to the stimulus-specific WM analysis, this interaction only
contrasts regressors which were matched for the respective uncued
stimuli. The complete contrast matrix is provided in the Supplemental
Material Table 1b. Analogous to the stimulus-specific WM information,
the resulting whole-brain, interaction pattern distinctness contrast im-
ages were normalized to MNI space and smoothed with an 8 mm FWHM
kernel. Participant-specific images were forwarded to a second level one-
sample t-test against zero to identify brain regions containing context-
dependent group-specific WM representations.

As an additional step to visualize the interaction results, we plotted
the mean participant-specific, context-dependent pattern distinctness
values obtained for each condition (Ds(Stimulus condition)¼mean([S1 –

S2, S3 – S4]); Ds(Group condition) ¼ mean([A1 - A2, B3 – B4]) from the
whole-brain searchlight group-level interaction result peaks.

2.7. Control analyses

2.7.1. Group representation control analysis
While the interaction analysis indicates a differential representation

of the stimuli across the two experimental conditions, it does not warrant
the presence of a group representation in the Group condition. It is
possible that, instead of being represented according to group member-
ship, all stimuli are represented more similarly in the Group condition
than in the Stimulus condition. Contrasting different-group members
against same-group members is the most direct method for determining
whether group representations were formed in the Group condition,
because grouped stimuli should share a more similar WM representation
than stimuli from different groups (Ds(different-group) > Ds(same-
group)). Unfortunately, this analysis is confounded. Contrasts of stimuli
from different groups (i.e., A1 - B3) are unbalanced with respect to the
uncued stimulus (see 2.6.4 for an explanation) resulting in an over-
estimation of the pattern distinctness for contrasts of stimuli from
different groups.

However, with this confound in mind, we performed an additional
searchlight cvMANOVA analysis to determine whether, in the Group
condition, stimuli from different groups were represented more differ-
ently than stimuli from the same group. We defined four different-group
contrasts (A1 - B3, A1 - B4, A2 - B3, A2 - B4) and two same-group contrast
(A1 - A2, B3 - B4). Next, we extracted the pattern distinctness values for
the peak voxels identified by the context-dependent WM analysis (2.6.5)
and performed a paired t-test to determine whether the mean participant-
specific different-group pattern distinctness values were significantly
different from the same-group values.

2.7.2. Behavioural control analysis
In a second control analysis, we aimed to identify whether the neu-

roimaging results were driven by the observed behavioural differences
across stimuli and conditions. To this end, we median-split the partici-
pants according to the participant-specific difference in performance
between stimulus 3 and 4 in the Stimulus condition. We chose this
definition because this was the major cause of the observed behavioural
effects. The two sub-samples (n¼ 18) were composed of participants who
either performed similarly across all four stimuli and those who per-
formed differently. We then re-ran the stimulus-specific (2.6.4) and
context-dependent WM analyses (2.6.5) for each sub-sample indepen-
dently. We expected that we would be able to replicate our main findings
in both sub-samples, thereby demonstrating that the observed neuro-
imaging results are independent of the differences in behaviour.
5

However, if only the differently-performing sub-sample was able to
reproduce the results, then the neuroimaging results were indeed driven
by the difference in behavioural factors.

2.7.3. Response time control analysis
Next, we performed a control analysis to determine whether the

neuroimaging results were influenced by the observed difference in
response times. To this end, we defined new first level models and
included an HRF-convolved parametric response time regressor of no-
interest. We then repeated both the stimulus-specific (2.6.4) and the
context-dependent WM (2.6.5) main analyses. We expected that we
would be able to replicate our main findings, thereby demonstrating that
our neuroimaging findings are independent of the observed differences
in response times.

2.7.4. WM-specificity control analysis
Next, we performed a control analysis to ensure that the identified

regions were specific to the stimulus in WM and not corrupted by
ongoing perceptual processes. To this end, we repeated both the
stimulus-specific (2.6.4) and the context-dependent (2.6.5) WM ana-
lyses with new first level models with regressors modelling the uncued
stimuli. This control analysis enabled the detection of information
relating to the uncued stimulus and provided a method for testing the
specificity of our results.

2.7.5. Multivariate control analysis
In a final control analysis, we aimed to determine whether the iden-

tified WM information was indeed multivariate in nature, or if the neu-
roimaging results could be explained by mass-univariate differences
between the conditions. We repeated both the stimulus-specific (2.6.4)
and the context-dependent (2.6.5) analyses using a searchlight
comprising only one voxel. This analysis collapsed the multivariate
cvMANOVA to a single dimension and tested whether the identified WM
information comprised a univariate representation.

