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1 INTRODUCTION 

1.1 A small history of microglia 

In 1919, almost a hundred years ago, the Spanish neuroscientist Pio del Rio Hortega described 

microglia for the first time 1–5. He used the term “microglia” to define a subpopulation of cells 

within the “third element” of brain cells, which was defined by Ramón y Cajal a few years earlier 

5,6. In a series of followed publications 7–9, Pio del Rio Hortega characterised the physiology and 

pathophysiology of microglia. Most of his observations and assumptions made back then still 

hold true today. He postulated that microglia adopt different morphologies depending on their 

vicinity and activation1. Only recently the microglial heterogeneity was addressed again 10. Mi-

croglia originate from the mesoderm 3,11 and populate the brain during early development, which 

was shown by Ginhoux and colleagues in 2010 12. They perform diverse functional tasks, such 

as migration and phagocytosis 4, which is until today considered as a hallmark of microglia. 

Following del Rio Hortegas fundamental research on microglia made in the 1920s, the field did 

not advance for decades, and the existence of microglia was even denied by some neuroscientists. 

The interest in microglia came back in the 1960s with studies on the injured facial nerve by the 

group of Georg Kreutzberg 13. This interest accelerated sustainably. Today, microglial research 

focuses on many aspects of the brain, ranging from brain development 14–16, synaptic plasticity 

17,18, and sex differences 19,20, and in different types of disease such as stroke 21–23, cancer 24, 

multiples sclerosis 25–27, and psychiatric diseases such as schizophrenia 28,29 and autism, to age 

related diseases such as dementia 14 and Alzheimer’s disease 30–33. 

1.1.1 Origin 

In today’s publications, microglia are often introduced as “the resident macrophages of the 

brain”, pointing out one of their most studied feature: their contribution to the innate and adap-

tive immunity. Although microglia and monocyte-derived macrophages share the same func-

tions and expression of markers, they derived from a different origin 3,11,12. In mice, microglia 



2 

 

arise from myeloid progenitor cells and migrate from the yolk sac into the central nervous sys-

tem (CNS) between embryonic day 8.5 and 9.5 12. Around 5 days later at E15, the formation of 

the blood brain barrier (BBB) begins and shields the microenvironment of the CNS against the 

rest of the body. This consecutive timeline distinguishes microglia from other tissue specific 

macrophages, such as Langerhans cells 34, Kupffer cells 35, and Alveolar macrophages 36–38. While 

those are replaced by bone marrow derived macrophages (BMDM) over a lifespan, the BBB pro-

tects microglia. Microglia age concurrent with the brain. Yet, they can be replaced to some ex-

tend by microglia precursors 14. 

1.1.2 Capabilities 

Microglia and macrophages do inherit the same functions, pathways and activation pattern, yet 

differ in their morphology and tissue specific tasks 39–42. In the healthy mature CNS, microglia 

have a ramified morphology, characterised by a small soma and long thin cellular processes. 

This phenotype was previously considered to be a “resting” state. However, this view came to an 

end, as Nimmerjahn showed that in physiology microglia processes are highly dynamic while 

their cell body remains immobile 43. Microglia monitor the brain homeostasis 44. An alteration 

in the homeostasis, be it induced by infection, trauma, ischemia, neurodegenerative diseases, or 

altered neuronal activity, leads to microglial activation 41. To detect signals from the micro-en-

vironment, microglia express different receptors, like Toll-like receptors (TLR), purinergic re-

ceptors, neurotransmitter receptors, receptors for neurohormones as well as for cytokines and 

chemokines 40,41. TLRs recognise structurally conserved molecules of different pathogens such 

as viruses, bacteria, parasites, and fungi 45. Purinergic receptors are involved in paracrine and 

autocrine signalling 41. An increase in extracellular ATP is associated with cell death and serves 

as a danger signal in the inflammatory process 46. Neurotransmitter receptors, like glutamate 

and gamma-aminobutyric acid (GABA) receptors, sense alterations in the neuronal activity, a 

sign of neuronal malfunction or lesions 47. In addition, microglia also express receptors for neu-

rohormones and -modulators, such as opioid and histamine receptors, to detect changes in the 

brain homeostasis. A variety of cytokine and chemokine receptors enable cell-cell communica-

tion 40 and the modulation of the immune response.  

1.1.3 Physiology 

Even though microglia are characterised as immune cells, they are of great importance in the 

developing and mature brain 14,48. During the development of the brain, microglia proliferate 
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and accumulate in areas presenting high densities of apoptotic neurons to facilitate neuronal 

turnover during developmental cell death. Apart from clearance of dead cells, microglial phago-

cytosis controls the number of neural precursors in proliferative regions of the developing brain 

15,18. This regulation of neurogenesis continues throughout adulthood in well-defined areas in 

which the existence of neuronal stem cells persists. In addition to their impact on the number 

of neurons, microglia are also involved in the neuronal wiring. Microglia play a role in the axonal 

outgrowth and positioning. They engulf dendritic spines and are required for synaptic pruning. 

As recent studies have shown, does microglial modulation and regulation of neuronal activity 

and synaptic plasticity continue in the mature CNS 17,41,49,50.  

1.1.4 Pathophysiology 

Upon activation, microglia change their morphology, gene expression, and functional behaviour, 

resembling activated BMDMs. Microglia retract their thin processes and acquire an amoeboid 

morphology 40. They become motile and start migrating towards the epicentre of a danger signal. 

This transformation is initiated by a change in the composition of cell surface proteins for cell-

cell and cell-matrix interaction, as well as the secretion of proteins and enzymes to rearrange 

and disintegrate the extracellular matrix (ECM) 51. In areas of pathological events, induced mi-

croglial proliferation can increase the density locally 41,52. Activated microglia change their rep-

ertoire of released cytokines and chemokines, in order to trigger and regulate an immune re-

sponse and attract other immune cells, like BMDMs, neutrophils, T-cells, or natural killer cells 

(NK-cells). Microglia enhance their basal phagocytosis to fight pathogens as well as to clear cell 

debris left behind. As a first line defence mechanism against pathogens, microglia release nitric 

oxide (NO) and activate the complement system 53–55. 

1.2 Nitric Oxide 

1.2.1 The history as a biologically active molecule. 

Nitric oxide is a colourless free radical gas under standard conditions with the chemical formula 

of NO56. The action of nitric oxide in the body is of a paradoxical nature. It is both, a regulatory 

molecule and an agent which is cytotoxic, mutagenic, and probably carcinogenic 57–60. It was long 
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believed that its biosynthesis was exclusive to microorganisms. This was disproven in 1987 by 

Hibbs et al., showing that nitric oxide can be produced by macrophages upon LPS stimulation 

and that it is playing an important role in the innate immune system 61. In the same year, 

Ignarro et al. could show that nitric oxide is the primary endogenous vasodilator regulating the 

cardio vascular system 62. As a consequence of its importance for the human body, the leading 

scientific journal Science proclaimed nitric oxide as the “Molecule of the Year” in 1992 63. Only 

6 years later, in 1998, the Nobel Prize in Physiology or Medicine was awarded jointly to Robert 

F. Furchgott, Louis J. Ignarro and Ferid Murad "for their discoveries concerning nitric oxide as 

a signalling molecule in the cardiovascular system" 64. 

1.2.2 The unique properties as a biological messenger 

The unique physical and chemical properties of nitric oxide distinguish it from other biological 

messenger molecules. It is one of the smallest signalling molecules in the human body and a free 

radical. Both properties are responsible for its distinct behaviour. 

In the human body, the gaseous nitric oxide is solved in the cytosol and extracellular liquids. Its 

relatively small size allows it to diffuse freely across biological barriers, as the cell membrane 

and bacteria wall. Therefore, nitric oxide can neither be stored nor actively transported. How-

ever, there are some evidence that the cell is able to direct the diffusion using connexins or 

relocate the place of synthesis. The diffusion coefficient of nitric oxide in water (2.60×10-5 cm²/s) 

is higher than those of oxygen (2.10×10-5 cm²/s) and carbon dioxide (1.92×10-5 cm²/s), which leads 

to locally and temporally restricted gradients of sufficient nitric oxide concentrations 65–67. The 

lack of storage and the rapid and free diffusion results in a short range undirected signalling. 

Nitric oxide belongs to the group of reactive oxygen species (ROS) and is a free radical 68. Free 

radicals are atoms, molecules or ions that have an unpaired electron. This unpaired electron is 

highly reactive towards other molecules. In contact with other molecules, nitric oxide will react 

spontaneously and undirected 69. These rapid undirected reactions lead to the very short lifespan 

of nitric oxide. Prominent reactions of nitric are with oxygen (O2) and water (H2O), forming 

other highly reactive oxygen species, like peroxynitrite (ONOO-) or hydrogen peroxide (HOOH) 

70. Important biological reactions are with nucleic acids (DNA and RNA) causing mutations, with 

lipids causing peroxidation and leading to a membrane break-down, with proteins causing loss 

of function and leading to early degradation, and with biological molecules blocking them per-

manently 71. The reaction with proteins and biological molecules do not always cause a loss of 
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function but are also used for regulation and storage 72–74. Proteins can be regulated and post-

transcriptional modified by nitrosylation of their sulfhydryl groups 75. It was postulated that 

nitric oxide reacts reversible with heme B. However, its function is not fully understood 76. 

Taken the physical and chemical properties together, nitric oxide reacts undirected ubiquitously 

but locally and temporally restricted. 

1.2.3 Nitric oxide synthesis: Isoforms and mode of action 

In mammalians, nitric oxide is produced by nitric oxide synthases (NOS). In human as well as 

in mice three major isoforms of NOS are known: eNOS, nNOS, and iNOS 59,60,77. eNOS and nNOS 

are constitutively expressed. Their activation status is regulated via the cytosolic calcium con-

centration (Ca2+) 78. iNOS is calcium independent, it is regulated on a transcriptional level 58. 

The nomenclature of eNOS and nNOS derives from its predominant location within the human 

body: eNOS is most frequently expressed in endothelial cells (endothelial NOS) and nNOS is 

most frequently found in neurons (neuronal NOS). The nomenclature of iNOS nomenclature 

derives from its inducible expression (inducible NOS). Another used nomenclature lists the NOS 

chronologically by their first successful cloning. nNOS was the first isoform to be purified and 

cloned, in 1990 and 1991 respectively. Later on, it was given the name NOS1. The second one 

on the list was iNOS, thus named NOS2, purified and cloned in 1991. The purification and clon-

ing of eNOS followed one year later in 1992, respectively named NOS3. In this thesis, I will stick 

to the nNOS, eNOS, and iNOS nomenclature emphasising the different expression of iNOS com-

pared to nNOS and eNOS. 

The cloning of NOS cDNAs from human, rodent and other species has revealed that NOS 

isoforms comprise a family of structurally related enzymes. Amino acid sequence identity be-

tween isoforms is high (50% - 60%) and for each isoform conservation between mammalian spe-

cies is even higher (85% for iNOS and 95% for nNOS and eNOS) 54,59. The intron-exon structure 

of the NOS genes is conserved suggesting: that the NOS gene family evolved by gene duplication 

and evolutionary pressure for the preservation of structure and function 79. 
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Name Abbrevi-

ation 

Alternative 

name 

Location Regula-

tion 

Inducible 

Nitric Oxide Synthase 

iNOS NOS2 immune system 

cardiovascular system 

translation 

Endothelial 

Nitric Oxide Synthase 

eNOS NOS3 endothelium Ca2+ 

sensitive 

Neuronal Nitric Oxide 

Synthase 

nNOS NOS1 Nervous system 

Skeletal muscle 

Ca2+ 

sensitive 

Table 1.1: List of Nitric Oxide Synthase isoforms 
 

Though the three isoforms differ in their expression, they all share the same catalytic synthesis 

of nitric oxide from L-arginine 59,60,72,80. The protein contains two separate catalytic domains, a 

reductase domain, and an oxygenase domain. Both domains are linked by a calmodulin binding 

domain. In order to form an active catalytic complex, the synthase forms a homodimer in which 

the reductase domain of one protein aligns with the oxygenase domain of the second protein. 

The binding of calcium to calmodulin changes the arrangement of both catalytic domains and 

activates the enzyme. eNOS and nNOS require a high amount of calcium to trigger this confor-

mational change. iNOS, even though it is considered calcium independent, requires trace levels 

to function. Calcium levels found in the cytosol of resting cells are sufficient. 81. The main sub-

strates of the nitric oxide formulation are the proteinogenic amino acid L-arginine, providing 

the nitrogen, and dioxygen, providing the oxygen. The amine group of L-arginine is oxidised to 

citrulline via a two-step monooxygenation reaction. In addition, this reaction consumes 2 mol of 

O2 and 1 ½ mol of NADPH per mole of NO formed 82–84. This reaction requires relative tightly 

bound cofactors: Tetrahydrobiopterin (BH4), flavin adenine dinucleotide (FAD), Flavin mononu-

cleotide (FMN), and Heme-B 81,85,86. 

1.2.4 The biological function of nitric oxide 

In mammals nitric oxide is involved in three major processes: It is ubiquitously short range 

messenger in the cardiovascular system 87–89, it is a specific neuronal transmitter in the CNS 

73,90–94, and it is an undirected weapon used by the immune system 41,95,96. Those three processes 

are mainly regulated by the three isoforms eNOS, nNOS, and iNOS respectively. 

Nitric oxide is of critical importance as a mediator of vasodilation in the cardiovascular system. 

The pulsatile stretch of endothelial cells induces calcium influx into the cytoplasm causing an 
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increase in cytoplasmic calcium concentration. The elevated calcium concentration actives the 

endothelial expressed eNOS. The synthesised nitric oxide diffuses into the surround smooth 

muscles cells and activates the guanylate cyclase, which induces relaxation by inhibition of cal-

cium influx via increased intracellular cGMP concentration, the activation of K+ channels, 

which leads to hyperpolarization and relaxation, and the stimulation of cGMP-dependent pro-

tein kinase that activates myosin light chain phosphatase causing the dephosphorylating of the 

myosin light chains and muscle relaxation 97,98. 

In the CNS, nitric oxide severs as a neurotransmitter between nerve cells. It functions as a 

retrograde neurotransmitter important for long term potentiation and therefore has an impact 

on learning and memory. Stimulation of the NMDA receptor activates the neuronal NOS, nNOS, 

via an elevation of cytoplasmic calcium concentration. Due to its physical and chemical proper-

ties, described above, nitric oxide does act non-specifically on all neurons within its range. It 

diffuses into the presynaptic neuron, as well as those neurons that are not directly connected by 

synapses. The short half-life of nitric oxide restricts its action temporal and its fast degradation 

do not require any additional cellular reuptake or enzymatic breakdown 99,100. 

The immune system takes advantage of the radical nature of nitric oxide. In the first line of 

defence, macrophages and microglia produce excessive amounts of nitric oxide to target para-

sites, bacteria, and viruses. Pathogen stimulation, such as bacterial LPS, or paracrine cytokines, 

like interferon-γ, induces iNOS protein synthesis. As noted above, iNOS is independent of the 

cellular calcium concentration, once synthesised it produces nitric oxide constantly until the 

protein is degraded, leading to cytotoxic concentrations. Those high concentrations of nitric ox-

ide react unspecific with nucleic acids (DNA and RNA), lipids, and proteins (see above). This 

reaction affects the host and invader to the same extant. The damage to other host cells evokes 

yet another immune reactions, potentiating the inflammation 59,95,96. 

1.2.5 Regulation of iNOS 

While the regulation of the constitutively expressed eNOS and nNOS is directly linked to the 

regulation of the Ca2+ level in the cell, the regulation of iNOS takes place on a transcriptional 

level and is calcium independent. Under physiological conditions, evidence for baseline iNOS 

expression has been elusive, yet under pathological conditions, the iNOS expression is upregu-

lated tremendously in cells of the monocyte lineage.  

Microglia and macrophages express iNOS in response to an external pathogen stimulus, like 

lipopolysaccharide (LPS), and paracrine cytokines, like interferon-γ (IFNγ), interleukin-1β 
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(IL1β), interleukin-6 (IL6), tumour necrosis factor-α (TNFα), and hypoxia. Those stimuli act 

more or less directly on the transcription of iNOS. Like the protein sequence, the promotor re-

gion of iNOS shares a high degree of homology with other species. It is packed with numerous 

binding sites for transcription factors such as AP-1, ARE, C/EBP, c-ETS-1, CREB, GATA, HIF, 

HSF, IRF-1, NF-1, NFAT, NF-κB, NF-IL6, Oct-1, PEA3, p53, Sp1, SRF and STAT-1α 58,101–111. 

Here, I will shortly outline the function of NF-κB, STAT-1α, and HIF. NF-κB is one of the most 

prominent transcription factors in this list. It is a key regulator of the immune system and re-

sponses to cell stress, cytokines, free radicals as nitric oxide itself, and bacterial and viral anti-

gens 106,112,113. NF-κB is present in the cytoplasm in an inactive state. Upon activation, it trans-

locates to the nucleus, binds to its binding site and induces the transcription of iNOS. Stimula-

tion with polyinosinic:polycytidylic acid (polyIC) activates NF-κB via the TRIF pathway 114,115. 

Stimulation of the Toll-like receptor 4 (TLR4) with LPS activates NF-κB via the MyD88 pathway 

115. In addition, this pathway triggers the activation of the transcription factors CREB and AP-

1. Cytokines, like IFNγ, are using the transcription factor STAT-1α to induce iNOS transcription 

116,117. Upon stimulation with IFNγ JAK is activated, which phosphorylates STAT-1α. 

Phosphorylates STAT-1α relocates into the nucleus and induces transcription of iNOS. HIF is a 

major regulator of oxygen homeostasis within cells. Unlike the transcription factors described 

above, HIF is a sensor and regulator in once 118,119. Upon low oxygen concentration HIF changes 

its conformation, becomes activated and induces iNOS transcription. Nitric oxide itself can reg-

ulate induction of iNOS. In microglial and macrophages NO causes an upregulation of the cel-

lular cGMP concentration, the enhancement of transcription factor p53 activity, which inhibits 

the iNOS promoter, reduction of the HIF-1 activity, inhibition of cytokine induced NF-κB activ-

ity 120,121, and tyrosine nitration of STAT-1α 122. This negative feedback regulation is tissue de-

pendent and might even be reversed for some tissues 123. Posttranscriptional and posttransla-

tional modifications of iNOS play a minor role in the regulation of iNOS. Several factors are 

known to destabilise iNOS mRNA or iNOS protein 54. Most of those factors have a general effect 

on mRNA and protein stability, lacking iNOS specificity.  
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1.3 Nitric Oxide in Stroke 

1.3.1 Stroke – an overview 

Nitric oxide plays an eminent role in Stroke. It has a positive as well as a negative effect on the 

outcome of stroke, depending on the concentration, the location and the time point of synthesis.  

A stroke is defined as the sudden death of brain cells in a localised area due to lack of oxygen 

and energy supply 124. It is caused by insufficient blood flow, as a result of a clogged blood vessel 

(ischemic stroke), or bleeding (haemorrhagic stroke) 125. Within minutes after oxygen depriva-

tion neurons start dying in the stroke core area which induces an inflammation. Even a tempo-

rary interruption of the blood flow can cause a chronic loss of brain function. Areas hit by a 

stroke, suffer a great deal of damage and do barely recover, leaving the patient behind with 

severe cognitive disabilities. These disabilities are directly linked to the loss of neurons within 

the focal area of the stroke, meaning a loss in the ability to speech occurs when the corresponding 

area is hit. Major signs of stroke are a loss of motor functions (side specific face dropping, arm 

or leg weakness), and coordinative functions, speech difficulty, impaired vision, sudden dizzi-

ness, and severe headaches 126,127. 

For the last 15 years, stroke was the second most frequent cause of death worldwide outrun by 

ischaemic heart disease, another ischaemic triggered disease 128. In 2015 stroke was accounting 

for more than 6.2 million deaths worldwide, about 6 % of all causes of death and about 0.1 % of 

the world population 129. In Germany, approximately 196 000 people, 2.4 % of the German pop-

ulation, per year are affected by first-ever stroke events. With about 63.000 deaths yearly, stroke 

is the third most frequent cause of death in Germany. Compared with the global statistics, the 

stroke death rate did decrease by 40 % between the year 1998 and 2008. This reduction is largely 

due to the widespread establishment of stroke units all over Germany 130,131.  

1.3.2 The double role of nitric oxide in stroke 

NO plays a two-sided role in stroke. It is neuroprotective and neurotoxic at the same time 

57,70,92,132–136. Studies have shown an enhancement and exacerbation in the outcome of stroke for 

both, an elevated and a reduced NO concentration. The complex consequences of NO are driven 

by the various sources, the concentrations, the location, and the time point of synthesis within 

the stroke. During a stroke, NO is produced by all three NOS isoforms eNOS, nNOS, and iNOS. 
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eNOS and nNOS are consecutively expressed in the brain, while iNOS is only induced in inflam-

matory processes. eNOS is predominantly expressed in the vascular endothelial cells and cho-

roid 137,138. Although it generates NO only in a small amount, it plays a crucial role in the regu-

lation of cerebral blood flow, the protection of the blood brain barrier, and the reduction of oxi-

dative stress. Here, NO acts as a scavenger for oxygen free radicals, an inhibitor for expression 

of adhesion molecules, and a promotor of platelet aggregation and lymphocytes adhesion 89. An 

elevation in eNOS driven NO dilates the blood vessels locally, reducing the blood pressure and 

increasing the blood flow within that region. Both effects reduce the infarct size significantly 

and are related to an improved outcome in stroke 139. Whereas, the inhibition of eNOS - achieved 

by utilising a knockout-mouse or eNOS-specific inhibitors - leads to significantly reduced cere-

bral blood flow, and thus subsequently results in a greater infarct size 140–142. NO generated by 

nNOS, which is expressed in a small subset of neurons, has opposing effects on the health of the 

neurons, depending on the produced NO concentration. In low concentrations, NO is used for 

retrograde signalling. At these low concentrations, NO has a neuroprotective function, stabilis-

ing the synapses and therefor the neurons. It scavenges oxygen free radicals and interacts with 

the vasodilating pathway in endothelial cells resulting in an increased blood perfusion 143,144. 

However, a misguided regulation of nNOS leading to an elevation of the NO concentration re-

veals its neurotoxic properties. Upon an inflammation, the Ca2+ levels rise inter- and intracel-

lular, due to dying cells in the proximate range. This elevation in Ca2+ ions causes a direct acti-

vation of nNOS leading to an increase in NO concentration. Unlike eNOS and nNOS, iNOS is 

regulated on the transcriptional level. In the brain, iNOS is predominantly produced by micro-

glia and in the case of a stroke by infiltrating macrophages. It is also reported, that astrocytes 

and endothelial cells can express iNOS 145,146. As described above, is the iNOS protein not de-

tectable under physiological conditions. Upon a proinflammatory stimulus, the iNOS protein 

synthesis is upregulated and iNOS starts producing NO in high concentrations. This regulation 

leads to a delay of iNOS driven NO. In an ischemic stroke, iNOS is produced from 6 up to 12 

hours after the incident but can last for more than a week 147. Microglia and Macrophages use 

NO as a first response mechanism to fight infiltrating pathogens, like fungi, bacteria, and other 

parasites. To do so, it uses high concentrations of NO which reacts unspecific with pathogens 

and more specific with other immune cells to trigger an amplified response. In a stroke, these 

elevated NO concentrations react with all cells in range leading to an universal cell death, es-

pecially of sensitive neurons. The amplification in the immune response does increase the area 

of inflammation leading to an enlarged stroke area and exacerbated the outcome. 
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1.3.3 Treatment of Stroke 

State of the art treatment of stroke is the restoration of blood flow to the area of critical energy 

supply in a minimal amount of time. Time is the most crucial factor in stroke treatment. The 

outcome of stroke is directly correlated with the duration of critical energy supply in the affected 

brain region. In Europe the period from the onset of stroke to the first treatment could be de-

creased tremendously in the last decades, archived by educating the people for early sings of 

stroke, a fast infrastructure, and the creation of stroke core units 130,131. Depending on the type 

of stroke these treatments can be completely different and opposing. In case of an ischemic 

stroke, the reperfusion is accomplished by a chemical and surgical disruption of the underlying 

thrombus, the dilution of the blood and an increase in blood pressure. In the case of a haemor-

rhagic stroke, the first steps taken are the decrease in blood pressure to reduce the bleeding into 

the brain tissue and closing the disrupted blood vessel. Both treatments diverge entirely, hence 

the type of stroke has to be assessed prior to treatment. 

The main goal of both approaches is the restoration of the blood flow, but both are missing out 

the peculiarities of the cells of the brain, the neurones, astrocytes, oligodendrocytes, and the 

immune system, including the brain own microglia and the infiltrating immune cells. Over the 

last decades, numerous studies tried to improve the effect on those cells by target the excitotox-

icity (rapid release and inhibited reuptake of the excitatory glutamate as a result of energy fail-

ure) 148,149, the oxidative and nitrosative stress (increased level of NO and oxygen free radicals) 

53,149–154, and inflammation (infiltrating macrophages and neutrophils) 155–157. So far none of 

these studies led to drugs approved or ischemic and haemorrhagic stroke 126,131,158. 

1.4 Aim of this thesis 

Recent studies shown, that microglia activation play an important role in the development, pro-

gression and outcome of in different types of disease such as stroke 21–23, cancer 24, multiples 

sclerosis 25–27, and psychiatric diseases such as schizophrenia 28,29 and autism, as well as demen-

tia 14 and Alzheimer’s disease 30–33. Yet, a drug targeting specifically microglial activation is still 

missing. This thesis is an attempt to identify and characterise a novel compound targeting mi-
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croglia activation. The main aim is to discover a compound able to modulate the proinflamma-

tory activation of microglia in broad but defined range with a focus on the regulation of induced 

NO release.
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2 MATERIAL AND METHODS 

2.1 Material 

2.1.1 Chemicals and reagents 

Chemical Company 

Adenosine-5'-Triphosphate (ATP) Sigma Aldrich, St. Louis, USA 

β-mercaptoethanol Sigma Aldrich, St. Louis, USA 

Bovine serum albumine (BSA)  Carl Roth, Karlsruhe, Germany 

Dnase Life Technologies GmbH, Darmstadt, Germany 

dNTPs Life Technologies GmbH, Darmstadt, Germany 

Dimethyl Sulfoxide (DMSO) Sigma Aldrich, St. Louis, USA 

DTT Life Technologies GmbH, Darmstadt, Germany 

Dulbeccos Modified Eagles Medium Life Technologies GmbH, Darmstadt, Germany 

Fetal calf serum (FCS) Life Technologies GmbH, 

Fluorescent latex beads Darmstadt, Germany 

Hank's balanced salt solution (HBSS) Life Technologies GmbH, Darmstadt, Germany 

HEPES Carl Roth, Karlsruhe, Germany 

IFNγ, recombinant murine Peprotech, Rocky hill, USA 

Lipopolysaccharide (LPS) from E.coli Enzo Life sciences, Farmingdale, USA 

Oligo DT Life Technologies GmbH, Darmstadt, Germany 

Penicillin/Streptomycin Life Technologies GmbH, Darmstadt, Germany 

Phosphate-buffered saline (PBS) Life Technologies GmbH, Darmstadt, Germany 

Poly I:C Invivogen, San Diego, USA 

Poly-L-lysine Sigma Aldrich, St. Louis, USA 

RNase Out Life Technologies GmbH, Darmstadt, Germany 

Sodium chloride (NaCl) Carl Roth, Karlsruhe, Germany 

Sodium Dodecyl Sulfate (SDS) Sigma Aldrich, St. Louis, Germany 
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Chemical Company 

Superscript II Reverse Transcriptase Life Technologies GmbH, Darmstadt, Germany 

SYBR green Select Mastermix Life Technologies GmbH, Darmstadt, Germany 

EDTA/Trypsin Biochrom, Berlin, Germany 

Clodronate Disodium Salt  Merck KGaA, Darmstadt, Germany. 

