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Summary 

Solid tumours and their tumour microenvironment (TME) can be considered as complex 
networks whose elements are in constant physical stress. All the elements of the TME, 
including tumour cells, stromal cells, immune and stem cells, blood/lymphatic vessels, nerve 
fibers and extracellular matrix components, belong to a highly balanced compression-
tension molecular and cellular structure. Through mechanical signals, each element could 
affect its surroundings modulating tumour growth and migration. The analysis of these 
complex interactions and the understanding of the structural organization of a tumour 
requires the collaboration of different disciplines. In this thesis, we focus on a particular solid 
tumour: Neuroblastoma, a rare type of cancer, originated during the embryo development. 
We apply computational and mathematical tools to analyse the topology of vitronectin, a 
glycoprotein of the extracellular matrix, in neuroblastoma tumours. Vitronectin has a 
particular interest in tumour biology where it is associated with cell migration, angiogenesis, 
and matrix degradation. Still, its role in Neuroblastoma is not clear. Here, we study the 
organization of vitronectin within the TME considering Neuroblastoma patient prognosis and 
tumoral aggressiveness. Combing graph theory and image analysis, we characterize 
histopathological images taken, from a human sample, by analysing different topological 
features that capture the organizational cues of vitronectin. By means of statistical analyses, 
we find that two topological features (Euler number and branching), related to the 
organization of the existing vitronectin within and surrounding the cells (territorial), correlates 
with risk pre-stratification group and genetic instability criterion. We interpret that a large 
amount of recently synthesized VN would create tracks to aid malignant neuroblasts to 
invade other organs, pinpointed by both topological features, which in turn would change, 
dramatically, the constitution and mechanics of the extracellular matrix, increasing tumour 
aggressiveness and worsen patient outcomes. Further studies will be required to assess the 
true potential of vitronectin as a future therapeutic target of neuroblastoma.  



 
 
 

Resumen 

Los tumores sólidos y su microambiente tumoral (TME) pueden ser vistos como redes 
complejas cuyos elementos están en constante estrés físico. Todos los elementos del TME, 
incluidas células tumorales, células del estroma, células inmunes y células troncales, vasos 
sanguíneos o linfáticos, fibras nerviosas y componentes de la matriz extracelular, pertenecen a 
una maquinaria molecular y celular de tensión-compresión altamente equilibrada. A través de 
señales mecánicas, cada elemento podría afectar su entorno modulando el crecimiento tumoral 
y la migración. El análisis de estas interacciones complejas y la comprensión de la organización 
estructural de un tumor requiere la colaboración de diferentes disciplinas. En esta tesis, nos 
centramos en un tumor sólido particular: el neuroblastoma, un cáncer considerado como ‘raro’, 
que se origina durante el desarrollo del embrión. Aplicando herramientas computacionales y 
matemáticas, analizamos la topología de la vitronectina, una glicoproteína de la matriz 
extracelular, en tumores de neuroblastoma. La vitronectina tiene un interés particular en la 
biología tumoral, ya que está asociada con migración celular, angiogénesis y degradación de la 
propia matriz. Aún así, su papel en el neuroblastoma no está claro. En este trabajo, estudiamos 
la organización de la vitronectina dentro del microambiente tumoral, considerando el pronóstico 
del paciente con neuroblastoma y su agresividad tumoral. Combinando la teoría de gráficos y el 
análisis de imagen, caracterizamos las imágenes histopatológicas tomadas de una muestra 
humana, mediante el análisis de diferentes características topológicas que capturan la 
organización de la vitronectina. Mediante análisis estadísticos, encontramos que dos 
características topológicas (número de Euler y ‘ramificación’), relacionadas con la organización 
de la vitronectina existente dentro y alrededor de las células (territorial), se correlacionan con el 
grupo de pre-estratificación de riesgo y la inestabilidad genética del paciente. En consecuencia, 
interpretamos que una gran cantidad de VN, sintetizada recientemente, crearía una especia de 
‘caminos’ para ayudar a los neuroblastos malignos a invadir otros órganos, que a su vez 
cambiarían dramáticamente la constitución y la mecánica de la matriz extracelular, aumentando 
la agresividad del tumor y empeorando el pronóstico del paciente. Futuros estudios serán 
requeridos para evaluar el verdadero potencial de la vitronectina como una diana terapéutica 
del neuroblastoma a largo plazo.  
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Abbreviations 

AIC  Akaike information criterion. 

Chi-sq  chi-square (χ2). 

ECM  extracellular matrix. 

GAGs  glycosaminoglycans. 

GDD  graphlets degree distribution. 

INRG  International Neuroblastoma Risk Group. 

MNA  MYCN amplified. 

MST  minimum spanning tree. 

NB neuroblastoma. 

ORCA  orbit counting algorithm. 

PAI-1 plasminogen activator inhibitor-1. 

SCAs segmental chromosome aberrations. 

STD standard deviation. 

TME  tumour microenvironment. 

uPAR  urokinase plasminogen activator receptor. 

VN  vitronectin. 

 
  



 
 
 

Definitions 

Tensegrity: Stabilization of structures constituted by continuous elements of tension and 
discontinuous elements resistant to compression.  

Topology: How a set of elements are structured and connected in a given space. 

Tessellation: A surface covered by geometric components (or tiles) with no gaps and without 
overlapping.  

Graph/network: A set of elements connected between them following determined rules that 
represent binary relations. A graph is formed by nodes (the elements) and edges that link them. 

Voronoi diagram: A particular tessellation formed by convex polygons. Each convex polygon 
is a Voronoi cell. Every Voronoi cell emerges from a seed. All the points of a Voronoi cell are 
closer to its own seed that to any other seed of the surface.  

Graphlets: Graphs with a small number of nodes extracted from a larger network. A network 
can be quantitively characterized by its graphlets composition. 

Mark-up image: A binary immunohistochemistry microscopic image in which the white regions 
represent detected objects, and the black ones, the background. 

Euler number feature: In an image where a set of objects has been identified, the Euler 
number is the value of the number of objects minus the number of holes inside them.  

Branching feature: In an image where a set of objects has been identified, the Branching is 
the value of the number of crosslinks that are found on the objects.  

Node: A representation of an object. In our case, it stands for a hexagonal area filled with 
vitronectin. 

Edge: The link between nodes. Two nodes connected by one edge are considered adjacent.  

Tensegrity index: Represents how different is the VN (interterritorial or territorial) organized in 
the biopsy compared with a homogenous distribution. 
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1 Introduction 

Evolution gifted animals with eyes to study and interact with their environment. We, humans, 
have developed a vision capable of detecting highly complex situations. It was a matter of time 
before we discovered how to stop time by painting or, later, capturing images using photography. 
We, then, invented the microscopy to scrutinise our body in more detail, letting us see tiny 
portions of our body like the cells. In the 20th century, the only way to analyse these situations 
was by an expert’s eyes. However, we now can obtain more precise information by acquiring a 
larger quantity of images with higher resolution. In the same way, as many experimental fields 
grow, such as biology and medicine, they are generating a huge amount of information that 
needs to be thoroughly quantified. In any case, a human no longer can process that 
overwhelming number of images in a timely manner.  

 Nowadays, collaboration between different sciences is more important than ever to keep 
science moving toward progress. Scientific fields that may appear extremely far away are 
now doing innovative science together. This can also be applied to the fields of biology and 
medicine, where, for instance, physical and mathematical works are common (Fiorino et al., 
2014; Gómez-Gálvez et al., 2018; Tsuboi et al., 2018). In these studies, teamwork and 
different point of views need to be balanced, as in a tissue happens, where many 
components are at work to achieve homeostasis. A fitting example is the expanding field of 
computational biology and cancer, where computerized image analysis is now improving 
and increasing its methods as a result of the growing demand for objectively quantify raw 
data (Guirao et al., 2015; Heller et al., 2016; Vicente‐Munuera et al., 2020). 

Computerized image analysis exploits several aspects of an image, which can be englobed 
into three categories depending on the features they extract: texture properties, 
morphological characteristics and graph features (topology) (Belsare and Mushrif, 2012). 
Texture analysis is based on the intensity and colours of the image. In particular, texture 
features capture the periodicity and scale of some regional pattern by means of direction, 
coarseness or contrast (Howarth and Rüger, 2004). A successful example of texture 
analysis was a comparison of tomography images from primary lung tumours and 
granulomatous lesions (Dennie et al., 2016). Another category is morphology, which 
considers the shape of the detected elements in the image. For instance, a morphological 
feature can capture the size, radius, perimeter, among other parameters, of the objects of 
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an image. Some of these features turned out to be relevant to assess the aggressiveness 
of neuroblastic tumours capturing blood vessels patterns (Tadeo et al., 2018). Last but not 
least, graph-based characteristics (or topology) are related to how the elements of an image 
are particularly structured and connected. For example, in (Sanchez-Gutierrez et al., 2013) 
identified graph-related attributes that characterized the epithelial organization and 
rearrangements during development. Overall, computer tools allow a rapid and effective 
analysis of biological samples, reducing inter and intra-observer variability and placing 
medicine and biology in the way of resolving the most complex puzzles (Rojo et al., 2010). 

1.1 NETWORKS 

Historically, networks theory (or graph theory) has been successfully applied to social sciences 
(Scott, 1988) and computational sciences (Albert et al., 1999; Holme et al., 2002). In the past 
years, this tendency has shifted to biological environments thanks to multidisciplinary teams, 
where a plethora of studies using network theory to analyse biological systems was published 
(Barabási and Oltvai, 2004; Binchi et al., 2014; Escudero et al., 2011; Sáez et al., 2013). In 
particular, protein-protein interaction has been a fruitful niche due to the development of high-
throughput techniques, such as Yeast Two-Hybrid (Escolano et al., 2012; Estrada, 2006; Fields 
and Song, 1989; Jeong et al., 2001; Pržulj et al., 2004). Regarding biological images, graph 
theory is used to model how the specified elements are organized throughout a sample. Voronoi 
diagrams, Delaunay triangulations and minimum spanning tree algorithms have been recurrently 
used to construct a network from elements like the cell nuclei (Angel Arul Jothi and 
Mary Anita Rajam, 2017; Doyle et al., 2008; Yao et al., 2015). In other cases, like epithelial 
tissues, it is relatively easy to build a network by connecting the cells that are neighbours 
(Escudero et al., 2011; Sanchez-Gutierrez et al., 2013). 

We could provide many definitions of a network (or graph) (Boccaletti et al., 2006; Chung and 
Graham, 1997; Kay et al., 1977; Strogatz, 2001). However, a network is nothing, but several 
elements connected in a pairwise manner (Figure 1). As in social life, in a graph, all lies on 
connections and how, we, the nodes (Figure 1, circles), are suitably linked by edges (Figure 1, 
connection between circles). In the case of a relevant person, many people are, usually, in 
contact with him/her, transforming him/her into a highly linked node and, therefore, a hub. Hubs 
turned out to be important in biology because many paths pass through them (He and Zhang, 
2006; McCormack et al., 2016). Depending on the structure a network displays, they can be 
categorized into a random network, small-world or scale-free, among others (Newman, 2003; 
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Valverde et al., 2015). Despite the wide range of structural categories, protein-protein interaction 
or metabolic networks were proven to have a higher tendency to display scale-free properties, 
where a few nodes with a higher number of edges (hubs) tend to be linked with many low-
connected nodes (Barabási and Oltvai, 2004; Junker and Schreiber, 2008). Social networks, like 
Twitter, exhibit also scale-free properties (Ediger et al., 2010; Mislove et al., 2007). 

Although a network is simply formed by nodes and its connections (edges), exists many 
parameters that can be used to characterize a graph (Almaas, 2007; Dong and Horvath, 2007). 
For example, the connectivity of a network can be analysed by means of its node degree 
distribution or connected components. Both features focus on how the number of edges per 
node are distributed, i.e. how the nodes are connected between each other. Similarly, the 
clustering coefficient can be used to understand the network architecture by measuring the 
density of local connections. Another relevant concept is network centrality. This concept 

Figure 1. Example of an scale-free random network. It was generated from Barabasi-Albert algorithm with 1000 nodes, 
computed with the plugin “Network randomizer” of Cytoscape (Shannon et al., 2003). The size of the nodes is related to its 
degree. The links (edges) between the nodes are in grey colour. 
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identifies the most ‘relevant’ node of a graph regarding properties like the degree of the nodes 
(degree centrality) or shortest path (betweenness centrality). For instance, considering the 
degree of the nodes, highly relevant nodes will be nodes with lots of connections. In a social 
network, famous people will be identified as ‘relevant nodes’, connecting many other nodes. 
Therefore, if we remove the node with the largest centrality, we may disconnect some nodes or, 
in an extreme scenario, we could obtain an unconnected network (two or more separate graphs 
with no links between them). The degree centrality of a network was successfully used to link 
network topology and protein phenotype and expression dynamics (Yu et al., 2007). 