3. Results

3.1. Behavioural results

Overall, participants performed with a mean accuracy of 81.87%
(�7.59% (SD) range: 68.36–97.27%). To test for potential performance
differences between experimental conditions or stimuli, we performed a
4 � 2 repeated-measures ANOVA with the stimuli (1:4) and conditions
(Stimulus, Group) as within-subject factors. The ANOVA identified a
significant main effect of stimulus (F(3, 105)¼ 10.9367, p¼ 2.6098e-06,
η2¼ 0.1207) and condition (F(1, 35)¼ 5.0929, p¼ 0.0304, η2¼ 0.0234)
and no interaction between the factors (F(3, 105)¼ 2.2282, p¼ 0.0892).
Post-hoc, Bonferroni-corrected, paired t-tests of the stimulus effect
revealed it to be driven by differences in performance between stimulus 1
and 3, and stimulus 4 and all other stimuli (mean performance stimulus
1: 81.38 � 1.52% (SE), S2: 82.55 � 1.56%, S3: 86.15 � 1.59%, S4:
77.39% � 1.65%; S1 vs S3: T(35) ¼ 3.0014, p ¼ 0.0049, Cohen’s d ¼
0.5116, S1 vs S4: T(35) ¼ 2.9083, p ¼ 0.0063, d ¼ 0.4195, S2 vs S4:
T(35) ¼ 3.8237, p ¼ 0.0005, d ¼ 0.5366, S3 vs S4: T(35) ¼ 4.9355, p <

0.0001, d ¼ 0.9019). The mean performance results across participants
are shown in Fig. 2A with the stimulus labelling referring to the physical,
and not participant-specific labelling. The significant differences be-
tween stimuli (p < 0.05, Bonferroni-corrected) are indicated by grey
lines.

Participants responded with a mean of 735.1 ms � 105.5 ms (SD),
well-within the allotted 1.5 s response window. We performed a second
4 � 2 repeated-measures ANOVA using response time as the dependent
variable and found a main effect of condition, with Stimulus condition
response times significantly shorter than the Group condition (Stimulus
mean: 663.5 � 17.5 ms (SE), Group mean: 807.1 � 19.4 ms, F(1, 35) ¼
162.3934, p ¼ 1.0436e-14, η2 ¼ 0.6313), and no main effect of stimulus



Fig. 2. Behavioural Results A. The mean
behavioural performance across participants
for the four stimuli, in both conditions:
Stimulus (white) and Group (black). The
grey brackets indicate significant differences
(p < 0.05, Bonferroni-corrected) in perfor-
mance between stimuli across conditions. B.
The mean response time across participants
for the four stimuli, in both conditions. C.
The mean performance across participants in
the Group condition with trials sorted ac-
cording to the relationship between the cued
and target stimulus. CS: same group – same
stimulus, CD: same group – different stim-
ulus, IS: different group – ‘same’ stimulus,
ID: different group – ‘different’ stimulus. D.
Shows the same as C with response time
data. In both C. and D., the CD trials are in-
termediate to the CS and incongruent trials
suggesting that a group was maintained in
the Group condition. Error bars for all plots
indicate standard error of the means.
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(F(3, 105) ¼ 0.5766, p ¼ 0.6316). However, an interaction between the
factors was present (F(3, 105) ¼ 5.9177, p ¼ 9.0422e-04, η2 ¼ 0.0142,
Fig. 2B). The main effect of condition is expected given the Group con-
dition required two stimuli, the two maintained group members, to be
compared with the target stimulus, thereby requiring more time than the
single comparison in the Stimulus condition. The influence of the
observed behavioural effects on the neuroimaging results is explored in
subsequent control analyses (2.7.2, 2.7.3).

