
Generating Rules to Filter Candidate Triples for their
Correctness Checking by Knowledge Graph Completion

Techniques

Agustín Borrego
borrego@us.es

University of Seville
Seville, Spain

Daniel Ayala
dayala1@us.es

University of Seville
Seville, Spain

Inma Hernández
inmahernandez@us.es
University of Seville

Seville, Spain

Carlos R. Rivero
crr@cs.rit.edu

Rochester Institute of Technology
Rochester, NY, USA

David Ruiz
druiz@us.es

University of Seville
Seville, Spain

ABSTRACT
Knowledge Graphs (KGs) contain large amounts of structured in-
formation. Due to their inherent incompleteness, a process known
as KG completion is often carried out to find the missing triples in a
KG, usually by training a fact checking model that is able to discern
between correct and incorrect knowledge. After the fact checking
model has been trained and evaluated, it has to be applied to a set
of candidate triples, and those that are considered correct are added
to the KG as new knowledge. However, this process needs a set
of candidate triples of a reasonable size that represents possible
new knowledge, in order to be evaluated by the fact checking task
and, if considered to be correct, added to the KG, enriching it. Cur-
rent approaches for selecting candidate triples for their correctness
checking either use the full set possible missing candidate triples
(and thus provide no filtering) or apply very basic rules to filter
out unlikely candidates, which may have a negative effect on the
completion performance as very few candidate triples are filtered
out. In this paper we present CHAI, a method for producing more
complex rules that are able to filter candidate triples by combining
a set of criteria to optimize a fitness function. Our experiments
show that CHAI is able to generate rules that, when applied, yield
smaller candidate sets than similar proposals while still including
promising candidate triples.
•

KEYWORDS
Knowledge Graphs, Knowledge Graph completion, Candidate fil-
tering

1 INTRODUCTION
Over the recent years, Knowledge Graphs (KGs) have enjoyed in-
creasing popularity as a means to store and represent information
pertaining the relations that exist between entities, thus represent-
ing real-world facts. Consequently, large-scale KGs such as DBpe-
dia [16], NELL [21], Freebase [3] or the Google Knowledge Vault [8]
have become widely used for tasks such as question answering [4].

Large-scale KGs are generally constructed through unsuper-
vised processes which extract semi-structured [13, 29] or non-
structured [8, 21] information, and then semantize the extracted
information [2] in order to store it in the form of entities and re-
lations between these entities, which are known as triples. Thus,
it is likely for the resulting KG to be incomplete, either because
the information extraction step failed to extract a relevant piece or
information, or because it was altogether missing from the original
source [5]. As a result of this incompleteness, KGs are governed by
the Open World Assumption, which dictates that a piece of infor-
mation does not necessarily have to be false if it is not present in a
KG. This results in the need to refine existing KGs so as to complete
the knowledge that they contain, a task commonly known as KG
Completion [24]. Figure 1 illustrates the typical workflow of a KG
Completion process.

A KG completion process consists in identifying missing triples
that should be added to it, since they represent correct knowledge.
Usually, it involves several tasks: first, it is necessary to learn a
classification model to predict whether a candidate triple should
be considered correct or not regarding a particular KG, a task com-
monly known as fact checking [17]. The creation of a fact checking
model usually requires to pre-process the KG, by splitting it into
training and testing sub-graphs, which are then be used to train
and evaluate the fact checking model. A variable amount of nega-
tive evidence is also commonly added to these splits, because KGs

https://doi.org/10.1145/3360901.3364418
https://doi.org/10.1145/3360901.3364418

KG

KG Splitting

& Negatives

Generation

Training &

Testing

Splits

Training &

Testing

Splits

Fact

Checking
Model

Candidate

Checking

 (_, _, _)

 (_, _, _)

 (_, _, _)

 (_, _, _)

...

KG Completion

Promising
candidates

Filtering

rules

CandidatesCandidate

Generation

Candidate

Filtering

Missing
facts

Figure 1: Knowledge Graph Completion workflow

only contain positive examples [24]. Note that this is merely a sim-
plified description of the pre-processing of a KG for illustration
purposes, and that certain proposals may require further splitting,
for example, to fine-tune a set of hyperparameters for a neural
network [26].

Besides creating the fact checking model, it is necessary to gen-
erate a set of promising candidates, which are triples that may be
correct but that are not present in the KG. This requires the gen-
eration of an initial, exhaustive set of candidates, which can be
produced by applying brute force, i.e., producing all possible triples
not contained in the KG, regardless of whether they are promising
or not. Due to the size of this initial set of candidates, it has to
be subsequently filtered to preemptively remove many unlikely
candidates while retaining as many promising ones as possible.
Usually, this is accomplished by generating a number of filtering
rules, and applying these rules to the candidate set to produce the
set of promising candidates, a task called candidate filtering [25].

Finally, the fact checking model is applied to the set of promis-
ing candidates, which results in the set of missing triples that are
considered correct and that may be added to the KG.

In the literature, we can find a number of fact checking proposals
that produce models to classify a triple as correct or incorrect,
following approaches such as rule-based reasoning [10, 14, 19, 23],
neural tensor networks [26], embedded spaces [7, 25, 27], tensor
factorization [22], concepts of nearest neighbors [9] and random
walks [11, 18]. However, when it comes to candidate filtering, all
current approaches are encompassed within a specific fact checking
technique, and they are very basic. Most of the existing completion
proposals either rely on a handmade or provided set of promising
candidates, or include a baseline filtering technique that only works
well for certain relations [25].

