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The dynamics and mixing of small spherical particles in a plane, 
free shear layer 

Alfonso M. GaRBn-Calvo and Juan C. Lasheras@ 
Department of Mechanical Engineering, University of Southern California, 
Los Angeles, California 90089-145.3 

(Received 28 August 1990; accepted 22 January 1991) 

The equation of motion of small rigid spheres settling under gravity in a two-dimensional 
inviscid flow given by the Stuart solution of the Euler equations is analyzed as a four- 
dimensional dynamical system. It is shown that depending on the values of the Stokes, 
Grashof, and a scaled Reynolds number, particles may either sediment or remain permanently 
suspended in the flow. When suspension occurs, the particle trajectories are shown to be 
attracted by a single period, quasiperiodic, or chaotic orbits. A consequence of the existence of 
a strange attractor (chaotic orbit) is that heavy particles can reach a stage ofjhdization by 
which they remain indefinitely suspended in a layer of finite height located above the center of 
the Stuart vortices. 

1. INTRODUCTION 

The dynamics of particles in inhomogeneous and aniso- 
tropic turbulent flows is a problem highly relevant to a large 
variety of technological and geophysical applications. For 
example, in chemical reactors and combustors, the perfor- 
mance of the process is directly related to the spatial and 
temporal distribution of particles in mixing layers. Similarly, 
in natural flows, the transport of particulate pollutants in the 
atmosphere, the suspension of plankton in the oceans, or the 
transport of sediments in estuary and river beds also involves 
the dynamics and mixing of particles in inhomogeneous and 
anisotropic turbulent flows. Since in many of these industrial 
and geophysical flows, the concentration of particles is small 
enough for both their mutual interaction and their effect on 
the base fluid to be negligible, the dynamics and mixing of an 
isolated particle settling under gravity is the relevant prob- 
lem to be studied. 

Related studies of the gravitational settling of heavy 
particles in cellular and vortex flows have been reported by 
Stommel,’ Tooby et al.,’ Manton Maxey and Corrsin,” 
Nielsen,s Smith and Spiegel,” Maxey,’ and McLaughlinX 
among others. Stommel’ lirst showed that small spherical 
particles may remain trapped indefinitely in a two-dimen- 
sional, incompressible, steady cellular flow. In experiments 
suggested by Stommel’s results, Tooby et a1.2 found that in a 
vortex whose axis is perpendicular to the direction of gravi- 
ty, heavy particles may follow closed trajectories. Manton” 
and Nielsen,s while analyzing a prototype flow represented 
by a Ran&e vortex, found that particles with a settling ve- 
locity smaller than the maximum velocity of the vortex may 
remain indefinitely trapped in circular paths inside the vor- 
tex. MantonI then argued that, since turbulence is not com- 
pletely incoherent, it could result in particles falling in a 
turbulent flow at a much slower rate than their terminal 
velocity, even in the absence of a mean updraft. Maxey’ 
considered the combined effect of particle inertia and virtual 
mass on the gravitational settling of particles through an 

“) Present address: Department of AMES, University of California, San 
Diego, La Jolla, California 92093-0411. 

infinite, periodic Langmuir cellular flow field. He showed 
that, for arbitrary particle density, the inclusion of the effect 
of the inertia of both the particle and the fluid results in the 
existence of stable attractor sets for the dissipative, non- 
Hamiltonian system, whereby the particles collect along 
well-defined accumulation curves, with the individual parti- 
cle trajectories merging into isolated asymptotic paths. In a 
recent related study, McLaughlin” has used perturbation 
methods to also show that the equation of motion of small 
rigid spheres in steady laminar flows takes the form of a 
dynamical system in which phase volume is not conserved. 
He considered a three-dimensional solution of the steady, 
incompressible Euler equation given by the Arnold-Bel- 
trami-Childress (ABC) flows, and showed that particle in- 
ertia and virtual mass destroy Lagrangian turbulence with 
the particles captured by periodic or quasiperiodic orbits. 
When gravitational effects were included he found that,in a 
narrow range of the ABC parameters, the particles could 
sediment chaotically. 