Although it is possible to compare two networks in terms of their properties, it may be more 
informative to compare both graph’s structures. In order to do so, Pržulj and cols introduced a 
term called “graphlets” (Figure 2), which stands for small connected non-isomorphic induced 
subgraphs (Pržulj et al., 2004). In a later work, they also defined a formula to compute the 
distance between two Graphlets Degree Distribution (GDD) (Przulj, 2007) normalizing the 
possible differences in a range between 0 and 1. Specifically, graphlets comparisons are more 
focused on local structural properties rather in global ones. There are several works using 
graphlets as a measure (Przulj, 2007; Pržulj et al., 2004; Yaveroğlu et al., 2014) or improving 

Figure 2. Illustration of graphlets networks used in (Pržulj, 2007). A representation of graphlets of up to five nodes. 
Each graphlet is labelled with a Gn, in which ‘n’ is the graphlets number (from G0 to G29). Inside a graphlet there are different 
configurations, called orbits (from 0 to 72). 
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them (Ahmed et al., 2017; Cannoodt et al., 2018). However, this technique has still much 
potential to be exploited within biology.  

1.2 NEUROBLASTOMA 

Neuroblastoma (NB) is a type of solid cancer, considered as a “rare disease”, that forms in 
certain neural tissues from the sympathetic nervous system during the development of the 
embryo. Nonetheless, it is the third most common tumour during infancy, after leukaemia and 
brain cancer (Ediger et al., 2010). NB is rare in adults: about 90% of cases occur in children 
younger than 5 years old (Maris, 2010). This cancer usually starts in one of the adrenal glands 
located above the kidneys, or in the nerve tissue located at the spinal cord in the neck, chest, 
tummy, or pelvis (Voûte et al., 1992). Historically, NB was first described as an undoubted tumour 
of the sympathetic system, designating it as a glioma by Rudolf Virchow in 1865 (Virchow, 1865) 
on a book called “Diseased tumours” (Figure 3). But in 1910, James Homer Wright finally named 
it Neurocytoma or Neuroblastoma, since the cells that formed the cancer were essentially 
undifferentiated nerve cells (Jaffe, 1976; Wright, 1910).  

Thanks to scientific advances, nowadays, we have a deeper knowledge of the origin of NB 
tumours. Starting at the neural crest and neural tube, neuroblast progenitors begin to migrate to, 
eventually, diverge into a neural cell (Marshall et al., 2014). Throughout this process, the 
oncogene MYCN has a predominant role modulating the migration and expansion of neural cells 

Figure 3. Illustrations extracted from Virchow’s book “Diseased tumours” of a chapter called “Melanoma of the 
soft meninges”. Quoting from german and translated in English: “Fig. 128 (left). Multiple melanomas of the pia mater 
basilaris, mostly around the medulla oblongata, the ponts, the fossa sylvii, fissura longit. Fig. 129 (right). The lower end of 
the spinal cord of Fig. 128 (left), with multiple melanomas of the soft skin, forming nodular swellings on the nerve roots.” 
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(Hansford et al., 2004; Zimmerman et al., 1986). However, a large percentage of neural 
progenitors should undergo apoptotic cell death to maintain homeostasis (Dekkers et al., 2013). 
In rare instances, some cells ignore the apoptotic signals and, if they acquire additional 
mutations, it could lead to postnatal malignant diseases, such as NB (Figure 4, purple cells).  

NB is a heterogeneous tumour with widely varying prognosis according to several clinical and 
genetic factors described in the International Neuroblastoma Risk Group (INRG) classification 
(Figure 5) (Cohn et al., 2009). Depending on the INRG category a NB patient is assigned, he/she 
will be treated accordingly. In particular, NB patients can be classified into very low-risk (good 

Figure 4. Schematic origin of a neuroblastoma tumour.  Neuroblasts starting at the neural tube and neural crest will 
migrate and undergo different stages to, ultimately, become a mature cell of the neural system. Blue cells are normal cells, 
while purple cells are neuroblast cancer cells. PSG: Primary sympathetic ganglia; BMPs: Bone morphogenetic proteins; 
ALK: Anaplastic lymphoma kinase; NGF: Nerve growth factor. Taken from (Marshall et al., 2014). 
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prognosis), low-risk, intermediate-risk and high-risk (bad prognosis). Likewise, non-high-risk 
groups (very low, low and intermediate) usually evolve positively, while high-risk patients, despite 
more aggressive treatments, have a lower long-term survival rate. In addition to these categories, 
a recent work also established an additional one: ultra-high risk (Tadeo et al., 2016), which 
defines a subtype of patients with extremely complicated prognosis within high-risk (Pinto et al., 
2015). 

A common procedure to assess NB aggressiveness is to extract a biopsy of the tumoral area 
to the affected patient. To be able to analyse biopsies through a microscope or a computer, they 
need to be prepared and stained. First, tissue preparation usually involves formalin fixation and 
embedding in paraffin. Paraffin blocks are then cut using a microtome (a high precision cutting 
instrument) and mounted on glass slides. However, most of the molecules of interest in the tissue 
are not readily visible or well-differentiated on the mounted sections. Therefore, the second step 
is the staining protocol, whose purpose is to dye the samples in order to highlight the molecules 
within them. Finally, a pathologist analyses the histopathological tissue sample (Veta et al., 

Figure 5. International Neuroblastoma Risk Group (INRG) Consensus Pre-treatment Classification schema. It is 
represented the different factors that determine the prognosis of the patient shown as branches of the tree and letters (A-
R, from better prognosis to worse prognosis). L1 and L2, localized tumour; M, distant metastatic disease (except stage MS); 
MS, metastatic disease confined to skin, liver and/or bone marrow. GN: ganglioneuroma and GNB: ganglioneuroblastoma. 
MO: months. 11q: Chromosome 11. Taken from (La Quaglia, 2014). Red colours represent poor prognosis, while green 
colours stand for good survival-rate prognosis. 
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2014). This last step still represents the only definitive method for confirmation of presence or 
absence of disease, and the measurement of disease progression. Until recently, a pathologist 
could only analyse and visualize the tissue samples under a microscope (Titford, 2006). 
Currently, this workflow includes the digitalization of histopathology slides allowing the 
pathologist to analyse them in more detail using a computer (Gurcan et al., 2009; Veta et al., 
2014). Thus, the number of stored histopathological images is increasing over time. In parallel, 
it is very time-consuming to thoroughly evaluate each of the images by a human expert. 
Altogether, it is necessary to develop new methods to objectively analyse histopathological 
images and, at the same time, ease pathologists’ workload. Importantly, these methods will also 
aid the investigation on the mechanisms driving pathologies such as NB. 

1.2.1 Relation between Extracellular matrix and NB 

To be considered high-risk, a NB patient should either have an amplification of the MYCN 
oncogene in the tumour biopsy or be older than 18 months with metastatic disease (Figure 5). 
Despite the correlation between MYCN amplification and advanced staged Neuroblastomas, 
there are so many missing actors, aside from genetic factors. Tumours grow surrounded by non-
cancer cells and their stroma, interacting with them in complex ways (Figure 6), forming the 
tumour microenvironment (TME) (Li et al., 2007). The stroma is composed of a complex mixture 
including the vasculature, immune cells, epithelial cells, fibroblasts, signalling molecules and 
the extracellular matrix (ECM). These elements give structural and connective support to cancer 
and non-cancer cells. In the same way, the ECM is made up of a variety of molecules supplying 
important structural backing for the parenchymal cells of tissues and organs (Kim et al., 2011). 
The ECM is mainly formed by two major classes of molecules: Glycosaminoglycans (GAGs), 
which has been related to signalling cascades and tissue development and homeostasis, as well 
as pathological processes (Afratis et al., 2012); and fibrous proteins consisting of collagen (col 
F), reticulin (ret F), elastin, fibronectin, and laminin. The interplay of the ECM elements is highly 
important to achieve tissue homeostasis. For example, collagen molecules and other fibers are 
dependent on the level of fluidity of the ECM that is maintained by GAGs. As hydration increases 
or decreases, collagen becomes more flexible or stiffer, respectively (Øien and Wiig, 2016). 
When stiffer, collagen fibers are more prone to be affected by changes in their mechanical 
microenvironment that accompanies tumour progression aiding cell migration (Ng and Brugge, 
2009; Tadeo et al., 2016). Regarding NB, a stiffer ECM (cross-linked and disorganized fibers 
network) with an insufficient amount of collagen fibers and glycosaminoglycans, as well as 
irregularly shaped blood vessels, was associated to poor prognosis in NB patients (Tadeo et al., 
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2016, 2017). We now know that the TME, particularly the extracellular matrix (ECM), is very 
relevant in cancer aggressiveness (Figure 6) (Gilkes et al., 2014; Pickup et al., 2014). 

In parallel, the TME can be seen as a balanced compression-tension system, where cells have 
a central role (Figure 7). These notions are based on the tensional integrity (tensegrity) 
hypothesis that integrates how the cells are affected by its environment. Like clinicians often 
diagnose tumours based on differences in tissue rigidity, sensed by palpation, tensegrity links 
the mechanical and biochemical properties of a tissue (Ingber and Jamieson, 1985; Ingber et al., 
1981). Tensegrity relies on the compendium of compression-resistant forces to balance the 
system. For instance, in a cellular environment, the ECM would be acting, mostly, as a 
compressor and, other elements, like the actin filaments within the cell, as tension structures 
(Figure 7). One of the direct consequences of this model is that our cells are physically and 
mechanically affecting its environment. They can, therefore, control its environment promoting 
ECM remodelling and, in the same way, the ECM is able to transform the way cells behave and 

Figure 6. Summary of the evolution of a tumour and how it modifies its microenviroment. In particular, it shows all 
the steps from initial tumoral stages to metastasis, with all the biophysical and molecular remodeling ocurring on it. Taken 
from (Emon et al., 2018). 
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function. For instance, a stiffer ECM has been shown to encourage cell migration by changing 
the cell traction forces (Discher et al., 2005; Lo et al., 2000). 

Another essential element of the TME is the blood supply, which also works as a tensional 
structure of the tensegrity model (Tadeo et al., 2014). Blood vessels transport blood cells, 
oxygen, and nutrients to the tissues of the body. They are not only essential for cells to survive, 
but take an important role in tumour progression (Mandriota et al., 2001). Due to the unbalanced 
division cell rate of tumoral cells, tumours require more resources. To mitigate this necessity, 
hypoxic tumour cells recruit blood vessels by secreting vascular endothelial factors initiating 
tumour angiogenesis (Figure 6). Thus, it is commonly said that “TMEs have their own blood 
vessels” which are defined by its abnormal and irregular size (Nagy et al., 2009; De Palma et al., 
2017). 

The lymphatic vasculature, acting as a tensional structure in the tensegrity model, is critical for 
immune function, tissue fluid homeostasis and gastrointestinal lipid absorption. Regarding 
cancer disease, lymphatic vessels were assumed to be passive elements in tumour progression. 
Nonetheless, recent studies depict the true role of lymphatic vessels to have an integral role in 
the metastatic spread of disease. The presence of cancer cells around lymph nodes is 
associated with poor prognosis outcome in human cancer (Tadeo et al., 2018; Tuttle, 2004). In 
addition, the lymphatic vasculature is thought to help tumour cells to disseminate allowing the 
metastasis of the tumour (Mäkinen et al., 2007; Pathak et al., 2006). Thus, TME elements, 

Figure 7. Tensegrity model of a cell and its environment. On this biophysical cellular model (Stamenović and Ingber, 
2009) two main elements are at work: on the intracellular level, compression (microtubules, MT) and tension (actin 
microfilaments, MF); while only traction is pushing outwards on the extracellular side (traction forces at the focal adhesion, 
FA). As stated by the authors, the system would mechanically stabilize the cell and its shape.  
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including ECM, affect NB cells in many ways: from the ability to promote angiogenesis and 
vascularization to enabling invasion and metastasis, among others (Borriello et al., 2016). 

Overall, the tensegral hypothesis may promote different cell behaviours depending on the state 
of the ECM rigidity. In particular, it has been reported that the TME could be involved in a positive 
feedback loop between matrix stiffness, cell contractility and cell division, which could end up 
promoting tumour malignancy (Huang and Ingber, 2005; Ingber, 2002). In NB, there have been 
studies about how a stiffer ECM may correlate with poor prognostic factors (Tadeo et al., 2014, 
2017). It is, therefore, timely that we further investigate this matter with the most recent tools and 
mathematical approaches. 

In order to unveil the machinery of tumour progression, we ought to identify how, each element 
of the TME, affects the prognosis of NB patients. Regarding ECM elements, many of them have 
been already recognised as key players in cancer malignancy (Borriello et al., 2016). For 
instance, an ECM full of a crosslinked fibronectin and an excessive deposition of structural 
components such as collagen I and reticulin drive the stroma remodelling (Figure 6), which, 
utterly, would lead to metastasis (Emon et al., 2018). In NB, in particular, studies have also 
related crosslinking and ECM stiffness to unfavourable cancer conditions (Tadeo et al., 2017).  