Finally, we investigated whether participants performed according to
the experimental manipulation and represented groups in the Group
condition. We theorised that grouping the stimuli would influence the
congruency effect by creating an intermediate level between congruent
trials (target is identical to cued stimulus) and incongruent trials (target
is not the cued stimulus). To test this, we defined two independent 2 � 2
repeated measure ANOVAs for the performance and response time data
with factors congruency (target stimulus from the same group as cued
stimulus or different group) and stimulus identity (same or different
stimulus from cued). Thus, the ANOVAs were composed of four cells:
congruent-same stimulus (CS: e.g. cued A1 – target A1), congruent-
different stimulus (CD: cued A1 – target A2), incongruent-‘same’ (IS),
incongruent-‘different’ (ID). For the IS and ID cells, the trials (cued A1 -
target B3 or B4) were equally divided between the two levels. Each trial
type (B3 or B4 as target) was repeated twice in each experimental run.
Thus, the IS cell comprised the first trial-instance and the ID cell the
second. The performance data ANOVA identified a main effect of con-
gruency (F(1, 35) ¼ 13.9126, p ¼ 6.7655e-04, η2 ¼ 0.1169), no effect of
group-member identity (F(1, 35) ¼ 3.3718, p ¼ 0.0748), and an inter-
action between the factors (F(1, 35) ¼ 5.8944, p ¼ 0.0205, η2 ¼ 0.0488;
Fig. 2C). The response time data replicated the performance data results
with the addition of a main effect of stimulus identity which, as seen in
Fig. 2D, is the result of the near-identical response times on incongruent
trials (congruency: F(1, 35) ¼ 52.6285, p ¼ 1.7985e-08, η2 ¼ 0.4343;
group-member identity: F(1, 35) ¼ 9.1019, p ¼ 0.0047, η2 ¼ 0.0315;
interaction: F(1, 35) ¼ 14.2528, p ¼ 5.9488e-04, η2 ¼ 0.0359). Thus,
trials when the target stimulus was a group-member of the cued stimulus
were intermediate in performance and response time to congruent and
incongruent trials, thereby providing evidence for participants having
likely maintained groups in the Group condition.
3.2. Neuroimaging results

3.2.1. Stimulus-specific WM information
Using the whole-brain, searchlight cvMANOVA, we identified regions

maintaining stimulus-specific WM information in the Stimulus and
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Group experimental conditions respectively (condition-specific results
are shown in Supplemental Figure 1). Moreover, to ensure that the results
are independent from the uncued stimuli, we contrasted pairs of re-
gressors which were matched for the uncued but differed with respect to
the maintained (cued) stimulus. Because we were interested in regions
which maintain stimulus-specific WM information across experimental
conditions, we performed a second-level conjunction analysis (logical
AND, Friston et al., 2005) across the two experimental conditions to
identify regions which maintain context-general, stimulus-specific WM
(Fig. 3A (blue), Table 1a). This analysis identified a cluster in the left
inferior frontal gyrus (IFG) extending to the middle frontal gyrus (MFG)
as well as a cluster in the left superior parietal lobule (SPL) as main-
taining stimulus-specific WM information independent of experimental
context.

3.2.2. Context-dependent WM information
We hypothesized that our experimental manipulation, grouping

stimuli in the Group condition and treating them as individuals in the
Stimulus condition, would result in the context-dependent modification
of the group members’ pattern distinctness estimates. We expected a
smaller difference between the multivariate WM representations of the
grouped stimuli in the Group as compared to the Stimulus condition
(Ds(Group condition) < Ds(Stimulus condition)). Therefore, regions
which maintain context-dependent group-specific WM information
should display different pattern distinctness estimates between group
members across the two conditions, which is accessible with an inter-
action analysis (see 2.6.5). Moreover, because the implemented inter-
action only contrasts physically identical pairs of stimuli while also
controlling for the uncued stimuli (see 2.6.4), the contrast is not
confounded by stimulus feature information. The interaction contrast
identified the left IPS (Fig. 3A (yellow), Table 1b). Thus, the WM rep-
resentations of the grouped stimuli in the left IPS are represented
differently in the two conditions, or put another way, the left IPS adap-
tively modifies its WM information with respect to the experimental
condition. Additionally, due to strong a priori expectations regarding the
presence of group-specific somatosensory information in the PMC
(Malone et al., 2019; Rossi-Pool et al., 2016, 2017, 2019), we further
explored the interaction contrast result and identified context-dependent
WM representations in the left PMd at an uncorrected threshold (p <

0.001). Other regions with effects detectable at this threshold included
the right middle frontal gyrus, left inferior frontal gyrus, left premotor
cortex and the cluster in the left intraparietal sulcus extending from the
superior parietal lobule to the angular gyrus (see the unthresholded
statistical maps at Neurovault: https://identifiers.org/neurovault.collec

https://identifiers.org/neurovault.collection:5623


Fig. 3. Neuroimaging cvMANOVA results A. We
identified brain regions which maintain condition-
general stimulus-specific (blue) and context-
dependent group-specific (yellow) WM information
with overlapping regions shown in green. Using a
conjunction analysis across the Stimulus and Group
condition results, we identified condition-general
stimulus-specific WM information in the left IFG and
SPL whereas context-dependent WM information was
identified in the left IPS. Results are reported at p <