Since the two-dimensional mixing layer is a classic ex- 
ample of an inhomogeneous, turbulent flow where a large- 
scale coherent motion dominates its evolution, we have se- 
lected it for our study. In a two-dimensional free shear layer, 
large-scale coherent vertical structures are known to exist at 
low (Winant and Browand),’ moderate (Brown and 
Roshko), lo and high Reynolds numbers (Dimotakis and 
Brown) .I’ This coherent vertical structure is an essential 
feature in the development of a turbulent mixing layer, and it 
can be described as an endless redistribution of vorticity in 
space (Corcos and Sherman) .I2 Recently Lazaro and La- 
sheras’“-‘5 have shown that the coherency of the base flow 
persists in particle laden flows, and that these large eddies 
play a dominant role in the dynamics and mixing of the par- 
ticles in the turbulent mixing layer. To analyze the role of the 
coherent component of the turbulent motion on the dynam- 
ics of the particles, in this paper we will study the Lagrangian 
evolution of small, heavy spherical particles settling under 
gravity in a periodic free shear flow given by the Stuart’s 
solution, l6 which is a steady, inviscid, incompressible solu- 
tion of the two-dimensional Euler equation. 

In our analysis of the long term evolution of the particle 
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dynamics, we will use the generalized Basset-Boussinesq- 
Ossen solution of the unsteady Stokes motion of rigid spheri- 
cal particles given by Tchen,17 and recently modified by 
Manton Auton,” and Maxey and Riley.” Accounting for 
the inertia of the particle, its weight, and the viscous drag 
imparted by the flow, we will study the effect of particle size, 
turbulent intensity (or velocity amplitude), vorticity distri- 
bution, and gravity as a four parameter dynamical system. 
Following this approach, we will concentrate on the study of 
the mechanisms resulting in the long term suspension and 
transport of heavy particle settling in inhomogeneous and 
anisotropic turbulent flows. It will be shown that, depending 
on the above four parameters, long term suspension of heavy 
particles may occur. Furthermore, when suspension occurs, 
we will describe a new mechanism leading to the long time 
trapping of particles in vertical flows. We will show that the 
motion of the heavy particles may be attracted by periodic, 
quasiperiodic, or chaotic orbits. Physically, this long time 
fluidization stage is reached as a result of the combined effect 
of the convection by the mean flow, ejection from the unsta- 
ble centers (inside the vortex cores), and gravitational set- 
tling. This new suspension mechanism differs significantly 
from the previously identified one whereby particles are 
trapped inside the vortex cores in close paths, 

In Sec. II, we introduce the equation of the acceleration 
of the particle in the base flow selected for our study, and 
discuss the dynamical system formulation, the dimension- 
less governing parameters, and the numerical method used. 
In Sec. III, we present the numerical results and discuss the 
existence of several fluidization mechanisms. Special atten- 
tion will be devoted to the study of the strange attractor 
defined by chaotic orbits. Finally, in Sec. IV, the main con- 
clusions of this work are summarized. 

II. FORMULATION OF THE PROBLEM 

The flow field selected for our study is the steady, two- 
dimensional, inviscid solution of the Euler equations given 
by Stuart. I6 1 

The streamfunction Y (x,y) is given byn 

(1) 
where R is the distance between vortices, (x0 ,y, ) are the 
spatial coordinates of the center of the reference vortex, and 
f U, is the free-stream velocity at either side of the mixing 

layer, y = T co, respectively. The value of the constant k, 
determines the spatial distribution of vorticity: for k, = 1, 
Eq. ( 1) reduces to a flow given by an array of point vortices 
separated by a distance R, while for k, = 0 it gives a uniform 
vorticity distribution solution characterized by the tanh 
streamwise velocity profile. In the present study, to model 
the coherent vortices of a two-dimensional turbulent shear 
layer, we have selected a periodic array of Stuart vortices 
with k, = 0.25. The choice of the constant k, is based on the 
experimental findings of Browand and Weidman.” Their 
results indicated that the time-averaged vorticity distribu- 
tion measured in a turbulent mixing layer can be accurately 
reproduced by Stuart’s solution with k, = 0.25. 