1.2.2 Vitronectin 

In this thesis, we are going to study the possible role of one particular molecule of the ECM in 
NB: Vitronectin. Vitronectin (VN) is a glycoprotein linking the ECM and cells through several 
ligands like integrins, plasminogen activator inhibitor-1 (PAI-1) and urokinase plasminogen 
activator receptor (uPAR) (Figure 8) (Madsen and Sidenius, 2008; Preissner, 1989). It is 
synthesized in the liver by hepatocytes and, in a minor quantity, in the brain, lung and kidney, 
among others (Dimova et al., 2005; Pijuan-Thompson and Gladson, 1997; Seiffert, 1997). VN is 
known to preserve the vascular homeostasis (thrombosis and fibrinolysis) and controls the innate 
immune system by facilitating cell adhesion and migration, while aiding tissue repair and 
regeneration. Due to its volatile structure, the biological functions of VN are dependent on its 
interactions (Preissner, 1991; Preissner and Reuning, 2011). Despite the polyfunctionality of VN, 
the vitronectin-knockout (VN-KO) mouse was found to be viable, although the animal acquires 
delayed coagulation and poor wound healing (Leavesley et al., 2013). 

Among the different glycoproteins of the ECM, VN has a particular interest in tumour biology. 
Its relationship with uPAR is associated to cell migration and signal transduction via integrins, 
where VN can promote cell adhesion and matrix degradation by binding to integrins, PAI-1 and 



 
 
 

12 

uPAR (Madsen et al., 2007). In fact, VN is considered to promote angiogenesis and vascular 
permeability, aiding tumour migration (Kenny et al., 2008; Li et al., 2012; Orr et al., 1992). 

In NB, the role of VN remains incompletely defined, although a previous study of Dr Rosa 
Noguera laboratory has suggested a connection to tumour progression (Burgos-Panadero et al., 
2019). Understanding the roles of VN in NB open new ways to understand better the mechanical 
changes in the ECM, or, in long-term, as a way to apply mechanotherapy to NB patients (Huang 
et al., 2013; Tadeo et al., 2014). 

  

Figure 8. Vitronectin molecular structure. Structure of urokinase receptor, urokinase and vitronectin complex in 
humans (VTNC_HUMAN), and, highlighted with an aquamarine box, is the molecular structure of Vitronectin (Ribbon 
diagram). Each colour represents the different chain sequences: aquamarine stands for Vitronectin, Urokinase-type 
plasminogen activator is shown on yellow, anti-uPAR antibody is represented by two colours (light chain on malva, and 
heavy chain with red) and blue represents urokinase plasminogen activator surface receptor. Note that other 
conformations of VN are possible. Obtained from https://swissmodel.expasy.org/repository/uniprot/P04004. 
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2 Objectives 

1) Develop new methods to improve computerized image analysis of histopathological images 
using network properties. 

2) Quantify whether the organization of different components of the TME affects 
neuroblastoma malignancy using human samples. 

3) Unravel Vitronectin’s role in neuroblastoma tumoral environments. 

4) Decipher how the topology of the tumour microenvironment affects cancer biology and its 
mechanisms to do so. 
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3 Material and methods 

3.1 MATERIAL 

Ninety-one primary NB tumours were acquired and processed by Rebeca Burgos-Panadero 
and other members of the laboratory of Dr Rosa Noguera using the protocol described at 
(Burgos-Panadero et al., 2019; Tadeo et al., 2016). We received mark-up images obtained from 
biopsy samples stained with different markers: type I collagen (Gomori staining), reticulin fibers 
(Masson’s trichrome staining), GAGs (alcian blue), blood vessels (anti-CD31, Dako, clone 
JC70A, 1/50), lymphatic vessels (anti-D-2-40, clone D2-40, Monoclonal Mouse Anti-Human 
Podoplanin, Dako, 1/40) and VN (anti-VN, 1/100, clone EP873Y, isotype IgG, code ab45139, 
Abcam). In addition, we received haematoxylin stained nuclei and its unprocessed image 
(Figure 9). All this information was processed by members of the Dr Rosa Noguera’s laboratory. 
Thus, we received segmented images, where white pixels represented areas where the molecule 
was found, and black pixels to the background of the image.  

Figure 9. Histopathological images from NB patients stained to display Vitronectin. A) Represents the unprocessed 
biopsy image stained to visualize Vitronectin (brown colours). B) The processed histopathological image to differentiate 
between nuclei (green), interterritorial (brown) VN and Territorial VN (red). In (A) and (B), other elements of this image are 
assumed to be another fibers (blue). (B) has been processed to obtain each of the mentioned mark-up images, where white 
pixels stand for the marker and the black ones are the background (C-E). All the images have the same resolution and size. 
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In addition, we got the clinico-biological information associated to each patient (and image): 
age≥18 months, Stage (Localized or Metastatic), Histopathologically Differentiated, 11q deletion, 
Ploidy (hyperdiploid, or diploid and tetraploid), MYCN amplified (MNA), segmental chromosome 
aberrations (SCA). Each feature was dichotomized into two categories: 0 or 1, depending on its 
information. Using this information, the patients were classified into high risk (medium and high 
risk) or low risk (low and very low risk) according to INRG system (Cohn et al., 2009). Samples 
were also categorized regarding its genetic instability as in (Burgos-Panadero et al., 2019): a) 
‘higher genetic instability’ were patients with genetic profiles with >3 typical SCAs plus MNA or 
11q deleted or >3 gene amplifications or with hyperrearranged chromosomal segments; b) ‘lower 
genetic instability’ were cases with genetic profiles with numerical chromosomal aberration or ≤3 
typical SCAs, excluding 11q SCA.  

3.2 FEATURES 

To extract the features related to the processed biopsy images (Figure 9), we used the 
segmented images as input. First, we overlapped a hexagonal grid, whose hexagons had a 

radius of 50 pixels (approximately 8.05µm), discretizing the mark-up images into regular 

hexagonal areas (Figure 10). Each hexagonal area was a ‘region’, and the regions where the 
molecule was found became ‘nodes’ (see Definitions). The features that considered the 
hexagonal regions (with the suffix ‘per node’ or ‘per region’), analysed each region of the mark-
up image, separately, according to that particular feature (e.g., the Euler number of a single 
hexagon). Then, using both mark-up images and the information of the regions, we calculated 
the following characteristics related (Figure 13):  

1. Stained area of the marker (Figure 10). In particular: 
i. Percentage of the stained area. We quantified the stained areas of a marker in 

each delimited hexagonal area and, then, we computed the mean and std of the 
whole grid.  

ii. In addition, we computed the mean and std of the percentage of the stained area 
using only the nodes (regions with stained area > 0). 

2. Branches (Figure 10). We measured the number of crosslinks in every hexagonal 
region. In particular: 

i. Mean number of branches found in the image per hexagonal region (i.e. the 
hexagons without branches counted as 0).  
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ii. We also calculated the mean using only the regions with marker inside (branches 
per node). 

3. Euler number (Figure 10). MATLAB’s Euler number is defined as the number of objects 
minus the number of holes within an image. We obtained the following features: 

i. Euler number per stained area: considering the whole image, we divided the 
Euler number calculated for the whole image by the number of objects within the 
image.  

ii. We computed the Euler number considering each region, separately. We, then, 
obtained the Euler number per region and the Euler number per nodes, which 
used only the areas with information inside.  

4. Holes. In particular, we acquired different measurements from the holes within the 
objects of the images: 

i. We measured the mean and standard deviation of the hole areas.  
ii. Number of holes per object found.  

5. Only in VN, we obtained the difference between interterritorial and territorial VN. In 
particular, we computed the mean of the difference between interterritorial and territorial 
VN per region. For each hexagonal area, we operated territorial minus interterritorial. 

6. Morphometry of cell nuclei (Figure 9). These features were acquired by the laboratory 
of Dr Rosa Noguera (Tadeo et al., 2016, see Table 2). They considered the whole mark-
up image obtaining: 

i. The percentage of haematoxylin stained nuclei area. 
ii. Nuclei/mm2. 
iii. Ratio of stained nuclei to total pixels. 
iv. The total nuclei number from the total mark-up images. 

7. Morphometric characteristics related to the marker, also obtained by members of the Dr 
Rosa Noguera laboratory (Tadeo et al., 2016, see Table 2):  

i. Percentage of the stained area and number/mm2. 
ii. Ratio of positive stained pixels to total pixels. 
iii. Positive or negative H-score (based on a specific discriminatory threshold, 

ranging from 0 to 300). 
iv. Number of secretory cells (percentage of positive cells). 

Thereafter, we divided them into topological and non-topological (Table 1). In the case they 
capture the organization, the characteristics were labelled as topological; while features that 
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mainly consider other aspects of the image, like the morphometry of the objects or its quantity, 
were considered non-topological. Morphometric features obtained by Dr Rosa Noguera’s 
laboratory were also labelled as non-topological (Table 2). All the features are displayed in Table 
2 (VN)  and Additional Table 1 (collagen, reticulin, GAGs, blood vessels and lymphatic vessels). 

3.2.1 Pure topological features 

We also added an additional set of topological features to the dataset: the topological features. 
Bearing in mind that nodes represent hexagonal regions with information on an image (objects 
of the image), we linked these nodes using the Euclidean distance between each hexagon’s 
centre. Aiming to model how the regions are distributed throughout the sample (Figure 10 and 
Figure 13), we computed a network for each image using three different procedures:  

a) Iteration (Figure 11). Reviews all the neighbours of each node, connecting the closest 
ones until the network is fully connected. The algorithm follows these steps: 1) Create a 
distance matrix, whose rows and columns are nodes in the same order (the first row and 
the first column correspond to the same node). 2) Perform an iteration that involves going 
through all the rows of the distance matrix and 2.1) getting the closest distance of each 
row; 2.2) adding the column’s node and row’s node as edges. 2.3) Remove the edges 

Figure 10. Examples of different features and how they are calculated. A) Mask image with white pixels as territorial 
VN and black pixels as the background.  B) Highlighted region of (A) showing how the overlapping grid is discretizing that 
space. With a red shadow, it is presented the hexagons that have any territorial VN inside them. These hexagons will be 
the nodes of the network. Each node is processed independently to obtain the features of percentage of stained area, 
branching or Euler number, among others. 
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from the distance matrix as possible new edges for future iterations. 3) Once an iteration 
is over, we check if the network is connected, meaning that any hexagonal region can 
reach any region using the edges as a vehicle. Step 2 begins again if there are still 
isolated nodes. 

b) Sorting algorithm (Figure 11), in contrast to Iteration, it does not perform an iteration per 

se. Sorting entails ordering all the distances and connecting them one at a time until the 
output network cannot find an unconnected region. For optimization purposes, the 
algorithm follows this flow: 1) Sort from closest to furthest all the distances between any 
pair of regions. 2) Take the smallest distance of each node from the list and obtain an 
array of closest distances. The largest of this array will define a threshold to add more 
edges on this iteration. 3) Add all the edges with a distance smaller or equal to the 
previously defined threshold. 4) Remove the added edges and distances from the list. 5) 
Finish an iteration of the algorithm. 6) Perform steps 1 to 5 until the output graph is 
connected. Note that this checking is performed only when an iteration is finished. 

Figure 11. Networks derived from the image from Figure 10 using the three different algorithms (first row): 
Sorting (left), Iteration (mid) and MST (right). In addition, on the second row, it is displayed the control network of each 
network from the first row. On blue it is highlighted the edges of the graph, while in white it presented the control 
homogeneous image. 



 
 
 

20 

c) Minimum Spanning Tree (Figure 11). Although the two previous algorithms were 
designed on this study, the last algorithm, Minimum Spanning Tree (MST), has already 
been used in other studies (Yao et al., 2015). It was already implemented on a MATLAB 
function named graphminspantree (MATLAB R2014b, MathWorks). The resulting 
network of the MST is a network with the minimum possible number of edges, whose 
weights are also minimum. Moreover, this network is a tree, whose particularity is that 
any two vertices are connected by exactly one path without forming cycles. 

Besides the networks derived from each original biopsy, we computed ten different random 
controls for each mark-up images of all the markers (Figure 10). We aimed to compare the ten 
homogeneous controls with the original image biopsy. The pipeline of ‘control creation’ follows 
these steps: 1) Collect the number of nodes from the original image; 2) Randomly place the 
same number of seeds inside an image to create a Voronoi diagram. The seeds should avoid 
the regions of the original image where it was not possible to find the marker (i.e. tears of the 
tissue). This ‘valid region’ was defined by the raw image, where you can perfectly delineate the 
shape of the biopsy. 3) Perform Lloyd’s algorithm ten times, homogenizing the Voronoi cells (see 
Definitions) to become more hexagonal (Du et al., 1999; Lloyd, 1982). As a result, we obtained 
a control in which the regions are homogeneously spread throughout the mark-up image of the 
biopsy. Once the nodes were distributed, we computed the algorithm of Sorting and Iteration for 
the controls, whose output is a graph (Figure 11). In the next steps, these graphs will be 
compared with the tumour specific network. Iteration control network will also be used as the 
MST control network. In other words, we employed the Iteration control network as a control for 
the Iteration mark-up network and the MST mark-up network. This was due to the huge 
computational cost of creating an MST network from a regular pattern. 

