
IMPLEMENTATION OF A FFT/IFFT MODULE ON
FPGA: COMPARISON OF METHODOLOGIES

J. Viejo, A. Millan, M. J. Bellido, E. Ostua, P. Ruiz-de-Clavijo, and A. Munoz

Grupo ID2 (Investigacion y Desarrollo Digital)
Departamento de Tecnologia Electronica-Universidad de Sevilla
E. T. S. Ing. Informatica, Campus Universitario Reina Mercedes

Sevilla 41012 (SPAIN)
Email: {julian, amillan, bellido, ostua, paulino, amrivera} @dte.us.es

ABSTRACT

In this work, we have compared three different method-
ologies for the implementation of a FFT/IFFT module on
FPGA: VHDL coding (VC), System-level tools at RT level
(STR), and System-level tools at macroblock level (STM).
In terms of resource usage and operation frequency, STM
has obtained interesting results, although it has an important
restriction about internal data width which produces a mean
output error of 2.1%. VC and STR become a more general
alternative that yields to a lower mean error (1.0%). Thus,
we propose to combine VC and STR in order to facilitate the
design process as well as allow designers to maintain total
control over the module internal architecture and obtain an
efficient structure.

1. INTRODUCTION

This work is included inside the design and implementa-
tion of a modem based on the Orthogonal Frequency Divi-
sion Multiplexing (OFDM) modulation/demodulation sys-
tem [1]. For both processes of modulation and demodula-
tion, it is required to calculate the Discrete Fourier Trans-
form of the data (in both direct and inverse ways). Thus,
a FFT/IFFT module becomes an essential part of the sys-
tem. The implemented system processes 64-sample com-
plex symbols using 26-bit data (13 bits for the real part and
13 bits for the imaginary one).

In previous works, we have presented the design and im-
plementation of the system on FPGA (Field Programmable
Gate Array) [2] and ASIC (Application Specific Integrated
Circuit) [3]. These implementations were performed by
using a methodology based on coding in VHDL (VHSIC
Hardware Description Language) [4]. However, it was very
important to evaluate the usefulness of the system-level

This work has been partially supported by the Spanish Government's
MEC HIPER project TEC2007-61802/MIC and the Andalusian Regional
Government's EXC-2005-TIC-1023 project.

tools provided by the FPGA foundry in order to improve
such implementations. Thus, the objectives of the current
work were: (a) perform a comparison between the VHDL
coding and the system-level tools approach and (b) propose
a set of steps which summarize the best way to carry out the
design process depending on the type of system.

The system-level tools approach allows designers to
work at different abstraction levels. So, the first objective
actually involved the comparison of three methodologies:

1. VHDL coding (VC): the system architecture is
designed at RT (Register Transfer) level and imple-
mented by direct coding in VHDL.

2. System-level tools at RT level (STR): the system ar-
chitecture is designed at RTL and implemented using
the system-level tools provided by the FPGA foundry.
Specifically, we have used System Generator for DSP
(Digital Signal Processing) v8.2 from Xilinx [5].

3. System-level tools at macroblock level (STM): the
FFT/IFFT module is implemented using the FFT
macroblock provided by System Generator which can
also calculate the IFFT.

The rest of the paper is organized as follows: in the next
section the three methodologies used are described, the third
section presents the main results for both the simulation and
the implementation processes, in the fourth section these re-
sults are discussed and a general methodology is proposed,
and finally some conclusions are derived.

2. DESIGN METHODOLOGIES FOR
IMPLEMENTATION ON FPGA

As we have mentioned previously, our aim was to evaluate
the effectiveness of System Generator for DSP. The work-
flow we have used is conformed of three stages (Fig. 1):

978-1-4244-1992-0/08/$25.00 C)2008 IEEE 7

Authorized licensed use limited to: Universidad de Sevilla. Downloaded on January 11,2021 at 15:00:28 UTC from IEEE Xplore. Restrictions apply.

Fig. 1. Design and implementation workflow.

1. Design: this stage differs from one methodology to
another and it is explained on the next.

2. Synthesis and implementation: this stage is carried
out by using ISE v8.2i from Xilinx. Moreover, the
module operation, considering gate delay, is tested
by post-P&R (Placement and Routing) simulation
through ModelSim v6.0 from Mentor Graphics.