The two components U/ and vf,of the velocity field uJ are 
given by 

Uf = - u, 

x 
sinh[2r(y --y. )//z ] 

cosh[2rr(y--o)/il] -k,cos[2z-(x-xo)/il] 
(2) 

and 

Vf = u, 

X 
k, sin [ 2a(x - x0 )//1 ] 

cash [ 277(y - y. >/A ] - k,? cos [ 2714x - x0 )/,I ] * 
(31 

The vorticity vector wJ is 

1--k; 

C-h [ 2a(y - y. )/A ] - k, cos [ 277(x - x0 )/A ] )” k’ 
(4) 

where k is the unit vector in the spanwisezdirection (see Fig. where subscripts p and f refer to the particle and fluid, re- 
1). spectively; g is the acceleration of gravity, considered normal 

We consider the motion of a spherical, rigid particle of to the plane of the mixing layer, and along the negative y 
diameter d, and densityp, in an unbounded fluid of density axis; and the function-f, is a correction for the viscous drag 
pf and kinematic viscosity Y. Conservation of momentum for given by Cliff et al.z21 
a small rigid sphere with diameter d, &I is given by”,19 

du 
$ n-d; (pp + 0.5~~) $- 

% = +$d:(p, -p,,g++:pfz 

+ $ (TV) 1’2d ;p/ 
s 

* ( Du/Dr - du/dT) 
0 Jt---r 

+3~p~d,y(u~--~)f, +FL, 

fi = 1 + 0.13 1 5Re;82 -‘.05 ‘Oglo Rep, 0 < Re, < 20, (6) 
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which can be extended to the range 20 < (Rep = ]u7 Id,/ 
Y) < 200 (with less than a 2% error), where U, = u,. - up is , 
the relative velocity between the particle and the fluid. 

The terms appearing on the right-hand side of Eq. (5) 
represent, from left to right, the contribution to the accelera- 
tion of the particle of gravity, the nonuniformity of the far 

(5) 
field stress tensor of the fluid, Basset history, drag, and lift 
forces. 
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‘0 1 2 3 4 5 6 7 8 
X 

FIG. 1. Streamlines of the selected two-dimensional, steady flow given by 
E?q.(l)fork,=0.25.Th h e p ysical coordinates are also shown in the figure. 
The symbol 0 stands for the outwards, spanwise, unit vector in the z direc- 
tion. 

Introducing scaling parameters, 

p2!PL; L = $, where E = Pf 
18EV PI, + OJPf * 

(7) 

The dimensionless time ( t *), length (x* ), and velocities u,* 
and u-7 are defined as 

t” = t/r; x*=x/L (8) 
and 

?(* - 2n- dP2 u 
P- a 18.9 p’ 

u1 27~. Uo dp” n 
f-- a 18EYUf7 

(9) 

with i$ given by 

fif = {j&&} = .- sinhy k, sin x -~ -. 
coshy-kk,cosx’ coshy-kk,cosx I 

(10) 
For heavy particles (~4 1) and for moderate values of’A 
(A < 30), it can be shown that in the long term motion of the 
particle, the inertia, drag, and gravity terms are dominant 
and Eq. (5) reduces to the dimensionless form 

G5ly 
dt* 

= (A+-;)f, +“&, 

where 

A = 2rU0 dp’/il ( 18~) (12) 
is the inverse of the Stokes number, which is the ratio 
between the response time of the particle motion ( T) and the 
characteristic time of change of the fluid velocity 
(/z /2&J, ) ; and 

B _ dp’ 2n-lgl (PP -P/j -- -~~. 
18~ il (p, -t 0.5Pf) 

(13) 

is a modified Grashof parameter. 
The free-stream Reynolds number 

uo & Rez=- 
Y 

is related to the instantaneous Reynold number ReP by 

Rep = (ReF/A) [Ai+. - up*j; (14) 
the particle motion is then described by a four-dimensional, 
nonlinear autonomous dynamical system of the form 

i = G(x), 

kR4, 
G:R4-,R4, 

whose components x = Ix, ,*x2 ,x3 ,x4 > and 
CJ={G1,G2,G3,G4)are 

Equations (10) and (15) with the initial conditions 
{x~,y~,u~,v;> specified at t * == 0, constitute a nonlinear, 
non-Hamiltonian dynamical system. Defining J = d G/&X, 

df* trCJ) = - 2f, + u,*----- 
(3u; 

+ v,* g+o. 
P 

Thus, system ir = G does not preserve volume in the phase 
space. 