Finally, we obtained the tensegrity indices: three algorithms per marker. The tensegrity index 
represents the difference between the biopsies and their homogeneous controls using graphlets 
(Figure 2 and Figure 10), which are small connected subgraphs, as a measure (Pržulj et al., 
2004). Specifically, we used the ORCA (Orbit Counting Algorithm) computer program for graphlet 
identification and calculation (Hočevar and Demšar, 2014), to extract the different conformations 
of nodes assembling the graphlets, called orbits, of each network. Furthermore, we calculated 
the distance between two distribution of graphlets using the Graphlet Degree Distribution (GDD) 
distance (difference) using the 73 orbits (Przulj, 2007). We used this approach to get the GDD 
distance between a network of a VN location biopsy and each control. The mean of these 10 
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distances represented the value of the tensegrity index for that image and algorithm. The whole 
pipeline is explained in Figure 13. 

3.3 STATISTICAL ANALYSIS 

As a preliminary experiment, we first performed a Shapiro test to check if the tensegrity indices 
came from a normal distribution. Next, we performed the non-parametric Mann-Whitney test 
using Wilcoxon R function (Team and R Development Core Team, 2016) to test if the distribution 
of the tensegrity indices were statistically different regarding any of the criteria (Risk pre-
classification or Genetic instability criteria) (e.g. Table 3).  

In parallel, we computed the pipeline to obtain individual independent factors (based on 
previous works (Martín-Rodríguez et al., 2013, 2014) from our dataset of features (VN or TME, 
Table 2 or Additional Table 1, respectively) that could not overlap with known predictive 
variables (INRG variables like age or MYCN status or segmental chromosome aberrations 
(SCA)). First, we categorized the continuous variables regarding the quartiles. In the second 
step, we computed a univariate analysis with each variable and calculated chi-square (χ2), 
keeping only the statistically noteworthy features (Table 4 and Table 7). Third, we gathered the 
eight characteristics with the lowest p-values (or P<0.005, in the case of the TME) in the high-
risk pre-treatment stratification group and tumour genetic instability criteria. We, then, performed 
a multivariate logistic regression (Table 8), with a ‘best subset’ approach. Initially, we applied an 
exploratory analysis of what probabilities the selected variables have, to obtain a good subset 
using mplot (Tarr et al., 2018). Afterwards, we performed one main subset selection using glmulti 
(Calcagno and Mazancourt, 2010), and a second selection to check for the most relevant 
features with bestglm (McLeod and Xu, 2017). These relevant features were the characteristics 
that appeared the most on the best subsets of variables found (‘% of appearance’ axis, Figure 
15, Figure 17, Figure 19 and Figure 20). Using the most relevant variables, we obtained a 
model with a minimum Akaike Information Criterion (AIC) and we reported nagelkerke R2 as a 
measure of the fitness of the model. The AIC represents the quality of the model relative to other 
models penalizing models with a higher number of coefficients, among other things (Sakamoto 
et al., 1987). In parallel, R2 represents the proportional reduction in the absolute value of the log-
likelihood measurement (with a log-likelihood of 1, the model fits perfectly the data, with 0 nothing 
at all), while a greater number of Fisher Scoring iterations is bad because it took too many 
iterations for the coefficients of the model to fit the data. Finally, Anova chi-sq tells you how the 
addition of each feature differs significantly from the expected outcome. In parallel, we measure 
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the proportion of true positives that are correctly identified (‘sensitivity’) and the true negatives 
that were predicted as negative (‘specificity’). Using the ‘VIF’ function in the car library in R 
(Healy, 2005), we removed the most redundant features, retaining all the features with a value 
below three (we ran the function each time after removing a feature) (Petrie, 2015). We used the 
library of R logistf, which implements Firth’s logistic regression (Ploner et al., 2010). Firth’s 
method let us obtain real odds ratio by penalized profile likelihood. The results of the multivariate 
analysis are variables that correlate to the prognosis of NB patients or the tumour 
aggressiveness. Therefore, the outputs of the pipeline are individual independent factors that 
cannot overlap, and which add new insights to the existing ones. 

3.4 CODE AVAILABILITY 

All the code that has been developed for this project is available at: 

https://github.com/ComplexOrganizationOfLivingMatter/NeuroblastomeIntegration 
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4 Results 

4.1 PIPELINE OF TOPOLOGICAL ANALYSIS 

This work has been done as a collaboration between the laboratory of Dr Rosa Noguera and 
Dr Luis M. Escudero’s laboratory which became a published article (Vicente‐Munuera et al., 
2020). As part of a team effort, each member was assigned a different task. In particular, our 
group performed the computational and statistical analysis, while Dr Rosa Noguera’s laboratory 
acquired the histopathological samples and the mark-up images coming from these samples. To 
sum up, our group has developed a pipeline to obtain quantitative results from the 91 biopsies 
that were acquired from NB human patients by the laboratory of Dr Rosa Noguera (Material and 
Methods). Each biopsy was processed to obtain serial sections that were stained to detect each 
one of the following molecules: reticulin, collagen, GAGs, and VN. In parallel, images of blood 
vessels and lymphatic vessels were also obtained. A total of 6 images per biopsy were acquired 
by Dr Rosa Noguera’s group. Alongside these images, they obtained the haematoxylin stained 
nuclei mark-up images (see Definitions and Figure 9). Since we aim to focus on VN, they also 
distinguished two locations of VN (Burgos-Panadero et al., 2019) and separate them into two 
different “sub-markers” (Territorial and Interterritorial VN). They, therefore, acquired an image 
stained with territorial VN, whose VN is surrounding the cell (pericellular) and within them 

Figure 12. Vitronectin pattern in neuroblastic tumors. Images immunostained with antibody anti-vitronectin (VN) at 
40X. A) Sample corresponding to negative VN. B) and C) Samples corresponding to weak and moderate VN expression 
and ECM distribution only (defined as interterritorial VN). D) Sample with strong VN expression with pericellular and 
intracellular location (defined as territorial VN). Haematoxylin is highlighted in blue, corresponding to nuclei and fibers of 
ECM. Taken from (Burgos-Panadero et al., 2019). 
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(intracellular), and another image with interterritorial VN, which is located on the intercellular 
space (peripherally to the territorial matrix). To obtain an objective outcome of VN staining 
intensity, VN’s immunoreactivity was assessed by two pathologists, where it was rated as one 
of these four categories: no staining, and weak, moderate, and strong (Figure 12). Then, this 
classification was dichotomized as “weak to moderate” vs “strong”. Based on this categorisation, 
an automatic image analysis was adapted to reproduce the output coming from the two 
pathologists (Burgos-Panadero et al., 2019). Finally, they related “strong intensity” with “territorial 
VN” and “weak and moderate” with “interterritorial VN”. This procedure has been thoroughly 
explained in (Burgos-Panadero et al., 2019). Once they acquired all the images, we processed 
them to perform our topological analysis.  

Due to the fibrous or irregular nature of all the markers, we could not capture their organization 
by simply detecting them as objects. To solve this issue, we divided the image into regions by 

overlapping a hexagonal grid of a fixed radius of 50 pixels (8.05µm) with the mark-up image 

(Material and Methods and Discussion). Likewise, we detected which hexagons had marker 
objects within them (nodes). In this way, we could use the hexagons containing the signal of a 
marker as a reference for the topological analysis. Using the information from the black-and-
white images highlighting the markers and its associated overlapping hexagonal grid, we defined 
12 features that captured the organization of the markers (Topological features, Table 1 and 
Material and Methods). Of these 12 characteristics, three of them (Sorting, Iteration and 
Minimum Spanning Tree (MST) tensegral indices) were pure topological features (Table 1, blue 
light colour) representing the distribution of the marker throughout the sample biopsy. The other 
9 features were related to some topological properties of the images: i) Branching (see 
Definitions): measures the crosslinks that form the molecules; ii) Euler characteristics (see 
Definitions): related to the number of the segmented objects and their inner holes; iii) deviation 
of the quantity of the marker within the grid and iv) properties of the holes (Material and Methods 
and Table 1, darker blue colour). 

We also extracted 3 non-topological characteristics quantifying morphological and 
morphometric traits of the images (Material and Methods and Table 1, green colour). In 
addition, another set of non-topological features was extracted by Dr Rosa Noguera’s lab (Tadeo 
et al., 2016, see Table 2). All the features extracted for all the markers are displayed on 
Additional Table 1 (all markers except VN) and Table 2 (VN dataset). To obtain the pure 
topological features, we developed a computational pipeline enabling to extract the organization 
of a marker in three unique ways (three tensegrity indices) using a network approach (see 
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Definitions and Figure 13). First, once space was discretized, we collected the centre of the 
hexagons that were filled with some amount of marker and identify them as nodes. Considering 
the Euclidean distance between the nodes, we connected them (with edges, see Definitions) 
by using three different algorithms: Sorting, Iteration and Minimum Spanning Tree (see Material 
and Methods and Figure 11). Second, for a given node distribution calculated from a biopsy, 
we computed 10 control networks with the same number of nodes. We, then, distributed them 
randomly, throughout the possible area it could fall into, building a new grid. Then, we 
homogenised the cells composing the grid using Lloyd’s algorithm (Material and Methods). By 
creating a control, that considers the region within the biopsy in which the marker could be, we 
minimized artefacts in later experiments when comparing real and control network (Figure 11). 
Each algorithm had its own control network, except for MST. Due to the properties of the 
algorithm, it was impossible to create its control and we used Iteration’s instead (see Material 
and Methods). Third, we calculated a similarity descriptor, based on the Graphlet Degree 
Distribution (GDD) distance (Pržulj et al., 2004) (Material and Methods), to quantify the 
differences in organization between the control network and the network derived from a 
histopathological image. For this purpose, we computed the graphlets (see Definitions) of each 
network as a measurement of their topology (Figure 2). The output of this pipeline was a value 
that we called tensegral (or tensegrity) index (Figure 13). Thus, we obtained three tensegral 
indices per marker (one per algorithm).  

Topological Non-Topological
Name Name

Sorting tensegral index mean percentage stained area per region
Iteration tensegral index mean percentage stained area per node
MST tensegral index mean area of holes
std percentage stained area per region
std percentage stained area per node
mean quantity of branches per region
mean quantity of branches per node
euler number per stained area
euler number per region
euler number per node
number of holes per stained area
std area of holes

Table 1. List of the features extracted from the images. In blue colour, it is presented the topological characteristics, 
considering that there are pure topological features (in light blue) and regular topological features (in blue). Regarding the 
non-topological features, they are shown on green colour. 
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Combining all the features extracted from the 91 NB patient-derived biopsies using the above 
pipeline, we aim to find characteristics that could come up as new independent features of our 
two defined criteria: tumour genetic instability (higher vs lower, 82 cases) and pre-treatment risk 
stratification group (high-risk vs non-high-risk, 91 cases). In addition, depending on which type 
of characteristic was found relevant, we could get useful biological insights on how that marker 
is affecting tumour aggressiveness and progression. 

ID Name

26 Interterritorial - mean percentage of VN stained area per region

27 Interterritorial - mean percentage of VN stained area per node
28 Interterritorial - mean area of holes
29 Territorial - mean percentage of VN stained area per region
30 Territorial - mean percentage of VN stained area per node
31 Territorial - mean area of holes
32 Mean difference Territorial and Interterritorial
33 Percentage of haematoxylin stained nuclei area
34 Haematoxylin stained nuclei/mm2 

35 Interterritorial - Percentage of stained area
36 Interterritorial - VN stained area/mm2

37 Territorial - Percentage of stained area
38 Territorial - VN stained area/mm2

39 Total nuclei
40 Percentage of haematoxylin stained nuclei 
41 Percentage of VN positive cells
42 Ratio of haematoxylin stained nuclei pixels to total pixels
43 Interterritorial - ratio of weak positive pixels to total pixels
44 Interterritorial - ratio of moderate positive pixels to total pixels
45 Territorial - ratio of strong positive pixels to total pixels
46 Ratio of all positive pixels
47 H-score

Non-Topological

Table 2. Index of features name and identifiers used in the study, divided into topological (in blue) and non-
topological (green). Topological features are the ones who capture organization, while the non-topological characteristics 
are morphometric measurements. 