In this paper we present CHAI, a method for generating rules
that are able to filter candidate triples in the context of the KG
completion process by combining a number of criteria in such a
way that it optimizes a given fitness function. CHAI produces rules
that can be applied on the initial set of candidates and produce a
reduced set that contains only the promising candidate triples. Then,
this set can be passed on to any fact checking technique to check

the correctness of each promising candidate and identify correct
triples that complete the KG. CHAI rules are based on different
criteria that take the internal features of the KG into account, such
as the domains and ranges of every relation in the KG, in addition
to the distances between its entities.

The advantages of our proposal are that it does not require any
additional intervention from the user or external sources of infor-
mation to create the rules, and that it significantly reduces the size
of the candidate set while maximizing the number of promising
candidates that are selected by the produced rules. This, as a re-
sult, allows for a more effective application of the fact checking
techniques in KG completion contexts. The experimental results
show that it outperforms other proposals in the state of the art of
candidate filtering in terms of coverage and reduction rate. CHAI
is able to achieve good performance when dealing with all relation-
ships in every KG under study, which proves that it is a generic
and effective method, suitable for real-world contexts. The sets of
promising candidate triples that are produced by the application of
our rules are significantly smaller than the initial set composed of
every possible missing triple, while still including up to 99% of the
correct facts thanks to the usage of a fitness function that aims to
optimize both coverage and reduction rate.

The rest of this paper is as follows: Section 2 presents the related
work in filtering candidate triples for KG completion. Section 3
describes our proposal for candidate filtering. Section 4 reports on
our experimental results; finally, Section 5 contains our conclusions.

2 RELATED WORK
Nowadays, there exist a number of proposals to select candidate
triples for KG completion.

Wei et al. [28] use TransE [7] as an embedding-based model to
produce sets of candidate entities. TransE obtains embeddings for
entities and relations in the KG that maintain semantic similarities,
i.e., ensuring that the embedding of entities that are related by
means of a relation are close in the vector space. They calculate sim-
ilarity scores for each entity using their embedded representations
and sort them in descending order of similarity, selecting the top N
entities as candidates and producing the corresponding candidate

triples, leaving the rest out. Also, due to the way they compute
similarities, the entire set of entities in the KG has to be considered
every time the user desires to produce a candidate triple.

Gardner et al. [12] propose a random walk-based approach for
selecting candidates. Their proposal, which is an evolution of the
Path Ranking Algorithm (PRA) by Lao and Cohen [15], finds possi-
ble paths that connect a source entity with a target entity and ranks
these paths by frequency, keeping the top N paths as relevant. In
PRA, features are calculated only for paths in the top-N selection;
meanwhile, in the evolved version by Gardner et al. [12], features
are also calculated for paths that are similar to the ones in the top-N
selection, according to a similarity function. Note that performing
random walks means that these proposals may not cover all rele-
vant paths, which may have an impact on their performance. Also,
the value of N must be carefully selected since it determines the
amount of paths that are taken into account, which impacts their
performance.

Finally, Shi and Weninger [25] use a heuristic to select candidate
entities for a given relation. The heuristic selects all entities that
appear as the target of a given relation in the training split as possi-
ble candidates for said relation. The performance of this technique
depends largely on the distribution of the dataset between training
and testing splits, since an entity that is not found as the target of
a given relation in the training set would be discarded.

In general, it is computationally expensive to train embedding-
based techniques, and those based on random walk may miss rele-
vant information. The only proposal that is similar enough to ours,
by Shi and Weninger, uses a simple heuristic to filter out unlikely
candidate triples, but this heuristic may not be fit for all kinds of
relations, especially for those that have a domain or range that is
composed by several types of entities. Our proposal, CHAI, pro-
duces rules that only have to be applied once to produce an entire
set of candidates. They are also entirely deterministic, and thus not
prone to missing candidates in comparison to a random walk-based
proposal. Additionally, we propose a set of criteria for building rules
that are broader than only considering those whose entities appear
as the target of a relation under study, adding the possibility to
select candidate triples based on the domain and ranges of all rela-
tions in a KG, in addition to distance-based criteria, thus providing
a more generic and effective method for candidate filtering.

3 OUR PROPOSAL
In this section, we introduce our proposal for generating rules
that filter candidates in the context of KG completion. We first
introduce some preliminary concepts that are needed to understand
our proposal, and then we introduce an algorithm for generating
suitable rules to select possible candidates. For the sake of the
example, we provide a visual representation of a possible KG in
Figure 2, which is separated into a training and a testing split in a
random manner.

3.1 Preliminaries
We now define the notation that is used in the following sections.

Definition 3.1. Triple: Let E be a set of entities, and let R be
a set of relations. We define a triple as a 3-tuple that represents
the existence of a relation r between a source entity s and a target

Winterfell Jon

Eddard Catelyn

Sansa Arya Bran

location

childrenchildren children

location

spouse

(a) Training

Winterfell Jon

Eddard Catelyn

Sansa Arya Bran

location

children
children

children

sibling

(b) Testing

Figure 2: An example of a KG with its triples randomly split
into training and testing.

entity t , where s, t ∈ E and r ∈ R. We denote triples as (s, r , t).
Other authors also refer to triples as (subject, predicate, object).

Definition 3.2. Knowledge Graph: Let E be a set of entities,
let R be a set of relations, and let T be a set of triples of the form
{(s, r , t) | s, t ∈ E, r ∈ R}. We define a Knowledge Graph as
a directed graph defined by the 3-tuple (E, R, T). We denote a
Knowledge Graph as KG.

Definition 3.3. Candidate: Let KG = (E,R,T) be a Knowledge
Graph, let s ∈ E be an entity and let r ∈ R be a relation in KG. We
define a candidate as a triple (s, r , t) has a chance of representing
real-world knowledge, even if it does not exist in T .

In the KG depicted in Figure 2, a candidate triple is (Eddard,
children, Jon).