3. Programming: finally, the device is configured by us-
ing iMPACT v8.2i from Xilinx.

Because the design stage depends on the methodology
used, a detailed explanation of each case is presented on the
next subsections.

2.1. VHDL coding methodology

The VC methodology consists of developing the FFT/IFFT
module at RT level using VHDL language and following
the usual methodology for digital system design (based on a
control unit and a data path). The architecture of the mod-
ule has been suited to the algorithm presented in [3] and is

depicted in Fig. 2. In this diagram, the most important com-
ponent is the RADIX-8 butterfly that performs an 8-element
DFT in a parallel way and its implementation follows the
structure proposed in [6]. Around this main element, there
are several components which are described on the next:

* CONJs. These components carry out the conjugate
operation of the complex data. Conjugators only op-
erate in the IFFT case.

* RAM. This memory stores the intermediate calcula-
tions.

* ROM. This block supplies the twiddle values (precal-
culated).

* TWIDDLE. The output data of the RADIX-8 compo-
nent are multiplied by the corresponding twiddle val-
ues at this component.

* CONTROL UNIT. This unit is in charge of control-
ling the whole process and has been designed as a fi-
nite state machine according to the canonic structure
described in [7].

8

Authorized licensed use limited to: Universidad de Sevilla. Downloaded on January 11,2021 at 15:00:28 UTC from IEEE Xplore. Restrictions apply.

CLK RSTz CLEAR NT

CONTROL
UNIT

3 3
WRT OW SEL VALD FT

CON MUX DATA OUT FFT

CLK WRT ROW CLK WRT SE ROW

Fig. 2. Internal structure of the FFT/IFFT module.

A more detailed explanation on the structure and func-
tioning of the VHDL implementation can be found in [2, 3].

Also, verification of such designs is usually carried out
by using a VHDL simulator like ModelSim. However, an-

other alternative has been explored in this work: the VHDL
code has been simulated using Simulink and ModelSim
together (HDL co-simulation). That is possible through
the System Generator's BLACK BOX block which allows
designers to import VHDL code into a System Generator
design. In this type of verification, System Generator's
blocks are simulated through Simulink and the VHDL
blocks (black boxes) are simulated through ModelSim.

2.2. System-level tools at RTL methodology

The STR methodology described in this work consists of
designing the FFT/IFFT module using System Generator
for DSP: a tool developed by Xilinx that facilitates the de-
sign and implementation of DSP functions on its FPGAs.
This tool is a software platform integrated within Matlab
and Simulink, from The MathWorks, and allows the design
of DSP systems using the Xilinx BlockSet [8]. Also, it han-
dles the automatic generation of VHDL code; synthesizable
on Xilinx FPGAs.

Within this methodology, the same module architecture
employed in the VC case has been applied. In this case,

the data path has been built with the System Generator's
blocks and the same control unit has been added to the de-
sign through the BLACK BOX block. Most of the sys-

tem simulation is carried out using Simulink while Mod-
elSim has been used to simulate the VHDL code (HDL co-

simulation). Such simulation is mandatory in order to take

Table 1. FFT macroblock specifications.
Implementation Pipelined Streaming I/O

Number of sample points 64
Output ordering Natural order

Scaling Unscaled
Rounding mode Truncation

Phase factor bit width 8

into account those blocks, which are only available as black
boxes.

2.3. System-level tools at macroblock level methodology

The STM methodology consists of modeling the FFT/IFFT
module using the System Generator's FFT block (Table 1).
In this methodology, it is only necessary to design an inter-
face that adapts the input/output signals of the FFT block to
the module interface. In this case, the functional simulation
is totally carried out using Simulink.

3. DESIGN RESULTS

In this section, simulation and hardware implementation re-

sults obtained for the three methodologies are described in
some detail.

3.1. Simulation results

In order to check that the designs work correctly, the fol-
lowing simulation process has been carried out. At the first

9

DATA IN FFT

Authorized licensed use limited to: Universidad de Sevilla. Downloaded on January 11,2021 at 15:00:28 UTC from IEEE Xplore. Restrictions apply.