0.05FWE with p < 0.001cluster. The left PMd cluster was
significant at, and shown at, an uncorrected threshold
(p < 0.001). Coloured bars indicate the respective
voxel-wise T-statistic values. PMd: dorsal premotor
cortex, SPL: superior parietal lobule, IPS: intraparietal
sulcus, IFG: inferior frontal gyrus. B. To visualize the
interaction, we extracted the mean pattern distinct-
ness values across participants at the context-
dependent WM analysis peaks (L IPS, L PMd) for the
two experimental conditions (Stimulus, Group). The
error bars indicate the standard error of the means.
Unthresholded group contrast images for the Stimulus
and Group condition stimulus-specific and context-
dependent WM results are available on Neurovault
(https://identifiers.org/neurovault.collection:5623).

Table 1
Neuroimaging results overview. 1a. Regions maintaining stimulus-specific WM
information independent of experimental context as revealed by a conjunction
analysis. 1b. Regions maintaining context-dependent WM information as
revealed by an interaction analysis. For both Table 1a and b, the Anatomy
Toolbox (Eickhoff, 2007) was used, where possible, to establish the label and the
x, y, z coordinates refer to MNI space. The T-stat value refers to the peak voxel in
the cluster with size k. Ds is the cross-validated pattern distinctness estimate with
1a referring to the mean Ds across the two conditions and 1b referring to the
interaction contrast value.

Table 1a: Stimulus-specific WM information

Label X Y Z T-stat k Ds x 10�4

L IFG �42 36 14 4.76 1373 8.0137
L SPL �22 �48 60 4.74 1071 6.7954

Table 1b: Context-dependent group-specific WM information

L IPS �26 �66 54 5.09 1441 7.6486
L PMd �42 �12 58 4.39 207 6.4042
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tion:5623).
We additionally visualized the two halves of the interaction analysis,

the Stimulus and Group condition, for the peaks identified by the whole-
brain, context-dependent searchlight analysis (L IPS, L PMd, Fig. 3B). As
expected, the pattern distinctness estimates for grouped stimuli are
smaller in the Group condition than in the Stimulus condition, indicating
that the IPS represented grouped stimuli more similarly in the Group
condition than in the Stimulus condition.

3.3. Control analyses results

3.3.1. Group representation control analysis results
To ensure that the context-dependent WM analysis identified groups

in the Group condition and not condition-general changes in pattern
distinctness, we performed a control analysis to test whether grouped
stimuli were represented more similarly in the Group condition than
stimuli from different groups. In the IPS, the grouped stimuli were more
similarly represented than stimuli from different groups (same-group
mean: 2.8334e-04 � 0.9532e-04 (SE); different-groups mean: 5.6038e-
04 � 1.1092e-04; T(35) ¼ 2.6518, p ¼ 0.0119, Cohen’s d ¼ 0.4465).
Whereas there was no evidence of stimulus grouping in the PMd (same-
group mean: 2.3017e-04 � 0.8008e-04, different-groups mean: 3.4602e-
04 � 0.8626e-04; T(35) ¼ 1.6302, p ¼ .1120). Thus the IPS and not the
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PMd represented the grouped stimuli significantly more similarly than
stimuli from different groups in the Group condition.

3.3.2. Behavioural control analysis results
In a second control analysis, we aimed to identify the influence of the

behavioural effects on the neuroimaging results. To this end, we median-
split the participant sample according to the performance difference
between stimuli resulting in two sub-samples: similarly- (SIM) and
differently-performing participants (DIF). For the SIM sub-sample, the 4
� 2 ANOVA on performance data identified no main effect of stimulus
(F(3,51)¼ 0.7833, p¼ 0.5088), no effect of condition (F(1,17)¼ 3.6479,
p ¼ 0.0732) and no interaction between the factors (F(3,51) ¼ 0.8678, p
¼ 0.4639). Moreover, the 4 � 2 ANOVA on response time data identified
a large condition effect (F(1,17) ¼ 82.8068, p ¼ 6.0569e-08, η2 ¼
0.6579) and no stimulus effect (F(3,51) ¼ 0.3274, p ¼ 0.8055) or
interaction between the factors (F(3,51)¼ 1.6130, p¼ 0.1978). Thus we
were able to remove all but the condition difference in response times
(addressed in 2.7.3). The neuroimaging results for the SIM sub-sample
identified a cluster overlapping with the left SPL cluster in the
stimulus-specific WM analysis (peak: �22, �50, 62, T-statistic ¼ 2.65)
and in the left IPS in the context-dependent WM analysis (peak: �26,
�64, 54, T-statistic ¼ 2.40).