ID Name

1 Interterritorial - Sorting tensegral index
2 Interterritorial - Iteration tensegral index
3 Interterritorial - MST tensegral index
4 Interterritorial - std Percentage of VN stained area per region
5 Interterritorial - std Percentage of VN stained area per node
6 Interterritorial - euler number per VN stained area
7 Interterritorial - euler number per region
8 Interterritorial - euler number per node
9 Interterritorial - number of holes per VN stained area

10 Interterritorial - std area of holes
11 Interterritorial - mean quantity of branches per region
12 Interterritorial - mean quantity of branches per node
13 Territorial - Sorting tensegral index
14 Territorial - Iteration tensegral index
15 Territorial - MST tensegral index
16 Territorial - std Percentage of VN stained area per region
17 Territorial - std Percentage of VN stained area per node
18 Territorial - euler number per VN stained area
19 Territorial - euler number per region
20 Territorial - euler number per node
21 Territorial - number of holes per VN stained area
22 Territorial - std area of holes
23 Territorial - mean quantity of branches per region
24 Territorial - mean quantity of branches per node
25 Std difference Territorial and Interterritorial

Topological
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Figure 13. Pipeline overview of how the features are extracted. The process starts with the initial markup image, in 
which a region of interest was selected (in dark grey) to explain the space discretization. Below, the nodes (in red) are 
identified when a hexagon has VN inside. This information is used to obtain the pure topological features (light blue). The 
number of nodes is used to create the control with a uniform node distribution, while the position and number of nodes are 
for the node distribution. Each distribution of nodes is connected using a network algorithm and the GDD is computed for 
both control and markup networks. To obtain the tensegrity index, the distance between the control GDD and the markup 
GDD is calculated. For topological characteristics (blue), two sources of information are used: the hexagonal grid and 
detected nodes (arrows in darker gray), and properties quantification performed directly on the markup image (lighter gray 
arrows). Two topological features are highlighted: Euler number per node, where the Euler number is calculated by 
subtracting the two objects (in brown) against the five holes within them (in light brown); and Branches per node in which 
the crosslinks (circles in light brown) from territorial VN shapes (in brown) were detected.  Non-topological features are in 
green colour. 
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4.2 VN ANALYSIS 

VN is a glycoprotein that has been associated with cell migration and angiogenesis (Kenny et 
al., 2008; Madsen et al., 2007). Still, it is not well known whether this glycoprotein is implicated 
on NB tumorigenesis. To assess if VN could be a relevant marker for NB development, we 
created a VN dataset with 47 features, combining topological and non-topological features. Using 
the pipeline explained before (Figure 13), we computed 32 features from interterritorial and 
territorial VN (ID: 1-32), and, also, we added some features to compare them (ID: 25 and 32, 
Table 2). The remaining 15 features (ID: 33-47) were computed for a previous study (Burgos-
Panadero et al., 2019) and used here. 

4.2.1  Pre-analysis of pure topological features of VN  

From the dataset of 47 characteristics, we created a subset of 6 to inquire whether our pure 
topological approach could obtain any noteworthy results related to VN distribution. Therefore, 
we took our 6 tensegral indices (ID: 1, 2, 3, 4, 5 and 6, Table 2) and checked if any of them was 
distributed differently between cases labelled with different prognosis or genetic instabilities (risk 
and genetic instability criterion).  

Since our six tensegral indices did not follow a normal distribution, we computed a Mann-
Whitney-Wilcoxon test to check if the two populations (within each category) were independent 
(Material and Methods). On risk criteria, we compared high-risk vs non-high-risk groups, where 
no feature was statistically significant between different prognoses. In contrast, considering the 
genetic instability criterion, we found two remarkable features that divided high and low genetic 
instability with statistical relevance: Iteration algorithm of interterritorial VN (lower instability: 
0.22±0.08; higher instability: 0.18±0.10, p<0.01) and, also, Iteration tensegral index from 
territorial VN (lower instability: 0.26±0.08, higher instability: 0.21±0.09, p<0.01) (Table 3). More 
importantly, we noticed an interesting trend that related VN’s topology (see Definitions) with the 
outcome of the patients: more homogenous patterns arose on high-risk group patients and 
higher tumour genetic instability (Figure 14). This is reflected in the lower values of all the 
tensegrity indices for both criteria, indicating a lower difference between VN’s distribution and 
the homogeneous control (Table 3). 
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Mean STD Mean STD Shappiro Mann-Whitney
Interterritorial VN - Sorting tensegral index 0,24 0,10 0,25 0,07 0,60 0,448
Interterritorial VN - Iteration tensegral index 0,18 0,10 0,22 0,08 4,75E-04 0,006
Interterritorial VN - MST tensegral index 0,42 0,06 0,43 0,04 2,12E-13 0,114
Territorial VN - Sorting tensegral index 0,29 0,10 0,31 0,10 4,57E-05 0,103
Territorial VN - Iteration tensegral index 0,21 0,09 0,26 0,08 1,02E-04 0,006
Territorial VN - MST tensegral index 0,41 0,11 0,42 0,09 < 2.2e-16 0,498

High Low
Tumour genetic instability criteria

Table 3. Distribution of the tensegral indices regarding the patient’s classifications (risk and genetic instability). 
In particular, it is shown the mean and standard deviation (STD) of each category (higher and lower prognosis) with both 
criteria (risk and genetic instability). In yellow, there are the significant p-values (P<0.01). 

Mean STD Mean STD Shappiro Mann-Whitney
Interterritorial VN - Sorting tensegral index 0,25 0,10 0,25 0,08 0,51 0,617
Interterritorial VN - Iteration tensegral index 0,18 0,10 0,22 0,09 1,96E-04 0,057
Interterritorial VN - MST tensegral index 0,42 0,05 0,43 0,05 3,96E-14 0,232
Territorial VN - Sorting tensegral index 0,28 0,11 0,31 0,11 3,56E-05 0,102
Territorial VN - Iteration tensegral index 0,22 0,08 0,25 0,09 7,04E-05 0,136
Territorial VN - MST tensegral index 0,40 0,12 0,42 0,10 < 2.2e-16 0,680

High-Risk Non-High-Risk
Risk pre-treatment stratification group
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Figure 14. Iteration tensegral index representation of different NB biopsies with different prognosis. For the same 
human case, both VN locations are illustrated: interterritorial (top), where brown areas, corresponding to interterritorial VN, 
are connected with black links using Iteration algorithm; and territorial (bottom), in which red regions, representing territorial 
VN, are linked by edges creating a network. Note that images from patients related to the non-high-risk group and lower 
tumour genetic instability are represented in green. Burgundy rectangle shows examples of cases belong to high-risk group 
and higher tumour genetic instability. The ‘value’ is related to the Iteration tensegral index. 
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4.2.2 Risk group 

To improve our understanding of the role of VN in NB tumoral processes, in a second step, we 
analysed all the VN’s features (47 characteristics, Table 2). Considering this dataset, we looked 
for variables that could be related to the current patients’ classification named risk pre-treatment 
stratification group (risk). Based on INRG category, ‘risk’ classifies patients into very low, low, 
medium and high risk depending on several tumour-tissue characteristics trying to predict its 
tumoral aggressiveness, and, thus, its outcome. In addition, we wondered if VN was involved in 
NB cancer disease in a significant way and, if so, how was affecting it from a biological 
perspective.  

For this purpose, we made use of a statistical approach performed in previous studies (Martín-
Rodríguez et al., 2013, 2014). Aiming to find a feature that could correlate with the prognosis of 
the patient, we used a statistical analysis based on logistic regression (Material and Methods). 
First, we searched for features that could work independently. In particular, we used a univariate 
logistic regression analysis. It consisted of checking if the given characteristic was able to divide 
high-risk patients from low risk, but only by itself. Statistically, it tested if the individual 
contribution of each feature is significant. The relevant features of this analysis (P<0.05), were 
labelled as independent features and the others were discarded. We encountered with 21 out of 
47 (21/47) variables that were independent for risk classification group, where 11 of them (11/21) 
belonged to territorial VN (Table 4).  

The next step was to carry out the multivariate analysis consisting of obtaining the most relevant 
characteristics for a given criterion. Therefore, a selected variable on this step would mean that 
it could become a potential marker to assess one of the criteria. First, we acquired the 8th most 
independent features with the lowest p-value (but took 9 because the last variables had the same 
p-value). Since we aim to find independent variables, we put together the selected features from 
the previous univariate analysis and the INRG clinico-biological parameters, which are 
recognized predictor variables (Material and Methods and Table 5). We, then, checked how 
this model behaved (Table 5). 
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To compare two statistical models, we reported the Akaike Information Criterion (AIC, Table 
5). Therefore, we always prefer a model with minimum AIC value and we reported nagelkerke 
R2 as a measure of the fitness of the model (Table 5 and Material and Methods). Considering 
these statistical hints, we found this model too much explicative (R2 nagelkerke: 0.65), with a 
number of Fisher Scoring iterations higher than it should (14) and, more importantly, many of its 
independent variables did not explain (significantly) the dependent variable (risk) (Table 5). In 
addition, the model was yet not optimal (p-value: 0.01). Thus, it was required to remove some 
features. To achieve the best model, we computed the 10 best subset models in terms of AIC 
and see which features appeared most. Using two types of ‘best subset’ algorithms (‘Bestglm’ 

Table 4. Results from the univariate analysis performed for Risk pre-treatment stratificiation group. Only 
statistically significant characteristics (chi-sq<0.05) are shown. The features are ranked by their p-values obtained on the 
chi-square test, in ascending order. The selected features to be used in the next steps appeared with darker colours. The 
characteristics of territorial vitronectin (VN) are marked in bold (12/21 in the risk group). Highly statistically significant 
common features in risk group were marked with an asterisk. Using the same scheme of colours from Table 2. MST, 
minimum spanning tree; std, standard deviation. 

Risk pre-treatment stratification group

ID Characteristics Chi-sq
20 Territorial - euler number per node* 0,001
24 Territorial - mean quantity of branches per node* 0,003
39 Total nuclei 0,003
37 Territorial - Percentage of stained area* 0,006
16 Territorial - std Percentage of VN stained area per region 0,010
22 Territorial - std area of holes 0,010
34 Haematoxylin stained nuclei/mm2 0,010
36 Interterritorial - VN stained area/mm2 0,010
45 Territorial - ratio of strong positive pixels to total pixels 0,010
43 Interterritorial - ratio of weak positive pixels to total pixels 0,014
17 Interterritorial - std Percentage of VN stained area per node 0,016
29 Territorial - mean percentage of VN stained area per region 0,019
23 Territorial - mean quantity of branches per region 0,019
19 Territorial - euler number per region 0,019
47 H-score 0,019
27 Territorial - std Percentage of VN stained area per node 0,019
38 Territorial - VN stained area/mm2 0,019
33 Percentage of haematoxylin stained nuclei area 0,028
42 Ratio of haematoxylin stained nuclei pixels to total pixels 0,028
30 Territorial - mean percentage of VN stained area per node 0,033
46 Ratio of all positive pixels 0,033
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and ‘Glmulti’, Material and Methods) and an additional exploratory algorithm, we selected 5 
variables that were the most important to achieve a remarkable model (Figure 15, in orange: 
Age, Stage, SCA and MYCN; and in blue: Euler number of Territorial VN). Once we obtained 
this model, we looked for collinearities. A collinearity is observed when two (or more) features 
can be represented, approximately, with the same regression line. That means that the collinear 
characteristics would be explaining the same results and they would be only adding noise. 
Collinearities are solved by getting only one of the redundant features. We found collinearities 
between SCA and MYCN because their predictions were overlapping. Therefore, we solved this 
issue by removing the ‘SCA’ variable from the model because it obtained a greater value of 
collinearity. The resulting final model had 4 features, with one of our topological characteristics 
(Figure 15 and Table 6). 

Table 5. Logistic model result after univariate analysis in terms of Risk classification. On the left column are 
represented the features used on the model and the intercept, which helps to adjust the model. For each feature, it is 
displayed the estimate (log odd ratio), std error (standard error), equivalent to the significance of the estimated coefficient 
(p-value or Pr(>|z|) (Material and Methods). We have divided with a dotted line the following group of variables: the 
intercept, the features that came from the univariate analysis and the clinico-biological variables, which are known 
predictors of NB risk and genetic instability criteria. On the bottom, it is shown the properties used to evaluate the logistic 
models (AIC, fisher scoring iterations, Nagelkerke R2 and anova chi-square). The variables with P<0.1 are displayed in 
bold. 

Estimate Standard error p-value
(Intercept)                                              -3.43 1.37 0.01
 16: Territorial VN – std percentage of VN stained area per region -1.36 1.10 0.21
 24: Territorial VN – Mean quantity of branches per node 1.12 0.94 0.23
 20: Territorial VN – Euler number per node 1.71 0.94 0.07
 22: Territorial – std area of holes 0.16 0.49 0.75

 34: VTN - Haematoxylin stained nuclei/mm2 -0.25 0.40 0.54

 36: Interterritorial VN – V stained area/mm2 0.39 0.53 0.45
 37: Territorial VN - Percentage of stained area 0.60 0.87 0.49
 39: VN - Total nuclei -0.18 0.74 0.80
 45: Territorial VN - Ratio of Strong pixels to total pixels -1.52 0.92 0.10
 Age (≥18 month) 3.53 0.88 5.00E-05
 Stage -0.01 0.01 0.66
 Histologically differentiated 0.00 0.00 0.73
 SCA -1.93 0.84 0.02
 MYCN (MNA) 1.92 0.84 0.02
 Ploidy 0.00 0.00 0.46
 11q deletion 0.00 0.02 0.84

Akaike Information Criterion (AIC): 88.75 Nagelkerke R2: 0.65
Number of Fisher Scoring iterations: 14 Anova chi-square: 0.01
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Comparing this model (Table 6) with the previous model (Table 5), we got that this final model 
is quite better regarding our reported parameters (AIC: 84.31 vs previous AIC: 88.75, due to the 
lower number of independent variables; chi-sq: 0.001 vs previous chi-sq: 0.01; and a fair number 
of fisher iterations). Likewise, this model obtained a specificity of 0.89 (non-high-risk group) and 
a sensitivity of 0.74 (high-risk group) (Material and Methods).  