Definition 3.4. Path: Let KG = (E,R,T) be a Knowledge Graph,
and let s, t ∈ E be two entities in KG. We define a path p of length n
between s and t as a sequence of triples of the form ⟨ (ei , ri , ei+1) ⟩
for i = 1..n, where e1 = s , en+1 = t and (ei , ri , ei+1) ∈ T for
i = 1..n. We define the length of a path as the number of triples it
contains, i.e., |p |. We denote a path p of length n between s and t as
path(KG, s, t, r1, r2, . . . , rn), or pathn (KG, s, t) for short.

In Figure 2(a), a possible path of length 2 between the entities
Eddard and Arya is ⟨(Eddard, spouse, Catelyn), (Catelyn, children,
Arya)⟩.

Definition 3.5. Distance between entities: Let KG = (E,R,T)
be a Knowledge Graph, and let s, t ∈ E be two entities in KG. We
define the distance between s and t as the length of the shortest
path that exists between s and t in KG, i.e., |pathn (KG, s, t)| such
that ∄ pathi (KG, s, t) | i < n. We denote the distance between s and
t as dist(KG, s, t).

In Figure 2(a), the distance between the entities Eddard and Arya
is 2, while in Figure 2(b) their distance is 1.

Definition 3.6. Fitness function: Let KG = (E,R,T) be a Know-
ledge Graph, let C be a set of candidates and let C′ be a set of
filtered candidates, with C′ ⊆ C. We define fitness as a function
f itness(KG, C, C′) → R that assigns a score to the filtered set of
candidates, with respect to the original set of candidates and KG.

3.2 Proposed criteria and rules
We propose a set of criteria for filtering candidates in the context of
a Knowledge Graph (E,R,T). Note that a criterion is a predicate
that assigns a True/False binary label to a candidate triple. Each
criterion is devised following a different approach, and therefore
the sets of candidates that are selected by each of them are relatively
disjoint, although they might overlap to some extent (we discuss
these implications in Section 4.3). These criteria are as follows:

Existing source entity and relation: Let (s, r , t) be a triple in
T . This criterion selects all candidates whose source entity and
relation appear as such for some triple in T :

existsKG((s, r , t)) ⇔ ∃ e ∈ E | (s, r , e) ∈ T

Target is in the domain of a relation rel ∈ R: Let (s, r , t)
be a triple in T . This criterion selects all candidates whose target
entity appears at least once as the source in a triple that has rel as
its relation:

domKG,r el ((s, r , t)) ⇔ ∃ e ∈ E | (t, rel, e) ∈ T

Target is in the range of a relation rel ∈ R: Let (s, r , t) be a
triple in T . This criterion selects all candidates whose target entity
appears at least once as the target in a triple that has rel as its
relation:

ranKG,r el ((s, r , t)) ⇔ ∃ e ∈ E | (e, rel, t) ∈ T

Entities are within distance i: Let (s, r , t) be a triple in T . This
criterion selects all candidates whose source and target entities have
a distance between them that is at most i:

distanceKG,i ((s, r , t)) ⇔ dist(KG, s, t) ≤ i

In Figure 2(a), existsKG((Eddard, children, Catelyn)) = True ,
domKG,children ((Eddard, spouse, Catelyn)) = True , ranKG,children
((Eddard, spouse, Arya)) = True , and distanceKG,1((Eddard, spouse,
Catelyn)) = True .

The rationale behind these criteria is manifold. First, existsKG
ensures that only reasonable combinations of source entities and
relations are present in the candidate triples, as it avoids scenarios
such as a geographical place being the father of a person. Second,
domKG,r el and ranKG,r el are for further filtering triples based on
their target entities: for instance, it may be reasonable to expect
that good candidate triples for the relation children should have
a target entity that represents a person, and thus these criteria
allows CHAI to select such target entities. Even if the types of the
entities are not included as information in the KG, it is reasonable
to assume that entities that appear in the domain or a range of a
relation usually belong to one ormore specific types. By considering
triples that include these entities as their targets, CHAI can provide
candidates with entities that most likely belong to a certain type.
Finally, distanceKG,i covers the assumption that a good candidate
triple should be such that its source and target entities are close to
each other in the Knowledge Graph.

Additionally, we define a rule as a conjunction of the criterion
existsKG and the disjunction of other criteria.

Definition 3.7. Rule: Let KG be a Knowledge Graph, let C be a
set of candidates, and let c1, c2, . . . , cn be a number of criteria other
than the exists criterion. We define a rule as a conjunction of the

criterion existsKG and the disjunction of one or more criteria, i.e.,
existsKG ∧ (c1 ∨ c2 ∨ . . . ∨ cn).

By enforcing the existsKG criterion on all candidate triples, we
make sure that the resulting set of candidates has a lower number
of incorrect or noisy candidates, as all of them have a combination
of source entity and relation that already exists in the original KG
while still allowing all possible target entities: for example, the
candidate triple (Eddard, children, Jon) would pass the existsKG cri-
terion, whereas (Winterfell, spouse, Jon) would not. In addition, the
disjunction of criteria present in the rule allows for more flexibility:
longer rules with more criteria are less strict, and thus produce
more candidates by combining different criteria.

3.3 Proposed algorithm
The algorithm that we proposed for generating rules for candidate
filtering is shown in Algorithm 1. It receives the set of candidates
to be filtered, the original KG in the form of a training and a testing
split and a relation as input, and it outputs the generated rule for
the relation and the filtered set of candidates that is produced by
applying the generated rule.

First, the input set of candidates is narrowed down to those that
include the relation for which CHAI is being applied. Subsequently,
a rule that contains only the existsKG criterion is generated, and
the set of candidates that results from applying it is obtained, which
will be further refined by adding more criteria to the rule.