We have investigated the use of several numerical inte- 
gration algorithms to solve Eq. ( 11) . Taking into account 
that we are studying the long time behavior of the system 
( 15) and that the derivative functions are expensive to 
evaluate, we disregarded high precision algorithms such as 
the Bulirsch-Stoer extrapolation method or the Adams- 
Bashforth-Moulton predictor-corrector method. After 
comparison with a fourth-order Runge-Kutta algorithm, 
we selected a third-order multistep method such as 

X n+~ =x, + W/2)(3G, -G,-,) (17) 

because we found it faster for a given accuracy. On the other 
hand, this algorithm performs a discretization of the contin- 
uous dynamical behavior into a mapping R4-+R4. Thus, in 
order to retain the characteristics of our original system in 
the subsequent mapping and to avoid the creation of chaos 
resulting from the discretization procedure, as shown by Zu- 
firia,” the step size At had to be small enough compared to 
the periqd of the original system, which is bounded by the 
period Tf of the flow motion. As a result of the fact that our 
system is strongly dissipative, for ratios T/At larger than 10 
we found that the mapping did not exhibit global changes. 
For the sake of accuracy, we chose T//At > 50. 

In the following, using the analysis of nonlinear dynami- 
cal systems, we will focus our attention on the calculation of 
the long term evolution of the particle motion. In particular, 
our numerical study will be devoted to the following: 

(i) In order to elucidate whether or not the long term 
suspension of particles can take place in our flow, we will 
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parametrically analyze via numerical simulation the geome- 
try of the particle paths’ attractors, their location, and their 
topology. 

(al 

(ii) We will study the domains of attraction of the stable 
orbits to determine the spatial and temporal evolution of the 
particle concentration. 

(iii) In order to gain knowledge into the existence of 
possible fluidization mechanisms, we will study the bifurca- 
tions of the solutions and the transition to chaos. 

III. NUMERICAL RESULTS AND DISCUSSION 

Before discussing the general results corresponding to 
our parametric study of the long term particle trajectory as a 
function of the three dimensionless governing parameters 
(A,B,Re*), and for the purpose of illustrating the nature of 
the different suspension regimes we found, we will begin pre- 
senting the dynamical behavior of heavy particles in a flow 
given by LJ, = 7.5 msec ‘, /z = 10 cm. This flow condition 
was selected in order to be able to qualitatively analyze the 
recent experimental studies of Lazaro and Lasheras.” 

~,&---&--- +-----i 
115 

& 

b) 
7, 

’ -.--l 

The bifurcation diagram giving the long term position 
(xp,yp ) of a particle having zero vertical velocity (up = 0) is 
shown in Figs. 2(a) and 2(b) as a function of the particle 
diameter (dp). Note that corresponding to the selected flow 
conditions, particles of diameters smaller than 110 ,um. are 
eventually collected along accumulation curves with each 
individual particle trajectory merging into a periodic asymp- 
totic path represented by a one period limit cycle. For diame- 
ters greater than 1 lO,~m, a first period doubling bifurcation 
occurs and the particles’ paths were found to asymptotically 
converge into a two period orbit. For diameters larger than 
- 117 pm the particle trajectories quickly reach a chaotic 
attractor. 

..--.. , .  

: “,..., 0 _ .,.. .; %. 

-I- ’ 
100 105 

I-L ~_~ --- _~~ .-L 
110 115 120 125 

dp 

A representative asymptotic particle trajectory corre- 
sponding to a one period limit cycle (d, = 109,um) is shown 
in Fig. 3. Note in the figure that in this case, all particles that 
reached a long term suspension accumulated along a single 
path as the particles’ trajectories asymptotically converged 
into a unique periodic orbit. Physically, this first mode of 
particle suspension results from the combined effect of the 
convection of the particles by the mean flow, the ejection 
from the unstable centers (vortex cores), and gravitational 
settling. It is interesting to note that this asymptotic path 
(Fig. 3 ) somewhat resembles the well-known bouncing ball 
trajectory. To further illustrate the nature of the attractor, 
the frequency power spectrum corresponding to the trajec- 
tories of particles of diameter 109 pm. is given in Fig. 4. Note 
that all the energy is accumulated into a single frequency 
representing a one period limit cycle. 