DMEM/F-12, GlutaMAX™ supplement Life Technologies GmbH, Darmstadt, Germany 

L-Glutamine Life Technologies GmbH, Darmstadt, Germany 

AlamarBlue Invitrogen, Darmstadt, Germany 

RPMI 1640 Life Technologies GmbH, Darmstadt, Germany 

Protease inhibitor cocktail Roche, Berlin, Germany 

RIPA buffer Sigma-Aldrich, Munich, Germany 

Tissue Tek Compound (OCT) Weckert Labortechnik, Kitzingen, Germany 

Tris-base Carl Roth GmbH, Karlsruhe, Germany 

Tris-HCl Carl Roth GmbH, Karlsruhe, Germany 

Triton X-100 Carl Roth GmbH, Karlsruhe, Germany 

Trypan blue Sigma-Aldrich, Munich, Germany 

Tween 20 Merck, Hohenbrunn, Germany 

M-CSF, murine Invitrogen, Darmstadt, Germany 

Sulfanilamide Sigma-Aldrich, Munich, Germany 

H3PO4 (85 %)  Sigma-Aldrich, Munich, Germany 

Naphthylethylene Sigma-Aldrich, Munich, Germany 

Sodium nitrite Sigma-Aldrich, Munich, Germany 

Propidium Iodide Invitrogen, Darmstadt, Germany 

Isoflurane Forene, Abbot, Wiesbaden, Germany 

2.1.2 Buffers 

Buffer Ingredients 

DMEM complete DMEM 

10 % FCS 

2 mM L-glutamine 

100 U/ml penicillin 

100 μg/ml streptomycin 

HEPES buffer Aqua dest. sterile filtered 

0.9% NaCl 
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Buffer Ingredients 

L929 fibroblast cond. Medium 1/3 DMEM from confluent L929 fibroblast grown  

for 2 days mixed with 2/3 DMEM 

FACS buffer PBS + 2% v/v FCS 

2.1.3 Commercial kits 

Kit Company 

ELISA Mouse IL-1β/IL-1F2 Duo Set Bio-Techne GmbH Wiesbaden-Nordenstadt Germany 

ELISA Mouse IL-6 Bio-Techne GmbH Wiesbaden-Nordenstadt Germany 

ELISA Mouse TNF-α  Bio-Techne GmbH Wiesbaden-Nordenstadt Germany 

Diff-Quik stain  Medion Grifols Diagnostics AG, Düdingen, Switzerland 

2.1.4 Primer 

Primer name Sequence 

iNOS forward TCACGCTTGGGTCTTGTTCA 

iNOS reverse TGAAGAGAAACTTCCAGGGGC 

βActin forward CGTGGGCCGCCCTAGGCACCA 

βActin reverse CTTAGGGTTCAGGGGGGC 

 

2.1.5 Tools and plasticware 

Plastic ware Company 

4-well plate  Thermo scientific, Rockford, USA 

6-well plate  BD Biosciences, Heidelberg, Germany 

12-well plate  BD Biosciences, Heidelberg, Germany 

24-well plate  BD Biosciences, Heidelberg, Germany 

96-well plate (transparent)  BD Biosciences, Heidelberg, Germany 

Cell strainer, 70 µM  NeoLab, Heidelberg, Germany 
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Plastic ware Company 

Glass coverslip  Thermo Fischer Scientific, Walldorf, Germany 

Pasteur pipette  Carl Roth, Karlsruhe, Germany 

T75 cell culture flask  Greiner Bio-one, Frickenhausen, Germany 

384-well plate Corning, New York, USA 

Polycarbonate filter Thermo-Scientific, Rockford, USA 

2.1.6 Devices 

Devices Company 

Centrifuges 5417R and 5810R Eppendorf, Hamburg, Germany 

Incubator Steri-Cult Forma Thermo-Scientific, Rockford, USA 

Microplate reader Infinite M200  Tecan, Männedorf, Switzerland 

Monochromator Polychrome II  Till photonics, Gräfelfing, Germany 

qPCR machine7500 Fast Real Time PCR 

System 

AB Applied Biosciences, Foster City, USA 

Shaking platform SSM4  Stuart scientific, Stone, United Kingdom 

Spectrophotometer Nanodrop 1000  PeqLab Biotechnologie, Erlangen, Ger-

many 

Thermocycler T3000  Biometra, Göttingen, Germany 

Thermomixer  Compact Eppendorf, Hamburg, Germany 

Boyden chamber Neuroprobe, Bethesda, MD, USA 

Flow Cytometry Systems Becton Dickinson GmbH, Heidelberg, Ger-

many 

EL406 Biotek, Winooski, USA 

Freedom Evo Tecan, Maennedorf, Switzerland 

Safire2 Tecan, Maennedorf, Switzerland 

Pharmascan 70 ⁄ 16 Bruker BioSpin, Bruker, Billerica, USA 

Small Animal Monitoring & Gating System SA Instruments, New York, USA 

Rotarod TSE Systems, Chesterfield, USA 
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2.1.7 Software 

Software Company 

Adobe Design Standard CS6 Adobe Inc, San Jose, USA 

GraphPad Prism GraphPad Software Inc., La Jolla, USA 

ImageJ National Institute of Health, USA 

Microsoft Office  Microsoft, Redmond, USA 

R statistics package  R Foundation for Statistical Computing, Austria. 

FACSDiva Becton Dickinson GmbH, Heidelberg, Germany 

FlowJo FlowJo LLC, Ashland, USA 

Pipeline Pilot Biovia, San Diego, USA 

Paravision 5.1 Bruker BioSpin, Bruker, Billerica, USA 

Analyze 10.0 AnalyzeDirect, Inc., Overland Park, USA 

2.2 Methods 

2.2.1 Mice 

All in-vitro experiments were carried out using C57BL/6N mice originating from Charles River 

Laboratories in Sulzfeld, Germany. The animals were bred in the animal facilities of the Max-

Delbrück-Centrum für Molekulare Medizin in Berlin-Buch according to the LaGeSo (Landesamt 

für Gesundheit und Soziales) regulations (TVV: X9023/12). All animal experiments preformed 

in the laboratories of the Max-Delbrück-Centrum für Molekulare Medizin and the Charité were 

conducted according to the German guidelines for animal care and were approved in advance by 

the LaGeSo. 

In-vivo pharmacokinetic and ADME (absorption, distribution, metabolism, and excretion) stud-

ies in mice were performed by the external company Touchstone Biosciences (Plymouth Meeting, 

USA). The company states that all experiments were performed according to the guidelines of 

the United States Food and Drug Administration (FDA) and the European Medicines Agency 

(EMA). 
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2.2.2 Primary cultured cells 

2.2.2.1 Primary cultured neonatal microglia 

Primary cultured neonatal microglia were prepared from the cerebral cortex and midbrain of 

new-born C57BL/6N mice (postnatal day 0 – 3) as described previously 159. The mice were sacri-

ficed by cervical dislocation using a scissor, the brain was extracted, and the meninges and cer-

ebellum were removed and transferred into ice cold HBSS. The dissected brains were washed 3 

times and resuspended in 400 µL trypsin (0.1 mg/mL) and DNase (5 µg/mL) in PBS for not longer 

than 2 minutes. The reaction was blocked by adding 5 mL DMEM complete. The supernatant 

was discarded, and 1 mg DNase was added, followed by a mechanical dissociation using first a 

Pasteur pipette and secondly a glass pipette. The cells were centrifuged for 10 min at 130g at 

4°C and the supernatant was discarded. The pellet was resuspended in DMEM complete and 

plated (2.5 brains/flask) in Poly-L-Lysine coated T75-flasks. The cells were washed after 2 days 

with PBS 4 times and incubated for another 7 days in DMEM complete to gain a confluent cell 

level. Afterwards, the medium was replaced with DMEM complete containing 33% L929 condi-

tioned medium inducing microglia proliferation and maturation. The cells were harvested 2 days 

later by shaking the flask slowly for 30 min at 150 rpm at 37 °C. Microglia transits into the 

medium while the astrocytes remain attached to the flask. The supernatant was transferred 

into a falcon tube and centrifuged for 10 min at 130 g at 4 °C, washed once with DMEM complete 

and plated according to the experimental setup. The remaining flasks were refilled with 15 mL 

DMEM complete containing 33% L929 to induce microglia proliferation and maturation again. 

This process can be performed 3 times in total. 

2.2.2.2 Primary cultured neonatal astrocytes 

The preparation of primary cultured neonatal astrocytes followed the preparation of primary 

cultured neonatal microglia preparation, as it is explained above in Primary cultured neonatal 

microglia. After the third shake-off of microglia, the remaining astrocytes were washed harshly 

with DMEM complete and then trypsinated. The reaction was blocked with DMEM complete. 

The cells were transferred into a falcon tube, washed with PBS twice and seeded into T25 flasks. 

The astrocyte culture was expanded incubating them with DMEM complete under cell culture 

conditions (37 °C, 5% CO2, and 95% humidity) for several days. Afterwards, the astrocytes were 

trypsinated, washed with DMEM complete and PBS and plated according to the experimental 

setup. 
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2.2.2.3 Primary cultured bone marrow derived macrophages 

Primary cultured bone marrow derived macrophages were isolated from the tibia and femur of 

adult (P49-56) C57BL/6N Bone mice as previously described (Marim et al., 2010). In summary, 

mice were killed by cervical dislocation. The skin of the mice legs was removed, and the hip joint 

was excavated from the surrounding muscles. The leg was separated from the body by disloca-

tion, washed shortly with ice cold 70% ethanol in double-distilled water followed by ice-cold PBS, 

and immediately transferred into fresh ice-cold PBS for storage. Afterwards, all muscles were 

removed carefully, the feet were removed by dislocation, and the tibia and femur were separated. 

All following steps were carried out under the cell culture hood. The bones were cut open and 

flushed with up to 20 mL of ice-cold PBS. The flow through was collected in a petri dish on ice. 

It was used for up to 4 bones. The flow through was transferred into a falcon tube and centri-

fuged for 10 min at 500 g at 4 °C. The supernatant was removed, and the pellet was resuspended 

in 5 mL ammonium chloride solution for 3 – 5 minutes to lyse the erythrocytes. The cells were 

washed 2 times with PBS at room temperature (for 10 min at 200 g at 4 °C). The pellet was 

resuspended in DMEM complete containing 10 ng/mL M-CSF and an additional 100 units/ml 

penicillin and 100 µg/ml streptomycin. 16 bones were plated into one 10 mL petri dish for one 

day. The cells were washed with PBS, resuspended in DMEM complete containing 10 ng/mL M-

CSF and additional 100 units/ml penicillin and 100 µg/ml streptomycin again, and plated into 

10 mL petri dish (4 bones / petri dish). The cells were cultured for 6 additional days to allow 

differentiation. The medium was changed if needed. Afterwards, the cells were trypsinated, 

washed with PBS and plated according to the experimental setup 

2.2.2.4 Primary cultured neurons 

Primary cultured neurons were kindly provided by Florian Hetsch from the laboratory of Prof. 

Dr. Rathjen. The primary neurons were obtained as descripted in his thesis: “Induction of Syn-

apses by Agrin in Cultured Cortical Neurons”. This culture is a mixed cell culture in favour of 

neurons. 

Neurons were grained from pregnant mice at day 15 of gestation. The brains were extracted 

from the embryos, the olfactory bulbs and meninges were discarded as well as the mid- and 

hindbrain. The brains were transferred into a falcon tube and incubated in S1 solution for 15 

min at 37°C in a water bath. The brain was trypsinated, washed with NB complete and a single 

cell suspension was created by mechanical dissociation using a glass pipette. The cells were 

washed once again with NB complete, counted, and seeded at a density of 2.65 x 105 cells/cm² on 

a petri dish. The cells were incubated for 5 up to 15 days. 
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2.2.3 Immortalised cell lines 

All immortalized cell lines used were taken from the stock of our laboratory, including those for 

the high throughput screen. They were freshly thawed, cultivated with DMEM complete in a 

T75 flask, and split according to the cell line. Therefore, the cell culture flask was slightly shaken 

by hand to detach all loose cells and the old medium, including loose cells, was removed thor-

oughly. The flask was washed twice with warm (37 °C) PBS. 4 mL of an EDTA/Trypsin solution 

was added, and the flask was incubated for 3-5 min under cell culture conditions. Afterwards, 

the flask was shaken roughly by knocking it against a hard surface to bring all cells into solution. 

Detachment and health of the cells were examined under the microscope. If needed, the incuba-

tion with the EDTA/Trypsin solution was extended. The reaction was blocked adding 10 mL of 

DMEM complete. The cell suspension was transferred into a flacon tube and washed once with 

PBS (centrifugation at 300 g for 10 min at 4 °C). The cells were resuspended in fresh warm (37 

°C) DMEM complete and singularised by pipetting them vigorously with a 10 mL pipette. 1 mL 

of this cell suspension was mixed with 10 – 20 mL fresh preheated (37 °C) DMEM complete and 

transferred into a new T75 cell culture flask. The flask was incubated under cell culture condi-

tions until the next splitting. 

2.2.3.1 BV2 microglia cell lines 

The immortalized murine microglia cell line BV2160  is frequently used as a substitute for pri-

mary microglia cultures. The BV2 cell line was freshly thawed and used until the 15th splitting 

cycle. 1 mL of frozen cell suspension was placed directly into a 37 °C water bath until everything 

was liquefied. The cell suspension was then mixed with 10 mL preheated cell culture medium 

and transferred into a T75 cell culture flask. Once more, 10 mL cell culture medium was added 

and then incubated under cell culture condition for 2-3 days before first splitting. The cells were 

incubated under cell culture conditions up to a confluence of 80% which resulted in splitting 

every 2 to 3 days at a dilution of around 1:20 depending on the actual cell concentration. 

2.2.3.2 OLN-93 oligodendrocyte cell lines 

The immortalized murine oligodendroglia precursor cell line OLN-93 161were incubated up to a 

confluence of 60% which resulted in splitting every 3 to 4 days at a dilution of around 1:10 de-

pending on the actual cell concentration. 
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2.2.4 Nitric Oxide quantification  

The total concentration of nitric oxide (NO) in cell culture supernatant was determined using 

the Griess assay. The Griess assay measures the total amount of nitrite (NO2-), a breakdown 

product of NO, by the formation of a chromophore with a red pink colour. 

Microglia, either BV2 cell line or primary cultured neonatal microglia, or primary cultured bone 

marrow derived macrophages were plated onto a 96 well plate, let adhere and stimulated for a 

defined time. Cell-number per well, incubation time and stimulation reagent are given sepa-

rately for each experiment. 100 µL of cell culture supernatant was transferred into a new 96 

well plate and 100 µL freshly mixed Griess reagent were added. Griess reagent was composed 

of reagent A (100 mg Naphthylethylenediamine in 50 mL aqua dest.) and reagent B (1 g Sul-

fanilamide, 6 ml H3PO4 (85 %) in 44 mL aqua dest.) mixed 1:1. The solution was slightly shaken, 

and the absorbance of the colorimetric reaction was determined in a microplate reader at a 

wavelength of 550 nm. In parallel, the defined amount of sodium nitrite dissolved in DMEM 

complete as a standard was measured. 

The concentration of nitrite was calculated by a linear regression of the standard curve. For 

statistical analysis of different experiments, the ration of the experimental condition to its pos-

itive control was used, in the following named foldchange. 

2.2.5 AlamarBlue assay 

AlamarBlue is used as an oxidation-reduction indicator in cell viability assays for both aerobic 

and anaerobic respiration. It determines the reductive potential of the cytosol. The assay is 

based on the cell permeable dye resazurin. Resazurin is a non-toxic, cell permeable compound, 

blue in colour and nearly fluorescent. Upon entering a living cell, the acid cytoplasm reduces it 

irreversible to resorufin, a compound that is red in colour and highly fluorescent. This change 

in colour and fluorescence can be measured. The reduction of resazurin depends on the number 

of living cells and the reductive potential of those. Dead cells lose their reductive potential, ac-

tivated cells increase their reductive potential, therefore AlamarBlue indicates cell proliferation, 

cell death, and the metabolic activity of cells. 

Prior to this experiment, cells were seeded into a 96 well plate. The cells were let adhere under 

cell culture condition and incubated according to the experimental setup. Cell number per well, 
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the volume of cell culture medium per well, as well as time to let cells adhere, stimulating sub-

stance and incubation time under stimulating condition are given separately for each experi-

ment. 

The supernatant of the prior prepared 96 well plate was removed thoroughly and replaced with 

100 µL of fresh warm (37 °C) AlamarBlue DMEM (1/10th volume) mixture. The plate was then 

incubated for around 3 h under cell culture conditions. The conversion of resazurin to resorufin 

was measured by absorbance (absorbance wavelength of 570 nm and a reference wavelength of 

600 nm). A baseline of unspecific absorbance was measured in wells containing AlamarBlue 

DMEM mixture without cells and subtracted from all values. For statistical analysis of different 

experiments, the ration of the experimental condition to its positive control was used, in the 

following named foldchange. 

2.2.6 Enzyme-linked Immunosorbent Assay 

The release of the pro-inflammatory cytokines, TNFα, IL1β, and IL6, were determined by En-

zyme-linked Immunosorbent Assay (ELISA). A kit from R&D Systems was used and the assay 

was performed as written in the manufacturer's protocol. 

In brief, a 96 well plate was coated with the capture antibody of the specific cytokines dissolved 

in 100 µL PBS per well. The concentrations of the specific antibodies are given by the manufac-

turer. The plate was incubated airtight over night at room temperature. The next day, the cap-

ture antibody solution was removed, and the plate was washed 4 times with 300 µL per well 

washing buffer (PBS + 0.05% Tween-20). Residual liquid was removed by tapping the 96 well 

plate upside down onto a tissue paper. To prevent unspecific binding the plate was incubated 

with 300 µL per well blocking buffer (PBS + 1% BSA) for 1 hour at room temperature and after-

wards washed 4 times with 300 µL per well washing buffer, as done before. Afterwards, 100 µL 

per well of the cell culture supernatant was applied and incubated for 2 hours. If not otherwise 

stated all cell culture supernatant were diluted 1:10 in PBS. In parallel, this step was also ap-

plied for the standard. The cell culture supernatant was taken from cells, either BV2 cell line, 

primary cultured neonatal microglia, or primary cultured bone marrow derived macrophages, 

cultured according to the experimental setup. The plate was washed 4 times with 300 µL wash-

ing buffer, as mentioned before. 100 µL of detecting antibody dissolved in PBS + 1% BSA was 

added and incubated for 2 hours. The concentrations of the antibody are given by the manufac-

turer. The plate was washed 4 times with 300 µL washing buffer per well, as done before. 100 
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µL streptavidin coupled horseradish peroxidase (HRP) provided by the manufacturer, in a dilu-

tion of 1:200 in PBS + 1% BSA, was added per well and the plate was incubated for 30 min at 

room temperature. Afterwards, the plate was washed 4 times with 300 µL washing buffer per 

well. To start the HRP reaction, 100 µL of HRP substrate was added per well and incubated for 

20 min at room temperature, protected from light continuously shaking. This reaction was 

stopped by applying 100 µL of 1 M H2SO4 to each well. The total amount of the designated 

cytokine was measured directly in a microplate reader at a wavelength of 455 nm and was nor-

malised to a wavelength of 540 nm. 

The exact concentration of the cytokine was calculated by interpolating the values to a linear 

regression based on the standard and dividing these calculated values with a deployed dilution 

of the cell culture supernatant. For statistical analysis of different experiments, the ration of 

the experimental condition to its positive control was used, in the following named fold change.  

2.2.7 Microchemotaxis assay 

Migration was assessed using a 48-well microchemotaxis Boyden chamber (Neuroprobe, Be-

thesda, MD, USA) in combination with a polycarbonate filter (8 µm pore size; Poretics). The 

Boyden chamber, originally introduced by Boyden for the analysis of leukocyte chemotaxis, is 

ideally suited for the quantitative analysis of different migratory responses of cells, including 

chemotaxis, haptotaxis, and chemokinesis. The assay was performed as described before by Ma-

sataka Ifuku. In brief, the lower and upper compartment of the Boyden chamber were separated 

by the polycarbonate filter. Prior to assembling, the lower compartments were filled with around 

30 µL warm (37 °C) serum-free DMEM. The upper compartments were filled with fresh 5 x 104 

microglial cells suspended in 50 µL serum-free DMEM per well. The cells were incubated for 6 

hours under cell culture conditions. Afterwards, the Boyden chamber was disassembled, and the 

polycarbonate filter was fixed and stained using the Diff-Quik stain (Medion Grifols Diagnostics 

AG, Düdingen, Switzerland) as described in the protocol. The filter let dry over night and was 

fixed on a coverslip the next day. Remaining microglia on the upper side of the filter were re-

moved suing a wet cotton swab. 

The rate of microglial migration was calculated semi-automatic, described by the following 

steps. First, the area of each well was photographed using a 20 × bright-field objective. The total 

amount of the area covered by microglia was measured in pixels using a colour-based threshold 

in the image process software ImageJ (selecting colours in the hue range of 150 (upper)-240 

(lower), which are specific for the migrated cells stained in red-violet). Exemplary, the total 
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amount of microglia was counted by hand in images with a low, medium, and high calculated 

area, to prove a linear regression. The number of migrated microglia were calculated by inter-

polating the values to the linear regression assessed before. For statistical analysis of different 

experiments, all data were normalised to ATP induced chemotaxis. 

2.2.8 Propidium iodide based proliferation and cell death 

assay 

The relative cell proliferation and cell death were measured using propidium iodide (PI). PI is a 

fluorescent dye that binds into the nucleotide pair of guanine and cytosine and can, therefore, 

intercalate into DNA and RNA. It is not able to pass the cell membrane of healthy living cells 

and therefore binds only the DNA/RNA of damaged and apoptotic cells. In an unbound state the 

absorptions maximum of PI is at 488 nm and the emissions maximum 590 nm, upon binding to 

DNA/RNA the spectrum shifts to longer wavelength, respectively 535 nm and 617 nm. The emis-

sion intensity of PI bound to DNA/RNA measured at 535 nm increases by 20 to 30 % compared 

to unbound PI. The physical characteristics are used to determine the relative number of dead 

cells in a cell culture setup. This assay can determine the relative proliferation compared to 

control conditions, but not the absolute number of new cells. Additionally, the assay can deter-

mine the cell death relative to the complete number of cells. 

To determine the relative proliferation and cell death, the cells were seeded into a 95 well plate, 

let adhere for 24 hours and afterwards treated for an additional 48 hours. Cell number per well, 

the volume of cell culture medium per well, as well as time to let cells adhere, stimulating sub-

stance and incubation time under stimulating condition are given separately for each experi-

ment. The supernatant was removed carefully, and the cells were washed once carefully with 

warm (37 °C) HBSS, to not lose any dead cells. 100 µL per well PI solution in HBSS (1/200) was 

added to the cells and incubated for 10 minutes to measure the emission intensity of dead cells. 

After gaining the dead cell signals, all cells were killed to determine the total amount of cells. 

To do so, 10 µL of DMSO was added to each well and incubated for 30 minutes under cell culture 

conditions. Afterwards, the emission intensity of all cells was measured. 

All signals were corrected for the background noise, subtracting the blank signal. Cell prolifer-

ation was calculated relative to the control conditions, dividing the treatment condition by the 

control condition. Cell death was calculated relative to the total amount of cells, dividing the 

signal of dead cells by the signal of the total cells.  
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2.2.9 Flow cytometry 

In flow cytometry, cells are stained with fluorophore-conjugated antibodies specific to certain 

cell types or cell properties. These antibodies can be directed against surface markers, such as 

the CD antigens, or against intracellular proteins, such as transcription factors. A suspension 

of stained cells is running through the flow cytometer in a way that allows the machine to illu-

minate every single cell with different lasers. The cytometer is equipped with a set of filters and 

detectors that measure the presence of bound fluorophore-conjugated antibodies and the light-

scattering properties of each cell. The light-scattering properties of a cell are in the first instance 

its size, measured by the amount of light that is able to pass through the cell in a direct way 

(forward scatter or FSC) and its granularity, measured by the amount of light that is scattered 

perpendicular to the laser beam (side scatter or SSC). 

Flow cytometry is sometimes generally referred to as fluorescence-activated cell sorting (FACS). 

More precisely, this refers to the flow cytometry systems by Becton Dickinson (BD), used here. 

In the following, the term fluorescence-activated cell sorting will be used when the technique 

was applied to actually sort cells for the use in further assays. Otherwise, the general term flow 

cytometry will be used. 

2.2.9.1 Cell surface staining for flow cytometry 

Suspensions of 5x105 - 1x106 cells were centrifuged and the supernatant was discarded. Cells 

were washed with 2 ml PBS and resuspended in 100 µl PBS. Fluorophore-conjugated antibodies 

were added at the appropriate amounts. After vortexing, cells were incubated with the antibod-

ies for 15 min at 4 °C in the dark. 2 ml PBS was added, the cells were centrifuged, and the 

supernatant was discarded. For immediate analysis, cells were resuspended in 100 – 200 µl PBS. 

2.2.9.2 Propidium iodide staining for flow cytometry 

Propidium iodide (PI) staining was used to distinguish between dead and living cell by flow 

cytometry. PI staining was performed after the Phagocytosis-Assay for flow cytometry and/or 

cell surface staining for flow cytometry. The cell suspension was centrifuged at 300 rcf for 10 

min at room temperature. The supernatant was discarded and resuspended in 250 µL PI dis-

solved in FACS buffer (PBS + 2% v/v FCS) with an end concentration of 50 µg/mL. The cell 

suspension was incubated for 5 – 10 min before measured by flow cytometry. PI negative cells 

were considered alive, while PI positive cells as dead. 
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2.2.9.3 Flow cytometry-based phagocytosis assay 

The phagocytosis assay determines the general phagocytosis activity of cell lines or cultured 

cells by their uptake of fluorescent beads. This assay is based on the phagocytic uptake of fluo-

rescent beads by cells. The number of incorporated beads will be measured by flow cytometry.  

Prior to the experiment, cells were plated onto a Ø 3.5 cm petri dish, non-coated surface, and 

treated with stimulation reagents. Cell number, stimulating reagent and incubation time are 

given for each experiment separately. 

30 µL of Fluoresbrite BB Carboxylate Microspheres 4.5 µm latex beads were incubated with 1 

mL sterile filtered FCS for 30 min constantly shaking at 1000 rpm at room temperature. The 

beads were centrifuged for 2 min at 3000 g at room temperature. The supernatant was dis-

carded, and the remaining pallet was resuspended in 3 mL HBSS. The prior prepared cell cul-

ture plates were washed carefully with ca. 3 mL of HBSS, the supernatant was removed, and 

the HBSS-bead solution was added. This was incubated for exact 30 min in an incubator at 37 

°C under normal cell culture conditions. The supernatant was transferred into a flow cytometry 

tube and 2 mL of ice cold HBSS was added. The remaining cells were detached by scratching 

them vigorously and transferred into a separate flow cytometry tube. Both FACS-tubes were 

centrifuged immediately for 10 min at 300 g at 4 °C. The supernatant was discarded, and the 

cell pellet was resuspended in 250 µL FACS buffer. If required, the cell surface staining protocol 

and/or the propidium iodide staining protocol was applied afterwards. Otherwise, the cell sus-

pension was measured directly by flow cytometry. Flow cytometric data were acquired with 

FACS-Diva. The median intensity of the bright blue beads was calculated using FlowJo version 

7.6.5 or later. The data from each experiment were normalised to the unstimulated media con-

trol. 

2.2.10 Quantitative PCR 

The same stimulation protocol as for the Flow cytometry-based phagocytosis assay was applied. 

Cells were seeded overnight, treated with 2.5 µM C1.0 in DMSO, 125x10-5 v/v DMSO respec-

tively, plain medium only for 1 hour, followed by an additional stimulation with 1 µg/mL LPS 

for 24 hours. Total RNA was isolated using the RNeasy Plus Mini Kit (Qiagen). On-column 

DNase 1 (Qiagen) digestion was performed and total RNA was eluted in RNase-free water. RNA 

yield was measured using a Nanodrop 1000 (Nanodrop) spectrophotometer and quality was as-

sessed using an Agilent 2100 Bioanalyzer (Agilent). Samples were stored at -80°C until further 
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use. First-strand cDNA synthesis was done with the SuperScript II reverse transcriptase (Invi-

trogen) using oligo-dT primers12–18 (Invitrogen) according to the manufacturer’s instructions. 

Quantitative real-time PCR (qRT PCR) reactions were performed in a 7500 Fast Real-Time ther-

mocycler (Applied Biosystems) using the SYBR Select Master Mix (Applied Biosystems) accord-

ing to the manufacturer’s instructions. cDNA input ranged between 1 and 5 ng/μL of total RNA 

transcribed into cDNA. The expression results were normalized to the expression of β-actin by 

the same cells. Primers used are the following: iNOS forward TCACGCTTGGGTCTTGTTCA, 

iNOS reverse TGAAGAGAAACTTCCAGGGGC, βActin forward 

CGTGGGCCGCCCTAGGCACCA, and βActin reverse CTTAGGGTTCAGGGGGGC. 

2.2.11 High throughput screening (HTS) 

The high throughput screening was established, tested, carried out, and analysed in the facili-

ties of Leibniz-Forschungsinstitut für Molekulare Pharmakologie im Forschungsverbund Berlin 

e.V. (FMP) using a robotic setup. The HTS was performed in two separate rounds, first with the 

microglia cell line BV2 testing the compound library in a single shot approach and validation in 

concentration dependent approach and followed up by testing primary cultured neonatal micro-

glia in a concentration dependent approach. Cytotoxicity and the effect of NO release were de-

termined using the AlamarBlue assay and the Griess assay, respectively. 