Next, we performed the same analysis with the differently-performing
sub-sample. In contrast to the SIM sub-sample, the 4 � 2 ANOVA on the
performance data identified a main effect of stimulus (F(3,51) ¼
22.4457, p¼ 2.1093e-09, η2¼ 0.3191), no effect of condition (F(1,17)¼
1.8571, p ¼ 0.1907) but an interaction between the factors was present
(F(3,51) ¼ 6.3505, p ¼ 9.6535e-04, η2 ¼ 0.0722). Moreover, the 4 � 2
ANOVA on response time data identified a large condition effect (F(1,17)
¼ 76.2258, p ¼ 1.0885e-07, η2 ¼ 0.6047), no stimulus effect (F(3,51) ¼
2.2522, p ¼ 0.0934) and an interaction between the factors (F(3,51) ¼
6.8480, p¼ 5.7756e-04, η2 ¼ 0.0315). Once again, we identified clusters
overlapping with those identified in the main analyses. The left SPL
contained stimulus-specific WM information (peak: �22, �50, 56, T-
statistic ¼ 5.09) whereas the left IPS contained context-dependent WM
information (peak: �24, �62, 50, T-statistic ¼ 5.22). The greater T-sta-
tistics observed with the differently-performing sub-sample, combined
with our ability to replicate our findings with both sub-samples, suggests
that the effect identified in the IPS might result from the combination of
context-dependent WM amplified by task-difficulty.

https://identifiers.org/neurovault.collection:5623
https://identifiers.org/neurovault.collection:5623
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3.3.3. Response time control analysis results
Thirdly, to identify whether the observed condition-difference in

response times influenced the neuroimaging results, we reproduced the
main analyses results with new first level models including an additional
parametric response time nuisance regressor. We identified stimulus-
specific WM information in the left SPL (peak �22, �48, 60, T-statis-
tic ¼ 4.69) and IFG (peak �40, 36, 14, T-statistic ¼ 4.69) and context-
dependent WM in the left IPS (peak �24, �66, 54, T-statistic ¼ 5.06).
Thus suggesting that the neuroimaging results are independent from the
observed differences in response times.

3.3.4. WM-specificity control analysis results
To ensure that the results are specific to WM information, we per-

formed a control analysis wherein we repeated the two main analyses,
stimulus-specific (2.6.4) and context-dependent WM (2.6.5), with re-
gressors defined for the uncued stimuli. The analyses did not identify any
region with uncued stimulus-specific WM information even at an un-
corrected threshold of p< 0.001 and did not identify any region showing
an interaction across conditions at the corrected significance threshold.
Therefore, both the stimulus-specific regions as well as the context-
dependent group-specific regions are indeed maintaining information
which is specific to WM.

3.3.5. Multivariate control analysis results
Finally, we tested whether the identified WM representations are

multivariate in nature. To this end, we repeated the stimulus-specific
(2.6.4) and context-dependent WM analyses (2.6.5) using a single
voxel instead of the 4-voxel radius searchlight. Neither the stimulus-
specific nor the interaction analysis identified any significant clusters
of univariate WM content at the corrected statistical threshold, thereby
demonstrating that the WM representations are multivariate in nature.

4. Discussion

Using whole-brain fMRI in humans in combination with the cross-
validated, searchlight, multivariate ANOVA, we explored which brain
regions maintain WM representations of individual and groups of so-
matosensory pulse sequences. In a first step, we identified the left IFG and
SPL as maintaining stimulus-specific information in WM, across experi-
mental conditions. Next, by comparing the differences in pattern
distinctness across conditions, where participants were asked to maintain
either an individual stimulus or group-information in WM, we identified
an interaction between conditions in the left IPS (and in the left PMd at
an uncorrected threshold). Moreover, in the left IPS, group members
shared a more similar multivariate WM representation in the Group than
in the Stimulus condition. Thus, our results suggest that the left IPS
contains context-modulated WM information such that the stimuli from
the same group are more similarly represented in the Group condition
than in the Stimulus condition. Accordingly, our results provide addi-
tional insight into the adaptive coding ability of the parietal cortex,
where task-demands influence WM representations.