Then, a set of criteria is instantiated, which contains the dom
and ran criteria for every possible relation in the KG, as well as
the distance criterion for up to a certain maximum distance. These
criteria are the ones that will be used for building the rule, however,
not every criterion in the set has necessarily to be added to the rule.

Following the previous step, a fitness value is computed for
each criterion, by applying a certain fitness function on the set of
candidates that are selected by that criterion. The previous set of
criteria is then sorted in descending order of the fitness value that
is obtained in this manner.

Finally, these ordered criteria are added in an iterative fashion
to the rule under generation. Every time a criterion is added, the
resulting set of filtered candidates is computed, and the fitness value
associated to the rule is updated. This process is repeated until the
fitness value exceeds a given threshold or the set of available criteria
is depleted, at which point no more criteria will be added to the
rule. Once this process ends, the generated rule is returned.

In Figure 3, we present an example on the process of generating
a rule for the relation children, with a threshold θ = 0.95. Through
the process, different criteria are iteratively added to the rule, and
the fitness value is included for every step. Once the fitness value
meets or exceeds the threshold, the process ends and the rule is re-
turned. In this case, selecting candidate triples whose target entities
represent people would provide a good result.

Since an integral KG completion process involves every relation
in the KG, CHAI should be applied once for each relation in the
KG, in order to produce the complete set of rules and suitable
candidates for KG Completion. This results in a total set whose
size is significantly smaller than that of the input set of candidates,
while still containing as many suitable candidates as possible.

Algorithm 1: CHAI
Input: KGtrn = (E,R,Ttrn) : Training split of the KG

KGtst = (E,R,Ttst) : Testing split of the KG
candidates : Set of potential candidates to be filtered
rel : Selected relation in R
fitness : Fitness function
N : Maximum distance value for distance-based
criteria
θ : Fitness threshold value

Output: rule : Generated rule

1 function
CHAI(KGtrn,KGtst , candidates, rel, fitness,N , θ)

2 // Select the candidates in which the relation rel appears
3 rc ← {(s, r , t) ∈ candidates | r = rel}

4 // Initialize the rule to initially contain only existsKGtrn
5 rule ← existsKGtrn
6 // Obtain a set of initially filtered candidates by applying
7 // existsKGtrn
8 fc ← apply existsKGtrn to rc

9 // Add all possible criteria to the set of available criteria
10 // using the training split of the KG
11 criteria ← ∅

12 forall r ∈ R, i ∈ [1..N] do
13 criteria ← criteria ∪

{domKGtrn ,r , ranKGtrn ,r ,distanceKGtrn ,i }

14 // Sort all criteria by the fitness value obtained on the set
of

15 // filtered candidates they generate, using the testing
split

16 criteria ← sort criteria by fitness(KGtst , fc, apply
criteria to fc)

17 forall criterion ∈ criteria do
18 // Apply the rule to obtain a set of filtered candidates
19 selected_candidates ← apply rule to fc
20 // Compute the fitness value of the previous set
21 // using the testing split
22 if fitness(KGtst , fc, selected_candidates) < θ then
23 // Add current criterion if the threshold is not

met
24 rule ← add criterion to rule

25 return rule

Rule Fitness value Meets threshold?
existsKG ∧ - -

(ranKG,spouse ∨ 0.80 No
ranKG,children ∨ 0.92 No
ranKG,parent) 0.96 Yes

Figure 3: An example rule being built for the relation chil-
dren

4 EXPERIMENTAL STUDY
In this section we present the experimental results that confirm that
CHAI is effective in practice. First, we introduce the experimental
setting. Then, we present the results of applying CHAI on several
well-known Knowledge Graphs, comparing them against those
of a state-of-the-art baseline technique by Shi and Weninger [25].
Finally, we discuss these results.

4.1 Setup and datasets
We evaluated CHAI using four different Knowledge Graphs that are
openly available and commonly used for the task of KG completion:
FB13 [26], WN18 [6] (which are subsets of Freebase [3] and Word-
net [20], respectively), a subset of NELL introduced by Gardner
and Mitchell [11], and EPSRC1, which contains information about
the grants provided by the Engineering and Physical Sciences Re-
search Council of the United Kingdom. All of these datasets were
obtained from the publicly available AYNEC-DataGen tool [1], and
an overview of their metadata can be found in Table 1. We used
CHAI to generate rules for every relation in every dataset, except
for the NELL dataset, in which we focused on the same subset of
10 relations as Gardner and Mitchell [11] due to the high number
of total relations. All experiments were conducted on a computer
with 32GB of RAM and an Intel Core i9-9900K CPU.

Table 1: Metadata for the KGs we used for evaluation

KG Training triples Test triples Relations
FB13 285,208 78,490 13
WN18 117,160 58,564 18
NELL 201,870 13,491 519 (10)
EPSRC 341,372 85,337 20

The results of the approach followed by Shi and Weninger [25]
were used as a baseline. Their proposal consists in generating can-
didate triples by altering the target entities of the triples already
present in the KG, and replacing them by all entities that can be
found in the range of the relation present in the triple. This is
equivalent to applying only the ranKG,r criterion, where r is the re-
lation for which CHAI is being applied. Therefore, we obtained the
baseline results by modifying CHAI to include only that criterion.

It is important to note that we do not compare CHAI to the fact
checking phase of [25] because CHAI is not a fact checking tech-
nique, we instead compare it to the approach they use to generate
candidate triples for their evaluation. Thus, we use measures that
evaluate the aptness of the sets of candidates that CHAI gener-
ates for their further correctness checking, such as coverage and
reduction rate.

4.2 Evaluation parameters
To conduct our experiments, we set the distance threshold N for the
distance criterion to 4. This value was chosen empirically, aiming to
allow for a threshold as high as possible while still being reasonable
in terms of computation time. Additionally, these distances were
computed on a partially undirected version of the KGs. This was
1http://epsrc.rkbexplorer.com

http://epsrc.rkbexplorer.com

done to fully exploit the highly relational nature of KGs, while still
not allowing paths that would be connected by means of entities
with a very high in-degree such as genders or nationalities.