2.2.11.1 Compound Library 

The library used in this screen was designed by the ChemBioNet, a cooperative of the FMP, the 

Max-Delbrück-Center for Molecular Medicine (MDC), the Helmholtz-Centre for Infection Re-

search (HZI), and the University of Konstanz. It consists of 16544 compounds, selected to satisfy 

the basis of the maximum-common substructure principle. The compounds are arranged on 384-

well microtiter plates, containing a 10 mM compound solution dissolved in 100 % DMSO placed 

in columns 1 to 22. DMSO is placed in column 23 and 24 as an internal control. Therefore, one 

place holds 352 compounds per plate and 32 controls. 

2.2.11.2 HTS: a single shot approach 

The first round of the screen was performed as following. BV2 cells were seeded into a 384-well 

assay plate (3683, Corning, New York, USA) at a concentration of 5000 cells per well and 40 µL 

DMEM per well using a dispenser (EL406, Biotek, Winooski, USA). The cells led to adhere to 

the plate for 24 hours at standard cell culture conditions (37 °C, 5% CO2, and 95% humidity). 
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The compounds of the ChemBioNet library were pre-diluted with DMEM to an end-concentra-

tion of 500 µM, using a robotic liquid handler (Freedom Evo, Tecan, Maennedorf, Switzerland). 

After 1 h pre-incubation with the compounds, the cells in column 1 to 23 were stimulated with 

1 µg/mL LPS (10 l of 5 g/ml LPS solution), while column 24 was left unstimulated. This results 

in a final compound concentration of 5 µM compound, 0.05 % DMSO. The cells were incubated 

for 48 hours under standard cell culture conditions, followed by adding 25 µL of premixed 2-fold 

Griess reagent. The colorimetric change was measured using a plate reader (Safire2, Tecan, 

Maennedorf, Switzerland). Active compounds were identified by a decreased Z-scores of lower 

than -5, described below in “Experimental Design and Statistical Analysis for HTS” of the ab-

sorbance signal. 

2.2.11.3 HTS: concentration dependent validation and cytotoxicity 

determination  

Positive compounds were validated for their reduction in NO concentration and tested for cyto-

toxic potential in a concentration dependent manner. A dilution series of 10 sequential 2-fold 

dilutions were rearranged onto a new 384-well plate, ranging from 0.0195 µM up to 20 µM 

(0.0195, 0.0391, 0.0781, 0.1563, 0.3125, 0.6250, 1.25, 2.5, 5, 10, and 20 µM). The concentrations 

ranging up to 5 µM were obtained by diluting the previously described mother plate in DMSO, 

and the protocol was repeated exactly as for the preceding screen (BV2 cell concentration 5000 

cells/well, primary microglia cell concentration: 50000 cells/well). 10 µM and 20 µM were ac-

quired by transferring 1 µL and 2 µL from the 500 µM pre-dilution plate. Each concentration 

was measured in duplicates and normalised to the positive control. Values were plotted against 

the compound concentration to calculate the IC50 value. Compounds cytotoxicity was measured 

using the AlamarBlue assay (see page 21 AlamarBlue assay). In parallel, a second batch of 

plates was prepared as described above, but instead of the Griess reagent 5 µL of the 

AlamarBlue solution was added after 48 hours and measured after an additional incubation for 

4 hours under cell culture conditions. Due to missing control samples for data normalisation, 

the absolute AlamarBlue values were plotted. 

2.2.11.4 Experimental Design and Statistical Analysis for HTS 

Data were pre-processed (initial graphical quality control and data normalization) by Martin 

Neuenschwander at the FMP using in-house software, and reports containing chemical struc-

tures where generated using Pipeline Pilot (Biovia). 

Data were normalized for each plate by using statistically robust estimators as described in 

Brideau et al. 162. 
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The Z-score, also named standard score, specifies by which number of standard deviations a 

measured value is above or below the overall mean signal. Here, xi is the measured signal of a 

single sample, Median is the median signal on a plate without the controls, and MAD is the 

median absolute deviation on a plate without the controls. 

𝒁 − 𝒔𝒄𝒐𝒓𝒆 =
𝒙𝒊 − 𝑴𝒆𝒅𝒊𝒂𝒏

𝑴𝑨𝑫 ∗ 𝟏. 𝟒𝟖𝟐𝟓𝟖
⁄  

The percentage of NO concentration was calculated relative to the unperturbed state. negCon-

trol is the median of the unstimulated cells (without LPS stimulation and treatment), posCon-

trol is median of untreated but stimulated cells (= 100% LPS-induced, non-treated) on a plate. 

𝑷𝒆𝒓𝒄𝒆𝒏𝒕 𝑨𝒄𝒕𝒊𝒗𝒊𝒕𝒚 =  
𝒙𝒊 − 𝒏𝒆𝒈𝑪𝒐𝒏𝒕𝒓𝒐𝒍

|𝒑𝒐𝒔𝑪𝒐𝒏𝒕𝒓𝒐𝒍 − 𝒏𝒆𝒈𝑪𝒐𝒏𝒕𝒓𝒐𝒍|⁄  

The Z’-factor is a statistical parameter to the quality of an assay itself, without the intervention 

of any test compounds. It is commonly used to measure the effective dynamic signal range of 

HTS assays and serves as a quality control. δp and δn are the standard deviations of the positive 

and negative controls respectively, and µp and µn are the mean values of the positive and nega-

tive controls of a plate. 

 

 𝒁′ = 𝟏 − 𝟑 ∗ (𝜹𝑷 + 𝝈𝑵)
|𝝁𝑷 − 𝝁𝑵|⁄  

The IC50 value of the compounds was calculated with a four-parameter log-logistic function. The 

fitting of the curve was done with the Pipeline Pilot curve fit module for determining dose-re-

sponse curves using ILRS algorithm. The IC50 value is represented as “a”, the Hill-coefficient 

which determine the steepness of the IC50 curve at the inflection point is represented as “b”, and 

the upper (left) and lower (right) plateau (activity asymptotes) are represented as “c” and “d”. 

 

𝒇(𝒙) =
𝐜 + (𝐝 − 𝐜)

𝟏 + 𝐞(𝒃∗(𝒍𝒐𝒈(𝒙)−𝐥𝐨𝐠 (𝒂)) 
⁄  

2.2.12 Enzymatic activity assay 

The enzyme activity assay was conducted in the laboratories of Eurofins (Hamburg, Germany). 

In brief, the test compound, reference compound or water (control) are added to a buffer contain-

ing 44 mM Tris-HCl (pH 8.0), 0.5 mM NADPH, 4 µM FAD, 12 µM BH4, 3 mM DTT, 0.1875 µg/ml 
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calmodulin, 2 mM CaCl2 and 28 nM [3H]L-arginine and 50 nM arginine. Thereafter, the reac-

tion is initiated by the addition of the enzyme (about 6 µg) and the mixture is incubated for 30 

min at 37°C. Basal NO concentration was measured omitting the enzyme from the reaction mix-

ture. Following incubation, the reaction is stopped by adding an ice-cold buffer containing 20 

mM Tris-HCl (pH 5.0), 2 mM EDTA and 2 mM EGTA. NO was either measured directly using 

the Griess assay, or indirectly by measuring the citrulline concentration. The results are ex-

pressed as a percent inhibition of the control enzyme activity. iNOS was isolated from overex-

pressing E.coli, eNOS was isolated from Human Umbilical Vein Endothelial Cells (HUV-EC-C) 

cell line, and nNOS was isolated from wistar rat cerebellum. 

2.2.13 Intravenous Pharmacokinetic Study in Mice 

The intravenous pharmacokinetic study in mice was carried out by the company Touchstone 

Biosciences (Plymouth Meeting, USA) according to their standard procedures. In brief, 3 male 

adult mice of the CD-1 strain were fasted overnight. 5 mg/kg compound was given intravenously 

in one shot. After 5, 15, 30 min, and 1, 2, 4, 6, 8, and 24 hours blood samples were collected from 

the vein and analysed via Liquid chromatography-mass spectrometry. After 24 hours all mice 

were killed. The intravenous tissue distribution study in mice was carried out by the same com-

pany. In brief, 3 male adult mice of the strain CD-1 per time point (4 time points) where fasted 

overnight. 5 mg/kg compound was given intravenously. After 30 min, 1, 2, or 4 hours the blood, 

brain, heart, liver, and kidney were extracted and the level of compound concentration for each 

organ and the blood were calculated using Liquid chromatography-mass spectrometry. 

2.2.14 Middle cerebral artery occlusion 

As a model for stroke, the middle cerebral artery occlusion (MCAO) in mice was used. In total 

24 adult male mice (13 weeks old, C57BL/6) were analysed after a 30 minutes left-sided MCAO. 

All mice were handled according to governmental (LaGeSo - G0249/15) and internal (MDC/Char-

ité) rules and regulations, having free access to food and water over the whole experiment. Ani-

mals were randomly attributed to treatment paradigms, and experimenters were blinded at all 

stages of interventions. The mice were injected intraperitoneally (i.p.) every day for the 7 days, 

subsequently of the behavioural tests, with the compound (n=11) or with the vehicle (125 x 10-5 

v/v DMSO, n=13). 
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2.2.14.1 Induction of cerebral ischemia  

Mice were anesthetized for induction with 3 - 4% isoflurane and maintained in 1.5% isoflurane 

in 70% N2O and 30% O2 using a vaporizer. MCAO was essentially performed as described else-

where (Endres et al.) 163. In brief, brain ischemia was induced with a silicone rubber-coated 

monofilament 7-0, diameter 0.06 - 0.09 mm, length 20 mm; diameter with coating 0.19 ±0.01 

mm; coating length 9-10 mm. The filament was introduced into the internal carotid artery up to 

the anterior cerebral artery. Thereby, the middle cerebral artery and anterior choroidal arteries 

were occluded. The filament was removed after 30 min to allow reperfusion. 

2.2.14.2 Determination of infarct volume: 

2.2.14.2.1 Magnetic Resonance Imaging 
MRI was performed using a 7 Tesla rodent scanner (Pharmascan 70 ⁄ 16, Bruker BioSpin, 

Bruker, Billerica, USA) with a 16 cm horizontal bore magnet and a 9 cm (inner diameter) 

shielded gradient with an H-resonance-frequency of 300 MHz and a maximum gradient strength 

of 300 mT/m. For imaging a 20mm - 1H-RF quadrature-volume resonator with an inner diame-

ter of 20 mm was used. Data acquisition and image processing were carried out with the Bruker 

software Paravision 5.1. During the examinations, mice were placed on a heated circulating 

water blanket to ensure a constant body temperature of 37 °C. Anaesthesia was induced with 

2.5% and maintained with 2.0 – 1.5% isoflurane (Forene, Abbot, Wiesbaden, Germany) delivered 

in an O2 / N2 mixture (0.3 / 0.7 L/min) via a facemask under constant ventilation monitoring 

(Small Animal Monitoring & Gating System, SA Instruments, New York, USA). For imaging 

the mouse brain, a T2-weighted 2D turbo spin-echo sequence was used (imaging parameters TR 

/ TE = 4200 / 36 ms, rare factor 8, 4 averages, 32 axial slices with a slice thickness of 0.5 mm, 

the field of view of 2.56 x 2.56 cm, matrix size 256 x 256). 

2.2.14.2.2 Image Analysis 
Calculation of lesion volume was carried out with the program Analyze 10.0 (AnalyzeDirect, 

Inc., Overland Park, USA). The hyperintense ischemic areas in axial T2-weighted images were 

assigned with a region of interest tool. This enables threshold-based segmentation by connecting 

all pixels within a specified threshold range about the selected seed pixel and results in 3D object 

map of the whole stroke region. Further, the total volume of the whole object map was automat-

ically calculated. 
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2.2.14.3 Motor deficits assessment: 

2.2.14.3.1 Accelerated Rotarod Test 
The Rotarod test was performed to access motor coordination using a treadmill with a diameter 

of 3 cm (TSE Systems, Chesterfield, USA). This test was performed with accelerating velocity (4 

– 40 rpm) and maximal velocity was achieved after 300 s. The time until the animals dropped 

was measured. Animals were trained on day 2 and 3 before MCAO, and the baseline was taken 

on the day before MCAO. Tests were always performed four times and means were used for 

statistical analysis. 

2.2.14.3.2 Pole Test 
A vertical pole (80 cm high with a rough surface) was used for this test, to analyse extrapyram-

idal motor locomotion. Mice were placed head upward on the top of the pole. The time taken to 

orientate the body completely downwards, making a 180° turn (t turn), and to reach the floor 

with all four paws (t down) were recorded. If the animal was unsuccessful at either task, it was 

scored the maximum time that any other animal from the same experimental group took to 

perform the task. Animals were trained on day 2 and 3 before MCAO, and the baseline was 

taken on the day before MCAO. Tests were always performed after the accelerated Rotarod test 

and repeated four times and means were used for statistical analysis. 

2.2.14.3.3 Corner Test 
Each mouse was placed on a cage containing two vertical boards attached to each other forming 

an angle of 30° in 2 of the corners. The side chosen to leave the corner once it made contact to 

the boards with its whiskers was observed within 10 trials per day. Whereas healthy animals 

leave the corner without side preference, mice after stroke preferentially leave the corner to-

wards the non-impaired (i.e., left) body side (Zhang et al.) 164. Baseline side preference was ac-

cessed on day 5 before MCAO and the mice were tested again on day 6 after MCAO. 
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3 RESULTS 

3.1 Screening for compounds inhibiting 

nitric oxide release in microglia 

Elevated NO concentration in the CNS is a mayor risk factor for neuronal cell death. The 

main source of NO in the CNS are proinflammatory activated microglia. In order to iden-

tify novel compound targeting the proinflammatory induced release of NO in microglia, 

we performed a high throughput screen with the ChemBioNet 165,166 library containing 

16544 small molecules. The ChemBioNet library was designed to exhibit a high degree of 

chemical diversity and to be enriched with putative bioactive compounds. The library was 

corrected for biological instable molecules and molecules that overshoot the “Lipinski rule 

of five”167–169 to ensure general bio availability. The screen was executed in two steps: first, 

the library was tested on the microglial cell line BV-2, which allowed an HTS approach170, 

followed by a validation of the positive results using primary cultured neonatal microglia. 

The cells were stimulated with 1 µg/mL LPS to induce a proinflammatory response and 

trigger the production and release of NO. Figure 3.1 illustrates the overall experimental 

strategy of the HTS. 
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The first run of the HTS was conducted with the complete library of 16544 compounds on 

the BV-2 cell line. BV-2 cells can be easily cultured and expanded to fulfil the high demand 

of cells in this HTS; over 90 million cells were needed for the initial run. BV-2 cells show 

a similar activation pattern as primary microglia160,171 but do vary in the magnitude of 

their response170. Therefore, BV-2 cells are a good compromise for the requirement of a 

high cell number and the resembling of microglia function and regulation. 24 hours prior 

to the begin of the HTS 5000 BV-2 cells per well were seeded into a 384-well plate. The 

cells were pre-treated with 5 µM compound for 1 hour, followed by an additional stimula-

tion with 1 µg/mL LPS for another 48 hours. The NO concentration in the supernatant 

was measured using a modified Griess assay. Each plate of the screen contained 352 dif-

ferent compounds, 16 times the positive control of untreated LPS stimulated cells, and 16 

times the negative control of untreated unstimulated cells (see Figure 3.3). The difference 

in the signal between the positive and the negative control showed a mean Z’-factor of 

0.75. Compounds with a Z-score of below -5 were considered as active compounds. 503 of 

the 16544 tested compounds (3 %) reached this goal. Out of those 503 positive compounds, 

Figure 3.1: Illustration of the HTS setup using the microglial cell line BV2. 
BV2 cells were seeded 24 hours prior to the treatment with the FMP compound library. 1 hour after 

treatment 1 µg/mL LPS were added and the cells were incubated for additional 48 hours. NO con-

centration was assessed using the Griess assay, the metabolic activity was measured using Alamar-

Blue. 



35 

 

we picket the 352 most active ones for further concentration-dependent validation in re-

ducing the NO release and to assess their cytotoxic.  

 

The concentration-dependent validation was carried out similar to the above described 

initial one-shot run. We applied the compounds in a concentration range starting from 20 

µM down to 0.0195 µM in 2-fold dilution sequence (20, 10, 5, 2.5, 1.25, 0.6250, 0.3125, 

0.1563, 0.0781, 0.0391, and 0.0195 µM). The impact on the NO release and the effect on 

the BV-2 cell viability was tested in parallel, using a modified Griess and AlamarBlue 

assay. 233 of the tested 352 compounds showed a dose dependent decrease of NO concen-

tration. However, in only 60 cases this reduction in NO was independent of the BV-2 cell 

viability, as those compounds showed no effect in the AlamarBlue.  

Figure 3.2: Illustration of the reduction in compounds during the screening 

process 
In a step by step the library of 16544 compounds were narrowed down to 4 hit compounds. After the 

initial NO screen in BV2 cells 503 positive compounds remained. 352 compounds were further an-

alysed, 233 of them showed a dose dependent reduction, and 60 of those were not cytotoxic. 32 

compounds were validated in primary microglia. 16 showed a satisfactory reduction in NO and 4 of 

them a superior reduction in NO. 
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To overcome the disadvantages of the BV-2 microglial cell line, we confirmed the most 

potent compounds in primary cultured neonatal microglia. To be able to perform a run 

with primary microglia, I again had to reduce the number of compounds to a total number 

of 32 compounds. This validation required an amount of 78.6 million primary microglia. 

The primary microglia were extracted and cultured from murine neonatal brains days 

before the assay. Despite the difference in the number of used cells, the protocol was car-

ried out exactly as described for the BV-2 cell line. Figure 3.4 illustrates the impact on the 

NO release and the cytotoxic potential of the 32 tested compounds on primary microglia. 

Figure 3.3: Illustration of the plating scheme of the compound validation with 

primary cultured neonatal microglia. 
Primary cultured neonatal microglia were seeded 1 day before compound treatment into a 384 well 

plate. The 32 compounds were added in the concentrations 20, 10, 5, 2.5, 1.25, 0.6250, 0.3125, 

0.1563, 0.0781, 0.0391, and 0.0195 µM (left to right). One hour later 1 µg/mL LPS was added. After 

48 hours the NO concentration was measured (high NO concentration = dark red, low NO concen-

tration = light red). Untreated wells severed as negative control (neg. control, most far right) and 

with 1 µg/mL LPS as positive control (+ 1µg/mL LPS, left to the negative control.) 
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None of the tested compounds showed a dose dependent cytotoxicity, indicated by a reduc-

tion in the absolute AlamarBlue values. However, the AlamarBlue values are selectively 

reduced for several compounds. 0.625 µM of compound 202641 decreased the AlamarBlue 

value by half, but higher concentrations did not show this effect. A similar effect can be 

seen for compound 206830 and 211563, which show a decreased AlamarBlue value for 

0.625 µM and 5 µM, and 0.0391 µM and 2.5 µM respectively. This drop in AlamarBlue 

might result from experimental errors in the dilution, pipetting or readout of the assay. 

Furthermore, the AlamarBlue values for the compounds 213475, 213512, and 215365 are 

decreased when 20 µM compound is applied. This might indicate a cytotoxic potential; 

however missing data of higher concentrations do not allow any further interpretation. 
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Although all tested compounds were positive for reducing the NO concentration in the BV-

2 cell line, only 16 of those 32 compounds showed a reduction in primary microglia. An 

IC50 curve could be fitted for only 12 out of the 16 compounds. The 4 compounds, 213475, 

213512, 215280, and 215414, which failed in calculating an IC50 curve, showed a reduction 

Figure 3.4: LPS induced nitric oxide release and metabolic activity in pri-

mary cultured neonatal microglia in the presence compounds. 
NO was measured using the Griess assay (shown in red, normalised to the untreated LPS stimu-

lated positive control), and the metabolic activity was measured using the AlamarBlue assay (shown 

in blue, absolute absorbance values are given). Calculated IC50 curves, as possible, are illustrated 

as a red line.  
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in NO only for highest tested concentrations of 10 µM and 20 µM. 213512 and 215414 

showed mixed results, as the 2 replicates of the NO readout vary a lot at a concentration 

of 10 µM (213512: t1 = 55.36 %, t2 = 91.05 %, 215414: t1 = 56.07 %, t2 = 105.51 %). The 

compound 213475 and 213512 showed a reduction in AlamarBlue as described above, 

therefore the reduction in NO concentration might be the result of cytotoxicity. 

 

Figure 3.5: Illustration of an ideal IC50 curve. 
An ideal IC50 curve (red solid line) is plotted as compound concentration (x-axis) against measured 

value (y-axis). The maximal and minimal possible values are given as dashed lines (upper values & 

lower value). The IC50 value is calculated from the given 50% decrease of the measured value. The 

steepness is defined by the Hill coefficient. 
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Figure 3.6: The dose dependent reduction of LPS induced NO in microglia 
Out of 32 tested compounds, 16 showed a dose dependent decrease in NO concentration able to fit 

an IC50 curve. The measured values are given as red dots. Open dots were excluded from the fitting 

using a robust fit with outlier detection. 
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ID 
 

value std. error p-value 

202641 

lower Plateau 0.13062 % 0.01386 % 
 

3.6x10-08 **** 

upper Plateau 1.94533 % 1.41690 % 
 

0.18761 
 

Hill coefficient -0.06576 
 

0.28847 
  

0.82241 
 

IC50 value 0.12511 µM 1.82800 µM 
 

0.00309 ** 

203507 

lower Plateau 0.15989 % 0.02609 % 
 

8.6x10-06 **** 

upper Plateau 1.04172 % 0.09245 % 
 

1.3x10-09 **** 

Hill coefficient 4.20059 
 

0.71662 
  

1.5x10-05 **** 

IC50 value 0.86050 µM 1.02995 µM 
 

7.6x10-05 **** 

203516 

lower Plateau 0.16934 % 0.03498 % 
 

0.0002 *** 

upper Plateau 1.00427 % 0.09621 % 
 

8.2x10-09 **** 

Hill coefficient 4.97996 
 

0.93365 
  

5.4x10-05 **** 

IC50 value 0.86270 µM 1.03679 µM 
 

0.0008 *** 

203519 

lower Plateau 0.12297 % 0.06617 % 
 

0.0805 
 

upper Plateau 1.26923 % 0.27893 % 
 

0.0004 *** 

Hill coefficient 4.68018 
 

2.15670 
  

0.0445 * 

IC50 value 0.90316 µM 1.03882 µM 
 

0.0160 * 

204116 

lower Plateau 0.28158 % 0.02810 % 
 

8.6x10-09 **** 

upper Plateau 0.97234 % 0.01023 % 
 

< 2x10-16 **** 

Hill coefficient 11.43331 
 

0.87970 
  

1.3x10-10 **** 

IC50 value 0.78069 µM 1.14827 µM 
 

0.0902 
 

211397 

lower Plateau 0.64268 % 0.02577 % 
 

2x10-15 **** 

upper Plateau 0.86663 % 0.01804 % 
 

< 2x10-16 **** 

Hill coefficient 2.95672 
 

3.34651 
  

0.389 
 

IC50 value 0.27818 µM 12266.28842 µM 
 

0.893 
 

213438 

lower Plateau 0.10345 % 0.04206 % 
 

0.02427 * 

upper Plateau 1.28907 % 0.29344 % 
 

0.00035 *** 

Hill coefficient 2.82550 
 

1.79972 
  

0.13383 
 

IC50 value 0.87976 µM 1.03892 µM 
 

0.00353 ** 

214027 

lower Plateau 0.22644 % 0.01772 % 
 

1.8x10-10 **** 

upper Plateau 1.27851 % 0.31468 % 
 

0.00073 *** 

Hill coefficient 0.46224 
 

0.45459 
  

0.32272 
 

IC50 value 0.53759 µM 1.18732 µM 
 

0.00198 ** 

214037 
lower Plateau 0.26651 % 0.01096 % 

 
1.2x10-14 **** 

upper Plateau 1.01276 % 0.03414 % 
 

4.4x10-16 **** 
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ID 
 

value std. error p-value 

Hill coefficient 1.41660 
 

0.09410 
  

2.9x10-11 **** 

IC50 value 0.49690 µM 1.09369 µM 
 

5.06E-07 **** 

214793 

lower Plateau 0.37512 % 0.05983 % 
 

6.52E-06 **** 

upper Plateau 1.01967 % 0.11324 % 
 

4.37E-08 **** 

Hill coefficient 7.18445 
 

1.55339 
  

0.00021 *** 

IC50 value 0.89200 µM 1.05510 µM 
 

0.04716 * 

215365 

lower Plateau 0.05952 % 0.11725 % 
 

0.61789 
 

upper Plateau 1.04369 % 0.23435 % 
 

0.00031 *** 

Hill coefficient 7.25643 
 

1.94524 
  

0.001532 ** 

IC50 value 0.91599 µM 1.04848 µM 
 

0.080292 
 

215451 

lower Plateau 0.41964 % 0.02649 % 
 

5.16E-12 **** 

upper Plateau 1.51906 % 0.24486 % 
 

7.45E-06 **** 

Hill coefficient 1.30398 
 

0.64685 
  

0.05899 
 

IC50 value 0.71016 µM 1.10228 µM 
 

0.00247 ** 

Table 3.1: Parameters and their significance of the calculated IC50 curve. 

 

The 12 compounds that comply with the fitting of the IC50 curve are presented in Figure 

3.6. The individual fitting parameters are presented in Table 3.1. 6 compounds show an 

IC50 value far above 20 µM. The 2 compounds, 211397 and 213438 have an intermediate 

IC50 value of 19.2 µM and 16.9 µM respectively. 4 compounds, 202641, 214027, 215451, 

and 214037, showed a reasonable IC50 value of below 5 µM, with a reduction in NO con-

centration by more than 50 %. Compound 202641 has an IC50 below 1 µM and is able to 

reduce the NO concentration to 13.1 % of the non-treated LPS stimulated positive control 

(= pos. ctrl.). Moreover, the Hill-coefficient, which defines the width of the dose dependent 

reduction, is -2.08 indicating a narrow width. Compound 214027 is less potent compared 

to 202641, reducing the NO concentration to only 22.6 % of the pos. ctrl. with an IC50 value 

of 1.6 µM. The compound acts on a much broader concentration, indicated by the Hill-

coefficient of -0.62. Compound 215451 does reduce the NO concentration to only 42 % of 

the positive control. Its IC50 value is at 3.68 µM and the Hill-coefficient is even lower than 

the ones described before. Compound 214037 share a similar reduction in NO concentra-

tion (down to 26.7 %) and Hill-coefficient (-0.67). However, its IC50 value is more than 

doubled (4.12 µM). 
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We choose those 4 compounds for further validation. In the following, the compounds will 

be named numerically starting from C1.0 to C4.0. A list of translations can be found below 

in Table 3.2. 

HTS Laboratory 

202641 C1.0 

214027 C2.0 

214037 C3.0 

215451 C4.0 

Table 3.2: Compound name translation. 
The given compound name used in the HTS and the chosen name for experiments in laboratory 

scale.   

3.2 Four compounds decrease the LPS 

induced NO release. 

The previous experiments of the screen were run in a high-throughput setup using 386 

well plates with 50 µL volumes and carried out by robots. These parameters might influ-

ence the outcome of the experiments, especially the small volume might interfere with the 

biological behaviour of the cells and the physical behaviour of the compounds. Therefore, 

I transferred the Griess and the AlamarBlue assay to 96 well plate setup run manually 

and repeated the experiments with the 4 compounds chosen beforehand. The transfer of 

the Griess and AlamarBlue assay were done previously and described in my master thesis. 

There, I demonstrated that the main parameters of the HTS, the incubation, treatment 

and stimulation time, as well as LPS concentration and the cell concentration could re-

main the same. In brief, 50000 primary microglia in 200 µL medium per well were seeded 

into a 96 well plate one day prior the experiment. The cells were treated with a defined 

concentration of the compounds, given below in Table 3.3. After 1 hour, LPS was added to 

reach a final concentration of 1 µg/mL and the cells were incubated for another 48 hours. 

The experiment was terminated by distributing the cell supernatant into 2 96 well plates, 

one was used immediately to determine the NO concentration in the supernatant, the 

remaining plate was stored at -20 °C for subsequent quantification of the secreted cyto-

kines. The AlamarBlue assay was performed with the same cells. To do so, the initial 96 
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well plate containing the cells, was washed carefully and fresh medium containing the 

AlamarBlue solution was added. The plates were incubated for another 3 hours, afore the 

AlamarBlue turnover was measured. 

Compound ID Concentration 
 

 
low IC50 value high 

 

C1.0 0.025 0.250 2.500 µM 

C2.0 0.050 1.000 5.000 µM 

C3.0 0.300 1.500 5.000 µM 

C4.0 0.200 2.000 10.000 µM 

Table 3.3: Compound concentrations. 
The given concentrations were used throughout the whole study, if not stated otherwise. The con-

centrations were chosen by hand to represent a concentration of almost no effect (low), the calculated 

IC50 value (IC50 value), and a concentration of almost 100% activity (high).  