FIG. 2. Bifurcation diagram for a continuous range of particles of diameter 
d,. (a) Vertical y positions and (b) horizontal x positions of the particle 
each time that its vertical velocity vanishes ( uP = 0). 

quency, indicating the nature of the period doubling 
bifurcation. Notice also how the main peak has shifted to- 
ward lower values of the frequency, which corresponds to 
smaller values of the average horizontal velocity of the parti- 
cle (or lower average vertical position of the trajectory). 

As the particle diameter is increased, a period doubling 
bifurcation is found to occur for a diameter greater than 110 
pm. A characteristic, asymptotic, two period, limit cycle tra- 
jectory resulting after the first period doubling bifurcation is 
shown in Fig. 5. Observe that, as was the case with a single 
period orbit, the structure of the attractor is such that all 
particles of the initial set reaching suspension accumulate 
along a single, two period orbit. The corresponding frequen- 
cy power spectrum given in Fig. 6 shows the distinct appear- 
ance of a second peak located at the first subharmonic fre- 

As the diameter of the particle is further increased, a 
sudden bifurcation cascade leads to the particles’ trajectories 
reaching a strange attractor characterized by chaotic orbits. 
In Fig. 7, the long term instantaneous positions of particles 
of diameter d, = 117,~m is shown. Observe that through the 
bifurcation cascade, the accumulation paths have now 
spread out over a well-defined layer located above the center 
of the Stuart’s vortices. Physically, this transition to chaos in 
our dissipative, non-Hamiltonian, dynamical system repre- 
sents the achievement of a long termfluidization stage wher- 
eby the particles remain permanently suspended in the flow 
in a layer of a given thickness. As opposed to the case of 
periodic orbits, the long term concentration of particles now 
loses the existence of singular regions along which the accu- 
mulation mechanism causes the concentration to become in- 
finite. The corresponding projection in the {x,y} plane 
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FIG. 3. One period, stable limit cycle corresponding to particles of diameter 
d, = 109 pm (see Fig. 2). 

(superimposed to the streamlines of the flow) of the three- 
dimensional Poincare surface of sections of this chaotic orbit 
is given in Fig. 8. The frequency power spectrum of this 
quasiperiodic orbit is shown in Fig. 9. Observe that in addi- 
tion to the coherent peaks, the spectrum now exhibits a well- 
characterized white noise level over a wide range of frequen- 
cies, indicating its chaotic character. Also observe a further 
shifting of the main peak toward lower values of the frequen- 
CY- 

For larger particle diameters, and through the bifurca- 
tion cascade, we found that thejluidization mechanism per- 
sists (Fig. 10). Furthermore, it was found that increasing 
particle diameters causes the widening of the Juidization 
region with the corresponding smoothening and lowering of 

7@) ..~"."."-r , 

r 

.., 

10 15 20 25 30 35 44 45 50 

fr .(Hd 

FIG. 4. Frequency power spectrum of the trajectories of particles of diame- 
ter d,, = 109pm. Observe the single peak representing the one period limit 
cycle. 

-4 
0 1 2 3 4 5 6 7 8 

X 

FIG. 5. Two period, stable limit cycle corresponding to particles of diame- 
ter d, = 114 pm. 

the particle concentration values throughout (compare 
Figs. 7 and 10). In addition, as thefluidization region locat- 
ed above the Stuart’s layer widens, the {x,y} projection of 
the three-dimensional Poincare surface of sections (Fig. 11) 
develops additional layers at higher vertical coordinates, and 
the frequency power spectra (Fig. 12) lose their coherency 
showing a broader frequency band of white noise now. 