The training and testing splits of the KGs were already provided
by the datasets that we used, and thus we provided CHAI with
these splits as is. We evaluated CHAI using a fitness function that
combines reduction rate and coverage using their harmonic mean,
as shown in Eq. 1. The θ threshold value required by the algorithm
was set to 0.99, so as to allow CHAI to find highly satisfactory rules,
and to study the evolution of the coverage and reduction rate of said
rules if they keep growing in size without meeting the threshold.

Let C be a candidates set, and C′ ⊆ C a set of filtered candidates:

fitness(KG, C, C′) =
2 · rr (C, C′) · coveraдe(KG, C′)
rr (C, C′) + coveraдe(KG, C′)

, where (1)

rr (C, C′) = 1 −
|C′ |

|C|

coveraдe(KG = (E,R,T), C′) =
|C′ ∩ T |

|T |

This fitness function was devised under the following rationale:
focusing only on coverage would result in very long rules that allow
asmany candidates as possible, however, this would not be desirable
as we aim to reduce the size of the set of candidates, to avoid having
to evaluate low-quality candidates. Conversely, focusing only on
reduction rate would yield very short (and thus more restrictive)
rules. As a consequence, this fitness function achieves a compromise
between reduction rate and coverage, and allows for more flexibility
in the lengths of the rules in contrast to focusing only on one
objective. To illustrate this difference, we have tested CHAI using
three different fitness functions: only coverage, only reduction rate
and the proposed harmonic mean. The results achieved by every
fitness function are shown in Figure 5.

Our implementation of CHAI with the specified parameters and
KGs, along with more detailed visual representations of the results
of our experiments with respect to individual relations, is freely
available for public use2.

4.3 Results and discussion
In the following, we present the results achieved by CHAI on the
datasets under evaluation and the conclusions we draw from them.
For the sake of brevity, we present general results for all datasets,
however a detailed report which includes results for every single
relation in all datasets can be found alongside our implementation.

Figure 4 reports on the evolution of the coverage and reduction
rate for all datasets under study as rules grow in size, while Fig-
ure 5 display the values for the coverage and reduction rate for
every iteration in all datasets as points in a 2-dimensional space.
Finally, Table 2 provides an overview on the average maximum
coverage and reduction rate that CHAI achieves for the relations
in all KGs under study. This Table also includes the average cover-
age and reduction rate values achieved by the proposal of Shi and
Weninger [25], which was denoted as “baseline” for brevity.
2https://github.com/tdg-seville/CHAI

Table 2: Summary of the average maximum achieved cov-
erage and reduction rate for the KGs under evaluation. The
average values are in bold, while the 95% confidence interval
is shown between parentheses.

KG
Avg. max.
coverage
(CHAI)

Avg.
coverage
(baseline)

Avg. max.
RR

(CHAI)

Avg. RR
(baseline)

FB13 0.92
(0.76-1.00)

0.78
(0.58-0.99)

0.91
(0.76-1.00)

0.91
(0.76-1.00)

WN18 0.94
(0.89-0.99)

0.49
(0.26-0.72)

0.97
(0.93-1.00)

0.93
(0.85-1.00)

NELL 0.89
(0.78-1.00)

0.53
(0.26-0.80)

0.97
(0.95-1.00)

0.99
(0.99-1.00)

EPSRC 0.99
(0.98-1.00)

0.82
(0.68-0.97)

0.95
(0.91-0.99)

0.95
(0.92-0.99)

These results allow us to distinguish between two types of re-
lations: those for which a high coverage value is obtained with a
very short rule, and those for which the coverage starts at a lower
value and increments as rules grow in size, as shown in Figure 4.
We consider the former type of relations to be categorical, as they
have a range of possible target entities that is relatively small: for
example, the entities that are targets for the relation location are
unlikely to appear as the target for any other relation, and thus
using the entities that are targets for location as possible candidates
for locations yields a very good result. On the other hand, relations
that are non-categorical have a much wider range of possible can-
didates: in the case of the relation children, an entity may produce
a good candidate even if it does not appear as the target of children
(for example, they may appear in the relation sibling).

This conclusion is reinforced by the results shown in Figure 5,
where there are groups of iterations in the top-right corner (the
area of both high reduction rate and high coverage), which are
obtained for categorical relations with a small subset of possible
targets, while a different group of iterations show more scattered
results in the top area, denoting that in order to achieve a high
coverage, a bigger set of candidates must be used (non-categorical
relations). Additionally, the results shown in this Figure lead us to
the conclusion that using only reduction rate as the fitness function
results in a very poor coverage, as the algorithm stops after having
selected only one criterion that allows a very small number of
candidates. On the contrary, using only coverage as the fitness
function provides better results, but with a clear tendency towards
prioritizing coverage at the expense of a lower reduction rate, while
using the harmonic mean yields more balanced results.