I tested 3 concentrations for each of the 4 compounds, one concentration close to the IC50 

value, one high and one low concentration. The high and low concentration were chosen 

to be in the proximity of the IC50 value and reach almost 100 % or 0 % of the compound's 

potential. All concentrations where chosen by hand to ensure a feasible handling. The 

concentrations are illustrated in Figure 3.1 and are listed in Table 3.3. 

Figure 3.7: Illustration of the assignment of the compound concentrations. 
The representation of an ideal IC50 curve (red solid line) and the three concentration ranges for  low, 

IC50 value, and high  (red dashed lines). 
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I could validate a dose dependent decrease in LPS induced NO release for all 4 compounds, 

illustrated in Figure 3.8. However, not all of them showed the same reduction as deter-

mined in the HTS (see Figure 3.4). In the highest tested concentration, the compounds 

C1.0, C2.0, and C4.0 reduced the NO concentration to the values calculated by the IC50 

curve fitting: 2.5 µM of C1.0 reduced to 12.2 % of the pos. ctrl. (14.2 % std. error; calc.: 13 

%, 1.3 % std. error, p < 0.0001), 5 µM of C2.0 reduced to 30 % of the pos. ctrl. (17.7 % std. 

error; calc.: 22.6 %, 1.7 % std. error, p < 0.0001), and 10 µM of C4.0 reduced to 38.7 % of 

the pos. ctrl. (14.8 % std. error; calc.: 42 %, 2.6 % std. error, p < 0.0001). C3.0 showed a 

reduction in the NO concentration to 59.5 % (23.1 % std. error) when 5 µM was applied 

but did not reach the values of the HTS (5 µM: 26 %, 0.83 % std. error) or the calculated 

lower plateau of the fitted curve (26.6 %, 1.1 % std. error, p < 0.0001). DMSO, the com-

pounds solvent, did not show any effect on the NO concentration, preserving the NO level 

at 102.9 % (9.2 % std. error, p > 0.9999) when the highest used concentration of 5x10-4 v/v 

DMSO was applied. 

Figure 3.8: Validation of the dose dependent reduction of LPS induced micro-

glial NO release scaled to a 96 well plate. 
NO release measured using the Griess assay and normalised to the untreated LPS stimulated pos-

itive control. Microglia were treated 1 hour before stimulation for additional 48 hours. The solvent 

control containing only DMSO represent the 3 highest concentrations used. Data is shown as mean 

+ SEM. Statistical significance is shown as * ≤ 0.05, ** ≤ 0.01,*** ≤ 0.001, **** ≤ 0.0001. 



46 

 

C1.0 showed a significant reduction in the NO level for all tested concentration compared 

to the pos. ctrl.. 0.025 µM reduced the NO level to 73.6 % (21.6 % std. error, p < 0.0001), 

0.25 µM to 25.6 % (13.5 % std. error, p < 0.0001), and as mentioned before 2.5 µM to 12.2 

% (14.2 % std. error, p < 0.0001). The NO reduction in the presents of 2.5 µM showed no 

significant differences to the unstimulated control (5.6 %, 4.8 std. error, p = 0.6944). 

Like compound C1.0, C2.0 and C3.0 do showed a significant reduction in the NO level for 

all tested concentration compared to the pos. ctrl.. 0.05 µM of C2.0 decreased the NO level 

to 78.4 % (21 % std. error, p < 0.0001), 1 µM to 53.3 % (20.1 % std. error, p < 0.0001), and 

5 µM to 30 % (17.7 % std. error, p < 0.0001). 0.3 µM of C3.0 decreased the NO level to 79.4 

% (22 % std. error, p < 0.0001), 1.5 µM to 82.2 % (14.8 % std. error, p < 0.0001), and 5 µM 

to 59.5 % (23.1 % std. error, p < 0.0001). None of the tested concentrations of both com-

pounds were able to decrease the NO level indistinguishable to the neg. ctrl.. 

Other than the previous compounds, C4.0 decreased the NO level significantly only for 2 

µM and 10 µM but not for 0.2 µM. 0.2 µM decreased the NO level to 97.8 % (10.8 % std. 

error, p > 0.9999) compared to the pos. ctrl., 2 µM to 61.2 % (29.2 % std. error, p < 0.0001), 

and 10 µM to 38.7 % (14.8 % std. error, p < 0.0001). All tested concentrations are signifi-

cant above the neg. ctrl. (p < 0.0001). 

In parallel to the validation of the compound’s effect on LPS induced NO release, I as-

sessed their impact on the metabolic activity by repeating the AlamarBlue assay, illus-

trated in Figure 3.9. All values were normalised to the LPS stimulated positive control 

(pos. ctrl.). Upon LPS stimulation the metabolic activity of primary microglia increases 

significantly by around 23.9 %, from 76.1 % (22.8 std. error) for the unstimulated control 

(neg. ctrl.) to 100 % for the pos. ctrl. (8.2 % std. error, p < 0.0001). With of drop of only 0.7 

% to 99.3 % the DMSO control showed no effect on the metabolic activity of microglia (10.2 

% std. error, p > 0.9999). 
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C1.0 showed a dose dependent reduction in the metabolic activity, ranging from a decrease 

to 93.3 % for 0.025 µM (10.5 % std. error, p < 0.9999 compared to pos. ctrl.), and 89.2 % 

for 0.25 µM (11.1 % std. error, p > 0.9999 compared to pos. ctrl.), to 87.7 % for 2.5 µM (8.1 

% std. error). The decrease caused by a concentration of 2.5 µM is significant different 

compared to the LPS stimulated control (p = 0.0122), but remains above the unstimulated 

control (76.1 %, p = 0.0251).  

C2.0, C3.0, and C4.0 did not show any significant decrease in the metabolic activity. C2.0 

reduced the metabolic activity to a maximum of 10 %. 0.05 µM showed a decrease to 96.5 

% (20.2 % std. error, p = 0.9996), 1 µM to 93.2 % (14.1 % std. error, p = 0.7391), and 5 µM 

to 90.4 % (8.2 %, std. error, p = 0.1689). C3.0 reduced the metabolic activity by a maximum 

of 7.2 %. 0.3 µM showed a decrease to 92.8 % (19.4 std. error, p = 0.6605), 1.5 µM to 97.7 

% (16.3 std. error, p > 0.9999), and 5 µM to 97.6 % (14.9 % std. error, p > 0.9999). C4.0 

showed the least amount of impact on the metabolic activity, with a reduction to 99.4 % 

Figure 3.9: Validation of the dose dependent influence on LPS elevated mi-

croglial metabolic activity scaled to a 96 well plate. 
Metabolic activity measured using the AlamarBlue assay and normalised to the untreated LPS 

stimulated positive control. Microglia were treated 1 hour before stimulation for additional 48 hours.  

Afterwards the AlamarBlue assay was performed for ca. 3 hours. The solvent control containing 

only DMSO represent the 3 highest concentrations used. Data is shown as mean + SEM. Statistical 

significance is shown as * ≤ 0.05, ** ≤ 0.01,*** ≤ 0.001, **** ≤ 0.0001. 



48 

 

for 0.2 µM (9.0 % std. error, p > 0.9999), 96.0 % for 2 µM (6.5 % std. error, p = 0.9996), and 

94.1 % for 10 µM (14.1 % std. error, p = 0.9553). 

3.3 The NO release is regulated 

independently from the pro-

inflammatory stimulus. 

To study whether the effect on the NO release is LPS dependent, I repeated the previous 

assays with different stimulation, namely IFNγ and polyIC. The effect on IFNγ induced 

microglial NO release was tested using a similar protocol as for LPS induced NO release. 

I used the same schedule stimulating the microglia with 100 ng/ml IFNγ for 48 hours, 

illustrated in Figure 3.10. In order to assess the effect on polyIC induced NO release, I 

reduced the stimulation duration to 24 hours, which lead to a larger difference between 

unstimulated negative control (neg. ctrl.) and the 100 µg/mL polyIC stimulated positive 

control (pos. ctrl.), illustrated in Figure 3.11. The time dependent NO production of pri-

mary microglia with IFNγ and polyIC was assessed previously in my master thesis.  

3.3.1 IFNγ induced NO release is regulated in a dose 

dependent manner in primary microglia 

Upon IFNγ stimulation the NO concentration increases significantly by almost 10-fold, 

from 13.2 % (8.0 % std. error) under unstimulated conditions (neg. ctrl.) to 100 % (20.1 % 

std. error, p < 0.0001) after IFNγ stimulation. All four compounds, C1.0, C2.0, C3.0, and 

C4.0, reduced this IFNγ induced NO release in a dose dependent manner; all to a different 

extent. C1.0 showed the most potent decrease to 21.9 % (19.1 % std. error). 0.025 µM of 

C1.0 reduced the NO level in a non-significant manner to 84.2 % (28.8 std. error, p = 

0.3357), already 0.25 µM reduced the NO level significantly to 41.3 % (14.8 % std. error, p 

< 0.0001), and 2.5 µM reduced it significantly to 21.9 % (19.1 % std. error). This concen-

tration of C1.0 was statistically not different from the neg. ctrl. with an p value of 0.9907. 

C2.0 showed a similar result, reducing the NO level non-significantly to 85.1 % (30.4 % 

std. error, p = 0.8231) when 0.05 µM were applied, 1 µM reduced the NO level significantly 
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to 63.7 % (23.9 % std. Error, p = 0.0001) and 5 µM significantly to 26.8 % (6.1 % std. error, 

p < 0.0001). Moreover, did this concentration not show a statistically difference compared 

to the neg. ctrl. (p = 0.9214). C3.0 is less potent than the previous compounds, reducing 

the NO level non-significantly to 87.0 % (32.9% std. error, p = 0.9459) when 0.3 µM were 

applied, 1.5 µM reduced the NO level non-significantly to 74.5 % (22.9 std. error, p = 

0.0574) and 5 µM reduced it significantly to 63.1 & (25.8 % std. error, p < 0.0001). 0.2 µM 

of C4.0 reduced the NO level non-significantly to 85.0 % (45.6 % std. error, p = 0.4358), 2 

µM significantly to 64.0 % (18.1 % std. error, p < 0.0001), and 10 µM to 55.1 % (28.0 % std. 

error, p < 0.0001). Interestingly, 5x10-4 v/v DMSO alone did decrease the NO level signif-

icantly to 69.6 % (18.4 % std. error, p = 0.0009). Therefore, I tested the dose dependent 

effect on DMSO using a broad range of DMSO concentration (Figure 3.10), 1x10-5 v/v = 

0.02 µM compound, 1x10-4 v/v = 2 µM compound, and 0.05 % = 10 µM compound. Those 

tested concentrations did decrease the NO level significantly but did not show a dose de-

pendent decrease in the NO level as seen for the compounds. Contrariwise, the NO con-

centration increased in parallel with the increase of the DMSO concentration. 0.001 % 

with rose Moreover but not in a dose dependent manner. 1x10-5 v/v DMSO decreased the 

NO level to 56.2 % (12.5 % std. error, p < 0.0001), 1x10-4 v/v DMSO to 61.8 % (8.6 % std. 

error, p < 0.0001), and 5x10-4 v/v DMSO to 69.6 % (18.4 % std. error, p = 0.0009). 
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3.3.2 PolyIC induced NO release is regulated in a 

dose dependent manner in primary microglia. 

Stimulating primary microglia with 100 µg/ml polyIC increased the detected NO concen-

tration in the supernatant significantly, from 49.2 % (39.3 % std. error) under unstimu-

lated conditions (neg. ctrl.) to 100 % (22.4 % std. error, p < 0.0001) under stimulated con-

ditions. All 4 compounds decreased the NO release in a dose dependent manner. C1.0 

showed a stronger reducing effect compared to the stimulations with LPS or IFNγ. 0.025 

µM decreased the NO level significantly to 66.1 % (27.9 % std. error) compared to the pos. 

ctrl. (p < 0.0001). This reduction in the NO level is statistically not significantly different 

compared to the  neg. ctrl. (p = 0.2732). 0.25 µM decreased the NO level below the neg. 

ctrl. to 29.1 % (14.9 % std. error), significantly different compared to the pos. ctrl. ( p < 

0.0001) but not significantly different to the neg. ctrl. (p = 0.0803). 2.5 µM of C1.0 de-

creased the NO level to 24.7 % (24.5 % std. error), significantly different compared to the 

Figure 3.10: IFNγ induced NO release in microglia and the reduction by the 

compounds. 
NO release measured using the Griess assay and normalised to the untreated IFNγ stimulated pos-

itive control. Microglia were treated 1 hour before stimulation for additional 48 hours. The solvent 

control containing only DMSO represent the 3 highest concentrations used. Data is shown as mean 

+ SEM. Statistical significance is shown as * ≤ 0.05, ** ≤ 0.01,*** ≤ 0.001, **** ≤ 0.0001. 
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pos. ctrl. (p < 0.0001) and compared to the neg. ctrl. (p = 0.0048). C2.0 showed a similar 

reduction in the NO level. 0.05 µM reduced the NO concentration significantly to 62.8 % 

(15.2 % std. error, p = 0.0017), 1 µM to 38.6 % (20.0 % std. error, p < 0.0001), and 5 µM 

26.2 % (19.9 % std. error, p < 0.0001). None of those concentrations were significantly 

different to the neg. ctrl. (0.05 µM: p = 0.9763, 1 µM: p = 0.9980, 5 µM: p = 0.3601). C3.0 

decreased the NO level to a far less extent compared to C1.0 and C2.0. 0.3 µM did not 

show any effect on the NO level (101.3 %, 14.0 % std. error, p > 0.9999), 1.5 µM decreased 

the NO level non-significantly to 80.7 % (58.6 % std. error, p = 0.6712) and 5 µM showed 

a significant decrease to 62.9 % (19.8 % std. error, p = 0.0018). C4.0 showed a significant 

decrease for all tested concentrations. 0.2 µM decrease the NO level to 80.6 % (16.0 % std. 

error, p = 0.0190), 2 µM to 43.5 % (25.9 % std. error, p < 0.0001), and 10 µM to 46.3 % (24.1 

% std. error, p < 0.0001). Both 2 µM and 10 µM did not show a significant difference com-

pared to the neg. ctrl. p = 0.9993, and p > 0.9999 respectively. DMSO did not show any 

effect on the NO level. Here I tested the highest applied concentration of DMOS 0.05 %, 

equal to 10 µM compound concentration, which resulted in a reduction to a slight but not 

significant reduction to 89.0 % (12.7 % std. error, p = 0.9891). 
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3.4 Selective regulation of LPS induced, 

IL1β, IL6, and TNFα release in 

primary microglia. 

Beside the production of NO, microglia do release proinflammatory cytokines upon stim-

ulation with LPS. To study the influence of the compounds on the cytokine release, I 

treated stimulated microglia as described previously in chapter 3.2 (on page 43) with 1 

µg/mL for 48 hours and measured the concentration of the proinflammatory cytokines 

IL1β, IL6, and TNFα. All data were normalised to the LPS stimulated positive control 

(pos. ctrl.).  

Figure 3.11: The reduction of polyIC induced NO release in microglia by the 4 

compounds. 
NO release measured using the Griess assay and normalised to the untreated polyIC stimulated 

positive control. Microglia were treated 1 hour before stimulation for additional 24 hours. The sol-

vent control containing only DMSO represent the 3 highest concentrations used. Data is shown as 

mean + SEM. Statistical significance is shown as * ≤ 0.05, ** ≤ 0.01,*** ≤ 0.001, **** ≤ 0.0001. 
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3.4.1 Selective inhibition of LPS induced release of 

IL1β in primary microglia. 

Stimulating primary microglia with 1 µg/mL LPS increased the IL1β release significantly 

by around 10-fold, from 11.7 % (1.1 % SEM) under unstimulated conditions, to 100 % (16.6 

% SEM, p < 0.0001) (Figure 3.12). 5x10-4 v/v DMSO alone did not have a significant effect 

reducing the IL1β concentration to 82.4 % (6.3 % SEM, p = 0.0924). C1.0 did increase the 

IL1β level up to 143.6 % dose dependently. 0.025 µM induced a significant increase of IL1β 

to 122.9% (6.1 % SEM, p = 0.0115) compared to the pos. ctrl.. With an increased concen-

tration of C1.0 to 0.25 µM the level of IL1β increased in parallel to 143.6 % (7.3 % SEM, p 

< 0.0001). A further increase to 2.5 µM did not change his elevated IL1β concentration 

(142.5 %, 6.1 % SEM, p < 0.0001). C2.0 increased the IL1β level similar to C1.0. 0.05 µM 

evoked an increase by 5.1 % to 105.1 % (2.1 % SEM, p > 0.9999), 1 µM by 14.8 % (114.8 %, 

4.6 % SEM, p = 0.4407), and 5 µM increased the level of IL1β even more to 126.0 % (8.8 % 

SEM, p = 0.0014). C3.0 and C4.0 decreased the IL1β level in a dose dependent manner. 

While 0.3 µM of C3.0 increased the IL1β level to 110.5 % (2.7 % SEM, p = 0.9153), 1.5 µM 

keep it at the entry level (99.0 %, 3.8 % SEM, p > 0.9999), and 5 µM reduced it to 83.1 % 

(2.6 % SEM, p = 0.2431). None of these values reached significance compared to the pos. 

ctrl.. C4.0 showed the most potent effect reducing the level of IL1β, whereas 0.2 µM did 

alter the IL1β concentration not significantly (106.4 %, 2.3 % SEM, p = 0.9998), 2 µM 

decreased the IL1ßβ level to 86.7 % (2.6 % SEM, p = 0.7608) non-significantly, and 10 µM 

decreased it significantly to 55.5 % (2.6 % SEM, p < 0.0001). 
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3.4.2 Selective inhibition of LPS induce release of IL6 

in primary microglia 

In unstimulated conditions the level of IL6 produced by primary microglia is hardly de-

tectable. Stimulating primary microglia with 1 µg/mL increased the IL6 level from 0.9 % 

(neg. ctrl., 0.1 % SEM) to 100 % (pos. ctrl., 0.7 % SEM, p < 0.0001) (Figure 3.13). Treatment 

with 5x10-4 v/v DMSO did not influence the increase in IL6 concentration, and remained 

at 102.8 % (5.8 % SEM, p > 0.9999). C1.0 did not show any influence on the induced IL6 

production (0.025 µM: 99.5 %, 1.5 % SEM, p > 0.9999; 0.25 µM: 100.9 %, 2.7 % SEM, p 

>0.9999; and 2.5 µM: 98.7 %, 2.22 % SEM, p > 0.9999). C2.0 did show a significant dose 

dependent increase in the IL6 level starting with a concentration of 1 µM. 0.05 µM of C2.0 

did not alter the IL6 concentration significantly (100.8 %, 2.65 % SEM, p > 0.9999), 1 µM 

increased the IL6 level significantly by 13.0 % (113.0, 3.5 % SEM, p = 0.0147), and 5 µM 

by 32.8 % (132.8 %, 5.2 % SEM, p < 0.0001). C3.0 did show a slight non-significant dose 

Figure 3.12: Dose dependent influence on LPS induced IL1β release in 

microglia. 
IL1β release measured using ELISA and normalised to the untreated LPS stimulated positive con-

trol. Microglia were treated 1 hour before stimulation for additional 48 hours. The solvent control 

containing only DMSO represent the 3 highest concentrations used. Data is shown as mean + SEM. 

Statistical significance is shown as * ≤ 0.05, ** ≤ 0.01,*** ≤ 0.001, **** ≤ 0.0001. 
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dependent increase in the IL6 level (0.3 µM: 93.9 %, 2.3 % SEM, p > 0.9999; 1.5 µM: 103.6 

%, 2.1 % SEM, p > 0.9999; and 5 µM: 107.2 %, 4.3 % SEM, p > 0.9999). Out of the 4 tested 

compounds, only C4.0 decreased the IL6 level significantly in a dose dependent manner. 

0.2 µM did not affected the IL6 level significantly (98.7 %, 1.6 % SEM, p > 0.9999). How-

ever, 2 µM decreased it significantly to 73.9 % (3.2 % SEM, p < 0.0001), and 10 µM to 57.9 

% (1.4 % SEM, p < 0.0001). 

3.4.3 Selective inhibition of LPS induce release of 

TNFα in primary microglia 

Upon LPS stimulation microglia increased the production of TNFα significantly from 7.3 

% (0.8 % SEM) in unstimulated conditions (neg. ctrl.) to 100 % (1.2 % SEM, p < 0.0001). 

Treatment with 5x10-4 v/v DMSO alone did not influence the TNFα level significantly (96.7 

Figure 3.13: Dose dependent influence on LPS induced IL6 release in micro-

glia. 
IL6 release measured using ELISA and normalised to the untreated LPS stimulated positive con-

trol. Microglia were treated 1 hour before stimulation for additional 48 hours. The solvent control 

containing only DMSO represent the 3 highest concentrations used. Data is shown as mean + SEM. 

Statistical significance is shown as * ≤ 0.05, ** ≤ 0.01,*** ≤ 0.001, **** ≤ 0.0001. 
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%, 2.5 % SEM, p > 0.9999) (Figure 3.14). C1.0 did not show a dose dependent effect on the 

level of TNFα. The concentration remained above 90 % of the pos. ctrl. 0.025 µM did de-

creased it to 90.5 % (2.7 % SEM, p = 0.9801), 0.25 µM to 97.6 % (5.5 % SEM, p > 0.9999), 

and 2.5 µM to 96.1 % (7.2 % SEM, p > 0.9999). C2.0 did increase the TNFα level de-

pendently, starting a non-significant increase to 106.5 % (7.8 % SEM, p = 0.9996) by 0.05 

µM treatment, 1 µM increased it significantly to 122.1 % (8.9 % SEM, p = 0.0238), and 5 

µM increased it significantly to 145.4 % (8.5 % SEM, p < 0.0001). C3.0 showed a significant 

increase in the TNFα level compared to the pos. ctrl., but no dose dependent correlation 

within the tested concentration range. 0.3 µM increased the TNFα level to 125.5 % (0.92 

% SEM, p = 0.0027), 1.5 µM to 125.2 % (8.4 % SEM, p = 0.0035), and 5 µM to 122.7 % (7.8 

% SEM, p = 0.0168). As already shown for the other two cytokines IL1β and IL6, C4.0 

reduced the TNFα level in a dose dependent manner, significantly. 0.2 µM of C4.0 reduced 

the TNFα level to 83.3 % (6.7 % SEM, p = 0.2914) non-significantly, 2 µM reduced it sig-

nificantly to 76.6 % (5.1 % SEM, p = 0.0154), and 10 µM significantly to 68.7 % (5.1 % 

SEM, p = 0.0001). 

Figure 3.14: Dose dependent influence on LPS induced TNFα release in micro-

glia. 
TNFα release measured using ELISA and normalised to the untreated LPS stimulated positive con-

trol. Microglia were treated 1 hour before stimulation for additional 48 hours. The solvent control 

containing only DMSO represent the 3 highest concentrations used. Data is shown as mean + SEM. 

Statistical significance is shown as * ≤ 0.05, ** ≤ 0.01,*** ≤ 0.001, **** ≤ 0.0001. 



57 

 

For further experiments, I reduced the number of compounds to C1.0 and C4.0. C1.0 was 

chosen because of the low IC50 value of only 252 nM, and its exclusive impact on the in-

duced NO release by LPS, polyIC, and IFNγ while showing no effect on the LPS induced 

release of the pro-inflammatory cytokines, IL1β, IL6, TNFα. C4.0 was chosen due to its 

reducing effect on NO as well as the pro-inflammatory cytokines IL1β, IL6, and TNFα. 

C2.0 and C3.0 were excluded because of their high IC50 and their negative undetermined 

impact on the cytokine release. 

3.5 The compounds show an analogous 

effect on primary macrophages as they 

show on microglia. 

Microglia and macrophages share similar activation and regulation pattern. Both upreg-

ulate their NO and cytokine production upon a proinflammatory stimulus. I have shown 

in the previous experiments, that C1.0 decreases the induced NO but not cytokines release 

in a dose dependent manner, and that C4.0 decrease induced NO and cytokine in primary 

microg. Here, I evaluate the effect of the compounds on the induced NO and cytokine re-

lease in primary cultured derived macrophages. I evaluated the NO release after stimu-

lation with 1 µg/mL LPS or 100 ng/ml IFNγ for 48 hours, or 100 µg/mL polyIC for 24 hours. 

The release of the cytokines IL1β, IL6, and TNFα was evaluated after the stimulation with 

1 µg/mL LPS for 48 hours. The protocol used for macrophages and microglia differed only 

in the number of seeded cells (100.000 microglia/well, 50.000 macrophages/well). 50 000 

macrophages per well were seeded 1 day prior to the start of the assay. The cells were 

treated with defined concentrations of DMSO, C1.0, or C4.0 for one hour, followed by an 

additional stimulation for 24/48 hours. 
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3.5.1 LPS induced NO release is reduced by com-

pound C1.0 and C4.0 in a dose depended man-

ner. 

Upon 1 µg/mL LPS stimulation for 48 hours the NO concentration in the supernatant of 

macrophages increased significantly from 6.0 % (0.6 % SEM) to 100 % (1.3 % SEM, p < 

0.0001). A concentration of 5x10-4 v/v DMSO did not change the increased NO level signif-

icantly (93.0 %, 2.2 % SEM, p = 0.6969). Treatment with compound C1.0 decreased the 

NO level significantly in a dose dependent manner. 0.025 µM C1.0 did not show a signifi-

cant decrease in the NO level (93.6 %, 4.5 % SEM, p = 0.8123), however 0.25 µM reduced 

the NO level significantly to 44.4 % (4.6 % SEM, p < 0.0001). 2.5 µM of C1.0 reduced the 

NO level below the neg. ctrl. of 6.0 % to only 4.9 % (0.7 % SEM). This reduction is signifi-

cantly different to the pos. ctrl. (p < 0.0001), but not to the neg. ctrl. (p > 0.9999). The 

treatment with compound C4.0 showed again a dose dependent reduction of the NO con-

centration, but far less potent than compound C1.0. 0.2 µM C4.0 did not show a significant 

influence on the NO level (89.4 %, 3.8 % SEM, p = 0.1208). 2 µM reduced the NO level 

significantly to 70.8 % (3.0 % SEM, p < 0.0001) and 10 µM to 48.9 % (3.7 % SEM, p < 

0.0001). 



59 

 

3.5.2 C1.0 and C4.0 do not interfere with metabolic 

activity in LPS stimulated macrophages. 

In parallel to the evaluation of influence on the NO level, I assessed the compounds impact 

on macrophages metabolic activity using the AlamarBlue assay. In contrast to microglia, 

the metabolic activity of macrophages does not significantly increase upon LPS stimula-

tion. Under unstimulated conditions the metabolic activity remained at 89.5 % (4.7 % 

SEM), compared to 100 % (0.9 % SEM, p = 0.8822) after LPS stimulation. DMSO did not 

affect the metabolic activity of activated macrophages (87.5 %, 4.0 % SEM, p = 0.8090). 

Treatment with compound C1.0 did selectivity decrease the metabolic activity in a signif-

icant manner but did not show a dose dependency. 0.025 µM decreased significantly to 

69.2 % (8.4 % SEM, p = 0.0013), 0.25 µM non-significantly to 78.5 % (7.1 % SEM, p = 

0.0878), and 2.5 µM again significantly to 66.5 % (7.6 % SEM, p = 0.0005). Compound C4.0 

did show a similar impact on the metabolic activity of macrophages, 0.2 µM decreased it 

to 79.8 % (5.9 % SEM, p = 0.1556) in a non-significant manner, 2 µM in a significant 

Figure 3.15: Dose dependent reduction of LPS induced NO release in macro-

phages. 
NO release measured using the Griess assay and normalised to the untreated LPS stimulated pos-

itive control. Macrophages were treated 1 hour before stimulation for additional 48 hours. Data is 

shown as mean + SEM. Statistical significance is shown as * ≤ 0.05, ** ≤ 0.01,*** ≤ 0.001, **** ≤ 

0.0001. All data are normalised to the pos. ctrl. 
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manner to 71.6 % (4.2 % SEM, p = 0.0037), and 10 µM also significantly to 73.2 % (4.0 % 

SEM, p = 0.0126). 

3.5.3 IFNγ induced NO release in primary macro-

phages is regulated in a dose dependent man-

ner. 

Upon stimulation with 100 ng/mL IFNγ the NO concentration increased significantly from 

28.8 % (1.6 % SEM) under unstimulated conditions to 100 % (2.5 % SEM, p < 0.0001). 