Table 2. Simulation results.
VC STR STM

Clock cycles 291 291 262
Mean error 1.0% 1.0% 2.1%

stage, designs have been verified using Simulink and Mod-
elSim. For the generation of the input stimuli, the Source
Blockset of Simulink has been employed. So, the input sig-
nal (DATA INSFFT) has been generated with Matlab and
exported to Simulink through the From-Workspace block.
This input is conformed by 64 complex numbers where real
and imaginary parts are values from -1 up to 1. At the sec-
ond stage, once the simulation has been finished, the To-
Workspace block has allowed us to compare the results with
the ones provided by the FFT Matlab function (the From/To-
Workspace blocks provide an interface between Simulink
and Matlab). In order to estimate the results accuracy, the
duration of the whole calculation as well as the relative er-
ror of the output values have been measured (Table 2).

As we can see, STM implementation consumes a lower
amount of clock cycles for the calculation than VC and STR
(from 291 to 262 cycles). However, both implementations
reduce the output error with respect to the STM one (from
2.1% to 1.0%).

3.2. Hardware implementation results

In order to compare the implementations of the different
FFT/IFFT designs, they have been synthesized separately
with ISE, and implemented on a Virtex-II XC2V2000
FPGA. This device has all the features necessary to im-
plement DSP functions: two million system gates, 56
embedded multipliers, and 56 Block RAMs.

In Table 3, the implementation results for each design
are shown. Two figures of merit are analyzed in this sec-
tion: hardware resources used and maximum operation fre-
quency. In terms of resource usage, the VC and STR im-
plementations save about 4% slices with respect to STM de-
sign. Analyzing the maximum operation frequency, we can
see that STM obtains the best result: 122 MHz as opposite
of 40 MHz.

4. DISCUSSION

The purpose of this section is to analyze the results obtained
and propose a specific methodology.

Firstly, on the one hand, simulation results show that the
STM implementation reduces the amount of clock cycles
necessary to the calculation from 291 to 262 cycles with
respect to VC and STR (Table 2). On the other hand, VC
and STR reduce the output relative error from 2.1% to 1.0%
with respect to STM. This is due to the internal data width

they employ: in the VC and STR implementations, design-
ers fully control the internal structure and intermediate op-
eration accuracy, whereas in the STM case, designers can
only configure the input signal accuracy, what increases the
output error.

Secondly, hardware implementation results show that
VC and STR obtain the best results in terms of resource
usage: they save about 4% slices with respect to STM
(Table 3). This is because the system architecture designed
is specifically suited for area optimization. In other way, we
can see that STM achieves the highest maximum operation
frequency: 122 MHz compared to 40 MHz of VC and STR.
Moreover, if we consider that STM takes less clock cycles
to calculate the results, this implementation could be a good
alternative whether enough hardware resources are available
and results obtained are accurate enough.

Comparing VC and STR, both designs produce simi-
lar results, except for the use of embedded multipliers and
Block RAMs. Also, they reach an almost equal maximum
operation frequency of 40 MHz. This is because both de-
signs implement the same architecture (Table 3).

Thirdly, on the one hand, it is remarkable that using
system-level tools facilitates the design tasks greatly, allow-
ing designers to focus on the system architecture and reduc-
ing the design time in an important way. This is possible be-
cause the library provided by the foundry is very optimized
for the target programmable chips as well as the available
blocks are fully parametrizable: we can decide which ones
use on-chip resources (like BRAMs or embedded multipli-
ers) or include different latency configurations (among other
available options). This fact allows designers to totally con-
trol the way they are implemented and obtain a very effi-
cient structure. On the other hand, System Generator does
not count on some blocks that can be easily designed in
VHDL, whose design becomes a tedious task by using a
GUI (Graphical User Interface) tool, as for example register
sets or decoders. Also, an important drawback is that some
blocks can only be implemented on specific FPGA models.

In terms of VHDL coding, we have to remark the great
amount of designs available through the Xilinx LogiCORE
repository. This makes easier the design process although
using such language involves a difficult simulation process
due to the tediousness of the input stimuli generation. In this
way, we have employed an alternative: simulate the VHDL
code by HDL co-simulation.

Finally, we have to conclude that STM is an interesting
option if the available macroblocks are suited to the specific
aims: it offers good results in terms of resource usage and
operation frequency (but taking into account the possible
data width restriction); besides, it avoids having to design
the module, reducing the design time (Table 3). However,
we have considered very important to maintain the control
over the internal structure (due to the precision aspect), so

10

Authorized licensed use limited to: Universidad de Sevilla. Downloaded on January 11,2021 at 15:00:28 UTC from IEEE Xplore. Restrictions apply.