In the case of non-categorical relations, there exists a trade-
off between coverage and reduction rate. This is to be expected,
since rules are disjunctions of criteria and thus rules that comprise
more criteria are more likely to filter out less candidates, increasing
coverage but decreasing the reduction rate. In these cases, it is up to
the user to decide whether they are interested in achieving a very
high coverage with a lower reduction rate, or a higher reduction rate
with a usually lower coverage. For this kind of relations, distance-
based criteria are generally useful: for example, one’s parents or
spouse are usually found within a short distance in the KG. In

https://github.com/tdg-seville/CHAI

1 3 5 7 9 11
Rule size

0.0

0.2

0.4

0.6

0.8

1.0

C
ov
er
ag
e

(a) FB13 - Coverage

1 3 5 7 9 11
Rule size

0.0

0.2

0.4

0.6

0.8

1.0

C
ov
er
ag
e

(b) WN18 - Coverage

1 3 5 7
Rule size

0.0

0.2

0.4

0.6

0.8

1.0

C
ov
er
ag
e

(c) NELL - Coverage

1 3 5 7
Rule size

0.0

0.2

0.4

0.6

0.8

1.0

C
ov
er
ag
e

(d) EPSRC - Coverage

1 3 5 7 9 11
Rule size

0.0

0.2

0.4

0.6

0.8

1.0

R
ed
uc
ti
on

ra
te

(e) FB13 - Reduction rate

1 3 5 7 9 11
Rule size

0.0

0.2

0.4

0.6

0.8

1.0

R
ed
uc
ti
on

ra
te

(f) WN18 - Reduction rate

1 3 5 7
Rule size

0.0

0.2

0.4

0.6

0.8

1.0

R
ed
uc
ti
on

ra
te

(g) NELL - Reduction rate

1 3 5 7
Rule size

0.0

0.2

0.4

0.6

0.8

1.0

R
ed
uc
ti
on

ra
te

(h) EPSRC - Reduction rate

Figure 4: Evolution for the coverage (top) and reduction rate (bottom) values for all relations in every KG and different rule
sizes. Each line represents a relation.

0.00 0.25 0.50 0.75 1.00
Reduction rate

0.0

0.2

0.4

0.6

0.8

1.0

C
ov
er
ag
e

Harmonic mean

Only coverage

Only reduction rate

(a) FB13

0.00 0.25 0.50 0.75 1.00
Reduction rate

0.0

0.2

0.4

0.6

0.8

1.0

C
ov
er
ag
e

Harmonic mean

Only coverage

Only reduction rate

(b) WN18

0.00 0.25 0.50 0.75 1.00
Reduction rate

0.0

0.2

0.4

0.6

0.8

1.0

C
ov
er
ag
e

Harmonic mean

Only coverage

Only reduction rate

(c) NELL

0.00 0.25 0.50 0.75 1.00
Reduction rate

0.0

0.2

0.4

0.6

0.8

1.0

C
ov
er
ag
e

Harmonic mean

Only coverage

Only reduction rate

(d) EPSRC

Figure 5: Reduction rate (x-axis) and coverage (y-axis) ob-
tained throughout the different iterations for all KGs using
different fitness functions.

categorical relations, however, one is able to obtain both a high
reduction rate and a high coverage, because the entities that are
suitable targets for said relations can easily be found by analyzing
the domains and ranges of the relation in question or other relations.

Regarding the reduction rate, one has to note that it is computed
with regard to the set of candidates that are selected by the exists
criterion, and notwith respect to the cartesian product of all possible
candidates. This results in reduction rates that are in all cases lower
than those that would be obtained in the latter case, though more
evenly spread between 0 and 1. Given that high reduction rates are
still achieved, we do not consider this to be a problem, but rather an
adequate way of measuring how many candidates are selected with
respect to an initial set of filtered candidates, with many unlikely
candidates already filtered out.

Finally, it is worth noting that CHAI consistently manages to
achieve high coverage values for all datasets under study, as it can be
seen in Figure 4. These values start to converge with rules composed
of approximately five criteria, and thus we find that the criteria that
are ranked higher by means of the proposed fitness function (Eq. 1)
are indeed successful in allowing promising candidates to pass the
filter. When comparing CHAI to the baseline approach proposed
by Shi and Weninger [25], CHAI achieves much higher values of
coverage while still being able to obtain similar reduction rates, as
shown in Table 2. The values for CHAI shown in said Table refer
to the average maximum values that can be achieved, and thus our
proposal is more versatile as it allows the user to prioritize a higher
coverage by using longer rules, or a higher reduction rate by using
shorter rules. CHAI works well for all kinds of relations due to
the versatility of the criteria it uses, while the proposal by Shi and
Weninger [25] is not able to deal as effectively with non-categorical
relations in terms of coverage, hindering its overall performance.

4.4 Limitations
While CHAI obtains satisfactory results, it is not without limitations.
Perhaps the most important one would arise in the case of a KG

with a very high number of total relations, because the amount of
domain and range-based criteria would be equally high. In this case,
the fitness function would have to be computed for every criterion
in order to sort them by decreasing fitness value, resulting in a
potentially high computational cost. Besides, CHAI may not work
as well in very sparse KGs where all or most relations share the
same entities in their domains and ranges, because the distance-
based criterion would need a much higher threshold due to the
sparsity of possible paths, and the domain and range-based ones
would not prove useful.

5 CONCLUSIONS
In this paper we have presented CHAI, a method for generating
rules that can filter candidate triples in the context of the Knowl-
edge Graph completion task. Our proposal is applicable to any
Knowledge Graph and it allows for the generation of new knowl-
edge by producing sets of promising candidate triples that contain
potentially correct information to be analyzed by a fact checking
model, which leads to a more efficient completion process.

When evaluated on four well-known Knowledge Graphs, our
results show that CHAI is able to generate rules that not only
produce a very large proportion of the missing knowledge that is
considered correct in a typical testing split, but that also results in
significantly smaller sets of candidates than those that would be
obtained by naïvely using all entities in a KG as potential candidates
(up to less than 1% of their original sizes). Our results also show
that CHAI is able to outperform the most recent similar proposal
in the state of the art by achieving high levels of coverage (up to
99%) in all kinds of relations.

ACKNOWLEDGMENTS
This work was supported by the Spanish R&D&I program under
grant TIN2016-75394-R.

REFERENCES
[1] Daniel Ayala, Agustín Borrego, InmaHernández, Carlos R. Rivero, and David Ruiz.