In terms of the independent features composing the model regarding the risk group of the 
patient, we analysed the relative importance of each variable within the model. To do that, we 
used the log odd ratio represented in Table 6. A log odds ratio is obtained by computing the 
logarithmic of the odds ratio. To easily interpret the log odds ratio, we needed to see if it was 
lower or higher than 0, significantly. In particular, If the log odds ratio of a particular variable is > 
0 (e.g. patient’s age), being all the other variables equal, we obtained that as the given feature 
increases its value, the patient is more likely to have a higher instability. In the case of an odd 
ratio < 0, a lower value in the feature points out to a higher tumour-specific genetic instability. 
Note that all the independent variables have an associated p-value, which tells you if the feature 
changes, it will probably change the genetic instability of the patient using this particular model. 
In the case of an odd ratio very close to 0, the p-value will not be statistically significant (P>0.05) 
as in ‘Stage’ and ‘MYCN’ features, which tells us that the most predictive features of the model 
are the Euler number per node of territorial VN (P<0.05) and the age of the patient (P<0.001) 
(Table 6). 
  

Table 6. Final model regarding risk pre-treatment stratification group, composed by 4 features: Euler number of 
Territorial VN (a topological feature of our dataset), Age, Stage and MYCN. As in Table 5, it is displayed the information 
for each variable and the properties to evaluate the model. 

Estimate Standard error p-value
(Intercept)                        -3.94 0.91 1.00E-05
20: Territorial VN – Euler number per node 0.65 0.26 0.01
Age (≥18 month)                          2.66 0.61 1.00E-05
Stage                       -0.01 0.01 0.61
MYCN                          -0.01 0.01 0.62

AIC: 84.31 Nagelkerke R2: 0.47
Number of Fisher Scoring iterations: 8 Anova chi-square: 0.001
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Figure 15. Statistical pipeline with VN dataset to obtain the most relevant features for Risk classification. Starting 
with the 47 VN features (topological in blue and non-topological in green colour), we performed a univariate analysis getting 
the ‘independent’ variables. With the 9th most statistically independent and the clinico-biological dataset (orange), we run a 
multivariate analysis with two different algorithms (Bestglm and Glmulti, Material and Methods). Finally, after keeping only 
the relevant features and removing redundancies, we obtained the best model with 4 features: 20 (Euler), Age, MYCN and 
Stage. Note that variables in grey were not selected for following analyses. 
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Overall, we have added a new independent variable based on the Euler number for territorial 
VN that is positively correlated with the risk of the cases, i.e. as the value of this feature 
increases, the risk does it accordingly (Figure 16). The Euler number stands for the number of 
objects in a sample minus the number of holes within those objects (Material and Methods). 
However, it may take into account more aspects of VN topology and structure. The feature Euler 
number per node from territorial VN not only is related to the quantity of pericellular VN but 
considers the compactness of the territorial VN stained area including intracellular VN. Finally, 
we found that a higher Euler number per node from territorial VN was associated with the high-
risk pre-treatment stratification group. 

4.2.3 Genetic instability criterion 

Following the same pipeline as before, we first performed a univariate analysis considering the 
patient’s genetic instability criterion. Among the resultant independent features, the three most 
statistically significant in tumour genetic instability were related to territorial VN features, also 
presenting low chi-sq values (Table 7). As in risk classification analysis happened, the majority 
of possible independent factors were characteristics of territorial VN (Table 4 and Table 7, green 
rows).  

Figure 16. Two examples of the Euler number on a low risk patient (left, green) and a high risk one (right, gaunt). 
In green, there is a region of interest of a non-high-risk patient whose biopsy obtained a value of 1.26 on the feature Euler 
number per node from territorial VN. On gaunt, it is highlighted a selected area with Euler number of 2.17 for an image 
coming from a NB patient. 
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We selected the 8th most relevant features that presented the lowest p-values on the univariate 
analysis (Table 7). Next, we computed a logistic regression coupling the previous subset of 
characteristics and the clinico-biological parameters of the patients (Table 8). Still, this model 
was too explicative (Nagelkerke R2: 1.00) and not optimal due to a high number of variables. 
Therefore, as performed for risk pre-treatment stratification group, we carried out a multivariate 
analysis to obtain which variables were the most relevant independent factors for the genetic 
instability criteria. Diverse features appeared on the selected subset of the two ‘best-subset 

Table 7. Selected features from the univariate analysis for tumour genetic instability criteria (P<0.05). Rows are 
color-coded regarding its topological basis as in Table 2. 

ID Characteristics Chi-sq
20 Territorial - euler number per node* 8,20E-07
24 Territorial - mean quantity of branches per node* 4,03E-06
37 Territorial - Percentage of stained area* 6,58E-05
17 Interterritorial - std Percentage of VN stained area per region 9,05E-05
39 Total nuclei 1,27E-04
29 Territorial - mean percentage of VN stained area per node 1,75E-04
16 Territorial - std Percentage of VN stained area per region 2,74E-04
45 Territorial - ratio of strong positive pixels to total pixels 2,74E-04
27 Territorial - mean percentage of VN stained area per region 3,87E-04
23 Territorial - mean quantity of branches per region 3,87E-04
7 Territorial - euler number per region 5,34E-04

40 Percentage of haematoxylin stained nuclei area 6,11E-04
22 Territorial - std area of holes 8,44E-04
43 Interterritorial - ratio of weak positive pixels to total pixels 1,46E-03
47 H-score 0,002
38 Territorial - VN stained area/mm2 0,002
46 Ratio of all positive pixels 0,004
31 Territorial - mean area of holes 0,005
42 Ratio of haematoxylin stained nuclei pixels to total pixels 0,006
36 Interterritorial - VN stained area/mm2 0,009
12 Interterritorial - mean quantity of branches per node 0,014
34 Haematoxylin stained nuclei/mm2 0,016
2 Interterritorial - Iteration tensegral index 0,017

19 Territorial - euler number per region 0,024
21 Territorial - number of holes per VN stained area 0,030
9 Interterritorial - number of holes per VN stained area 0,034
6 Interterritorial - euler number per VN stained area 0,045

Tumour genetic instability criteria
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selection’ algorithms (Material and Methods). However, since the ‘Glmulti’ algorithm is more 
accurate (Figure 17), we only took the ones that appeared more than 80% on this method and 
were relevant on ‘Bestglm’ (appearance>=0.5) (Figure 17), obtaining the variables that were the 
most noteworthy. Therefore, we discarded features “11q deletion” and 17, because the former 
had a lower prevalence on ‘Bestglm’ algorithm (Figure 17), and the latter was not selected by 
the ‘Glmulti’ algorithm (Figure 17).  

Despite we have used a robust method, other issues might occur. We, then, looked for 
collinearities, and we discovered that Stage was collinear to feature 24 (Territorial VN – mean 
quantity of branches per node). We, therefore, removed Stage because it obtained worse results 
than feature 24 on the multivariate analysis (Figure 17). Thus, our best model assessing tumour 
genetic instability was formed by genetic profile (SCA), MYCN status (MNA), ploidy (diploid and 
tetraploid) and mean quantity of branches per node of territorial VN (Figure 17). With this set of 
four variables, we obtained the most optimal model (Table 9, regular logistic regression with AIC: 
41.99, number of Fisher scoring iterations: 19, chi-sq: 4.03e-06, Nagelkerke R2: 0.84). Although 
we obtained the most relevant independent factors from our dataset, we acknowledged the issue 
of quasi-completion separation to acquire the real value of the odds ratio. Mainly, this problem 
is defined by extreme odds ratio with enormous standard errors.  

Table 8. Resulting logistic regression model of Risk stratification group using the intercept (top), independent 
features (middle) and the clinico-biological variables of the patients (bottom). We displayed, for all the variables, its 
estimate log odd ratio, standard error, and p-value. To analyse the model, it is displayed its corresponding AIC, Fisher 
scoring, R2 and chi-sq. 

Estimate Standard error p-value
(Intercept)                                             -2,00E+02 1,10E+05 1,00

17: Interterritorial VN - std Percentage of VN stained area per region -9,00E+01 2,60E+05 1

29: Territorial VN - mean percentage of VN stained area per node 3,80E+01 1,60E+05 1

16: Territorial VN - std percentage of VN stained area per region -5,20E+01 1,00E+05 1

24: Territorial VN - mean quantity of branches per node         7,10E+01 4,80E+04 0,999

20: Territorial VN - Euler number per node                      7,90E+01 1,10E+05 0,999

37: Territorial VN - Percentage of stained area            -2,00E+01 2,00E+05 1

39: Total nuclei -4,50E+00 1,10E+05 1

45: Territorial VN - ratio of strong positive pixels to total pixels 1,10E+01 3,20E+04 1

Age (≥18 month) 8,30E+01 8,10E+04 0,999

Stage 1,10E-01 3,40E+02 1

Histologically differentiated                           -7,30E-03 8,10E+01 1

SCA                                                     1,00E+02 1,30E+05 0,999

MYCN (MNA)                                              9,40E+01 1,20E+05 0,999

Ploidy -5,00E-02 1,00E+02 1

11q deletion         -4,70E-02 2,50E+02 1

AIC: 32 Nagelkerke R2: 1.00

Number of Fisher Scoring iterations: 25 Anova chi-square: 0.0003
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Figure 17. Statistical protocol to find the most relevant features of VN in terms of the genetic instability of NB 
patients. Using the VN dataset (topological: blue, non-topological: green, both: aquamarine colour), we computed a 
univariate analysis to obtain the 8th best features (Material and Methods) assessing the Genetic Instability independently 
(aquamarine ellipse). We, then, combined the resultant features from the univariate analysis with the clinico-biological 
characteristics (orange coloured). With this dataset, we performed a multivariate analysis with two methods (Material and 
Methods). By removing redundancies, we kept only the relevant features for this criterion. Grey variables were not selected 
as relevant for this classification. 
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To avoid this common issue (Allison, 2004; Heinze and Schemper, 2002), we performed a 
penalized model called Firth’s logistic regression (Material and Methods), instead of using the 
default logistic regression (Table 9). Using this penalized model (χ2<0.005), we obtained a 
specificity of 0.91 and a sensitivity of 0.89.  

Figure 18. Branches per node of Territorial VN feature. It is illustrated, two region of interest examples with different 
genetic instability: on green colour (left), the example of an area taken from a lower genetic instability; on garnet colour (right), 
a region of interest representing a higher value of the branching correlated with a higher genetic instability. 

Table 9. The two final models of genetic instability criteria. The table located on top represents the regular logistic 
regression with huge standard errors. In contrast, the bottom table stands for the penalized Firth’s logistic regression with 
its corrected values. Both models share the same features, with different associated log odds ratio (B), standard error 
(S.E.), odds ratio and its confidence score (exp(B) 95%CI), anova chi-square value (chi-sq) and p-value (or z-value and 
Pr(>|z|). 

Tumour genetic instability criteria
Regular logistic regression

Variable B S.E Exp (B) (95% CI) z-value Pr(>|z|) 
(Intercept) -23.64 2914.00 5.45E-11 (0 - Inf) -0.01 0.994
Territorial - Mean quantity of branches per node 1.50 0.58 4.46 (1.44 - 13.80) 2.60 0.009
SCA 19.89 2914.00 4.37E+08 (0 - Inf) 0.01 0.995
MYCN  (MNA) 22.58 3245.00 6.43E+09(0 - Inf) 0.01 0.994
Ploidy -2.83E-03 1.32E-03 1.00 (0.99 -1.00) -2.15 0.032

Firth's logistic regression
Variable B S.E Exp (B) (95% CI) Chi-sq p

(Intercept) -6.53 2.10 1.42E-04 (4.58E-06 - 4.64E-02) 21.99 2.73E-06
Territorial - Mean quantity of branches per node 1.24 0.47 3.45 (1.42 - 10.96) 8.00 0.005
SCA 3.45 1.58 31.45 (3.04 - 4.45) 10.20 0.001
MYCN  (MNA) 5.26 1.95 192.31 (9.81 - 4764.41) 20.04 7.56E-06
Ploidy -2.21E-03 1.04E-03 1.00 (1.00 - 1.00) 5.46 0.019

Tumour genetic instability criteria
Regular logistic regression

Variable B S.E Exp (B) (95% CI) z-value Pr(>|z|) 
(Intercept) -23.64 2914.00 5.45E-11 (0 - Inf) -0.01 0.994
Territorial - Mean quantity of branches per node 1.50 0.58 4.46 (1.44 - 13.80) 2.60 0.009
SCA 19.89 2914.00 4.37E+08 (0 - Inf) 0.01 0.995
MYCN  (MNA) 22.58 3245.00 6.43E+09(0 - Inf) 0.01 0.994
Ploidy -2.83E-03 1.32E-03 1.00 (0.99 -1.00) -2.15 0.032

Firth's logistic regression
Variable B S.E Exp (B) (95% CI) Chi-sq p

(Intercept) -6.53 2.10 1.42E-04 (4.58E-06 - 4.64E-02) 21.99 2.73E-06
Territorial - Mean quantity of branches per node 1.24 0.47 3.45 (1.42 - 10.96) 8.00 0.005
SCA 3.45 1.58 31.45 (3.04 - 4.45) 10.20 0.001
MYCN  (MNA) 5.26 1.95 192.31 (9.81 - 4764.41) 20.04 7.56E-06
Ploidy -2.21E-03 1.04E-03 1.00 (1.00 - 1.00) 5.46 0.019
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Interestingly, one of our variables calculated for this work appeared on the final model of genetic 
instability: the mean quantity of branches per node of territorial VN. In particular, this feature 
considers the number of crosslinks after skeletonizing the image, taking into account only the 
hexagons of the grid with some territorial VN (Material and Methods). Thanks to the Firth’s 
logistic regression, we obtained the true value of odds ratio of each variable alongside with its 
importance (p-value) assessing the tumour genetic instability criteria. For the selected branching 
feature, we obtained a positive correlation between the branching and the tumour genetic 
instability of the patient, meaning that the higher the number of branches, the worse the tumour 
genetic instability (Figure 18). Importantly, we found a trend on the four defined levels from the 
genetic instability of the tumours (very low: 1.81±0.8; low: 2.30±1.6; medium: 2.43±1.1; high: 
7.05±5.4). Overall, we can say that territorial VN crosslinks is highly correlated to the tumour 
genetic instability.  