5x10-4 v/v of DMSO alone decreased the NO level to 84.5 % (2.6 % SEM) significantly (p = 

0.0096). To evaluate weather this effect is dose dependent, I repeated the assay with a 

concentration of 1x10-5 v/v and 1x10-4 v/v DMSO. Both concentration of DMSO showed a 

Figure 3.16: Dose dependent influence on LPS elevated macrophages meta-

bolic activity. 
Macrophages metabolic activity measured using the AlamarBlue assay and normalised to the un-

treated LPS stimulated positive control. Macrophages were treated 1 hour before stimulation for 

additional 48 hours. Afterwards the AlamarBlue assay was carried out for ca. 3 hours. Data is 

shown as mean + SEM. Statistical significance is shown as * ≤ 0.05, ** ≤ 0.01,*** ≤ 0.001, **** ≤ 

0.0001. All data are normalised to the pos. ctrl. 
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similar reduction in the NO concentration, indicating a dose independent effect on the 

IFNγ induced NO release (1x10-5 v/v DMSO: 84.5 %, 2.6 % SEM, p = 0.0090, 1x10-4 v/v 

DMSO: 83.5 %, 2.8 % SEM, p = 0.0034). Compound C1.0 did decrease the NO level in a 

dose dependent manner, starting with a reduction to 78.6 % (3.9 % SEM, p < 0.0001) with 

a concentration of 0.025 µM applied. This reduction is significantly different to the pos. 

ctrl. (p < 0.0001) but not the DMSO control (p = 0.9520). 0.25 µM decreased the NO level 

significantly to 46.0 % (3.6 % SEM) compared to the pos. ctrl. (p < 0.0001) and the DMSO 

(p < 0.0001). And 2.5 µM reduced it below the neg. ctrl. to 18.4 % (2.2 % SEM). This re-

duction is significantly different to the pos. ctrl (p < 0.0001) and DMSO (p < 0.0001), but 

not significantly different to the neg. ctrl. (p = 0.2146). The dose dependent reduction of 

compound C4.0 is less potent compared to compound C1.0. 0.2 µM. 0.2 µM of compound 

C4.0 reduced the NO level to 75.9 % (4.2 % SEM) significantly different to the pos. ctrl. (p 

< 0.0001) but not to DMSO (p = 0.6018). 2 µM reduced the NO level significantly different 

to pos. ctrl. (p < 0.0001) and DMSO (p < 0.0001) to 52.3 % (3.4 % SEM), and 10 µM reduced 

the NO level to 40.1 % (3.8 % SEM) significantly different to pos. ctrl. (p < 0.0001) and 

DMSO (p < 0.0001) but not to the neg. ctrl. (p = 0.2782). 
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3.5.4 PolyIC induced NO release in primary macro-

phages is regulated in a dose dependent man-

ner. 

Stimulating macrophages with 100 µg/mL polyIC for 24 hours results in a similar outcome 

as described for the stimulation with LPS and IFNγ. Upon stimulation with polyIC the 

NO concentration increased significantly from 24.3 % (2.4 % SEM) to 100 % (3.1 % SEM, 

p < 0.0001). DMSO did not show any significant effect on the NO level (94.2 %, 3.5 % SEM, 

p = 0.9217). As shown for the other stimulations, compound C1.0 decreased the NO con-

centration in a dose dependent manner. 0.025 µM did not show a significant effect on the 

NO level (99.3 %, 5.1 % SEM, p > 0.9999), 0.25 µM decreased the NO level to 38.7 % (3.4 

% SEM), significantly different to the pos. ctrl. (p < 0.0001) but not to the neg. ctrl. (p = 

0.2582), and 2.5 µM reduced the NO level below neg. ctrl. to only 15.0 % (1.8 % SEM) 

significantly different to the pos. ctrl. (p < 0.0001) but not the neg. ctrl. (p = 0.7708). Com-

pound C4.0 showed a similar pattern, decreasing the NO level to 82.9 % (3.8 % SEM) 

Figure 3.17: Dose dependent reduction of IFNγ induced NO release in macro-

phages. 
NO release measured using the Griess assay and normalised to the untreated IFNγ stimulated 

positive control. Macrophages were treated 1 hour before stimulation for additional 48 hours. Data 

is shown as mean + SEM. Statistical significance is shown as * ≤ 0.05, ** ≤ 0.01,*** ≤ 0.001, **** ≤ 

0.0001. All data are normalised to the pos. ctrl. 



63 

 

significantly different compared to pos. ctrl. (p = 0.0111) but not DMSO (p = 0.4890) when 

concentration of 0.2 µM was applied. A concentration of 2 µM decreased the NO level sig-

nificantly to 61.9 % (3.4 % SEM, p < 0.0001), and 10 µM to 40.9 % (5.0 % SEM, p < 0.0001). 

The reduction caused by any concentration of C4.0 were significantly higher than the neg. 

ctrl.. 

3.6 The different regulation of LPS 

induced pro-inflammatory cytokines 

release in primary macrophages. 

The compounds do influence the LPS induced cytokine release in macrophages in an anal-

ogous way as they do in microglial. LPS (1 µg/mL) stimulation upregulate the release of 

Figure 3.18: Dose dependent reduction of polyIC induced NO release in mac-

rophages. 
NO release measured using the Griess assay and normalised to the untreated polyIC stimulated 

positive control. Macrophages were treated 1 hour before stimulation for additional 48 hours. Data 

is shown as mean + SEM. Statistical significance is shown as * ≤ 0.05, ** ≤ 0.01,*** ≤ 0.001, **** ≤ 

0.0001. All data are normalised to the pos. ctrl. 
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IL1β, IL6, and TNFα more than 10-fold. Compound C1.0 does not show a reducing effect 

on any of tested cytokines, whereas compound C4.0 reduces the induced cytokine release 

in a dose dependent manner.  

IL1β is upregulated significantly upon stimulation from 19.7 % (2.5 % SEM) to 100 % (6.4 

% SEM, p < 0.0001). DMSO did not influence this upregulation (105.8 %, 5.3 % SEM, p > 

0.9999). In contrast to the effect on microglia, compound C1.0 did not overshoot LPS in-

duced the IL1β release. All applied concentrations of compound C1.0 are not significantly 

different from the pos. ctrl. and DMSO. 0.025 µM caused an slight increase to 126.3 % (9.0 

% SEM, p = 0.5858), 0.25 µM to 120.0 % (7.0 % SEM, p = 0.8561), and 2.5 µM to 97.1 % 

(7.8 % SEM, p > 0.9999). Also compound C4.0 did act differently on macrophages than it 

did on microglia. 0.2 µM and 2 µM of compound C4.0 did not have a significant effect on 

Figure 3.19: Dose dependent influence on LPS induced IL1β release in macro-

phages. 
IL1β release measured using ELISA and normalised to the untreated LPS stimulated positive con-

trol. Macrophages were treated 1 hour before stimulation for additional 48 hours. Data is shown as 

mean + SEM. Statistical significance is shown as * ≤ 0.05, ** ≤ 0.01,*** ≤ 0.001, **** ≤ 0.0001. All 

data are normalised to the pos. ctrl. 
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the IL1β level (0.2 µM: 98.3 %, 7.6 % SEM, p > 0.9999; 2 µM 104 %, 7.1 % SEM, p > 0.9999), 

and 10 µM overshoot the LPS induced IL1β release significantly, increasing the level to 

146.9 % (16.0 % SEM, p = 0.0048). 

Upon LPS stimulation the release of IL6 is increased from 1.4 % (0.2 % SEM) to 100 % 

(2.1 % SEM, p < 0.0001). DMSO alone did not influence this increase keeping the un-

treated stimulated IL6 level (101.3 %, 2.7 % SEM, p > 0.9999). Compound C1.0 remained 

the IL6 concentration at above 95 % independent from the applied concentration (0.025 

µM: 106.2 %, 3.3 % SEM, p = 0.7096; 0.25 µM: 97.7 %, 2.7 % SEM, p = 0.9998; 2.5 µM: 95.4 

%, 2.3 % SEM, p = 0.9428). Compound C4.0 showed an increase in IL6 with an increase 

in the applied concentration. This increase started and ended significantly below the pos. 

ctrl.. 0.2 µM decreased the IL6 level significantly compared to the pos. ctrl. to 68.2 % (2.3 

% SEM, p < 0.0001), 2 µM to 80.5 % (2.7 % SEM, p < 0.0001), and 10 µM to 83.3 % (2.9 % 

SEM, < 0.0001). 

Figure 3.20: Dose dependent influence on LPS induced IL6 release in macro-

phages. 
IL6 release measured using ELISA and normalised to the untreated LPS stimulated positive con-

trol. Macrophages were treated 1 hour before stimulation for additional 48 hours. Data is shown as 

mean + SEM. Statistical significance is shown as * ≤ 0.05, ** ≤ 0.01,*** ≤ 0.001, **** ≤ 0.0001. All 

data are normalised to the pos. ctrl. 
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The TNFα is increased from 2.8 % (0.4 % SEM) to 100 % (1.7 % SEM, p < 0.0001) upon 

LPS stimulation. DMSO did not affect this increase, keeping the IL1β level at 96.5 % (2.2 

% SEM, p > 0.9999). The treatment with compound C1.0 did not change the level of TNFα 

significantly, keeping the values above 90 % (0.025 µM: 94.3 %, 2.3 % SEM, p = 0.6557; 

0.25 µM: 95.1%, 2.5 % SEM, p = 0.8701; 2.5 µM: 91.0 %, 1.8 % SEM, p = 0.1141). Compound 

C4.0 effected the TNFα release similar as described for IL6. Low concentrations of C4.0 

decreased the TNFα level more than high concentrations. 0.2 µM reduced the level signif-

icantly to 87.5 % (2.6 % SEM, p = 0.0008), 2 µM significantly to 87.0 % (2.7 % SEM, p = 

0.0005, and 10 µM non-significantly to 95.0 % (2.5 % SEM, p = 0.8073). 

 

Figure 3.21: Dose dependent influence on LPS induced TNFα release in mac-

rophages. 
TNFα release measured using ELISA and normalised to the untreated LPS stimulated positive con-

trol. Macrophages were treated 1 hour before stimulation for additional 48 hours. Data is shown as 

mean + SEM. Statistical significance is shown as * ≤ 0.05, ** ≤ 0.01,*** ≤ 0.001, **** ≤ 0.0001. All 

data are normalised to the pos. ctrl. 
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3.7 Compound C1.0 and C4.0 do influence 

the AlamarBlue, PI and NO readout in 

high concentrations. 

To study the direct influence of the compound 1 and 4 on the AlamarBlue assay, the PI 

driven Dead-or-Alive assay and the nitric oxide assay I conducted those assays without 

the presence of cells. I prepared a concentration series of the compound 1 and 4 starting 

from 2 µM and reaching up to 4 mM (2, 4, 20, 40, 200, 400, 2000, 4000 µM) diluted in plain 

cell culture medium. In parallel I diluted the solvent DMSO in the corresponding concen-

tration of the compound, reaching from 1x10-4 up to 2x10-1 v/v (1x10-4, 2x10-4, 1x10-3, 2x10-

3, 1x10-2, 2x10-2, 1x10-1, 2x10-1 v/v). Those concentrations were plated into the same 96-

well plates as used for the cell-based assays, and the assays specific wavelength were 

measured. Plain cell culture medium served as the negative control and was subtracted 

from all measured values. 

3.7.1 High doses of C1.0, C4.0, and DMSO increase 

the measured values of nitric oxide.  

Figure 3.22 illustrates the dose dependent influence on Griess assay relevant wavelength 

of 550 nm. The data was assessed using the identical plate reader and program as for the 

cell-based assay, 550 nm wavelength with a bandwidth of 9 nm and 3 repeated flashes. 

All applied substances influenced the readout in a positive linear fashion. DMSO showed 

a slight but significant dose dependent increase with a linear regression defined by a slope 

of 2.023 10-5 (±6.786 10-6) and an interception of -8.732 10--4 (±0.01078, R2 = 0.5971, p = 

0.0246). Compound 1.0 showed a steeper significant increase with a linear regression de-

fined by a slope of 4.284 10-4 (±2.492 10-5) and an interception of -3.496 10-2 (±3.96 10-2, R² 

= 0.9801, p < 0.0001). Compound 4.0 showed similar significant result as compound 1.0 

resulting in a linear regression defined by a slope 3.197 10-4 (±1.135 10-5) of and an inter-

ception of -9.928 10-3 (±1.804 10-2, R² = 0.9925, p < 0.0001).  

DMSO and the compounds artificially increase the calculated NO concentration by di-

rectly interfering with the measured wavelength. This increase acts contrary to the de-

tected decrease in NO (see Figure 3.6, Figure 3.10, Figure 3.11, Figure 3.15, Figure 3.17, 

and Figure 3.18), and therefore cannot be the reason for the observed reducing effect. 
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Treat-

ment 
 Values 95 % confidence interval 

different from 

zero 

DMSO 
slope 2x10-5 µM 0.00000363 to 3.68E-05 

0.0246 * 
intercept -9x20-4 µM -0.02726 to 0.02551 

C1.0 
slope 4x10-4 µM 0.0003674 to 0.000489 

< 0.0001 **** 
intercept -3x10-2 µM -0.1319 to 0.06194 

C4.0 
slope 3x10-4 µM 0.000292 to 0.000348 

< 0.0001 **** 
intercept 1x10-2 µM -0.03422 to 0.05408 

Table 3.4: Description of the linear regression curves of the compounds in-

fluence the Griess assay. 
 

3.7.2 The AlamarBlue readout is affected by C1.0, 

C4.0, and DMSO. 

The effect on the measurement wavelength of 570 nm and a reference wavelength of 600 

nm are illustrated in Figure 3.23. Both wavelengths were measured the same way as the 

Figure 3.22: Direct dose dependent influence on the read out of the Griess as-

say. 
Different compound concentrations ranging from 2 µM to 4 mM were incubated with the Griess 

reagents and their influence on the Griess assay read out was measured. DMSO concentration 

ranged from 0.0001 to 0.2 v/v. 
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cell-based assay was performed. The applied substances showed a similar effect on the 

measurement and reference wavelength of the AlamarBlue assay as they have shown for 

the nitric oxide assay. DMSO, compound 1.0 and 4.0 did increase the readout significantly 

and dose dependently in a linear fashion. The data for the linear regressions are shown in 

Table 3.5. For a precise calculation of the AlamarBlue assay, the reference wavelength is 

subtracted from the measurement wavelength. However, this calculation did not prevent 

an influence of the compounds 1.0 and 4.0 on the AlamarBlue readout, as shown in Figure 

3.23 and the corresponding Table 3.5.  

DMSO and the compounds artificially increased the calculated metabolic activity detected 

by the AlamarBlue by interfering with both the measurement and reference wavelength. 

This might counteract a negative effect of the compounds on the metabolic activity of pri-

mary microglia, shown in Figure 3.9 and Figure 3.16. However, below a concentration of 

40 µM the maximal interference was 0.023, whereas the absorbance of LPS stimulated 

microglia were 0.258 (0.0224 SEM), resulting in an interference of 9.22 % and are smaller 

than the SEM of the positive ctrl. 
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Treat-

ment 
 Value 

95 % confidence 

interval 

different from 

zero 

DMSO 
slope 2x10-5 µM 3.6x10-6 to 3.6 x10-5 0.0013 ** 

intercept -9x10-4 µM -0.02726 to 0.02551 

C1.0 
slope 4x10-4 µM 0.00037 to 0.000489 < 0.0001 **** 

intercept -3x10-2 µM -0.1319 to 0.06194 

C4.0 
slope 3x10-4 µM 0.00029 to 0.000348 < 0.0001 **** 

intercept 1x10-2 µM -0.03422 to 0.05408 

Table 3.5: Description of the linear regression curves of the compounds in-

fluence the AlamarBlue assay. 

3.7.3 The readout of PI is shifted by high concentra-

tions of C1.0, C4.0, and DMSO. 

The influence of DMSO, compound 1.0 and 4.0 on the PI driven Dead-or-Alive assay are 

illustrated in Figure 3.24. DMSO, compound 1.0 and 4.0 did show a dose-dependent effect 

on the readout in a linear fashion, significantly different from the zero. The single values 

of the linear regression defining the increase are given in Table 3.6. 

 

Figure 3.23: Direct dose dependent influence on the readout of the AlamarBlue 

assay. 
Different compound concentrations ranging from 2 µM to 4 mM were incubated with the Griess 

reagents and their influence on the Griess assay read out was measured. DMSO concentration 

ranged from 0.0001 to 0.2 v/v. 
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Treat-

ment 
 value 

95 % confidence 

interval 

different from 

zero 

DMSO 
slope 0.007 µM 0.000143 to 0.01398 

0.0467 * 
intercept -2.759 µM -13.75 to 8.235 

C1.0 
slope 0.054 µM 0.04328 to 0.06557 

< 0.0001 **** 
intercept -3.226 µM -20.94 to 14.48 

C4.0 
slope 0.043 µM 0.03719 to 0.04921 

< 0.0001 **** 
intercept 7.255 µM -2.293 to 16.8 

Table 3.6: Description of the linear regression curves of the compounds in-

fluence on the PI-based proliferation and cell death assay. 

3.7.4 Compound C1.0 and C4.0 are soluble in the used 

concentration range but precipitate in high con-

centrations. 

Next, I studied the solubility of compound 1.0 and 4.0 in plain cell culture medium 

(DMEM) to ensure that the full potential of the applied concentration can be utilized. 

Figure 3.24: Direct dose dependent influence on the read out of the PI-based 

proliferation and cell death assay. 
Different compound concentrations ranging from 2 µM to 4 mM were incubated with the Griess 

reagents and their influence on the Griess assay read out was measured. DMSO concentration 

ranged from 0.0001 to 0.2 v/v. 
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Moreover, crystals or other solid forms of the compound can trigger unwanted side-effects, 

as activation of microglia. I used the same concentration range dissolved in DMEM as 

described in chapter 3.7, ranging from 2 µM up to 4 mM for the compounds and 1x10-4 up 

to 2x10-1 v/v for DMSO. 200 µL of those were plated into a clear bottom 96-well plate, 

sealed with a PCR-foil to prevent a change in concentration due to evaporation and incu-

bated for 48 hours under cell culture conditions to maintain the previous assay conditions. 

Afterwards, a picture of each well was taken using a 40x fold brightfield microscope. The 

results are shown in Figure 3.25 below. Due to handling process small irritations, like 

linear and doted scratches, could not be prevented, as they can be seen in the DMEM 

control conditions. DMSO alone does not show any dose dependent formations of crystals 

or other solid aggregations. Compound 1.0 showed white milky visual contaminations 

starting from 20 µM up to 40 µM. An increase in compounds concentration was accompa-

nied by an enlargement of the visual contaminations. From a concentration 200 µM on, a 

clear formation of crystals could be observed, starting with a small white rod like crystals 

in a high density at 200 µM. Those crystals grew in size and decreased in number with in 

an increase in compound concentration. Compound 4.0 did show visual contaminations 

starting from 200 µM, indicated by a white milky colouring. With an increase in 

concentrations, these milky colouring changed from transparent to opaque. No discrete 

crystals could be seen for compound 4.0 in any concentration. The observed visual con-

taminations appeared in parallel with the previously reported influence on the readout of 

the NO, the AlamarBlue and the PI based Dead-Or-Alive assay. The visual contamina-

tions arose in concentrations that are at least 8-fold higher (for compound 1.0, and 20-fold 

for compound 4.0) than the applied concentrations. 
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3.7.5 C1.0 and C4.0 do not act as a NO-Scavenger. 

I have excluded an effect of the compound C1.0 and C4.0, as well as DMSO on the readout 

of the NO assay, and the AlamarBlue and PI based Dead-Or-Alive assay. Next, I reviewed 

the effect NO itself, testing if the compounds are able to clear it directly from the cell 

culture medium. Therefore, I harvested NO enriched medium from LPS stimulated pri-

mary microglia (1 µg/mL LPS stimulation for 48 h). I transferred this enriched medium 

into a new 96-well plate and added a defined concentration of DMSO or the compounds. 

For the compounds I used a concentration range representing the previous used concen-

tration, starting from 0.002 µM up to 20 µM (0.002, 0.01, 0.02, 0.1, 0.2, 1, 2, 10, and 20 

µM). The corresponding DMSO concentration range started at 1x10-7 % up to 1x10-3 v/v. 

The enriched medium was incubated with the compounds or DMSO overnight and the NO 

concentration was measured using the Griess assay. As a positive control untreated NO 

Figure 3.25: Solubility the compounds in PBS. 
Images of compounds and DMSO dissolved in PBS and incubated for 48 hours in a sealed 96 well 

plate. 
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enriched medium was used and as negative control the supernatant of unstimulated pri-

mary microglia was used. All values were normalised to positive control. The results il-

lustrated in Figure 3.26 did not show a dose dependent reduction in measured NO level. 

Fitting the values with the previous used IC50 curve was not convergent, however, a fitting 

with linear regression resulted in a function with a slope that is not significantly different 

from a horizontal line, indicating no dose dependent increase or decrease in NO. Singular 

values of compound 1.0 show a significant decrease compared to the positive control, 0.1 

µM with p = 0.0095, and 1 µM with p = 0.0007. Only 0.1 µM of compound 1.0 was signifi-

cant different to DMOS control (p = 0.0157). 

 

 

 

 

 

 

Figure 3.26: Compounds dose dependent NO savaging ability. 
NO enriched medium from LPS stimulated microglia were mixed with the given DMSO or com-

pound concentration, ranging from 1x10-7 to 1x10-3 v/v or 0.002 to 20 µM respectively, for 24 hours. 

The NO concentration was measured using the Griess assay and normalised to untreated stimu-

lated positive control. 
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Treatment 
 

Value 95 % confidence interval different from zero 

DMSO slope -3x10-4 -0.00216 to 0.001557 0.7442 ns 

intercept 0.9915 0.9774 to 1.006 

C1.0 slope 1x10-3 -0.00036 to 0.002761 0.1281 ns 

intercept 9.526 0.9406 to 0.9645 

C4.0 slope -5x10-4 -0.00204 to 0.000885 0.4298 ns 

intercept 0.9808 0.9698 to 0.9917 

Table 3.7: Description of the linear regression curve of the compounds NO 

scavenging ability. 

3.8 The compounds effect on microglial 

phagocytosis and migration. 

Microglia cells, as part of the innate immune system, are capable of increasing their mo-

tility, chemotaxis and phagocytic activity upon a pro-inflammatory stimulus 41,172. In the 

following, I assessed the influence of C1.0 and C4.0, as well as the solvent DMSO on mi-

croglial migration and phagocytosis. 

3.8.1 Neither compound C1.0 nor C4.0 shows an effect 

on the basal and stimulated microglial phagocy-

tosis. 

To study the influence of the compounds on the phagocytic activity, I quantified the uptake 

of FCS coated bright-blue fluorescent microspheres under unstimulated control conditions 

and LPS stimulated conditions. Primary microglia were treated with 2.5 µM of C1.0, 10 

µM of C4.0 or 5x10-4 DMSO one hour prior 1 µg/mL LPS was added in addition and incu-

bated for another 24 hours, or the cells were incubated without stimulation. Afterwards, 

the cells were exposed to the microspheres for 30 minutes, the cells were harvested, and 

the phagocytic uptake was quantified using flow cytometry. All values were normalised to 

the unstimulated untreated negative control. Under unstimulated conditions neither of 

the applied substances showed a significant effect on the phagocytic activity (DMSO: 119.9 
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%, 14.8 % SEM, p = 0.9673; C1.0: 98.6 % 4.0 % SEM, p > 0.9999; C4.0: 82%, 8.8 % SEM, p 

= 0.9813). Upon LPS stimulation microglia increased the phagocytic activity significantly 

up to 170.8 % (17.9 % SEM, p = 0.0048). Treatment with DMSO, C1.0, or C4.0 did not 

change the increased phagocytic rate significantly (DMSO: 162.7 %, 7.7 % SEM, p = 

0.9929; C1.0: 139.5 % 10.7 % SEM, p = 0.6915; C4.0: 145.6%, 24.8 % SEM, p = 0.6998). 

 

 

 

 

 

 

 

 

Figure 3.27: Modulation of the basal and LPS stimulated phagocytosis in 

microglia. 
Microglia phagocytosis of FCS coated beads with and without 24 hour LPS pre-stimulation and 

compound treatment.  



78 

 

 
medium. DMSO 

medium 
  

0.7838 ns 

DMSO 0.7838 ns 
  

C1.0 > 0.9999 ns 0.8305 ns 

C4.0 0.8303 ns 0.2892 ns 

Table 3.8: Statistical comparison of the basal phagocytosis. 
 

 
medium DMSO 

medium 
  

0.9833 ns 

DMSO 0.9833 ns 
  

C1.0 0.5964 ns 0.409 ns 

C4.0 0.6328 ns 0.4099 ns 

Table 3.9: Statistical comparison of the LPS induced phagocytosis. 
 

3.8.2 C1.0 and C4.0 show a diverse effect on the mi-

croglial migration. 

To assess the influence on microglial chemotaxis and motility I used the Boyden-chamber 

assay, which allows both measurements in parallel. In the present of the gradient, the 

chemotactic properties can be assessed, missing a gradient of the substance of interest the 

effect on the microglial motility can be assessed. Here, I tested the chemotactic and mo-

tility properties of the compound C1.0 and C4.0, and their modulatory effect on the ATP 

induces chemotaxis and motility. Primary microglia were directly seeded into the Boyden-

chamber in the present of the given stimulus or treatment, as stated below, and incubated 

for 6 hours under cell culture conditions. All values were normalised to the positive control 

(pos. ctrl.) of ATP driven chemotaxis. Untreated motility was used as a negative control 

(neg. ctrl.). 

To evaluate chemotactic properties of the compound, I applied 2.5 µM C1.0, 10 µM C4.0 

or 5x10-4 DMSO in the lower compartment of the Boyden-chamber and primary microglia 

in the upper compartment. DMSO alone did not influence the microglial chemotaxis com-

pared to the neg. ctrl. (18.2 %, 3.2 % SEM, p = 0.7947). However, compound C1.0 increased 

the chemotactic migration significantly from 26.0 % (2.4 % SEM) to 47.4 % (6.9 % SEM, p 

= 0.189) compared to the neg. ctrl. Compound C4.0 induced a significant chemotactic in-

crease to 61.2 % (12.8 % SEM, p < 0.0001). 
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Chemotaxis ctrl. Neg. ctrl. DMSO 

Neg. ctrl. < 0.0001 **** 
  

0.7947 ns 

DMSO < 0.0001 **** 0.7947 ns 
  

C1.0 < 0.0001 **** 0.0189 * 0.0079 ** 

C4.0 < 0.0001 **** < 0.0001 **** < 0.0001 **** 

Table 3.10: Statistical comparison of the compound induced chemotaxis. 
 

 

 

Figure 3.28: Modulation of microglial chemotaxis by compound C1.0 and C4.0. 
Microglial chemotaxis towards the compounds and DMSO and the modulation effect of the com-

pounds and DMSO on the chemotaxis towards 100 µM ATP. Migration was assessed using the 

Boyden Chamber. All values were normalised to the ATP induced chemotaxis positive control. 
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Chemotaxis ctrl. Neg. ctrl. DMSO 

Neg. ctrl. < 0.0001 **** 
  

< 0.0001 **** 

DMSO 0.5395 ns < 0.0001 **** 
  

C1.0 0.9757 ns < 0.0001 **** 0.8126 ns 

C4.0 0.9841 ns < 0.0001 **** 0.7881 ns 

Table 3.11: Statistical comparison of ATP induced chemotaxis in the presents 

of the compound. 

 

The compounds effect on microglial motility was assessed by applying 2.5 µM C1.0, 10 µM 

C4.0 or 5x10-4 DMSO in the lower and together with the primary microglial in the upper 

compartment of the Boyden-chamber. DMSO alone did not change the microglial motility 

significantly (9.9 %, 2.3 % SEM, p = 0.1411). In the presents of compound C1.0, the micro-

glial motility decreased significantly to 1.2 % (0.7 % SEM, p = 0.0018) compared to the 

neg. ctrl. (24.2 %, 2.1 % SEM). Compound C4.0 did not show any effect on microglial mo-

tility (11.1 %, 3.5 %, p = 0.2381). 
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Chemotaxis Ctrl. Neg. Ctrl. DMSO 

Neg. Ctrl. < 0.0001 **** 
  

0.1411 ns 

Chemotaxis ctrl. 0.3021 ns < 0.0001 **** < 0.0001 **** 

DMSO < 0.0001 **** 0.1411 ns 
  

C1.0 < 0.0001 **** 0.0018 ** 0.8496 ns 

C4.0 < 0.0001 **** 0.2381 ns > 0.9999 ns 

Table 3.12: Statistical comparison of the compound modified motility. 
 

 

Figure 3.29: Modulation of microglial motility by compound C1.0 and C4.0. 
Microglial motility in the presence of the compounds and DMSO and the modulation effect of the 

compounds and DMSO on the motility in the presence of 100 µM ATP. Migration was assessed using 

the Boyden Chamber. All values were normalised to the ATP induced chemotaxis positive control. 
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Chemotaxis ctrl. Neg. Ctrl. DMSO 

Neg. Ctrl. < 0.0001 
   

< 0.0001 **** 

Chemotaxis ctrl. 0.5829 **** < 0.0001 **** 0.9287 ns 

DMSO 0.0025 ns < 0.0001 **** 
  

C1.0 0.051 ns < 0.0001 **** 0.9513 ns 

C4.0 < 0.0001 ns < 0.0001 **** 0.0907 ns 

Table 3.13: Statistical comparison of the ATP induced motility in the presents 

of the compound. 
 