4.1. Stimulus-specific WM representations

The present study identified condition-general stimulus-specific WM
content within the left IFG and SPL. Moreover, we revealed that the WM
representations maintained in the IFG and SPL are both specific to the
cued WM content and employ a multivariate code. The identified
stimulus-specific WM regions are well in line with previous findings
which suggest that the IFG and SPL are capable of maintaining a wide-
range of features in WM (Christophel et al., 2017; Sreenivasan &
D’Esposito, 2019). Using the well-established vibrotactile WM paradigm,
frequency-specific WM information has been identified in human
(Schmidt et al., 2017; Spitzer et al., 2010) as well as NHP IFG (Romo
et al., 1999). Moreover, experiments employing trains or sequences of
stimuli, similar to those used in the present study, have shown that the
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IFG is involved in the perception of visual sequences (Cavdaroglu and
Knops, 2018) and the maintenance of auditory sequences in WM (Uluç
et al., 2018). Notably, a majority of participants (83.3%) reported in the
debriefing session having remembered the stimuli by mentally verbal-
izing or internally singing the stimuli, thus it is not surprising that the left
IFG, which is known to be involved in language production (Binder et al.,
1997) and has been shown to maintain roman characteristic-specific WM
content (letters) in WM (Polanía et al., 2011), maintained
stimulus-specific WM information in the present study. In agreement
with our results, Polanía and colleagues also found evidence for WM
letter representations in the left posterior parietal cortex. The posterior
parietal cortex, or SPL more specifically, has previously been shown to
maintain a wide variety of WM information including locations (Jerde
et al., 2012; Sprague et al., 2014, 2016), shapes (Christophel and Haynes,
2014a) and patterns composed of colour (Christophel et al., 2015;
Christophel et al., 2012) and motion (Christophel and Haynes, 2014b). In
line with this, we identified stimulus-specific WM information in the SPL
using stimuli comprising temporal patterns of somatosensory pulses.
Thus, it’s possible that the SPL also maintains temporal patterns in
addition to colour and motion patterns. However, previous studies have
shown a divergence where frontal areas represent temporally-distributed
stimuli and parietal regions represent spatially-distributed stimuli (Cav-
daroglu and Knops, 2018). Therefore, participants likely transformed the
stimulus features into a different representational code which was sub-
sequently maintained in the SPL. Future studies which probe the nature
of theWM representation are required to further explore the nature of the
code maintained in the SPL. Consequently, we provide evidence for the
maintenance of WM representations of somatosensory pulse sequences,
independent of experimental context, in higher-order, frontoparietal
regions.

4.2. Context-dependent WM representations

Next, we identified the left IPS and (found preliminary evidence for)
the left dPMC as regions that modify their WM representations in
response to changing task-demands. We expected that, by training par-
ticipants on pseudorandom groupings, the resulting WM representations
would be modulated such that representations of grouped stimuli would
be more similar to each other when the task required the maintenance of
the group, than when an individual stimulus was maintained in WM.
Thus, using an interaction contrast, we localized WM representations
which adapted to the changing task-demands in the left IPS. Moreover,
because we compared the same physical pairs of stimuli across experi-
mental conditions while controlling for the uncued stimuli, the identified
adaptive WM information is independent of stimulus features and spe-
cific to the cued stimulus. This is significant because, due to the sluggish
and indirect nature of the BOLD response, distinguishing between group-
and stimulus-specific information is more nuanced with neuroimaging
than with neurophysiological data. Thus, by contrasting identical pairs of
stimuli across the two experimental conditions, we can be certain that the
resulting WM information is specific to the group and not contaminated
by stimulus feature-specific BOLD responses.

Additionally, to visualize the interaction, we plotted the group
members’ multivariate pattern distinctness estimates for the two exper-
imental conditions separately (Fig. 3B). Due to a strong a priori hy-
pothesis regarding the presence of group-specific WM information in the
PMC (Malone et al., 2019; Rossi-Pool et al., 2016, 2017, 2019), we
included a cluster in the left PMd which did not survive multiple com-
parison correction for completeness. This visualization illustrates that,
for the left IPS and PMd, the group members were more similarly rep-
resented in the Group than in the Stimulus condition. In a control anal-
ysis, we additionally found evidence for the grouped stimuli to be
represented more similarly than non-grouped stimuli in the Group con-
dition in the left IPS but not the PMd. While this control analysis may be
confounded (see 2.7.1), these analyses provide additional evidence for
the maintenance of context-dependent temporal patterns of vibrotactile
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stimuli in WM in the left IPS. Of note, in the present study we employed
cluster-based correction thresholding which may result in larger brain
regions (e.g. the PPC) crossing the statistical threshold more easily than
smaller regions (e.g. the PMd). This is however unlikely to have biased
the reported results as post-hoc analyses with different searchlight radii
(2 to 5 voxels) did not change the location of the identified clusters.