2019. AYNEC: All You Need for Evaluating Completion Techniques in Knowledge
Graphs. In ESWC. 397–411. https://doi.org/10.1007/978-3-030-21348-0_26

[2] Daniel Ayala, Inma Hernández, David Ruiz, and Miguel Toro. 2019. TAPON: A
two-phase machine learning approach for semantic labelling. Knowledge-Based
Systems 163 (2019), 931–943. https://doi.org/10.1016/j.knosys.2018.10.017

[3] Kurt Bollacker, Colin Evans, Praveen Paritosh, Tim Sturge, and Jamie Taylor. 2008.
Freebase: A Collaboratively Created Graph Database for Structuring Human
Knowledge. In SIGMOD. ACM, 1247–1250. https://doi.org/10.1145/1376616.
1376746

[4] Antoine Bordes, Sumit Chopra, and JasonWeston. 2014. QuestionAnsweringwith
Subgraph Embeddings. In EMNLP. ACL, 615–620. http://aclweb.org/anthology/
D/D14/D14-1067.pdf

[5] Antoine Bordes and Evgeniy Gabrilovich. 2014. Constructing and Mining Web-
scale Knowledge Graphs. In SIGKDD. ACM, 1967–1967. https://doi.org/10.1145/
2623330.2630803

[6] Antoine Bordes, Xavier Glorot, Jason Weston, and Yoshua Bengio. 2014. A
semantic matching energy function for learning with multi-relational data -
Application to word-sense disambiguation. Machine Learning 94, 2 (2014), 233–
259. https://doi.org/10.1007/s10994-013-5363-6

[7] Antoine Bordes, Nicolas Usunier, Alberto García-Durán, Jason Weston, and Ok-
sana Yakhnenko. 2013. Translating embeddings for modeling multi-relational
data. In NIPS. 2787–2795. https://papers.nips.cc/paper/5071-translating-
embeddings-for-modeling-multi-relational-data

[8] Xin Dong, Evgeniy Gabrilovich, Geremy Heitz, Wilko Horn, Ni Lao, Kevin Mur-
phy, Thomas Strohmann, Shaohua Sun, and Wei Zhang. 2014. Knowledge Vault:
A Web-scale Approach to Probabilistic Knowledge Fusion. In SIGKDD. ACM,
601–610. https://doi.org/10.1145/2623330.2623623

[9] Sébastien Ferré. 2019. Link Prediction in Knowledge Graphs with Concepts
of Nearest Neighbours. In ESWC. Springer International Publishing, 84–100.
https://doi.org/10.1007/978-3-030-21348-0_6

[10] Luis Galárraga, Christina Teflioudi, Katja Hose, and Fabian M. Suchanek. 2015.
Fast rule mining in ontological knowledge bases with AMIE+. VLDB J. 24, 6
(2015), 707–730. https://doi.org/10.1007/s00778-015-0394-1

[11] Matt Gardner and Tom Mitchell. 2015. Efficient and expressive knowledge base
completion using subgraph feature extraction. In EMNLP. The Association for
Computational Linguistics, 1488–1498. https://aclweb.org/anthology/D/D15/
D15-1173.pdf

[12] Matt Gardner, Partha Pratim Talukdar, Jayant Krishnamurthy, and Tom M.
Mitchell. 2014. Incorporating Vector Space Similarity in Random Walk Inference
over Knowledge Bases. In EMNLP. 397–406. http://aclweb.org/anthology/D/D14/
D14-1044.pdf

[13] Michael Glass and Alfio Gliozzo. 2018. A Dataset for Web-Scale Knowledge
Base Population. In ESWC. Springer, 256–271. https://doi.org/10.1007/978-3-319-
93417-4_17

[14] Vinh Thinh Ho, Daria Stepanova, Mohamed H. Gad-Elrab, Evgeny Kharlamov,
and Gerhard Weikum. 2018. Learning Rules from Incomplete KGs using Embed-
dings. In ISWC, Vol. 2180. http://ceur-ws.org/Vol-2180/paper-25.pdf

[15] Ni Lao and William W Cohen. 2010. Relational retrieval using a combination of
path-constrained random walks. Machine learning 81, 1 (2010), 53–67. https:
//doi.org/10.1007/s10994-010-5205-8

[16] Jens Lehmann, Robert Isele, Max Jakob, Anja Jentzsch, Dimitris Kontokostas,
Pablo N Mendes, Sebastian Hellmann, Mohamed Morsey, Patrick Van Kleef,
Sören Auer, and Christian Bizer. 2015. DBpedia - A large-scale, multilingual
knowledge base extracted from Wikipedia. Semantic Web 6, 2 (2015), 167–195.
https://doi.org/10.3233/SW-140134

[17] Peng Lin, Qi Song, and Yinghui Wu. 2018. Fact Checking in Knowledge Graphs
with Ontological Subgraph Patterns. Data Science and Engineering 3 (2018),
341–358. https://doi.org/10.1007/s41019-018-0082-4

[18] Sahisnu Mazumder and Bing Liu. 2017. Context-aware Path Ranking for Knowl-
edge Base Completion. In IJCAI. AAAI Press, 1195–1201. https://doi.org/10.
24963/ijcai.2017/166

[19] Christian Meilicke, Melisachew Wudage Chekol, Daniel Ruffinelli, and Heiner
Stuckenschmidt. 2019. Anytime Bottom-Up Rule Learning for Knowledge Graph
Completion. In IJCAI. ijcai.org, 3137–3143. https://doi.org/10.24963/ijcai.2019/435

[20] George A. Miller. 1995. WordNet: A Lexical Database for English. Commun. ACM
38, 11 (1995), 39–41. https://doi.org/10.1145/219717.219748