4.3 THE TUMOUR MICROENVIRONMENT 

To quantify whether the organization of the components forming the TME affects 
neuroblastoma malignancy, we performed the same approach used with VN in previous 
sections. We acquired a set of topological and non-topological features using different markers 
of the TME from the same biopsies and patients. We analysed and extracted pure topological, 
topological, non-topological characteristics from the following TME elements: collagen, reticulin, 
GAGs, blood vessels and lymphatic vessels. We, then, created an additional dataset formed by 
all these features (114 in total, Additional Table 1) from each marker to weight the relative 
importance of VN in assessing cancer aggressiveness and tumour genetic instability. 

4.3.1 Risk group 

The first step was to create a subset with all the features, but excluding VN, (Additional Table 
1) to find the relevant features within the TME dataset. Following the statistical pipeline (Material 
and Methods), we only kept the characteristics that obtained P<0.005 for the risk classification 
on the univariate analysis. This subset was formed by three features related with the blood 
vessels (ID: 78, 95 and 96), two with the collagen (108 and 110) and one with the reticulin (ID: 
72, Table 10). To perform the multivariate analysis, we added the clinico-biological features and 
the VN features that came from the past analysis (Branching and Euler number of territorial VN). 
The protocol and results of this analysis are shown in Figure 19. 
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Table 10. Logistic regression model with all the TME variables (including VN) for risk pre-stratification group. It is 
formed by the variables presented on the left column and, for each feature, is shown its estimate, and associated standard 
error, the p-value. With a dotted line it is divided the different groups of features: the intercept, the features coming from the 
univariate analysis, the clinic biological characteristics and the known relevant features of VN from previous analysis. In 
addition, it is presented the goodness of the model in the bold properties below (AIC, fisher scoring iterations, R2 and chi-
square). 

Estimate Standard error p-value
(Intercept)                                   -4.41 3.35 0.19
78: Blood vessels – std percentage stained area per node    -0.49 0.48 0.31
108: Collagen - mean quantity of branches per node 0.19 0.6 0.78
110: Collagen - euler number per region  0.59 0.54 0.27
72: Reticulin - Dendrites                    0.05 0.41 0.90
95: Blood vessels - PerRatio                             -0.91 0.41 0.03
96: Blood vessels - Perimeter                            0.76 0.49 0.12
Age (≥18 month)                                     3.12 0.98 1.40E-03
Stage                                  -0.01 0.01 0.64
Histologically differentiated                              0.00 0.00 0.68
SCA                                      -1.70 0.98 0.08
MYCN (MNA)                                     1.70 0.97 0.08
Ploidy                                  0.00 0.00 0.51
11q deletion                               -0.01 0.02 0.71
20: Territorial VN – Euler number per node            1.02 0.82 0.21
24: Territorial VN – mean quantity of branches per node -0.20 0.77 0.80

AIC: 82.5 Nagelkerke R2: 0.69
Number of Fisher Scoring iterations: 14 Anova chi-square: 0.003

Table 11. Final model of VN and the rest of TME elements for risk criterion. It is represented all the information as in 
Table 10.  

Estimate Standard error p-value
(Intercept)                        -2.39 1.22 0.05
95: Blood vessels - PerRatio                -0.52 0.30 0.09
Age (≥18 month)                          2.31 0.64 3.00E-04
Stage                       -0.01 0.01 0.62
MYCN (MNA)                          0.00 0.01 0.69
20: Territorial VN – Euler number per node  0.58 0.27 0.03

AIC: 83.301 Nagelkerke R2: 0.50
Number of Fisher Scoring iterations: 8 Anova chi-square: 3.2e-05



 
 
 

43 

  

96 Stage

SCA
MYCN
11qAge

95
110

72
10878

TME features on Risk classification

Topological

Non-topological

Clinico-biological Univariate Analysis

145

48 74
85102

59

118 134
99

60 86
146

130
114

161 73

20 24

20: VN 
Euler

Age

Stage

MYCN

Best model

95: Blood 
Vessels

Keep relevant features
without redundancies

Bestglm Glmulti

Multivariate analysis

Figure 19. Statistical analysis using TME dataset regarding Risk classification. The initial dataset was formed by 
variables from collagen, reticulin, blood vessels, lymphatic vessels and GAGs (i.e. TME features). We obtained the most 
significant variables working independently (P<0.005) using a univariate analysis. Then, we coupled the previous subset, the 
clinico-biological variables and the VN features found to be important (Table 3 and Table 6). Considering these features, we 
performed a multivariate analysis and after removing redundancies, we obtained the following best model: 20 from Territorial 
VN, 95 of blood vessels, Age, Stage and MYCN. Note that each colour represents the category of the features: green (non-
topological), blue (topological) and orange (clinico-biological). Variables in grey colour were found to be not relevant for this 
criterion. 
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The best model we obtained from the logistic regression is shown in Table 11. Interestingly, 
the Euler number of territorial VN was still a relevant feature and appeared on the final model 
alongside the other clinical characteristics (Table 6). Likewise, a blood vessel feature was 
included in the final model. Specifically, the aspect ratio of the blood vessels became an 
individual independent feature for the risk classification of NB patients. The results suggest that 
more regular blood vessels would be associated with lower risk patients.  
4.3.2 Genetic instability criterion 

Following the same criteria used for Risk classification, we acquired 4 features (P<0.005) 
resulting from the univariate analysis performed (ID: 108, 67, 72, 95, Table 12). We, then, joined 
these variables with the known predictors and computed the multivariate analysis to reduce the 
number of variables of the model. Despite we have added new possible features from reticulin 
or collagen, the output of the analysis is the same than the obtained in VN analysis: the only 
feature that was found relevant is the “Mean quantity of branches per node” of Territorial VN (ID: 
24, Figure 20). 

Table 12. Initial logistic regression model using the independent variables from TME dataset regarding Genetic 
Instability. The variables included came from the univariate analysis and the known predictors (INRG variables and both 
territorial VN characteristics), divided by dotted lines. It is displayed all the names of the features along with its estimate 
coefficient, standard error and its p-value. Denoted by all the statistically significant p-values, it is not a good model (Material 
and Methods). It is also shown the AIC, number of Fisher scoring iterations, R2 and chi-square to demonstrate the goodness 
of the model. 

Estimate Standard error p-value
(Intercept)                                   -1.55E+15 5.38E+07 <2e-16
108: Collagen - mean quantity of branches per node -2.38E+14 8.09E+06 <2e-16
67: Reticulin - Roundness                         1.05E+14 1.18E+07 <2e-16
72: Reticulin - Dendrites                        -5.77E+14 1.22E+07 <2e-16
95: Blood vessels - PerRatio                -1.08E+14 7.84E+06 <2e-16
Age (≥18 month)                                 1.08E+15 1.81E+07 <2e-16
Stage                                  -6.35E+11 7.15E+04 <2e-16
Histologically differentiated                     -6.54E+11 3.43E+04 <2e-16
SCA                                      2.69E+15 1.89E+07 <2e-16
MYCN (MNA)                                     1.58E+15 2.07E+07 <2e-16
Ploidy                                  -1.13E+12 1.67E+04 <2e-16
11q deletion                               -2.33E+12 5.16E+04 <2e-16
20: Territorial VN – Euler number per node    1.57E+14 1.27E+07 <2e-16
24: Territorial VN – mean quantity of branches per node  1.74E+14 1.29E+07 <2e-16

AIC: 316 Nagelkerke R2: -10.11
Number of Fisher Scoring iterations: 19 Anova chi-square: 0.0002 
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In conclusion, for instability, we find no suitable addition to the model beyond what we had 
(clinico-biological variables and VN mean quantity of branches). Therefore, results shown in 
Table 9, are still valid. 
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Figure 20. Statistical protocol to obtain the most relevant subset of TME dataset regarding Genetic instability 
criterion. We, first, performed a univariate analysis to the TME dataset, acquiring the most statistically independent 
characteristics (P<0.005). Then, we combined the resulting subset (aquamarine ellipse) with the clinico-biological features 
and the two selected VN variables of previous analysis. Using two algorithms (Bestglm and Glmulti, Material and Methods), 
we computed a multivariate analysis, in which we kept the most relevant features. By removing redundancies, we obtained 
the best subset of variables to assess Genetic instability of NB patients. 
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5 Discussion 

In this work, we show that the organization of VN can be useful to assess the genetic instability 
and prognosis (risk) of NB patients. Using the set images of (Burgos-Panadero et al., 2019), we 
perform a computational approach to characterise VN and other TME elements, in terms of 
organization and morphology, aiming to better understand how these elements affect tumour 
progression. Overall, we find that, within our dataset, the VN organization is a relevant feature 
for both tumour genetic instability and risk classification of NB patients. In addition, our data 
suggest a plausible scenario in which the way VN is organized could play a greater role than 
previously thought, regarding tumour aggressiveness. 

Networks are nowadays a common approach in biology (Vicente-Munuera et al., 2020; Viola et 
al., 2019). However, there are many unexploited tools that can be still used. In this study, we 
developed a complex pipeline (Figure 13) to obtain objective information about how is structured 
a marker (e.g. VN or Collagen) throughout a histopathological NB image, by means of the 
graphlets of its network. For this purpose, we computed the GDD (see Abbreviations) distance 
between the mark-up image network and its uniform control for a particular marker and algorithm, 
resulting in a simple number that reflects how similar are the two graphs. Therefore, the GDD 
will capture how the marker is spread throughout the biopsy (its difference with the homogenous 
control). Considering that the graphlets of the controls will be enriched in the same graphlets due 
to its hexagonal (and homogeneous) distribution, a marker, accumulated differently through the 
sample, would be enriched by distinct motifs, thus, presenting a higher tensegral index (that goes 
from 0 to 1). 

Due to the simplicity of the resulting values acquired in the pipeline of the pure topological 

features (Figure 13), we wanted to minimize the technical artefacts that could arise from the 

discretization we used. For that reason, we tested a range of hexagonal sizes for the image 

discretization (radius from 3 pixels to 300 pixels; 0.483µm to 48.3µm, respectively). Since the 

size of each region is directly related to the number of nodes that would be in the calculated 

network, it would affect the results of the pure topological features. On one hand, if we have big 

regions, there would be only a few nodes in the network. Our graphlets algorithm (GDD) is meant 

to work with large and complex networks, where there are different motifs and in diverse 

quantities (Przulj, 2007). On the other hand, smaller hexagons would result in a greater quantity 

of nodes causing a more enriched network and graphlets. However, it would be highly dependent 

on the quantity of the marker, instead of its organization. After several tests, we selected the 50 
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pixels hexagonal radius (8.05µm, Figure 10) as an intermediate size, optimal to capture how the 

analysed markers were organized locally and globally. 

Moreover, to compute the network of an image from its hexagonal discretization, we use three 

different algorithms (Iteration, Sorting and MST). Considering these outcomes, we have found 
that the Iteration algorithm was the most informative (Table 3, Table 4 and Table 7). We interpret 
that networks computed with the Iteration algorithm will be more suitable to be characterized by 
graphlets. These results could be related to the very dense networks (enriched by the same 
graphlets) provided by Sorting algorithm, while MST networks, with a very low density of edges 
(MST networks are tree graphs, i.e. they have no cycles), would be enriched by “line graphlets”.  
(Figure 2 and Figure 11). These graphlets configurations would make the GDD less sensitive 
to differences with the control and, therefore, less powerful to discriminate the different criteria 
(Risk and Genetic instability). 