The modulating effect of the compounds on ATP induced chemotaxis was evaluated ap-

plying 2.5 µM C1.0, 10 µM C4.0 or 5x10-4 DMSO in the upper and lower compartment of 

the Boyden-chamber and in addition 100 µM ATP in the lower compartment. Neither 

DMSO nor the compounds C1.0 and C4.0 did change the ATP induced chemotaxis signif-

icantly. DMSO increased the microglial chemotaxis slightly to 111.7 % (11.6 % SEM, p = 

0.5395), whereas C1.0 and C4.0 showed almost no modulating effect (C1.0: 103.1 %, 4.5 % 

SEM, p = 0.9757; C4.0: 102.8 %, 3.8 % SEM, p = 0.9841). 

In the presents of ATP microglia increase their motility activity significantly from 24.2 % 

(2.1 % SEM) to 87.9 % (8.8 % SEM, p < 0.0001). I evaluated the effect of compound C1.0 

and C4.0, and DMSO applying them in a non-gradual fashion to the upper and lower com-

partment together with 100 µM ATP. DMSO alone and compound C1.0 did not change the 

microglial motility significantly (DMSO: 80.5 %, 45.1 % SEM, p = 0.9287; C1.0: 85.4 %, 

3.5 % SEM, p = 0.9994). However, compound C4.0 reduced the ATP induced motility sig-

nificantly to 66.0 % (3.8 % SEM, p = 0.0496). 

3.9 The compounds interference with the 

metabolism, cell death, and cell 

number of cells of the healthy brain. 

One goal of this work is to find a compound which can be administered to a healthy animal. 

I could show that the compounds do not interfere with the metabolic activity of pro-in-

flammatory stimulated microglia and macrophages. To evaluate the effect on a healthy 
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brain I measured the metabolic activity of unstimulated microglia, astrocytes, neurons, 

and oligodendrocytes. In addition, I quantified the impact of the compound on the cell 

number and cell death. The metabolic activity was measured using the AlamarBlue assay, 

the cell number and cell death were assessed using the PI based Dead-Or-Alive assay. The 

cells were seeded into a 96-well plate 1 day before the assay started. The cells were treated 

with either 2.5 µM C1.0, 10 µM C4.0, or the corresponding dose of DMSO (5x10-4 = 10 µM 

compound) for 48 hours. Afterwards, the desired assay was performed. All data were nor-

malised to the control condition of plain medium. 

3.9.1 The positive effect of the compounds on micro-

glial metabolic activity. 

DMSO, C1.0, and C4.0 showed no effect on the metabolic activity in neurons and micro-

glia. However, compound C4.0 showed a reducing effect on the metabolic activity of astro-

cytes compared to the DMSO control (p = 0.0068), and in oligodendrocytes compared to 

the control condition (p = 0.0306). 

Figure 3.30: Compounds influence on the metabolic activity of non-stimulated 

neurons, astrocytes, microglia, and oligodendrocytes. 
Different cells of the brain were treated for 24 hours with the either the compound or DMSO. The 

effect on the metabolic activity was measured using the AlamarBlue assay. C4.0 decrease the met-

abolic activity of astrocytes and oligodendrocytes significantly. All values were normalised to the 

medium control. 
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  medium DMSO 

microglia 

medium   0.3021 ns 

DMSO 0.3021 ns   

C1.0 0.2894 ns 0.9999 ns 

C4.0 0.5409 ns 0.9811 ns 

neurons 

medium   0.9992 ns 

DMSO 0.9992 ns   

C1.0 0.9476 ns 0.9729 ns 

C4.0 0.8502 ns 0.8955 ns 

oligodendrocytes 

medium   0.4214 ns 

DMSO 0.4214 ns   

C1.0 > 0.9999 ns 0.1261 ns 

C4.0 0.0306 * 0.2751 ns 

astrocytes 

medium   0.0789 ns 

DMSO 0.0789 ns   

C1.0 0.7004 ns 0.5578 ns 

C4.0 0.8123 ns 0.0068 ** 

Table 3.14: Statistical analysis of the compounds influence on the metabolic 

activity of non-stimulated neurons, astrocytes, microglia, and oligodendrocytes. 
 

3.9.2 The compounds positive effect on the cell num-

ber of astrocytes and microglia. 

The cell number of oligodendrocytes did not change by any of the applied substances. Com-

pound C1.0 increase the cell number of microglia significantly compared to control condi-

tion (p = 0.0371) and the DMSO control (p = 0.0002). Here, compound C4.0 showed a re-

ducing effect on the number of microglia compared to the DMSO control (p = 0.0206). 

However, C4.0 increased the cell number in astrocytes significantly compared to the con-

trol conditions (p = 0.0012). DMSO, but not the compounds had a significant increasing 

effect on the cell number of neurons compared to the control condition (p = 0.0112). The 

compounds C1.0 and C4.0 counteracted this increase, reducing the cell number compared 

to the DMSO control significantly (C1.0: p = 0.0335; C4.0: p = 0.0267) but not compared 

to the control condition. 
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  medium DMSO 

microglia 

medium   0.3571 ns 

DMSO 0.3571 ns   

C1.0 0.0371 * 0.0002 *** 

C4.0 0.6053 ns 0.0206 * 

neurons 

medium   0.0112 * 

DMSO 0.0112 *   

C1.0 0.9777 ns 0.0335 * 

C4.0 0.9939 ns 0.0267 * 

oligodendrocytes 

medium   0.1695 ns 

DMSO 0.1695 ns   

C1.0 0.1119 ns 0.9974 ns 

C4.0 0.1575 ns > 0.9999 ns 

astrocytes 

medium   0.1123 ns 

DMSO 0.1123 ns   

C1.0 0.9237 ns 0.392 ns 

C4.0 0.0012 ** 0.4207 ns 

Figure 3.31: Compounds influence on the proliferation of non-stimulated neu-

rons, astrocytes, microglia, and oligodendrocytes. 
Different cells of the brain were treated for 24 hours with the either the compound or DMSO. The 

effect on the cell number was measured using a propidium iodide assay. All values were normalised 

to the medium control. 
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Table 3.15: Statistical analysis of the compounds influence on the prolifera-

tion of non-stimulated neurons, astrocytes, microglia, and oligodendrocytes. 
 

3.9.3 Compound C1.0 and C4.0 show no effect on the 

cell death. 

The cell death of astrocytes, oligodendrocytes, and neurons was not significantly altered 

by the compounds or DMSO. In microglia, DMSO increased the cell death significantly 

compared to the control condition (p = 0.0256). However, no significant difference between 

the compounds and the control condition or the DMSO control could be detected. 

 

 

 

 

Figure 3.32: Compounds influence on the cell death of non-stimulated neurons, 

astrocytes, microglia, and oligodendrocytes. 
Different cells of the brain were treated for 24 hours with the either the compound or DMSO. The 

effect on the cell death was measured using a propidium iodide assay. All values were normalised 

to the total number of cells. 
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  medium DMSO 

microglia 

medium   0.0258 * 

DMSO 0.0258 *   

C1.0 0.994 ns 0.0622 ns 

C4.0 0.2356 ns 0.7244 ns 

neurons 

medium   0.9738 ns 

DMSO 0.9738 ns   

C1.0 0.5178 ns 0.2724 ns 

C4.0 0.9849 ns 0.9999 ns 

oligodendrocytes 

medium   0.2624 ns 

DMSO 0.2624 ns   

C1.0 0.9877 ns 0.1634 ns 

C4.0 0.963 ns 0.2292 ns 

astrocytes 

medium   0.7589 ns 

DMSO 0.7589 ns   

C1.0 0.6204 ns 0.9962 ns 

C4.0 0.5276 ns 0.0908 ns 

Table 3.16: Statistical analysis of the compounds influence on the cell death 

of non-stimulated neurons, astrocytes, microglia, and oligodendrocytes. 
 

3.10 Structure action relationship analysis 

(SAR) of compound C4.0 reveal an 

inconsistent mode of action. 

In the previous experiments compound C4.0 showed a reducing effect on NO and some 

cytokines (Il1β, IL6, and TNFα), no effect on the phagocytosis and some specific effects on 

microglial migration. To analysis the relationship of the compounds structure to its action 

and to determine a chemical lead structure, I performed a structure action relationship 

(SAR) analysis. The compound was altered at three positions resulting 19 structural dif-

ferent compounds named C4.1 to 4.20 (4.3 is missing due to supply difficulties). The pro-

posed lead structure left untouched. Alterations of the structure included the addition and 
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subtraction of polar groups (carbonyl acid, hydroxymethyl, halogens, etc.) changing the 

number of H-acceptors and H-donors, the alteration of the occupied space of some groups 

(from a trifluoromethyl group to a fluoride group), changing the linker length between 

some groups, or removing them completely. The chemical analysis and recommended al-

terations of the lead structure were done by Edgar Specker from the FMP. I tested all 

compounds on their effect on LPS induced NO, IL1β, Il6, and TNFα release, as well as on 

the metabolic activity in primary cultured neonatal microglia. The assays were performed 

in parallel as described above and the previously established compound concentrations 

were used (0.2 µM, 2 µM, and 10 µM). 

Beside the initial compound C4.0, no compound showed a dose dependent decrease in NO, 

IL1β, Il6, and a slight decrease in TNFα, while showing no effect on the metabolic activity. 

The treatment with some compounds led to a decrease in the metabolic activity, indicating 

a cytotoxic property: C4.1, C4.2, C4.3, C4.9, C4.10, C4.12, C4.14, C4.15, C4.16, and C4.18. 

Another group of compounds decreased the cytokines independently of the used concen-

tration: C4.10, C4.11, and C4.12. Only a few compounds reduced the LPS induced NO 

release significantly: C4.2, C4.4, C4.9, C4.10, C4.12, and C4.18. Compound C4.6, C4.15, 

C4.16, C4.17, C4.18, and C4.20 did increase the LPS induced TNFα release even more. 

Due to the complex antagonistic result of the SAR, I excluded compound C4.0 from further 

analysis. 
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 Figure 3.33: Structure action relationship analysis of compound C4.0. 
The LPS induced release of NO, IL1β, IL6, and TNFα in microglia and their modulation through the 

different variations of compound C4.0. The compounds influence on the metabolic activity measured 

using AlamarBlue. 
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3.11 C1.0 is able to reduce the NO release 

of previously activated microglia. 

In the previous experiments, microglia and macrophages were pre-treated for 1 hour prior 

to the pro-inflammatory stimulation. This setup was used to assess the total effect of the 

compound on the induced NO and cytokine release. However, this approach does not rep-

resent the situation in a therapeutic use. To mimic a situation closer to the therapeutic 

use, I applied C1.0 or DMSO on already activated microglia. Microglia were stimulated in 

a 96-well plate with 1 µg/mL LPS for 24 hours, afterwards, the supernatant was discarded, 

and the cells were washed carefully with warm PBS. Next, fresh cell culture medium was 

applied containing 2.5 µM C1.0, the corresponding concentration of 125x10-5 v/v DMSO, 

or no additional substance. The NO release was measured after 2, 4, 6, 8 hours and 12, 

24, 36, 48, 60 hours. Under control conditions with no additional substance applied, the 

NO concentration increased in a linear fashion reaching 28.7 µM (1.036 µM SEM). This 

linear increase is defined by a slope of 0.4597 µM/h (0.00957 µM/h SEM), a y-interception 

of 0.7832 µM (0.2507 µM SEM) with an R² of 0.9412. DMSO does not change this linear 

increase in NO significantly compared to the control condition (p < 0.9999), reaching 29.2 

µM (1.119 µM SEM) after 60 hours. The linear increase is defined by a slope of 0.6443 

µM/h and a y-interception of 0.4640 with an R² of 0.9612. Treatment of already activated 

microglia reduces the NO release significantly over time. After 60 hours the NO concen-

tration reaches only 7.256 µM (0.6127 µM SEM) and is significantly different compared to 

the medium and DMSO control (both p < 0.0001). From 8 hours on after medium change 

the NO concentration is significantly reduced compared the control condition and from 12 

hours on compared to the DMSO control, too. The change in NO concentration shifted 

from a linear increase to an increase defined by a one-phase association, described by a 

start value (= y-interception) of 1.054 µM (CI 95 % from 0.3759 to 1.732 µM), an end plat-

eau of 7.063 µM (CI 95 % from 5.999 to 8.127), and tau of 19.87 (CI 95 % from 13.13 to 

40.79). 
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Time in hours 

2 h 4 h 6 h 8 h 12 h 24 h 36 h 48 h 60 h 

ctrl. 

vs. 

DMSO 

0.9182 0.4825 > 0.9999 > 0.9999 0.7931 0.0489 > 0.9999 > 0.9999 > 0.9999 

ns ns ns ns ns * ns ns ns 

C1.0 

vs. 

ctrl. 

0.9999 0.8306 0.436 0.006 0.0416 < 0.0001 < 0.0001 < 0.0001 < 0.0001 

ns ns ns ** * **** **** **** **** 

C1.0 

vs. 

DMSO 

> 0.9999 > 0.9999 0.0539 0.0755 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 

ns ns ns ns **** **** **** **** **** 

Table 3.17: Statistical analysis of the compound’s impact on the NO release of 

pre-stimulated microglia. 
 

3.12 Compound C1.0 includes two distinct 

two diastereomers. 

Compound C1.0’s structure contains 2 stereo centres. Both are located in the backbone of 

the peptide bonds, one in the amino acid proline, the other in the amino acid like structure 

Figure 3.34: Impact of compound C1.0 on the NO release of pre-stimulated mi-

croglia. 
Microglia were stimulated for 24 hours prior compound treatment. The amount NO was measured 

afterwards using the Griess assay.  
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of tyrosine. The stereo centre in the amino acid proline is defined in its S conformation. 

The stereo centre in the amino acid like structure of tyrosine occurs in both S and R con-

formation. In the previous experiments, a diastereomeric mixture of the S and R confor-

mation of compound C1.0 was used. To evaluate the composition of this mixture, I sepa-

rated both diastereomers using HPLC with a chiral column. The experiments were con-

ducted in the facilities of the FMP with the help of Dr. Edgar Specker setting them up. 

The final experiments were executed by me. The separation with the HPLC showed two 

distinct peaks, with the first peak starting after 7:15 min and ending at around 8:45, and 

the second peak starting at around 9:30 min and ending at around 11:45 min. The area 

under the curve (AUC), determine a relative amount of the diastereomer of 43 % for the 

first peak and 57 % for the second peak. In the following, the isolated diastereomers will 

be named C1.0a and C1.0b by the order of their appearance in the HPLC. 
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Figure 3.35: Possible chiral structure of compound C1.0. 
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I evaluated the potential in reducing the LPS induced NO release in microglia of both 

isolated diastereomers. Therefore, I repeated the NO assay described in chapter 3.2 (on 

page 43). The treatment with the compound C1.0a and C1.0b was initiated 1 hour prior 

to the stimulation with 1 µg/mL LPS for additional 48 hours. The compounds were applied 

in the same dose range used before: 0.025 µM, 0.25 µM, and 2.5 µM. Non-treated primary 

microglia served as a negative control (unstimulated) and as a positive control when stim-

ulated with LPS. In addition, I tested the initial diastereomeric mixture of compound 

C1.0. The negative and positive control, as well as the diastereomeric mixture of com-

pound C1.0,  showed the same results as described beforehand in 3.2 (on page 43). The 

first fraction, C1.0a, showed an even stronger reduction of the induced NO release com-

pared to the previous tested diastereomeric mixture C1.0, whereupon the second fraction, 

C1.0b, showed a significant reduction only in the highest applied concentration (2.5 µM). 

C1.0a reduced the NO release significantly in a dose depended manner, starting at the 

concentration of 0.025 µM by reducing the NO concentration to 88.36 % (1.234 % SEM, p 

< 0.0001) of the pos. ctrl.. 0.25 µM reduced the NO concentration to 28.56 % (2.566 % SEM, 

p < 0.0001), and 2.5 µM to 2.60 % (0.0079 % SEM, p < 0.0001). Compared to the diastere-

omeric mixture C1.0, C1.0a showed a larger decrease in every applied concentration (0.025 

µM: C1.0 = 93.93%, C1.0a = 88.36 %; 0.25 µM: C1.0 = 50.84 %, C1.0a =28.56 %; 2.5 µM: 

C1.0 = 3.66 %, C1.0a = 2.60 %) reaching significance for 0.25 µM (p < 0.0001). Fraction 

Figure 3.36: HPLC chiral separation of C1.0. 
Exemplary curve of the chiral HPLC of the diastereomeric mixture C1.0 shows the separation into 

2 defined peaks. mAU = milli Absorbance Unit. 
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C1.0b showed no dose dependent reduction within the tested concentration range. Treat-

ment with 0.025 µM C1.0b showed now significant reduction (96.85 %, 1.426 % SEM, p = 

0.9027), with 0.25 µM the NO concentration remained at 100.9 % (1.019 % SEM, p > 

0.9999), only 2.5 µM reduced the NO concentration significantly to 88.69 % (1.283 % SEM, 

p < 0.0001). 

3.12.1 S-S is the active conformation of compound C1.0 

In the previous HPLC fractioning I could show that compound C1.0 exists in an active 

(C1.0a) and in an inactive (C1.0b) conformation. However, the allocation of the active form 

to the conformation is missing. To determine the conformation of the active form, both the 

S-S and the S-R was synthesised by Keven Malow in the FMP. An HPLC with a chiral 

column was run with the same setting used before in chapter 3.12 (page 92) to verify the 

purity of the synthesised compounds and to allocate the structure to a particular peak. 

Both conformations and their allocation to the corresponding HPLC peak are illustrated 

in Figure 3.38. The first fraction, C1.0a, contains the S-S conformation, the second peak, 

C1.0b, contains the S-R conformation of the compound. 

Figure 3.37: Dose dependent influence of the two separated fractions on the 

LPS induced NO release in microglia. 
NO release measured using the Griess assay and normalised to the untreated LPS stimulated pos-

itive control. Microglia were treated 1 hour before stimulation for additional 48 hours. Data is shown 

as mean + SEM. Statistical significance is shown as * ≤ 0.05, ** ≤ 0.01,*** ≤ 0.001, **** ≤ 0.0001.  
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In addition, I tested both formations C1.0a and C1.0b in the above described NO assay to 

Figure 3.38: Identification of the chiral structure of compound C1.0 
The chemical structures of compound C1.0a and C1.0b (top), the corresponding peak in the HPLC 

analysis (middle), and the effect on the LPS induced NO release in microglia (bottom). Data is shown 

as mean + SEM. Statistical significance is shown as * ≤ 0.05, ** ≤ 0.01,*** ≤ 0.001, **** ≤ 0.0001. 

All data are normalised to the pos. ctrl. 
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confirm the allocation and the activity of the in-house synthesized molecules. The LPS 

stimulation of the primary microglia showed the expected increase in NO release in pri-

mary microglia (neg. ctrl.: 1.88 %, 0.589 % SEM; pos. ctrl.: 100 %, 6.52 % SEM). The S-S 

conformation showed a significant dose dependent decrease on the NO release: 0.025 µM 

decreased the NO concentration to 61.30 % (3.60 % SEM, p < 0.0001), 0.25 µM to 11.61 % 

(2.14 % SEM, p < 0.0001), and 0.025 µM to 3.13 % (0.92 % SEM, p < 0.0001). The S-R 

conformation, too, showed a dose dependent decrease of the NO release, however to far 

less extend, compared to the S-S conformation. Treatment with 0.025 µM S-R confor-

mation did not change the NO concentration (100.30 %, 0.92 % SEM, p > 0.9999), 0.25 µM 

reduced the NO concentration slightly but significant to 92.48 % (2.01 % SEM, p = 0.0049), 

and 2.5 µM to 66.16 % (0.41 % SEM, p < 0.0001). Both data confirm the allocation made 

with the HPLC experiment, C1.0a is the S-S conformation, and C1.0b is the S-R confor-

mation. 

3.12.2 The IC50 value of the active S-S conformation 

C1.0a is 104 nM. 

I could show that the compound C1.0 is a diastereomeric mixture of S-S and S-R confor-

mation. Next, I assessed the IC50 value of both conformations in reducing the LPS induced 

NO release in primary microglia. Complied with the previous experiments, primary cul-

tured neonatal microglia were seeded into a 96 well plate on the day before the assay 

started. The microglia were treated with the fraction C1.0a or C1.0b. As a control, the 

mixture of both conformations (= C1.0), which was used in previous experiments, or the 

corresponding concentration of the solvent DMSO was used. The concentrations range for 

the compounds started at 2 nM and ended at 20 µM (2, 10, 20, 100, 200 nM, 1, 2, 10, 20 

µM), and for DMSO started at 2.5x10-7 v/v and ended at 2.5x10-3 v/v (2.5x10-7, 5x10-7, 

2.5x10-6, 5x10-6, 2.5x10-5, 5x10-5, 2.5x10-4, 5x10-4 v/v). DMSO itself showed no dose depend-

ent effect on the LPS induced NO release in microglia. The highest reduction in NO con-

centration was measured at a concentration of 5 x 10-5 (= 2 µM compound, 87.36 %). Higher 

concentration of DMSO increased the detected NO concentrations again up to 94.17 % 

(5x10-4 v/v = 20 µM compound). None of the tested concentrations did decrease the NO 

concentration in a significant manner compared to the non-treated stimulated pos. ctrl.. 

The diastereomeric mixture of both conformations showed a dose dependent decrease, 

reaching a significance reduction compared to the non-treated stimulated pos. ctrl. start-

ing with a concentration of 100 nM (70.49 %, 5.67 % SEM, p < 0.0001). Concentrations 
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above 1 µM evoked a reduction in the NO concentration that does not show a significant 

difference to the non-treated unstimulated neg. ctrl. (p = 0.1378). The calculated IC50 of 

C1.0 is 252 nM (95% CI = 0.2069 to 0.3234), confirming the IC50 of the HTS (Figure 3.6). 

C1.0a showed a more potent dose dependent decrease in the NO concentration. A concen-

tration of 20 nM did already reduce the NO level significantly to 79.76 % (1.47 % SEM, p 

< 0.0001). Similar to C1.0, C1.0a showed no significant difference compared to the neg. 

ctrl. starting at a concentration above 1 µM. The calculated IC50 value is 104 nM (95% CI 

= 0,09491 to 0,1152), which fits with the distribution in the diastereomeric mixture C1.0 

(43 % C1.0a, 57 % C1.0b, 252 nM x 43 % = 108.36 nM). C1.0b showed a significant decrease 

starting from 2 µM (89.23 %, 2.93 % SEM, p = 0.0036), a concentration in which C1.0 and 

C1.0a already reached a level similar to the neg. ctrl.. Within the tested concentration 

range, a treatment with C1.0b did not reach NO level significantly different to the neg. 

ctrl. The calculated IC50 value is 43.29 µM. It has huge variance with a 95 % confidence 

interval from 8,841 to +infinity and is outside the tested concentration range. 

 

 

Figure 3.39: Dose dependent reduction of LPS induced NO release in microglia 

of compound C1.0, C1.0a, and C1.0b. 
Microglia pre-treated with a given compound concentration or the corresponding DMSO concentra-

tion, and subsequently LPS stimulation for 48 hours. The NO concentration was measured using 

the Griess assay. All data are normalised to the pos. ctrl.  
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µM ctrl. vs. DMSO ctrl. vs. C1.0 ctrl. vs. C1.0a ctrl. vs. C1.0b 

0.002 > 0,9999 
 

0.9181 
 

0.615 
 

> 0,9999 
 

0.010 > 0,9999 
 

0.0893 
 

> 0,9999 
 

> 0,9999 
 

0.020 > 0,9999 
 

> 0,9999 
 

< 0,0001 **** 0.575 
 

0.100 > 0,9999 
 

< 0,0001 **** < 0,0001 **** > 0,9999 
 

0.200 > 0,9999 
 

< 0,0001 **** < 0,0001 **** 0.3836 
 

1.000 0.8799 
 

< 0,0001 **** < 0,0001 **** 0.4967 
 

2.000 0.0510 
 

< 0,0001 **** < 0,0001 **** 0.0049 ** 

10.000 > 0,9999 
 

< 0,0001 **** < 0,0001 **** < 0,0001 **** 

20.000 0.4865 
 

< 0,0001 **** < 0,0001 **** < 0,0001 **** 

Table 3.18: Statistical analysis of the NO dose response curve using a 2-way ANOVA 
 

In parallel to the NO concentration, I measured the effect on the metabolic activity of 

primary microglia. The experiment was performed as described previously (chapter 3.2) 

with the same concentration used above. Across the whole concentration range, all tested 

substances (DMSO, C1.0, C1.0a, C1.0b) showed a significant decrease in microglial meta-

bolic activity in singular concentrations. However, this decrease did neither follow a dose 

dependent pattern nor did it dropped below the metabolic activity of non-treated unstim-

ulated microglia (68.64 %, 2.47 % SEM), indicating no effect on microglial viability. 

 

Figure 3.40: Dose dependent scavenging effect on NO by compound C1.0, C1.0a, 

and C1.0b 
Microglia pre-treated with a given compound concentration or the corresponding DMSO concentra-

tion, and subsequently LPS stimulation for 48 hours. The metabolic activity was measured using 

the AlamarBlue assay. All data are normalised to the pos. ctrl. 
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µM ctrl. vs. DMSO ctrl. vs. C1.0 ctrl. vs. C1.0a ctrl. vs. C1.0b 

0.002 0.3114 
 

0.799 
 

< 0,0001 **** > 0,9999 
 

0.010 > 0,9999 
 

0.1545 
 

> 0,9999 
 

0.6457 
 

0.020 > 0,9999 
 

0.0039 ** < 0,0001 **** > 0,9999 
 

0.100 0.5959 
 

> 0,9999 
 

< 0,0001 **** 0.905 
 

0.200 > 0,9999 
 

0.3551 
 

< 0,0001 **** > 0,9999 
 

1.000 > 0,9999 
 

> 0,9999 
 

< 0,0001 **** 0.0188 * 

2.000 0.0037 ** 0.422 
 

< 0,0001 **** > 0,9999 
 

10.000 > 0,9999 
 

0.372 
 

> 0,9999 
 

> 0,9999 
 

20.000 > 0,9999 
 

< 0,0001 **** < 0,0001 **** 0.0023 ** 

Table 3.19: Statistical analysis of the metabolic activity dose response curve 

using a 2-way ANOVA 

 

To test whether C1.0a or C1.0b does react with NO directly, I repeated the assay described 

in chapter “3.7.5 C1.0 and C4.0 do not act as a NO-Scavenger” (page 74) with the complete 

concentration range used above. None of the tested substance decreased the NO concen-

tration in dose dependent manner. Interestingly, C1.0, but not C1.0a or C1.0b, did in-

crease the measured NO level significantly for singular concentrations (10 nM: 107.75 %, 

1.31 % SEM, p = 0.0338 ; 200 nM: 107.18 %, 1.39 % SEM, p = 0.0117 ; 10 µM: 108.43 %, 

1.26 % SEM, p = 0.0169 ; and 20 µM: 108.59 %, 0.76 % SEM, p = 0.0143). 

Figure 3.41: Dose dependent scavenging influence of the NO concentration of 

NO enriched medium of compound C1.0, C1.0a, and C1.0b. 
NO enriched medium from LPS stimulated microglia were incubated with a given compound con-

centration or the corresponding DMSO concentration and incubated for 48 hours. All data are nor-

malised to the pos. ctrl. 
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3.13 Treatment with C1.0, C1.0a, or C1.0b 

does not modify the iNOS’s mRNA 

regulation. 