Table 3. Hardware implementation results on Virtex-II XC2V2000.
VC STR STM

Slices 1187 (23%) 1188 (23%) 1393 (27%)
Slice Flip Flops 624 (6%) 624 (6%) 2041 (19%)
4 input LUTs 1984 (19%) 2030 (19%) 1380 (13%)

Bonded IOBs 58 (33%) 58 (33%) 57 (33%)

Block RAMs 2 (5%) 4 (10%) 3 (7%)

MULT18x18 12 (30%) 4 (10%) 7 (17%)
GCLKs 1 (6%) 1 (6%) 1 (6%)
Maximum operation frequency 39.53 MHz 40.15 MHz 122.65 MHz

Design, testing, and on-chip verification time about 60 days j about 40 days Fabout 5 days

that as a general methodology, our proposal combines both
VC and STR and it can be summarized as follows:

1. Design the module with System Generator at RT level
but using VHDL coding for those blocks that are
easier to program with such a language (these blocks
can be included into the module through the BLACK
BOX block).

2. Verify the module by HDL co-simulation. This type
of verification employs Simulink to simulate the Sys-
tem Generator blocks and ModelSim to simulate the
VHDL ones (black boxes).

Thus, the proposed methodology facilitates the design
process greatly as well as it allows designers to maintain
full control over the module internal architecture and obtain
an efficient structure.

5. CONCLUSION

We have compared three different methodologies for the
FPGA implementation of a FFT/IFFT module: VHDL
coding, System-level tools at RT level, and System-level
tools at macroblock level. In terms of resource usage and
maximum operation frequency obtained, the last one has
offered good results. However, such implementation has a
main drawback: the internal data width cannot be controlled
which yields to an important output error. Thus, as a general
methodology, our proposal is to combine the two first ones
(VC and STR) in order to count on the advantages of them
both: it facilitates the design process as well as allows
designers to maintain total control over the module internal
architecture and obtain an efficient structure which greatly
reduces the output error.

6. REFERENCES

[1] L. Hanzo and T. Keller, OFDM and MC-CDMA: A Primer.
Wiley-IEEE Press, 2006.

[2] A. Millan, M. J. Bellido, J. Juan, P. Ruiz-de Clavijo, D. Guer-
rero, and E. Ostua, "Disefio eficiente de un modulo FFT/IFFT
sobre FPGA," in Proc. III Reconfigurable Computing and Ap-
plications Conference (JCRA), Madrid (Spain), Sept. 2003, pp.
107-114.

[3] A. Millan, M. J. Bellido, J. Juan, P. Ruiz-de Clavijo, D. Guer-
rero, E. Ostua, and J. Viejo, "Efficient design of a FFT/IFFT-
64 module on ASIC," in Proc. XI Iberchip Workshop (IWS),
Salvador de Bahia (Brazil), Mar. 2005, pp. 305-306.

[4] P. J. Ashenden, The Designer's Guide to VHDL, 2nd ed. Aca-
demic Press, 2002.

[5] Xilinx System Generator for DSP v8.1 User's Guide, Xilinx
Inc., 2005.

[6] T. Widhe, J. Melander, and L. Wanhammar, "Design of ef-
ficient radix-8 butterfly PEs for VLSI," in Proc. IEEE Inter-
national Symposium on Circuits and Systems (ISCAS), vol. 3,
Hong Kong (PRC), 1997, pp. 9-12.

[7] J. M. Berge, A. Fonkoua, S. Maginot, and J. Rouillard, VHDL
Designer's Reference. Kluwer Academic Publishers, 1992.

[8] J. Hwang, B. Milne, N.Shirazi, and J. Stroomer, "System Level
Tools for DSP in FPGAs," in Proc. XI International Confer-
ence on Field Programmable Logic and Applications (FPL),
Belfast, Northern Ireland (UK), Aug 2001.

11

Authorized licensed use limited to: Universidad de Sevilla. Downloaded on January 11,2021 at 15:00:28 UTC from IEEE Xplore. Restrictions apply.