The finding of task-modulated WM information in the IPS is in line
with previous work which has shown that representations of task-
relevant features in the IPS change with task demands and difficulty
(Jackson and Woolgar, 2018; Liu and Hou, 2013; Woolgar et al., 2011).
Moreover, the IPS has been suggested to be an integral member of the
multiple-demand or task-positive network, a network which processes
and maintains features essential for the successful performance of a task,
across changing task demands, and is influenced by rule complexity,
memory load, attentional switching among other factors (Fedorenko
et al., 2013; Wen et al., 2018). This is especially relevant for the present
study. According to these studies, the effect of task-difficulty is to in-
crease the resolution or strength of a task-relevant representation. Our
results show the opposite effect. In the more difficult task, the Group
condition, the representations of grouped-stimuli becomemore similar to
one another instead of more distinct. Thus, it is evidence in favour of a
group representation. To further explore the influence of task-difficulty
in our data, we median-split the participant sample according to the
consistency of the performance across stimuli. While we were able to
replicate our findings with both sub-samples, the sub-sample with larger
behavioural effects demonstrated larger neuroimaging effects. Thus, it is
conceivable that the effect identified in the IPS is the result of a combi-
nation of context-dependent WM modification amplified by
task-difficulty.

The central role of the IPS in grouping and categorizing stimuli across
sensory domains and species has been well established (Freedman and
Assad, 2016). A large body of research has been accumulated demon-
strating the maintenance of categorical and group-specific WM infor-
mation across stimulus modalities in the LIP, the IPS homologue in NHPs
(Fitzgerald et al., 2011, 2013, 2012; Freedman and Assad, 2006, 2016;
Freedman et al., 2001; Sarma et al., 2016; Swaminathan and Freedman,
2012). Furthermore, a new study has shown that the NHP IPS is neces-
sary for the transformation of a stimulus representation into a
more-abstract category label which is then passed to motor-selective
neurons in the NHP IPS (Zhou and Freedman, 2019). More generally,
Nieder (2012) has shown that both the LIP as well as NHP prefrontal
regions represent auditory and visual percepts of number sets, tanta-
mount to abstract numerical categories, in a supramodal fashion. Indeed,
the PPC has been shown to be involved in a wide variety of abstract
cognitive functions including the representation of cognitive sets (Oris-
taglio et al., 2006; Stoet and Snyder, 2004), numerosity (Nieder et al.,
2006; Nieder andMiller, 2004; Tudusciuc and Nieder, 2007) and salience
(Leathers and Olson, 2012), all of which can be considered various forms
of categorization (Freedman and Assad, 2016). Recently, using opto-
genetics in combination with calcium imaging, the mouse PPC was
shown to be central for the categorization of auditory frequencies (Zhong
et al., 2019). The authors provide evidence for the stable representation
of category exemplars in the PPC over several days and show that the PPC
is necessary for the generalization from category exemplars to novel
stimuli as well as for the updating of category boundaries. Furthermore, a
recent study exploring cross-modal categorization employed an auditory
and tactile delayed-match-to-category paradigm in humans, in combi-
nation with multivariate pattern analysis, and found overlapping tactile
and auditory category information in the IPS (Levine and Schwarzbach,
2017). Taken together, the evidence across species provides a strong
argument for the involvement of the IPS, and PPC more generally, in the
categorization and grouping of stimuli. Indeed, a recent article merged
the various LIP functions into a single role: the identification of behav-
iourally relevant stimuli (Freedman and Ibos, 2018). The authors suggest
that the nonlinear nature of responses observed in LIP neurons in DMTS
tasks points to the integration and comparison of incoming bottom-up
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signals with the specific top-down task-goals. Thus, taken across spe-
cies, the IPS likely maintains WM representations indicating the current
task goal, for example, the stimulus or group which is to be compared
with the target at the end of the trial.