In microglia and macrophages, NO is produced by the inducible isoform of the nitric oxide 

synthase (iNOS). It is known that iNOS is regulated on the transcriptional level54. Under 

physiological conditions, iNOS’s mRNA is barely detectable, while upon a pro-inflamma-

tory stimulus, like LPS, the transcription of iNOS’s mRNA is upregulated. Thus, I further 

investigated whether the induction of iNOS’s mRNA is affected by the treatment with a 

diastereomer mixture of C1.0, or the pure diastereomers C1.0a, and C1.0b. 1 106 Microglia 

were seeded into a 6 cm petri dish 1 day before the assay started. Afterwards, the cells 

were pre-treated for 1 hour with 2.5 µM of C1.0, C1.0a, C1.0b or the corresponding DMSO 

concentration of 125x10-5 v/v, followed by an additional 24 hours incubation with or with-

out LPS. The amount of mRNA was quantified using qRT-PCR, and all values were nor-

malised to untreated LPS stimulated medium control. Upon stimulation, with 1 µg/mL 

LPS the mRNA level increased significantly more than 5000-fold (p < 0.0001). Treatment 

with DMSO or the compounds did not change this behaviour. Under unstimulated condi-

tions, the iNOS mRNA level remained below 0.0195 %, with no significant change com-

pared to the medium control or DMSO treatment (see Table 3.21). Under LPS stimulated 

 
ctrl. vs. DMSO ctrl. vs. C1.0 ctrl. vs. C1.0a ctrl. vs. C1.0b 

0.002 > 0,9999 
 

0.0807 
 

> 0,9999 
 

> 0,9999 
 

0.010 > 0,9999 
 

0.0338 * > 0,9999 
 

> 0,9999 
 

0.020 0.1026 
 

0.0582 
 

0.8362 
 

> 0,9999 
 

0.100 > 0,9999 
 

> 0,9999 
 

0.623 
 

> 0,9999 
 

0.200 > 0,9999 
 

0.0117 * > 0,9999 
 

> 0,9999 
 

1.000 0.6301 
 

> 0,9999 
 

0.3748 
 

> 0,9999 
 

2.000 0.0981 
 

0.0706 
 

> 0,9999 
 

> 0,9999 
 

10.000 > 0,9999 
 

0.0169 * 0.9179 
 

> 0,9999 
 

20.000 0.4666 
 

0.0143 * > 0,9999 
 

> 0,9999 
 

Table 3.20: Statistical analysis of the scavenger dose response curve using a 

2-way ANOVA 
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conditions the iNOS mRNA stayed in between 61.7 % and 104.0 %, showing no significant 

difference compared to the LPS stimulated medium control and the stimulated DMSO 

control (see Table 3.22). The difference between the unstimulated and stimulated condi-

tion within each treatment are significant (ctrl., DMSO, C1.0, and C1.0b: p < 0.0001, C1.0a 

= 0.0236). 

 

 
Neg. ctrl. DMSO C1.0 C1.0a 

DMSO ns (0.9974) 
   

C1.0 ns (0.7717) ns (0.9683) 
  

C1.0a ns (0.9810) ns (0.9333) ns (0.4995) 
 

C1.0b ns (0.1469) ns (0.429) ns (0.6701) ns (0.0736) 

Table 3.21: Statistical analysis of the compounds influence on the non-stimu-

lated iNOS mRNA transcription in microglia. 
 

Figure 3.42: Compounds influence on the LPS stimulated and non-stimulated 

iNOS mRNA transcription in microglia. 
Microglia treated with the compounds or DMSO and subsequently stimulated with or without LPS. 

mRNA was asses 24 hours after stimulation using qRT-PCR.  
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Neg. ctrl. DMSO C1.0 C1.0a 

DMSO ns (>0.9999) 
   

C1.0 ns (>0.9999) ns (>0.9999) 
  

C1.0a ns (>0.9999) ns (>0.9999) ns (>0.9999) 
 

C1.0b ns (>0.9999) ns (>0.9999) ns (>0.9999) ns (>0.9999) 

Table 3.22: Statistical analysis of the compounds influence on the LPS stimu-

lated iNOS mRNA transcription in microglia. 
 

3.14 C1.0a does not directly regulate the 

NO-Synthesis iNOS, eNOS, or nNOS 

In mammalians, NO is produced by the three isoforms of NOS: iNOS, eNOS, and nNOS. 

To evaluate the direct influence of C1.0a on the different isoforms of NOS, an enzyme 

activity assay was conducted by the company Eurofins. The experiments were carried out 

as following: C1.0a was mixed with the enzyme buffer, which included co-factors and sub-

strates, by adding the enzyme the reaction was initiated. After 30 min, the reaction was 

stopped, and NO concentration was measured. The results are normalised to the positive 

control performed without any additional compounds and are presented as a percentage 

in inhibition. The known inhibitors W1400 for iNOS (Figure 3.44, in black), L-NMMA for 

eNOS (Figure 3.43, in black), and S-Methylisothiourea for nNOS (Figure 3.45, in black) 

were used as a reference. To evaluate the compound’s effect on iNOS a concentration range 

from 1 pM up to 5 µM were applied (1, 10, 100 pM, 1, 10, 100 nM, 1, and 5 µM). The steps 

were chosen to incorporate the previous in house tested concentrations between 10 nM 

and 5 µM, and to account for the fact that I switch from a cell-based assay to an enzyme-

based assay. Since I do not have any data on the effectiveness of the compound on eNOS 

and nNOS, I chose a high (1 µM) and low (1 nM) concentration. The known inhibitors 

reduced the enzyme activity of all tested synthases as predicted. However, C1.0a did not 

show any regulatory impact on the enzyme activity of any of the three NOS isoforms 

within the tested concentrations range. The impact on iNOS remain within a range of 4.3 

% (1.7 % SEM) and 0.9 % (1.4 % SEM) stimulation. A fitted linear regression showed no 

significant in- or decrease in NO concentration. The slope was not significantly different 

to zero (p = 0.2628). The impact on eNOS remained within a range of 5.5 % (2.5 % SEM) 
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inhibition and 7.5 % (16.45 % SEM) stimulation, and on nNOS within a range of 10.05 % 

(1.85 % SEM) and 14.45 % (4.45 % SEM). Inhibitions or stimulations above 50 % are con-

sidered as significant (personal correspondence with Eurofins). 

 

 

Figure 3.44: Modulation the iNOS enzyme activity by compound C1.0a 
 

Figure 3.43: Modulation of the eNOS enzyme activity by compound C1.0a 
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3.15 The pharmacokinetics and ADME of 

C1.0 in healthy adult mice. 

To assess the bioavailability in mammals we performed pharmacokinetic studies in 

wildtype mice. All pharmacokinetic studies were conducted by the company touchstone 

bioscience. They provided the experimental data and I performed the corresponding anal-

ysis.  

3.15.1 Mice survive C1.0 for at least 24 hours. 

In the first step, we evaluated the blood plasma level and survival in healthy wildtype 

mice over a period of 24 hours. 3 male adult healthy wildtype mice (strain CD-1) were 

fasted overnight, before 5 mg/kg of the diastereomer mixture C1.0 was injected intrave-

nously in one shot. Blood samples were collected after 5, 15, and 30 minutes and 1, 2, 5, 

6, 8, and 24 hours from the vein and the compound concentration was calculated using 

liquid chromatography mass spectrometry. After 24 hours all mice were killed. The 

Figure 3.45: Modulation of the nNOS enzyme activity by compound C1.0a 
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plasma concentration showed a continuously decrease over time. After 5 minutes the de-

tected blood plasma concentration of the C1.0 was at 6.15 µg/mL (0.83 µg/mL SEM) equal 

to 11.9 µM (1.6 µM SEM). Within 1 hour this value dropped to 0.58 µg/mL (0.07 µg/mL 

SEM) equal to 1.1 µM (0.138 µM SEM) and after 4 hours to 0.012 µg/mL (0.003 µg/mL 

SEM) equal to 0.023 µM (0.007 µM SEM). After 24 hours the plasma concentration of C1.0 

was at 0.653 ng/mL (0.184 ng/mL SEM) equal to 0.001 µM (3.6 10-4 µM SEM). The blood 

plasma concentration of C1.0 remained above the calculated cell based IC50 value of 0.2 

µM for the first 2 hours after the intravenous injection. 

All mice survived this experimental setup, showing that the compound does not have se-

vere side effects on the health of mice. 

3.15.2 C1.0 passes the blood brain barrier in healthy 

adult mice. 

Showing that C1.0 can be detected in concentrations above the IC50 value in the blood 

plasma for more than 2 hours and that the mice survive the compound treatment, we 

setup a more detailed pharmacokinetic experiment in which we measured the concentra-

tions in the blood plasma, liver, kidney, heart, and brain. The blood plasma is the main 

drug distribution organ, the liver the main metabolism organ, the kidney the main organ 

Figure 3.46: C1.0a's blood plasma concentration over a time period of 24 hours 

after a single shot intravenous injection. 
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for excretion, the heart a common organ for severe side effects, and the brain is our organ 

of interest. The experimental setup is similar to the one described above. 4 groups of 3 

male adult healthy wildtype mice (strain CD-1) were fasted overnight, before 5 mg/kg of 

the diastereomer mixture C1.0 was injected intravenously in one shot. After 30 minutes, 

1, 2, and 4 hours the mice were sacrificed, and the organs of interest were taken out, 

weighted and the concentration of C1.0 was calculated. The calculated blood plasma con-

centration of C1.0 was similar to those measured in the previous experiment (chapter 

3.15.1 on page 106). The concentrations calculated for the liver, kidney, heart, and brain 

did not reach the high concentrations of the blood plasma but did show a similar drop over 

time. The liver and kidney reached of half the plasma concentration (plasma: 1.926 µM, 

0.025 µM SEM; liver: 0.853 µM, 0.129 µM SEM; kidney: 0.961 µM, 0.112 µM SEM), the 

heart a quarter (0.440 µM, 0.039 µM SEM), and the brain 10 % of the plasma concentra-

tion (0.194 µM, 0.095 µM SEM). It is worth noting that the compound passed the blood 

brain barrier and that the concentration was in close approximation to the calculated IC50 

value. 

To investigate possible but unwanted enrichments in organs beside the brain, I normal-

ised the concentration levels to the blood plasma level over time. In the heart, the relative 

concentration level remained constant between 22.3 and 27.3 % for the first 2 hours and 

dropped at 4 hours to 10.1 %. The kidney showed a similar result over time at a higher 

level. Up to 2 hours the relative concentration remained between 49.9 % and 61.3 % and 

dropped afterwards slightly to 46.6 %. In the liver, the relative concentration increased 

Figure 3.47: Tissue specific concentration of C1.0a over time period of 4 hours. 
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over time from 44.3 % at 30 min to 84.9 % at 2 hours and dropped again to 41.4 % at 4 

hours. The relative concentration in the brain started at only 10.1 % and decreased over 

time to 2.1 % at 2 hours, but in contrast to the other organs remained at this value 2 more 

hours (4h: 2.1 %). These relative concentrations indicate no enrichment in the heart and 

kidney and a reduction in the brain. The enrichment over time in the liver indicates a 

metabolic processing of the compound. This metabolic processing could lead to an inactive 

compound and/or to be not detected by the liquid chromatography mass spectrometry an-

ymore. 

3.16 Compound 1.0 ameliorates neuronal 

deficits in a rodent model of mild 

cerebral arterial occlusion (MCAO) 

A potential therapeutic use for compound C1.0 is an ischemic injury. It has been shown 

that in the acute and intermediate phase of an ischemic injury microglia and infiltrating 

macrophages become pro-inflammatory activated and release NO in a huge amount. As a 

proof of concept, we used the model of a 30 minutes middle cerebral artery occlusion 

Figure 3.48: Tissue specific concentration of C1.0a in relation to the blood 

plasma concentration. 
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(MCAO) and treated those mice with compound C1.0. As a functional read out of neuro-

logical parameters, the motor coordination was tested with the accelerated rotarod test 

and their extrapyramidal motor locomotion was assessed using the pole test. Those pa-

rameters can be seen and tested in patients. The baseline of the corner test was assessed 

5 days before the MCAO, the rotarod and pole test were trained for 2 days (day 3 and day 

2 before the MCAO) and the baseline was assessed the day before the MCAO. On day 0 a 

30 minutes MCAO was applied to adult male mice (C57Bl/6). Afterwards, the mice were 

treated daily for 7 consecutive days with an injection of 5 mg/kg of C1.0 diluted in 125x10-

5 v/v DMSO and PBS or 125x10-5 v/v DMSO in PBS alone as a control. On day 2 and 5 

after MCAO, the compounds influence on rotarod and pole test was measured, on day 6 

the influence on the corner test was assessed. The lesion volume was measured on day 3 

after MCAO using magnetic resonance imaging (MRI). 
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3.16.1 C1.0 treatment has no significant impact on the 

stroke lesion volume. 

The lesion volume after 6 days after MCAO was reduced from 12.74 mm³ (1,996 mm³ SEM) 

to 10.55 mm³ (1.420 mm³ SEM) but did not show a significant difference between the con-

trol and treatment group (p = 0.3959). 

Figure 3.49: Illustration of the time line of the stroke application and the be-

haviour test. 
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3.16.2 C1.0 improves the laterality in mice. 

Another important neurological parameter is laterality (the pathologic preference to turn 

to one side). Due to the right sided MCAO, mice tend to choose a left turn in situations of 

right-left choices. Before the MCAO was applied, mice turn to left in 5.538 (0.291 SEM) 

out of 10 observed cases in the control group and 4.545 (0.366 SEM) out of 10 cases in the 

treatment group, not significantly different from the statistical mean of 5 out of 10. 6 days 

after the MCAO the preference for a left turn increased significantly to 8.538 (0.312 SEM) 

out of 10 turns (p < 0.0001) in the control group and to 7.000 (0.632 SEM) out of 10 turns 

in the treated group (p < 0.0001). This decrease between the groups from 8.538 to 7.000 is 

significant (p = 0.0213). 

Figure 3.50: Volume of the stroke lesion 7 days after stroke. 
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3.16.3 The forced movement on the rotarod is not im-

proved by C1.0. 

2 days after MCAO the time the mice spend on the accelerated rotarod decreased from 

baseline with 274 seconds (5.5 s SEM) to 220 seconds (12.2 s SEM) in the control group. 

After 5 days the time on the rotarod increased to 260 seconds (9.9 s SEM). The same pat-

tern was observed for the treatment group with no significant difference (baseline: 276 s, 

7.9 s SEM; day 2: 241 s, 16.4 s SEM; 261 s; 11.5 s SEM). However, the treated group did 

not show a decrease in time as strong as the control group did. 

Figure 3.51: Head turning preference before and after stroke with and without 

compound treatment. 
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3.16.4 C1.0 treatment enhances the mice capability in 

the pole test. 

The time the mice needed to turn upside down on the pole, and the time do climb down 

that pole was measured separately. 2 days after MCAO, mice of the control group needed 

longer to turn upside down (2.328 s, 0.378 s SEM) and to climb down (10.469 s, 1,966 s 

SEM) compared to the baseline (turn: 0.807 s, 0.071 s SEM; down: 5.292 s, 0.321 s SEM). 

On day 5 after MCAO, this increase normalised to the baseline for the time needed to 

climb down (6.076 s, 0.586 s SEM), but not the time needed to turn upside down (2.170 s, 

0.491 s SEM). Treatment with C1.0 had a positive influence on both, the time needed to 

turn upside down and to climb down. 2 days after MCAO, the time to turn upside down 

and to climb down remained on a level similar to the baseline (turn: 1.175 s, 0.261 s SEM; 

down: 1.175 s, 0.261 s SEM) resulting in significant difference compared to the control 

condition (turn: p = 0.0253; down: p = 0.0145). On day 5 the treated group remained at a 

level similar to the baseline (turn: 1.350 s, 0.226 s SEM; down: 5.903 s, 0.410 s SEM), 

however due to change in the control group this effect is no longer significant. 

Figure 3.52: Time spend on the rotarod before and after stroke with and with-

out compound treatment. 
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Figure 3.53: Time needed to turn and to descend in the pole test before and 

after stroke with and without compound treatment. 
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4 DISCUSSION 

4.1 The distinct functions of Nitric Oxide 

Nitric oxide is perhaps one of the most intensively studied transmitter molecule since its discov-

ery by Ignarro 62 and Furchgott 173 in the early 1980s. Early investigation of nitric oxide revealed 

its biological function as a dilator of blood vessels. Since then, an increasing number of studies 

have shown the importance and the diversity of biological functions NO is involved in, resulting 

in over 150 000 publications on nitric oxide 174. In addition to its role in regulating the blood 

pressure, NO is important in platelet aggregation, bone remodelling, inflammation and as a 

neurotransmitter. In mammalians NO is produced by the three isoforms, the endothelial NOS 

(eNOS), the inducible NOS (iNOS), and neuronal NOS (nNOS), representing the three main 

occupations: regulation of the blood pressure 97,98, first response mechanism of the immune sys-

tem 54,58, and retrograde synaptic signalling 93,99,100. It has been shown that NO is involved in 

many different physiological and pathophysiological processes 175 including diabetes 176, hyper-

tension 177, cancer 178, drug addiction 179, memory and learning 32,90, bowel movement 180, stroke 

181,182, septic shock 183, and differentiation of immune cells 184. The impact of NO is locally re-

stricted and originates from cells which express the distinct NOS isoforms, eNOS by endothelial 

cells, nNOS by neurons, and iNOS by cells of the immune system. The three NOS isoforms are 

regulated differently and have different catalytic proprieties and inhibitor sensitivities 59. A mis-

guided regulation of the NO pathway in the brain is implicated in a number of diseases, starting 

from an overactivated NO production by iNOS in the proinflammatory cascade in stroke up to 

an aberrant regulation of nNOS implicated in a number of neurological disorders, including the 

Alzheimer’s and Parkinson’s disease 32,33,185,186. Anomalous overproduction of NO lead to neu-

roinflammation mainly caused by its free radical properties compromising the cellular integrity 

and viability and the regulation of cAMP 187,188. The most prominent NOS isoforms of the CNS 

are nNOS and iNOS. A reduction in levels of NO through inhibition of NOS has the potential to 

be therapeutic in a multitude of indications including the treatment of stroke, neurodegenera-

tive disorders (e.g., Parkinson’s, amyotrophic lateral sclerosis (ALS), multiple sclerosis (MS) 94), 
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and in the treatment of pain (e.g., migraine, chronic tension-type headache (CTTH), visceral, 

and neuropathic 189). However, the therapeutic control of NO synthesis has, until recently, been 

unattainable due to the difficulties in achieving isoform-selective inhibition. The selective inhi-

bition of the neuronal NOS (nNOS) enzyme and/or the inducible (iNOS) over the endothelial 

NOS (eNOS) enzymes for the treatment of pain or migraine would be required to avoid the car-

diovascular liabilities associated with eNOS inhibition 190. 

In this research, I focused NO’s effect as a first response mechanism of the immune system. I 

identified and characterised a novel compound targeting the proinflammatory induced release 

of NO in microglia and macrophages.  

4.2 The HTS yield two compounds of different 

structure and capabilities. 

The initial HTS screening for compounds reducing LPS induced NO release in the microglial 

cell line BV2 revealed 4 compounds of different chemical structure all capable to reduce NO in 

a dose dependent manner. I characterised the effects of the compounds on the proinflammatory 

regulation in murine neonatal primary cultured microglia and murine adult bone marrow de-

rived macrophages. Starting with the basic screen setup, I characterised the impact on the NO 

release induced by different stimuli, namely LPS, IFNγ, and polyIC 45. LPS, a component of the 

outer membrane of gram-negative bacteria, is a ligand of the TLR-4 receptor complex inducing 

the iNOS derived NO production via the of the MyD88 pathway activating NF-κB 54,191. IFNγ, a 

proinflammatory cytokine produced by cells of the innate and adaptive immune system, binds 

to its receptor (IFNγR1+IFNγR2), activating the STAT transcription factor family via the JAK-

STAT pathway 192. PolyIC, an artificial double-stranded RNA, is recognised by TLR-3 activating 

the transcription factors IRF3 and NF-κB via the TRIF/TRAF pathway 114,193. The different sig-

nalling routes result in a different NO concentration released by macrophages and microglia. 

While LPS showed the most robust activation of microglia and macrophages, did polyIC show 

only a minor increase in NO release. Independent from the stimulus, do all compounds decrease 

the NO release in microglia and macrophages in a dose dependent manner. Treatment with C1.0 

caused an outstanding reduction in NO release, reaching the level of the negative control for its 
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highest applied concentration. Compound C2.0 showed a similar reduction in NO release. How-

ever, it did not reach the efficiency in reduction and compound concentration. Compound C3.0 

decreased NO robustly to a similar level as C2.0 upon the different stimuli, however, never fell 

below the 50 % level of the stimulated positive control. C4.0 shows a mediocre reduction of NO 

while employing the highest dosage of all compounds. The similar dose dependent reduction in 

NO upon all three different stimuli suggest a modulation of a protein common in all utilized 

pathway. These results lead to the hypothesis that the compounds regulate the NO release at a 

transcriptional level or later in the cascade 54,95,194,195. Another plausible reason for the universal 

inhibition in NO release could be a general reduction in cell activity or cell death. The Alamar-

Blue experiments executed in parallel showed no major decrease in metabolic cell activity nor 

did the values indicate a general cell death, declining this concern 196,197. 

Beside the induction of NO does the stimulation proinflammatory cascade induce the release of 

cytokines. The most prominent proinflammatory cytokines are TNFα, IL1ß, and IL6. All three 

cytokines are acute phase cytokines and a released upon a proinflammatory stimulus. They 

themselves do activate proinflammatory pathways in an autocrine and paracrine loop 198. 

Compound C1.0 did not interfere with LPS induced release of IL1β, IL6, and TNFα in microglia 

and macrophages, supporting the previous hypothesis, that it acts on the transcriptional level 

or later in the NO cascade. However compound C2.0, C3.0, and C4.0 modulated the referred 

cytokines release in various ways. Treatment with C2.0 exceeded the LPS induced release of all 

evaluated proinflammatory cytokines in a dose dependent manner, counteracting the aim of this 

study to decrease the proinflammatory load in microglia. C3.0 showed an ambivalent effect on 

the concentration of cytokines. While it decreased IL1β release slightly but significant in a dose 

dependent manner, it increased the IL6 dose dependently and TNFα independent of the applied 

dosage. It is likely that that C3.0 binds multiple targets, thus regulating different pathways on 

various levels causing this mixed image 198. Out of the 4 tested compound, only C4.0 was able to 

reduce IL1β, IL6, and TNFα in a dose dependent manner. The comprehensive reduction of NO 

and cytokines indicates a modulation of a major regulator in the proinflammatory pathway 40. 

Based on these results, I suspended compound C2.0 and C3.0, leaving compound C1.0 and C4.0 

as the main targets reducing the proinflammatory activation in microglia. The increase in ILβ, 

IL6, and TNFα release provoked by C2.0 opposes this reduction. The mixed result on the cyto-

kine release in combination with the poor reduction on the induced NO release fails compound 

C3.0. The data given in this initial evaluation propose C1.0 as selectively inhibitor of induced 

NO release which acts independent from the proinflammatory stimulus, and C4.0 as a more 
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global regulator, reducing the NO release as well as the proinflammatory cytokines. Compound 

C4.0 and C1.0 will be discussed in detail in the chapters below. 

4.3 Compound C4.0 misses a structure action 

relationship. 

The first characterisation of compound C4.0 done in primary cultured neonatal microglia indi-

cates it as a global regulator of the proinflammatory pathway. Here, I further evaluate C4.0’s 

regulatory impact on the NO and cytokine release in bone marrow derived macrophages, as well 

as the effect on microglial migration and phagocytosis, and the effect on the metabolism, cell 

death and cell number of other cells of the brain.  

Microglia and macrophages share many features and pathways 11,50,199,200. Among these is the 

proinflammatory induction of NO and upregulation of cytokine release, based on the same reg-

ulatory pathways in both cell types. Although both pathways are coherent in microglia and mac-

rophages, they differ in the fine-tuned regulation upon different stimuli. 200 Equivalent to the 

similarities in-between microglia and macrophages, does C4.0 modulate the induced release of 

NO and the proinflammatory cytokines IL1β, Il6, and TNFα analogously. It reduces the NO 

release independent of the applied stimuli in a dose dependent manner. Interestingly, did a 

treatment with 10 µM C4.0 lead to a stronger reduction in macrophages compared to microglia 

for all stimuli. The reduction of the cytokines in macrophages is almost identically to the reduc-

tion in microglia. This cell and stimuli independent regulation of NO and the proinflammatory 

cytokines fortifies the hypothesis of C4.0 as a global regulator in the proinflammatory cascade. 

Microglial activation is often linked to increased phagocytosis 172 and directed migration 40,41 

towards injury. Both migration and phagocytosis are highly complex processes requiring a mul-

tifaceted regulation. I evaluated the effect of compound C4.0 in a black-box fashioned experi-

ment, altering the initial stimulation and treatment, and quantify the phagocytic and migration 

activity without further investigation into the underlying pathways. While showing no effect on 

microglial phagocytosis, unstimulated as well as LPS stimulated, C4.0 does modulate microglial 

migration in a miscellaneous way. C4.0 acts as a chemoattractant on its own but has no effect 

on the motility. However, in the presents of ATP this effect reverse, not elevating the induced 
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chemotaxis but reducing the ATP induced motility. This diverse action suggests that C4.0 at-

tracts microglia, but once in place C4.0 reduces microglial motility to lock them in place. The 

missing impact on phagocytosis attenuates the hypothesis of C4.0 as a global proinflammatory 

regulator 172. The changes in migration could be the result of a compound triggered regulation 

of migration pathways, or due to the recognition as a danger signal 187,201. Danger signals do 

increase the directed migration towards the point of danger and lock them there to fight the 

source of the danger single. 

One aim of this work is the compounds application in CNS related diseases. To exclude possible 

negative effects on the health of other prominent cell types within the CNS, namely neurons, 

astrocytes, and oligodendrocytes 202. I studied the consequences of C4.0 treatment on the meta-

bolic activity, proliferation, and cell death. C4.0 shows no impact on the cell death of astrocytes, 

oligodendrocytes, or neurons. However, it decreases the metabolic activity in astrocytes while 

increasing the proliferation rate at the same time, potentiating the effect on metabolic activity. 

In addition, C4.0 decreases the metabolic activity in oligodendrocytes slightly but significantly. 

These data were gained in-vitro for each cell type separately, omitting the intercellular commu-

nication and regulation of these cells in the CNS 203. Though I used primary cultures for most of 

the cell types I had to substitute the oligodendrocytes for a cell line. The missing intercellular 

exchange and the use of cell lines diminish the significance of these data. However, it provides 

an indication of possible complications with those tested cell types. 

A significant step in drug development is the identification of the compounds chemical lead 

structure that causes the observed reactions 204,205. A lead structure is a defined representative 

of a chemical compound class, which contains the main target binding elements 206. In most 

cases, the lead structure is smaller than the initial hit compound of the HTS. It is missing addi-

tional side groups like carboxylic acid, methyl, benzol, and many more. Starting from the lead 

structure it is possible to add side groups back on to modify the solubility, chemical and bio-

chemical stability, target specificity and diminish off target binding, just to name a few. To iden-

tify the lead structure of compound C4.0 I performed in collaboration with Edgar Specker (FMP) 

a structure action relationship (SAR) analysis 207. The compound C4.0 was altered at 3 distinct 

positions resulting in 19 structural different compounds. Unfortunately, did the SAR expose no 

lead structure for C4.0. The most potent chemical of the SAR is the initial compound C4.0 itself. 

The analysis of the observed biological reactions does not match with the chemical structures of 

the side groups. It is missing a clear structure action relationship. This could be caused by a 

unique solitaire chemical structure of C4.0, that has no additional related chemical range, caus-
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ing all modifications to decrease its potency. A more likely explanation is the existence of mul-

tiple binding targets of C4.0. An accurate interpretation of biological experiments, target find-

ing, and chemical optimisation of the compound with multiple targets is nearly impossible.  

Due to the data of the SAR, I suspended compound C4.0, leaving compound C1.0 as the main 

target. 

4.4 The selective NO inhibition by C1.0. 

The data of the initial evaluation described above, suggests C1.0 as a selective inhibitor of NOS, 

acting on the transcriptional level or further down in the NO cascade. To verify this preliminary 

hypothesis, I conducted the same experiments done with C4.0 with compound C1.0, excluding 

the SAR analysis. 

Treatment with C1.0 causes almost identical results in bone marrow derived macrophages as it 

does in primary cultured neonatal microglia. It reduces the induced NO release in a dose de-

pendent manner independent from the applied stimulus, be it LPS, IFNγ, or polyIC. C1.0 is able 

to decrease the NO concentration to levels indifferent to the unstimulated negative control for 

all three referred stimuli. This reduction in the NO release can be seen in the LPS induced 

release of proinflammatory cytokines or the modulation of the metabolic activity. Both, the cy-

tokine release and the metabolic activity remains untouched in the present of C1.0. This result 

underlines C1.0s ability to selectively inhibit the induced NO release, supporting the hypothesis 

acting on the transcriptional level or further downstream in the NO regulating cascade. Fur-

thermore, do these experiments show that the reduction in NO is not microglial specific. It is 

likely that all cell types which share the same NO releasing cascade with microglia and macro-

phages will be affected by a treatment with C1.0 58,95,194,208. The evaluation of microglial phago-

cytosis and migration revealed a modulatory effect on the chemotaxis and motility. The basal 

and stimulated phagocytosis was not affected by the compound. C1.0 showed a chemoattracted 

property, increasing microglial migration towards itself slightly but significant, while it reduces 

the motility almost completely. As discussed earlier for compound C4.0, could this be the result 

of a direct interference with a regulatory pathway or the detection of C1.0 as a danger signal. 

Furthermore, could the lack of NO in the cell medium change the migration, which would con-

tradict recent literature 187,201. The evaluation of C1.0s impact on the health of other prominent 
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cell types within the CNS, namely neurons, astrocytes, and oligodendrocytes, showed no nega-

tive results allowing an application in the CNS. Even though this experiment does not reproduce 

the complex cellular structure of the brain, a negative result does keep the compound in the 

pipeline for further characterisation. 