Focusing on the VN analysis, although the tensegral indices were not selected as the most 
relevant features, they do reveal that VN behaves differently in cases with a worse prognosis. 
Our results indicate that more homogeneous patterns of VN appear when the tumour is more 
aggressive (Table 3). However, we reckon that these results might be reflecting not only its 
organization but the quantity of VN in the biopsy. In a particular scenario where VN is all over 
the biopsy more homogenous pattern would arise. Still, we have shown that graphlets may be 
useful to characterise different organizations, even when both images resemble similar to the 
naked eye (Figure 21). Future works will be needed to continue exploring the utility of graph 
theory algorithms to capture organizational information from biopsies. 

To assess how the topology of VN was related to tumour aggressiveness and the prognosis of 
the patient, we extracted morphological and topological features from NB patients with different 
prognosis. We obtained two topological characteristics that correlated with each criterion: Euler 
number of territorial VN with Risk pre-treatment classification; and branching of territorial VN with 
Genetic instability criterion. In the first analysis, we found that the Euler number of biopsies taken 
from patients with worse prognosis was, on average, higher (Figure 16). It may be found difficult 
to biologically interpret this feature due to its versatility and complexity. First of all, we think that 
the quantity of VN is affecting the Euler number. For instance, a direct consequence of our grid 
discretization is that if the quantity of VN increases, there would be more objects and fewer holes. 
Still, how VN is structured and interconnected with all the elements of the tissue is considered. 
For instance, Figure 16 might be illustrating how, in a NB patient with lower risk, the VN is 
surrounding the cells and within them (Figure 16, left). However, a different scenario is 
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represented when the tumour is more aggressive. On Figure 16 (right), VN might be more 
required (thus, a higher quantity would also be presented) exhorting the cell to produce it, in a 
disorganized way, showing a ‘holey’ pattern representing a higher Euler number. A similar 
pattern arose on a different work, where prostate histological images were analysed (Wittke et 
al., 2007). They found that tubular and cribriform growth patterns were associated with lower and 
higher aggressive behaviours, respectively. Similarly, we encounter that in territorial VN, a higher 
Euler number is related to worse prognosis (Figure 16). Thus, considering our results, territorial 
VN may be forming cribriform‐like structures that would surround the cancer cells and, as a 
consequence, remodelling the ECM.  

For the tumour genetic instability criteria, the branches per node of territorial VN was the most 
relevant feature regarding our statistical analysis (Figure 17). In particular, we found that the 
higher number of branches, the more aggressive the tumour would be. We suggest that this 
feature could also be related to the shape of VN formed in the surroundings of the cells (Figure 
18). Putting together all the results, we conjectured why the ECM and VN could be interplaying 
in terms of tumour aggressiveness. Altogether, considering the biological insights from the two 
most relevant features (Euler number and Branching of Territorial VN), we propose that VN may 
be creating migration tracks, aiding the tumour to progress to other organs, which, in turn, would 
decrease the survival possibilities of NB patients (Figure 22). This metastatic process on NB 

High risk No risk No risk

Tensegral index: 0.31 Tensegral index: 0.24 Tensegral index: 0.20

Figure 21. Examples of biopsies with different organizations and prognosis are shown. Biopsies are stained to 
display VN (orange-brown colour) and haematoxylin (blue colour). The risk classification associated to each biopsy is also 
displayed. Tensegral indices correspond to Iteration tensegral indices of Territorial VN.  
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would involve a disturbing change on the structure of the ECM, in which VN would be, at least, 
implicated. 

In tissue homeostasis, the concentration of territorial VN, located closer to the cell or within it, 
and interterritorial VN must be regulated by a steady proteolytic activity. Imbalances in proteases 
were found to control tissue homeostasis by degrading the ECM, which, in turn, helps the tumour 
to invade and metastasizes (Kessenbrock et al., 2015; Sevenich and Joyce, 2014; Zhang et al., 
2012). VN has already been associated with defects in proteolysis regulation and cell adhesion 
(De Lorenzi et al., 2016). In our case, membrane-associated proteases, either overexpressed or 
by its lack, could be the cause of an over proliferated territorial VN due to a malfunction of 
pericellular proteolysis (Toromanov et al., 2015). Another possibility is that endothelial cells are 
migrating to a fibronectin-rich environment as a way to create new blood vessels in the process 
of neoangiogenesis (DeClerck et al., 2004; Isogai et al., 2001). It also concords with the 
homogeneous patterns found in both territorial and interterritorial VN (Figure 14), which were 
spread without limits in poor prognosis NB patients. Even more, both possibilities may be in 
agreement and could be joining forces (Kraniak et al., 2018): a higher presence of territorial VN 
would change dramatically the constitution and mechanics of the ECM by the rapid addition of 
new synthesized VN creating migration tracks, that may lead to a more aggressive NB (Figure 
22). However, it is unclear which is the mechanism behind these results. 

Figure 22. The tumour microenvironment on a high-risk scenario, where VN, hypothetically, creates tracks to aid 
the tumoral cells to invade other organs. On this figure, tumour cells are segregating VN (brown colour) while changing 
the rest of the TME elements to help them to survive and thrive on the organism it is living upon. 
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Overall, we have seen VN as the most significant marker of our dataset. Nonetheless, when 
coupling all the variables (VN and other TME elements), another statistically relevant 
characteristic appeared: the aspect ratio of blood vessels. In particular, we found that more 
irregular blood vessels would be correlated to poorer prognosis of the patients. Irregular blood 
vessels were already associated with more aggressive tumours (Nagy et al., 2009; De Palma et 
al., 2017). This effect would be produced by an irregular angiogenesis triggered by the tumoral 
cells whose supply requirements are larger than non-tumoral cells. This is consistent with 
previous studies of angiogenesis in tumoral environments (Nagy et al., 2009; De Palma et al., 
2017). 

In this thesis, we have unveiled VN as a new possible actor on NB tumorigenesis. Our results 
suggest that VN organization is statistically related to tumoral aggressiveness and the prognosis 
of NB patient. Interestingly, we found that VN would be the most influential factor compared to 
any other tested element of the TME in NB. Only a feature of blood vessels was found to be 
relevant for one of our criteria (Risk pre-treatment classification). Thus, none of the acquired 
features for collagen, reticulin, lymphatic vessels or GAGs came out as statistically significant, 
meaning that VN may play a greater role than previously assumed in NB. Although we need to 
deep down on the molecular basis of VN during NB, we highlight VN as a possible therapeutic 
target for NB. Further studies will be required to reveal the true role of VN in NB and to test 
whether our results are consistent. 
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6 Conclusions 

1) We have analysed histopathological images from NB human patients, where different 
TME elements were displayed. These images where the initial source to apply the 
network approach. 

2) We have developed a pipeline to fully analyse NB biopsies, combining topological and 
morphological features from VN and TME markers (collagen, reticulin, 
glycosaminoglycans, blood vessels and lymphatic vessels). 

3) We, first, have focus on the role of VN in NB. For that purpose, we analysed two different 
types of VN: territorial (recently synthesized VN) and interterritorial VN (deposited in the 
ECM). 

4) Considering only the VN results from the pure topological characteristics, we suggest 
that the way VN is distributed on the biopsy might be related to the prognosis of the 
patient.  

5) Using the VN dataset (47 features), we performed a statistical pipeline consisted in two 
steps: a univariate analysis and a multivariate analysis. As a result, we obtained that two 
topological features from territorial VN were the most significant characteristics of the VN 
dataset: Euler number on risk pre-stratification group and Branching on genetic instability 
criterion. 

6) To extend the same type of analysis to other TME elements, we collected features from 
collagen, reticulin, GAGs, blood vessels and lymphatics vessels to create the TME 
dataset (114 features). 

7) By performing the same statistical analysis, we obtained another significant feature 
related to the TME: the aspect ratio of the blood vessels. Consistent with previous works, 
we found that irregular blood vessels were related to more aggressive tumours. 

8) Altogether, from all the elements of the TME analysed, the most relevant marker in our 
dataset is VN. We hypothesize that VN would be creating migration tracks, changing 
dramatically the ECM that, in turn, will increase tumour aggressiveness. 
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 Topological Non-Topological
ID Name ID Name
48 Reticulin - Sorting tensegral index 60 Reticulin - mean percentage stained area per region
49 Reticulin - Iteration tensegral index 61 Reticulin - mean percentage stained area per node
50 Reticulin - MST tensegral index 62 Reticulin - mean area of holes
51 Reticulin - std percentage stained area per region 63 Reticulin - Stained area / mm2
52 Reticulin - std percentage stained area per node 64 Reticulin - Stained area
53 Reticulin - mean quantity of branches per region 65 Reticulin - Mean area
54 Reticulin - mean quantity of branches per node 66 Reticulin - Aspect
55 Reticulin - euler number per stained area 67 Reticulin - Roundness
56 Reticulin - euler number per region 68 Reticulin - Length
57 Reticulin - euler number per node 69 Reticulin - Width
58 Reticulin - number of holes per stained area 70 Reticulin - Per_ratio
59 Reticulin - std area of holes 71 Reticulin - F_dimen
74 Blood vessels - Sorting tensegral index 72 Reticulin - Dendrites
75 Blood vessels - Iteration tensegral index 73 Reticulin - Angle
76 Blood vessels - MST tensegral index 86 Blood vessels - mean percentage stained area per region
77 Blood vessels - std percentage stained area per region 87 Blood vessels - mean percentage stained area per node
78 Blood vessels - std percentage stained area per node 88 Blood vessels - mean area of holes
79 Blood vessels - mean quantity of branches per region 89 Blood vessels - Mean area
80 Blood vessels - mean quantity of branches per node 90 Blood vessels - Width
81 Blood vessels - euler number per stained area 91 Blood vessels - Length
82 Blood vessels - euler number per region 92 Blood vessels - Angle
83 Blood vessels - euler number per node 93 Blood vessels - Roundness
84 Blood vessels - number of holes per stained area 94 Blood vessels - Aspect
85 Blood vessels - std area of holes 95 Blood vessels - PerRatio

102 Collagen - Sorting tensegral index 96 Blood vessels - Perimeter
103 Collagen - Iteration tensegral index 97 Blood vessels - Deformity
104 Collagen - MST tensegral index 98 Blood vessels - Shape
105 Collagen - std percentage stained area per region 99 Blood vessels - Vertices
106 Collagen - std percentage stained area per node 100 Blood vessels - Vessels/mm2
107 Collagen - mean quantity of branches per region 101 Blood vessels - area_clasearea_cilindro
108 Collagen - mean quantity of branches per node 114 Collagen - mean percentage stained area per region
109 Collagen - euler number per stained area 115 Collagen - mean percentage stained area per node
110 Collagen - euler number per region 116 Collagen - mean area of holes
111 Collagen - euler number per node 117 Collagen - Stained area
112 Collagen - number of holes per stained area 130 GAGs - mean percentage stained area per region
113 Collagen - std area of holes 131 GAGs - mean percentage stained area per node
118 GAGs - Sorting tensegral index 132 GAGs - mean area of holes
119 GAGs - Iteration tensegral index 133 GAGs - Stained area
120 GAGs - MST tensegral index 146 Lymphatic vessels - mean percentage stained area per region
121 GAGs - std percentage stained area per region 147 Lymphatic vessels - mean percentage stained area per node
122 GAGs - std percentage stained area per node 148 Lymphatic vessels - mean area of holes
123 GAGs - mean quantity of branches per region 149 Lymphatic vessels - Mean area
124 GAGs - mean quantity of branches per node 150 Lymphatic vessels - Width
125 GAGs - euler number per stained area 151 Lymphatic vessels - Length
126 GAGs - euler number per region 152 Lymphatic vessels - Angle
127 GAGs - euler number per node 153 Lymphatic vessels - Roundness
128 GAGs - number of holes per stained area 154 Lymphatic vessels - Aspect
129 GAGs - std area of holes 155 Lymphatic vessels - PerRatio
134 Lymphatic vessels - Sorting tensegral index 156 Lymphatic vessels - Perimeter
135 Lymphatic vessels - Iteration tensegral index 157 Lymphatic vessels - Deformity
136 Lymphatic vessels - MST tensegral index 158 Lymphatic vessels - Shape
137 Lymphatic vessels - std percentage stained area per region 159 Lymphatic vessels - Vertices
138 Lymphatic vessels - std percentage stained area per node 160 Lymphatic vessels - Vessels/mm2
139 Lymphatic vessels - mean quantity of branches per region 161 Lymphatic vessels - area_clasearea_cilindro

140 Lymphatic vessels - mean quantity of branches per node
141 Lymphatic vessels - euler number per stained area
142 Lymphatic vessels - euler number per region
143 Lymphatic vessels - euler number per node
144 Lymphatic vessels - number of holes per stained area
145 Lymphatic vessels - std area of holes

Additional Table 1. TME dataset. Additional dataset with the characteristics extracted from reticulin, blood vessels, 
collagen, GAGs and lymphatic vessels (Material and Methods). This table compliments Table 2.  



 
 
 

  



 
 
 

 
  



 
 
 

 
 
 
 
 

 

 

 

 

 

 

 

 

 

 “Never confuse education with intelligence, you 
can have a PhD and still be an idiot…” 

  