[21] T. Mitchell, W. Cohen, E. Hruschka, P. Talukdar, B. Yang, J. Betteridge, A. Carlson,
B. Dalvi, M. Gardner, B. Kisiel, J. Krishnamurthy, N. Lao, K. Mazaitis, T. Mohamed,
N. Nakashole, E. Platanios, A. Ritter, M. Samadi, B. Settles, R. Wang, D. Wijaya,
A. Gupta, X. Chen, A. Saparov, M. Greaves, and J. Welling. 2018. Never-ending
Learning. Commun. ACM 61, 5 (2018), 103–115. https://doi.org/10.1145/3191513

[22] Maximilian Nickel, Volker Tresp, and Hans-Peter Kriegel. 2012. Factorizing
YAGO: scalable machine learning for linked data. In WWW. ACM, 271–280.
https://doi.org/10.1145/2187836.2187874

[23] Pouya Ghiasnezhad Omran, Kewen Wang, and Zhe Wang. 2018. Scalable Rule
Learning via Learning Representation. In IJCAI. ijcai.org, 2149–2155. https:
//doi.org/10.24963/ijcai.2018/297

[24] Heiko Paulheim. 2017. Knowledge graph refinement: A survey of approaches
and evaluation methods. Semantic Web 8, 3 (2017), 489–508. https://doi.org/10.
3233/SW-160218

[25] Baoxu Shi and Tim Weninger. 2018. Open-World Knowledge Graph Completion.
In AAAI. 1957–1964. https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/
view/16055

[26] Richard Socher, Danqi Chen, Christopher D Manning, and Andrew Ng. 2013. Rea-
soning with neural tensor networks for knowledge base completion. In NIPS. 926–
934. https://papers.nips.cc/paper/5028-reasoning-with-neural-tensor-networks-
for-knowledge-base-completion

[27] Zhen Wang, Jianwen Zhang, Jianlin Feng, and Zheng Chen. 2014. Knowledge
Graph Embedding by Translating on Hyperplanes. In AAAI, Vol. 14. AAAI Press,
1112–1119. https://www.aaai.org/ocs/index.php/AAAI/AAAI14/paper/view/
8531

[28] Zhuoyu Wei, Jun Zhao, Kang Liu, Zhenyu Qi, Zhengya Sun, and Guanhua Tian.
2015. Large-scale Knowledge Base Completion: Inferring via Grounding Network
Sampling over Selected Instances. In CIKM. 1331–1340. https://doi.org/10.1145/
2806416.2806513

[29] Ziqi Zhang. 2017. Effective and efficient Semantic Table Interpretation using
TableMiner+. Semantic Web 8, 6 (2017), 921–957. https://doi.org/10.3233/SW-
160242

https://doi.org/10.1007/978-3-030-21348-0_26
https://doi.org/10.1016/j.knosys.2018.10.017
https://doi.org/10.1145/1376616.1376746
https://doi.org/10.1145/1376616.1376746
http://aclweb.org/anthology/D/D14/D14-1067.pdf
http://aclweb.org/anthology/D/D14/D14-1067.pdf
https://doi.org/10.1145/2623330.2630803
https://doi.org/10.1145/2623330.2630803
https://doi.org/10.1007/s10994-013-5363-6
https://papers.nips.cc/paper/5071-translating-embeddings-for-modeling-multi-relational-data
https://papers.nips.cc/paper/5071-translating-embeddings-for-modeling-multi-relational-data
https://doi.org/10.1145/2623330.2623623
https://doi.org/10.1007/978-3-030-21348-0_6
https://doi.org/10.1007/s00778-015-0394-1
https://aclweb.org/anthology/D/D15/D15-1173.pdf
https://aclweb.org/anthology/D/D15/D15-1173.pdf
http://aclweb.org/anthology/D/D14/D14-1044.pdf
http://aclweb.org/anthology/D/D14/D14-1044.pdf
https://doi.org/10.1007/978-3-319-93417-4_17
https://doi.org/10.1007/978-3-319-93417-4_17
http://ceur-ws.org/Vol-2180/paper-25.pdf
https://doi.org/10.1007/s10994-010-5205-8
https://doi.org/10.1007/s10994-010-5205-8
https://doi.org/10.3233/SW-140134
https://doi.org/10.1007/s41019-018-0082-4
https://doi.org/10.24963/ijcai.2017/166
https://doi.org/10.24963/ijcai.2017/166
https://doi.org/10.24963/ijcai.2019/435
https://doi.org/10.1145/219717.219748
https://doi.org/10.1145/3191513
https://doi.org/10.1145/2187836.2187874
https://doi.org/10.24963/ijcai.2018/297
https://doi.org/10.24963/ijcai.2018/297
https://doi.org/10.3233/SW-160218
https://doi.org/10.3233/SW-160218
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/16055
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/16055
https://papers.nips.cc/paper/5028-reasoning-with-neural-tensor-networks-for-knowledge-base-completion
https://papers.nips.cc/paper/5028-reasoning-with-neural-tensor-networks-for-knowledge-base-completion
https://www.aaai.org/ocs/index.php/AAAI/AAAI14/paper/view/8531
https://www.aaai.org/ocs/index.php/AAAI/AAAI14/paper/view/8531
https://doi.org/10.1145/2806416.2806513
https://doi.org/10.1145/2806416.2806513
https://doi.org/10.3233/SW-160242
https://doi.org/10.3233/SW-160242

	Abstract
	1 Introduction
	2 Related Work
	3 Our Proposal
	3.1 Preliminaries
	3.2 Proposed criteria and rules
	3.3 Proposed algorithm

	4 Experimental Study
	4.1 Setup and datasets
	4.2 Evaluation parameters
	4.3 Results and discussion
	4.4 Limitations

	5 Conclusions
	Acknowledgments
	References