So far, the data provided in this study support the hypothesis that C1.0 modulates the induced 

NO release at a transcriptional level, or the responsible enzyme directly. Upon a proinflamma-

tory stimulus microglia and macrophages release NO into the extracellular space as a first re-

sponse mechanism of the immune system. Responsible for this NO production in microglia and 

macrophages is the inducible NOS isoform: iNOS. iNOS is mainly regulated at its transcrip-

tional level via the proinflammatory transcription factors NF-κB and STAT1 54. The promoter 

region of the mouse iNOS gene contains several binding sites for transcription factors like NF-

kB as well as Jun/Fos heterodimers, some C/EBTs, CREBs and the STAT family of transcription 

factors, within its proximal and distal regions 102,103,111,209. The human promoter region shares 

sequences homologous to the mouse. Activation of the transcription factors inducing iNOS 

mRNA, resulting in the generation of the iNOS proteins, which then forms a homo-dimer in-

cluding the needed cofactors to generate an active iNOS protein complex. While the activation 

of iNOS is incorporated into the highly regulated proinflammatory pathway cascade, the regu-

lation and inhibition do take place in a much broader spectrum. iNOS driven NO production is 

directly connected to the accessibility of its substrate L-arginine and the electron donor NADPH. 

Both factors are available in a vast amount within the cell 210. Another mechanism regulating 

iNOS driven NO production is the modification of the mRNA transcription speed and stability 

211, and the protein translation speed and stability 95,96,212. The regulation of both, transcription 

and translation, are not iNOS specific but shows a systematic effect. Such a broad regulation by 

compound C1.0 is very unlikely since the release of pro-inflammatory cytokines remains un-

touched. To determine a translational impact of C1.0 on iNOS, I analysed iNOSs mRNA levels 

in physiological and proinflammatory activated microglia in the presents of compound C1.0. As 

reported in the literature is the iNOS mRNA barely detectable in physiological conditions and 

massively upregulated upon proinflammatory activation 54. Treatment with C1.0 does not 

change this behaviour. This result shows clearly that C1.0 does not interfere with the iNOS 

regulation prior to its translation into mRNA, supporting the data from the experiments above 

showing a stimulus independent downregulation of NO release. It narrows the down the possible 

targets of C1.0 regulating the NO production and rejects part of the hypothesis, that C1.0 mod-

ulates the induced NO release in a pathway posterior its mRNA translation or at the level of the 

responsible enzyme directly. 
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Nevertheless, a direct enzyme activity assay conducted by Eurofins show no direct inhibition of 

iNOS or its isoforms eNOS and nNOS by C1.0a. This data excludes a direct iNOS inhibition but 

also the required dimerization of the protein 59. It suggests a regulation of iNOS posttranscrip-

tional but prior to the enzyme ensemble. A NO specific regulation within this range of the path-

way would be new to literature. 

In a timeline experiment, in which microglia were stimulated with LPS prior to the treatment 

with C1.0, I could show that C1.0 is able to reduce the NO release of already activated microglia, 

resulting in a power function leading towards a defined maximum in the NO concentration. This 

shape can be explained by the traditional interaction between a substrate and an enzyme, in 

which the substrate binds the enzyme irreversible 213. This would indicate that C1.0 binds iNOS 

irreversible and routes it to protein degradation 214 supporting the hypothesis that C1.0 acts 

directly on the NO synthase. This reduction in NO production posterior to the activation has 

some great advantage in the application as a drug. C1.0 could not only prevent the NO produc-

tion in a cell that will be activated, but also in already activated cells opening up a vast field of 

acute applications. 

Compound C1.0 exists in two diastereomeric forms: C1.0a and C1.0b. The chemical structure of 

the compound will be discussed in detail below. In the previous experiments, a mixture of both 

diastereomeric forms was used (approximately 43 % C1.0a and 57 % C1.0b calculated using 

HPLC). A microglia based dose dependency experiment showed a shift in the IC50 value of C1.0a 

towards 104 nM, while the IC50 value of C1.0b shifted to 43 µM. In the concentration range used 

in the previous experiments, 0.025 to 2.5 µM, does C1.0b shows only a minor impact on the NO 

reduction, while C1.0a diminishes the NO release almost completely. Combined with the 

knowledge about the composition of the diastereomeric mixture C1.0 explains the previously 

calculated IC50 value of 252 nM. The cell based IC50 value of C1.0a (104 nM) outreaches the most 

common used NOS inhibitors: L-NAME, a non-selective NOS inhibitor, and 1400W, an iNOS-

selective inhibitor. Their IC50 values are 200 nM and 13.5 µM respectively, measured in an en-

zyme-activity assay 182,215. The different assays used do not allow a direct correlation since IC50 

values measured in cell-based assays tend to be higher than those in enzyme-based assays. 

The first inhibitor of nitric oxide production was found and applied before the responsible en-

zyme was identified 216. This inhibitor, named L-NMMA, was a modified form of the NOS sub-

strate L-arginine. So far, the development of NOS inhibitors focused on mimicking the NOS 

substrate L-arginine and the co-factor BH-4 antagonising their binding 190,208,217–224. This ap-

proach resulted in a broad list of chemical structures with only a little diversity. Most of those 

chemical structures are closely related to pyridine, imidazole, indazole as these are part of BH-
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4 or the already named L-arginine. The binding site of L-arginine and the co-factor BH-4 are 

highly conserved in-between the different isoforms of NOS, causing an unselective inhibition of 

all isoforms for most of the chemical structures 225. Inhibitors selective for only one isoform are 

seldom. Inhibitors more selective for one isoform of NOS show a larger variance in their chemical 

structure but are still based on the same original chemical structure. 

Our compound C1.0 has a unique chemical structure compared to the broad list of known NOS 

inhibitors. It does neither resemble the substrate L-arginine, nor the co-factor BH-4. C1.0 has a 

small peptide like structure based on 1 natural - proline - and 3 artificial amino acids connected 

via peptide bonds.  

Drugs made from small peptides do have as many advantages as disadvantages compared to 

small molecule-based drugs. Peptide based drugs are highly specific combined with a low cell 

toxicity derived from their tight binding to their targets 226. Peptide based drugs adopt chemical 

interactions of the side chains of the natural amino acids and add a vast list of new interactions 

by utilising artificial amino acids. This results in highly divers and specific small peptides. The 

target recognition can occur with as low as a few amino acids 227. The imitation of natural pro-

teins causes less side effects with a reduced intensity compared to small molecules. Peptides 

outperform small molecules at Phase II to Phase III transition stage with 29% for small mole-

cules and 42% for larger drug candidates 226,228,229. Even larger peptides, which violate Lipinski’s 

of five, are feasible for drug development. Modifications for passive or active transport thought 

biological barriers can be added utilising natural peptide structures 229, as well as cell and tissue 

penetration 230,231, or nuclear uptake 232. The advantage of adopting the natural amino acid does 

provoke one of the major disadvantages: the enzyme degrading system. The synthesis of pro-

tein/peptides and their degradation are precisely regulated. Small artificial peptides are likely 

to be rapidly degraded 226,228. An accelerated peptide deration can be prevented or slowed down 

by the incorporation of artificial amino acids, altering the amino acid conformation form L to D, 

removing the characteristic n- and c-terminus, modification of the peptide backbone, or masking 

the peptide backbone. All these steps can be incorporated into the peptide-based drug using an 

entirely chemical synthesis. A rather unpredictable disadvantage of peptide-based drugs is the 

possible detection by the immune system as foreign. The detection of foreign proteins/peptides 

by the immune system is a highly complex mechanism and can cause a severe immune reaction. 

Composed of only 4 amino acids, our compound C1.0 is below all FDA approved peptide-based 

drugs, starting with 7 amino acids for Eptifibatide (excluding peptide-based drugs with 

unknown sequence) 233. The list of approved peptide-based drugs can be divided into a group of 

short peptides composed of up to 100 amino acids (41 out of 148) and a group of long peptides 
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with ranging from 100 to 300 amino acids (97 out of 148). 10 peptide-based drugs are composed 

of up to 2768 amino acids233. 

The short length of C1.0 increases the probability to pass a cell's membrane, barriers like the 

mucosa or the blood-brain barrier and to be taken up orally. In this study, I could indirectly 

show that C1.0 passes a cell's membrane, and directly show that C1.0 passes the blood brain 

barrier. Treating microglia with LPS induced the transcription of iNOS mRNA and initiated the 

iNOS dependent NO production. One hour pre-treatment with C1.0 did not change the LPS 

induced mRNA level of iNOS but decreased the NO production in a dose dependent manner. 

The iNOS protein is found in the particulate and cytosolic cellular pools 234. The combination of 

both experiments indicates that C1.0 do cross the cell membrane to down-regulate the function 

of the iNOS protein. However, I did not measure the compound concentration within the cytosol 

directly. In the ADME and pharmacokinetic experiments, provided in this study, C1.0 was ap-

plied in single shot intravenously into healthy mice. In the blood plasma C1.0 could be detected 

with HPLC for at least 24 hours after application (the experiment not perpetuated). In the brain 

of healthy mice, C1.0 was detectable for at least 4 hours (the experiment was not perpetuated). 

The amount of C1.0 in the brain reached a maximum of 10 % of the blood plasma concentration, 

whereas the concentration in the heart, liver, and kidney reached 27%, 85%, and 22% respec-

tively. The detection within the brain indicates that C1.0 passes the blood-brain barrier. How-

ever, since these experiments were performed by an external company I cannot exclude a con-

tamination of the brain sample with blood plasma. A contamination should result in an invari-

ant change in values over time compared to blood plasma. This is not the case. A prominent way 

to bypass the blood-brain barrier is a break-down of those, which I also cannot exclude. 

The four amino acids C1.0 is composed are the natural amino acid proline, and 3 artificial amino 

acids resemble phenylalanine and two times tyrosine. The sequence, starting with the n-termi-

nus, is phenylalanine-like amino acid, natural proline, and 2 times tyrosine-like amino acids. 

All four amino acids are connected by a peptide bond, in which a primary amine group coupled 

with a carboxylic acid group. A basic peptide backbone is vulnerable to enzymatic degradation 

by endo- and exopeptidase 235. Natural peptide backbones start with a primary amine group at 

the n-terminus and end with and the carboxylic acid group at the c-terminus. Both groups are 

chemically reactive. The peripheral peptides bones of C1.0 do not follow the stringent peptide 

bond nomenclature. The subgroup of phenylalanine-like amino acid at the n-terminus is coupled 

to the hydrogen atom of the carboxylic acid group instead to the carbon atom, forming an ester. 

In addition, this subgroup misses the primary amine group. Both modifications shield peptides 

n-terminus against exonucleases. The modifications of the c-terminus are mirror-inverted. The 

tyrosine-like amino acid is directly coupled to the nitrogen atom forming a secondary amine, and 
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the carboxyl acid group missing. The incorporation of proline protects C1.0 against many endo-

peptidases. The endopeptidases trypsin, chymotrypsin, elastase, thermolysin, and pepsin – only 

to name a few – do cut peptide bones specifically unless their recognised motive is followed or 

proceeded by proline 235. Endonucleases do recognise specific motives of amino acids more or less 

stringent, depending on the specific peptidase. The artificial amino acids of C1.0 reduce the 

change of being cleaved by those. Taken together, does C1.0’s innate chemical structure support 

the chemical and biological stability, by reducing the number of functional chemical reactive 

groups, shielding the peptide characteristic n- and c-terminus, and the incorporation of proline. 

In this study, I demonstrated indirectly that C1.0 has a long-term stability in in-vitro and in-

vivo experiments. The experiments described above do not only indicate that C1.0 passes several 

biological barriers but also that it is stable for more than 24 hours in the blood plasma in healthy 

mice and for more than 48 hours in cell culture experiments. However, there is still a possibility 

that C1.0 is enzymatically cleaved or chemically modified. This study does not provide a direct 

verification of the chemical and biological stability of C1.0. 

Proline is the only natural occurring proteinogenic amino acid in the peptide structure. It con-

tains one of the chiral centres within C1.0, being fixed in the L- / S-conformation equal to the 

natural occurring proline. Prolines side chain pyrrolidine is connecting directly with the amine 

converting this into a secondary amine. This unique structure of proline causes unique charac-

teristics 236. Unlike other proteinogenic amino acids, prolines side chain is fixed in its 3-dimen-

sional space. In addition, it changes the rotational behaviour of the peptide backbone, a reason 

why proline is incorporated much slower into a peptide in nature and prevents peptide cleavage. 

Due to its special characteristics, does proline provide certain conformational stability in C1.0. 

Phenylalanine- and tyrosine-like amino acids share the benzene ring as a common chemical 

characteristic. Benzene rings do line up with each other caused by van der Waals force, providing 

spatial stability within on proteins, in-between proteins, and between protein co-factors or sub-

strates 237. Here, the benzene rings might help to orientate and align C1.0 to the target. Benzene 

rings are hydrophobic and decrease the solubility in water. This is counteracted by the ester 

coupling of the phenylalanine-like amino acid, and the hydroxymethyl group of the tyrosine-like 

amino acid. 

The new described compound C1.0 attenuates the NO release in microglia and macrophages in 

a dose dependent manner with an IC50 value of 250 nM determined in a cell based assay. The 

most common used NOS inhibitors L-NAME, a non-selective NOS inhibitor, and 1400W, an 

iNOS-selective inhibitor, have IC50 values of 200 nM and 13.5 µM respectively, measured in an 

enzyme-activity assay 182,215. Due to the different assays used, those data cannot be correlated 
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directly with each other since IC50 values measured in cell-based assays tend to be higher than 

those in enzyme-based assays. This highlights the potency of our compound to target NO at a 

lower IC50 than currently used compounds.  

4.5 C1.0 passes the blood brain barrier in in-

vivo. 

I have tested C1.0 in pharmacokinetic study in-vivo to assess the compounds drug-ability and 

its potential to use it in a disease model as a proof-of-concept study. The data provided by touch-

stone bioscience showed that healthy mice tolerate the application of the substance without any 

obvious side effects for at least 24 hours. As a first in line in-vivo experiment, this data provides 

an approximate overview of the effects and possible side-effects on the complex biological system 

of a mouse. This data indicates that our compound neither has a strong negative effect on the 

immune and cardio vascular system, which reacts within minutes or hours 87,88,238. Moreover, 

does this data indicate that C1.0 does not affect the endothelia NOS isoform (eNOS). An inhibi-

tion of eNOS, responsible for the regulation of the arterial muscle tone, would cause a drop in 

blood pressure, leading do shock-like symptoms 59,77,181. A closer look on the tissue specific dis-

tribution of compound C1.0 does show that our compound passes the blood brain barrier of 

healthy mice and reaches concentrations in the brain that exceeds its IC50 for iNOS inhibition. 

A major risk factor in drug development is offside targets in the heart, indicated by an enrich-

ment within the organ. Commonly, those lead to an exclusion of those compounds. Compound 

C1.0 does enrich in the liver, presumably caused by metabolism of the compound, but not in 

heart, mitigating this concern 168,169,239,240. 
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4.6 A proof of concept study: C1.0 improves 

extrapyramidal motor skills and 

laterality in an in-vivo model of ischemic 

injury 

NO plays a key role in stroke, modulating the vasodilation of arteries, parts of the immune 

system, and being toxic to neurons. eNOS and nNOS activity increases in the first minutes after 

stroke and reduces significantly afterwards 241,242, whereas iNOS is upregulated from 12 hours 

after stroke and is lasting for up to seven days 147. While eNOS derived NO is neuroprotective, 

nNOS-derived NO 243–245 and iNOS-derived NO 150,246–248 are detrimental to tissue survival re-

sulting in an inferior neurological outcome. This opposing effect is illustrated in the innumerable 

studies trying to improve the stroke outcome utilising NO-donors, NO-acceptors (-scavengers), 

or unspecific and specific NOS inhibitors 181,215. The ambivalent action of NO is based on the 

different location (blood vessel vs. brain tissue), time (shorty term effects vs long term effects), 

and concentration (high vs low). Several strategies haven been used to target the neurotoxic 

property of NO. Only a few have reached clinical trials. Non-selective NOS inhibitors aiming at 

the toxic overshoot of NO produced by iNOS led to contradictory results. Some studies using L-

NMMA in models of experimental stroke reported at smaller lesion models 144,249–251, neuropro-

tection 252, less cerebral oedema 249 and delayed onset of neuronal death 253. In contrary, other 

studies reported larger infarct volume 247,254 and increases in the blood pressure 255 after L-

NMMA application. Also, low doses of L-NMMA caused smaller infarcts 256–259 whilst higher 

doses caused increased infarct volume 260–262. Phase I clinical studies reported an overall in-

crease in blood pressure, indicating a systemic impact on vasoconstriction 263. Taken together do 

non-selective NOS-inhibitors act on the whole spectrum of NO-regulated symptoms, with all the 

positive and negative consequence, and are unlikely to be neuroprotective after stroke. 

iNOS specific inhibitors seem to be a more promising target in stroke, aiming for the high cyto-

toxic concentrations of NO. Ivanova et al could show that aminoguanidine acts as an iNOS in-

hibitor and to be neuroprotective in the onset of stroke, acting in addition on other targets by 

inhibiting production of neurotoxins 264. Studies on the experimental model of stroke reported a 

dose dependent reduction in lesion volume, even when applied 24 hours after the ischemic event 

133,265–267. However, this drug has been refrained from clinical trials due to safety reasons 268. 

Other compounds have also been tested, such as 1400W, which has been shown to decrease 

lesion volume and neurological deficits after stroke in rats 269 but also safety questions have 
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risen. New nitric oxide inhibitors such as GW274150 270, GW273629 271 show less toxicity but 

failed to show effectiveness for CNS diseases. 

In a prove of concept experiment we applied the active form of C1.0, in an experimental model 

of stroke. As a model for mild ischemic injury, we used 30 minutes of middle cerebral artery 

occlusion (MACO) and treated the mice 7 consecutive days with an interval of 24 hours. To in-

fluence the outcome of the stroke, C1.0 has to fulfil two requirements, it has to be available at 

the side of the disease in adequate concentrations, and possible side effects should not outreach 

the disease’s symptoms. Both are achieved by C1.0. In this study, I could show, that C1.0 passes 

the blood brain barrier in healthy mice, reaching concentrations in the brain that exceeds the 

IC50 value for iNOS inhibition. In addition, the disruption of the blood brain barrier caused by 

stroke supports the compounds availingly in the ischemic area 272. The performed pharmacoki-

netic experiments show, that C1.0 does exhibit no noticeable impact on healthy adult mice, not 

interfering with the disease symptoms.  

As noted beforehand, does an inhibition of eNOS exacerbate a strokes outcome 94,147,273. In an 

enzyme activity assay, I could show that eNOS driven NO production is not regulated by C1.0. 

Yet, the complete data set of the enzyme activity assay should be considered with caution, since 

it does not align with the general data in this study. Despite this concern on the enzyme assay, 

do the results of pharmacokinetic experiments indicate no or only a minor inhibitory effect on 

eNOS, exhibiting no noticeable impact on the mice health. A systematic regulation of eNOS 

would cause a high increase – in case of an inhibition – or decrease – in the case of an excitation 

in NO concentration in the blood plasma. Both lead to sever shock symptoms, which are not 

reported in the experimental data provided. 

The subsequently chronic application of C1.0 improved some but not all measured parameters 

after stroke. The plain volume of the lesion did not decrease significantly. Despite the unchanged 

lesion volume, 3 out of 4 neurological measured parameters improved at least temporary. Start-

ing with the negative parameter, the application of C1.0 did not change the time mice spend on 

the rotarod compared to the control condition. Mice suffering from stroke do tent to have signif-

icant shorter times remaining on the spinning rod 274,275, lacking motor coordination as it has 

been reported for human survivors of stroke 276. However, a translation of the rotarod test from 

mice to human is unclear, since humans are not challenged with a similar test 277. Contrary to 

the rotarod, application C1.0 improved the time mice needed to turn and descending on the pole 

test. While the rotarod measures a forced motor coordination, the pole test evaluates a voluntary 

motor coordination. Taken both results together imply that C1.0 has a positive effect on plan-

ning complex motor coordination tasks. Treated mice showed an overall performance after 
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stroke not different from the baseline control before the stroke, while untreated mice perfor-

mance decreased at day 2 and gained again at day 5 after stroke. An evaluation of this temporal 

increase in performance is difficult since we measured only two time points shortly after the 

stroke. A long-term observation to assess the impact on the overall life quality of C1.0 treated 

mice needs to be carried out in the future.  

4.7 C1.0a is a novel compound targeting NO 

release in microglia and macrophages – 

an outlook. 

In this study, I introduced a novel compound targeting the induced NO release in microglia and 

macrophages. The compound exhibit peptide like structure unique to all known NOS inhibitors. 

In a pharmacokinetic study in-vivo, I could show that mice tolerated the application of the sub-

stance without any obvious side effects. I have also shown that the compound can pass the blood 

brain barrier and can reach concentrations in the brain that exceeds its IC50 for its iNOS inhi-

bition. Even at higher doses, C1.0 does not affect the viability, metabolic activity, proliferation 

and cell death of microglia and other brain cells like oligodendrocytes, astrocytes, and neurons. 

Furthermore, I could show that C1.0 can attenuate neurological symptoms after stroke. In our 

experimental stroke model, C1.0 improved motor skills and reduced laterality. 

This work can only be the starting point in the development of a new drug targeting NO release. 

Even though I could narrow down the possible targets of C1.0, the exact binding partner is miss-

ing. Without the knowledge of the binding partner, further chemical and biological evaluation 

of impact C1.0a has is challenging. Following up this work, a target finding experiment is 

planned, in which a modified C1.0a molecule - joint covalent with a chemical linker - is used to 

pull down and analyse all binding proteins. The information about the direct binding partner of 

C1.0a helps to improve the biological and chemical analysis. On the biological side, a more spe-

cific pathway analysis can be performed, identifying possible side effects and target specificity. 

Here I propose, a mRNA sequencing of treated and untreated microglia with and without LPS 

stimulation. Even though I could show that both C1.0a and C1.0b did not interfere with iNOS 

mRNA, it will give an overview of other pathways that might be regulated directly by C1.0 or 

by the missing NO. On the chemical side the binding of C1.0a to the target can be studied, was 
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well as modifications that enhance this binding or the overall pharmacokinetics. In a first step 

a SAR, as it was done for compound C4.0, will give a better overview of C1.0a’s lead structure 

and might even identify compounds with a lower IC50 value. An in-silico binding study of C1.0a 

and the newly discovered chemical structures from the SAR might give an inside into the bind-

ing mode of the compound to its target. Together, the analysis of the target finding, the SAR, 

and the in-silico binding studies will increase the knowledge of the mode of action of compound 

C1.0a. The mRNA screening might reveal unknown offside targets. 

Important in the NO regulation is isoform specific modulation. The regulation of iNOS has to 

outbalance the regulation of eNOS and nNOS, to decrease possible side effects or even counter-

actions on the positive effects of a reduction in iNOS driven NO production. The data provided 

by Eurofins counteract all other data provided in this thesis, therefore the assay should be re-

peated to clarify the data. So far C1.0a was only tested in murine cells. However, the large sim-

ilarity in NOS amino acid sequences and regulation in-between species makes it likely that 

C1.0a does show the same impact in humans as it shows in mice. A test on human microglia is 

possible but laborious. As I could show does C1.0 show a similar effect on murine macrophages 

as it does on murine microglia. Therefore, a test on human macrophages is a good approxima-

tion. Those assays are already planned. 

With this knowledge, the compound can be developed step by step into a drug targeting stroke 

and other NO related diseases in the CNS and the whole body. 
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5 SUMMARY 

Microglia, the resident macrophages of the brain, monitor the central nervous system (CNS) 

homeostasis. Alterations in homeostasis activate microglia in a variety of ways. Upon a patho-

logical stimulus microglia change their appearance from a ramified into an amoeboid morphol-

ogy, increase their phagocytic activity, and release pro-inflammatory cytokines and nitric oxide 

(NO). This response is involved in the pathological process in acute and chronical neuroinflam-

matory disease such as stroke, multiple sclerosis, or schizophrenia. A dysregulated microglial 

activation can improve or exacerbate the outcome of those diseases. Therefore, it is of therapeu-

tic interest to identify new compounds, which modulate the activation process of microglia spe-

cifically.  

In this thesis, I identified a novel compound which inhibits specifically the induced NO release 

in microglia and macrophages independent of the applied pathological stimulus. We screened a 

library of 16544 compounds for their ability to interfere with lipopolysaccharide (LPS) induced 

NO release in the microglial cell line BV-2 and verified the results in the primary cultured neo-

natal microglia. The compound showed a dose dependent reduction of NO after stimulation with 

LSP, interferon gamma (IFNγ), and polyinosinic:polycytidylic acid (polyIC) without being cyto-

toxic. The LPS-induced release of proinflammatory cytokines TNFα, IL1β, and IL6 was not al-

tered in the presents of the compound. I could show that the basal and LPS activated phagocy-

tosis in microglia remained untouched, while it showed some influence on microglial migration. 

Furthermore, I could show that the compound does not interfere with the transcriptional regu-

lation of the inducible nitric oxide synthase (iNOS), the enzyme responsible for the induced NO 

release in microglia and macrophages, and that it does decrease the NO release in already acti-

vated microglia. 

The compound has a unique protein-like structure, composed of 4 proteinogenic and artificial 

amino acids. This chemical structure is new to the field of nitric oxide synthase (NOS). Its cell 

based IC50 value of 104 nM is below those of commonly used NOS inhibitors. In a prove of concept 

experiment, I could show that the application of this compound improves the outcome of stroke 

in mice. 
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6 ZUSAMMENFASSUNG 

Mikroglia sind die immunkompetenten Zellen des zentralen Nervensystems (ZNS). Sie überwa-

chen die Homöostase ihrer Umgebung und aktivieren sich bei Veränderungen auf unterschied-

liche Art und Weise. Eine pathologische Aktivierung verändert ihr Morphologie von einem ver-

zweigtem zu einem rundlichen Aussehen, erhöht ihr Phagozytoseaktivität, und die Ausschüt-

tung von Proinflammatorischen Zytokinen und Stickstoffmonoxid. Dieses Verhalten spielt eine 

Rolle in vielen pathologischen Prozessen in akuten und chronischen neuroinflammatorischen 

Erkrankungen, wie zum Beispiel dem Schlaganfall, der Multiple Sklerose, oder der Schizophre-

nie. Eine Aktivierung von Mikroglia kann zu einer Verbesserung oder aber auch Verschlechte-

rung dieser Erkrankungen führen. Es ist daher von therapeutischem Interesse neue Moleküle 

zu identifizieren, welche spezifisch den Aktivierungsprozess von Mikroglia modulieren. 

In dieser Arbeit habe ich ein neuartiges Molekül identifiziert, welches die induzierte Stickstoff-

monoxidausschüttung unabhängig von ihrer Aktivierung in Mikroglia und Makrophagen 

hemmt. Wir haben eine Bibliothek von 16544 Molekülen im Hochdurchsatzverfahren unter-

sucht, um jene zu finden, welche in der Lage sind die Lipopolysaccharide (LPS) induzierte Stick-

stoffmonoxidausschüttung in der BV-2 Zelllinie zu reduzieren. Die Resultate aller positiven Mo-

leküle wurden in primarkultivierten neonatalen Mikrogliazellen kontrolliert. Das idenfizierte 

Molekül zeigte eine Reduktion der Stickstoffmonoxidausschüttung unabhängig vom pathogenen 

Stimulus: LPS, Interferon Gamma (IFNγ), and polyinosinic:polycytidylic Säure (polyIC). Die 

LPS-induzierte Ausschüttung von der proinflammatorischen Zytokinen TNFα, IL1β, und IL6 

wurde nicht verändert. Zudem konnte ich zeigen, das die basal und LPS aktivierte Phagozytose 

nicht beeinflusst wurde, jedoch zeigte die Migration von Mikroglia Veränderung. Des Weiteren 

konnte ich zeigen, dass die Regulation der Transkription von der induzierten Stickstoffmono-

xidsynthase (iNOS), jenes Enzym welches für die induzierte Produktion von Stickstoffmonoxid 

zuständig ist, nicht von unserem Molekül beeinflusst wird. 

Unser Molekül hat eine einzigartige proteinähnliche Struktur. Es setzt sich aus 4 proteinogenen 

und künstlichen Aminosäuren zusammen. Die chemische Struktur ist einmalig im Bereich der 

Stickstoffmonoxidsynthaseinhibitoren. Der zellbasierte IC50-Wert ist mit 104 nM unterhalb der 

gebräuchlichen Inhibitoren. In einem ersten in-vivo Versuch konnte ich zeigen, dass unser Mo-

lekül einen positiven Einfluss auf den Verlauf eines Schlaganfalles hat. 
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