The PPC, prefrontal cortex, and PMC have been suggested to act
together in a network which implements abstract cognitive computa-
tions, including categorization and grouping of stimuli (Freedman and
Assad, 2016). Indeed, previous work investigating the representation of
somatosensory categories also identified category-specific information in
ventral human (Malone et al., 2019) and NHP PMd (Rossi-Pool et al.,
2016, 2017, 2019). Importantly, both studies used explicit categorical
rules on stimulus feature properties to define their categories (high vs
low frequencies; same vs different stimulus) whereas, with the present
study, we wanted to explore how abstract group representations, unre-
lated to the stimulus features and dissociated from an explicit rule, would
affect the WM representations. In line with the NHP findings, we iden-
tified a trend towards a pattern distinctness difference for the group
members in the two experimental conditions in the PMd. Of note, we
identified smaller pattern distinctness values for the PMd than for the SPL
and IPS across all analyses. Because the pattern distinctness value is an
estimate of the amount of variance explained by a contrast, normalized
by the error covariance, it is interpretable. However, it is difficult and
ill-advised to compare across brain regions. Different regions are known
to have different neural vasculature (Gardner, 2010), connectivity
(Zalesky et al., 2012), and morphology (Bianchi et al., 2013), all of which
may influence the hemodynamic response and recorded fMRI signal
(Handwerker, Ollinger, & D’Esposito, 2004) making it difficult to
compare the results across regions (for more information see Haynes,
2015).

A potentially important distinction between the present study and
that of Malone et al. (2019) and Rossi-Pool et al. (2016) concerns the
ability to prepare a motor decision. Traditionally, the PMC has been
deemed responsible for the organization and planning of movements
(Wise, 1985). Thus, one hypothesized role of the PMC in categorization
suggests that the PMC maintains information relating to ‘motor ideas’
which may provide the basis for cognitive functions (Fadiga et al., 2000).
In support of this hypothesis, the PMC has been shown to represent rules
in a behaviourally relevant manner (Muhammad et al., 2006; Vallentin
et al., 2012; Wallis and Miller, 2003). In the present study, participants
maintained WM information and were not able to prepare a prospective
motor plan as they did not know whether the target would match the
maintained stimulus. Moreover, we included an additional precaution
and pseudorandomly alternated the locations of the motor targets,
thereby ensuring that participants could neither select a decision nor a
motor plan. In contrast, Malone et al. (2019) did not require participants
to respond to a target and therefore participants were able to select a
motor response at the onset of the stimulus presentation. Similarly,
Rossi-Pool et al. (2016) identified categorical representations in the PMd
during the delay between the presentation of the target and the motor
output, a timepoint when the NHPs had already made but not yet
communicated their decision. Thus, the inability of participants in the
present study to select a decision and prepare a motor output may have
prevented the transformation of group-specific WM information in the
IPS into a motor plan in the PMC. In line with this, the PMC has been
implicated in the preparation of so-called virtual motor plans which can
be transformed into a motor plan (Nakayama et al., 2008; Yamagata
et al., 2012, Yamagata et al., 2009). Indeed, Rossi-Pool et al. (2019)
recently re-analysed their data and found that, while there was category
information in the PMd, the majority of neuronal variance could be
explained by experimental timing. Thus, it is possible that the PMC is
mainly responsible for determining the specific timing of events and
coordinating the associated network regions, such as the
stimulus-specific WM information in the IFG and SPL and the
context-dependent, group-specific WM information in the IPS.
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4.3. WM representations

Finally, by considering both the context-dependent and the stimulus-
specific results together, we can speculate on the probable nature of the
WM representational codes in the various regions. Regions identified by
the stimulus-specific conjunction analysis, area 5A of the SPL and area 45
of the IFG, likely maintain stimulus feature information in WM inde-
pendent of experimental conditions. Moreover, regions identified by the
interaction analysis, the IPS and PMd, may maintain stimulus feature
information only in the stimulus condition and an abstracted categorical
or group label in the group condition (e.g. stimulus A1 and A2 main-
tained as A). This would also result in the difference in pattern distinct-
ness estimates observed in the interaction analysis. Finally, the region
identified by the overlap of the two analyses, area 7A of the SPL, likely
maintains a combination of stimulus features as well as abstracted WM
information in the group condition. Future studies are required to further
probe the representational nature of the WM codes implemented by the
different regions under various task-demands.

5. Conclusion

In conclusion, we present evidence for the maintenance of WM in-
formation in frontoparietal regions across experimental conditions
wherein participants were instructed to maintain either individual or
groups of somatosensory sequences. Additionally, we identified the
maintenance of context-dependent, group-specific WM representations
in the left IPS independent of stimulus properties in a paradigm that
disentangled the WM representation from the categorical decision and
the motor response. We show that the WM representations in the IPS
adaptively change with task-demands such that, in the Group condition,
group members are represented more similarly than in the Stimulus
condition. Thus, we provide novel evidence for the adaptive nature of
somatosensory WM representations in the IPS and suggest that somato-
sensory WM representations are maintained in the IPS in an adaptive,
context-dependent manner.
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