The sudden change in the chaotic attractor, which was 
found to occur for d, - 124 pm results from collisions 
between the chaotic attractor and a coexisting periodic or- 
bit.‘3 Grebogi et at.24 were the first to observe this phenome- 
non. Similar crises induced oscillations have been also shown 
to occur in two- and three-dimensional maps and in three- 

7@T----- * 
I -r----t 

I : --I 

ux) ..; .: 

100 : ,  

0 
30 35 40 45 50 

fr. (Hz) 

FIG. 6. Frequency power spectrum of the trajectories of particles of diame- 
ter d,, = 114pm. Observe the appearance of a second peak representing the 
subharmonic frequency of the trajectory, as well as a peak corresponding to 
the first harmonic frequency. 
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FIG. 7. Quasiperiodic, stable limit cycle corresponding to particles of 
d, = 117pm. 

dimensional flows. The presence of the above sudden change 
in the chaotic attractor with the appearance of a “crisis in- 
duced oscillation” of period three shows the chaotic nature 
of the trajectories after the bifurcation cascade.25 

After having presented the case described above illus- 
trating the existence of several long term suspension re- 
gimes, whereby heavy particles remain suspended indefinite- 
ly in a flow with zero mean vertical velocity, we will now 
discuss the result of a more general parametric study. In the 

3 
I I 

-3 

: -+-..--r 
-4 i / f i / 

0 12.3 4 5 6 7 8 

fT.(HZ) 

FIG. 9. Frequency power spectrum of the particle trajectory in Fig. 7.\ 

following, we will analyze the long term behavior of the par- 
titles’ trajectories.in the parameter space A, B, and Rez/A. 
In particular, we will focus our attention on obtaining the 
parameter ranges for which the particles will either settle or 
will remain suspended in periodic, quasiperiodic, or chaotic 
orbits. Furthermore, for all of the different regimes when 
suspension occurs, we will discuss the geometry of the corre- 
sponding basin of attraction. 

Hereafter, we will use the terms stable or unstable in a 
rather loose manner. We will call the system stabZe ifthe long 
term vertical position of at least one particle remains bound- 
ed (particle suspension). If all the trajectories are unbound- 
ed the system will be called unstable (particle settling). 

We begin by presenting the dynamical behavior of sys- 
tem ( 15) in the parameter space {A,B,ReF/A). Thestability 
limits expressed as a function of the three governing dimen- 

Y 
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FIG. 8. Projection in the (n,y) plane of the Poincare surface of sections for FIG. 10. Chaotic, stable orbit corresponding to particles of diameter 
the trajectory given in Fig. 7, superposed to the flow streamlines. d, = 123 ,um. 
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X 

PIG. Il. Projection in the (x,y) plane of the Poincart surface of sections for 
the trajectory given in Fig. 10, superposed on the flow streamlines. 

sionless parameters are shown in Fig. 13. For each scaled 
Reynolds number (Re,*/A ) , the upper solid surface repre- 
sents the range of Stokes (A) and Grashof (B) parameters 
for which the particle follows either a stable or an unstable 
path. In physical terms, this stability surface represents the 
boundary between the parameter region for which the long 
term particle evolution results either in a sedimentation or in 
a suspension. Above the solid surface in Fig. 13, all particles 
follow unstable trajectories, i.e., there are no particles in the 
set of initial conditions for which suspension can occur. Be- 
low this surface, a certain portion of the particles does not 
settle toy = - 03, but follows a stable trajectory remaining 
indefinitely suspended in the flow. When suspension occurs, 

ml--..y _.__ , 

1 

I . .  

0 5 10 15 25 30 3s ‘lo 45 so 

fr.(Hz) 
FIG. 12. Frequency power spectrum ofthe trajectories of particles of diam- 
eter d, = 123 pm. Observe the appearance of a broadband of white noise 
and the shifting of the main peak toward a lower frequency. 

we found that the particles may follow periodic, quasiperio- 
die, or chaotic paths. The boundary representing the param- 
eter range for which the particles follow a periodic path (one 
period limit cycle) or a quasiperiodic or chaotic one (two or 
more period limit cycles), i.e., first period doubling bifurca- 
tion, is also given in the figure (the lower surface represented 
by dotted lines). For a parameter combination below the 
lower surface, all suspended particles were found to remain 
in an asymptotic periodic path. Above this surface, by in- 
creasing the Grashof number B one finds a period doubling 
bifurcation and eventual transition to chaos. 

These surfaces have been obtained by fitting with ninth- 
order polynomial functions a discrete set of (A,B) transition 
points calculated for several values of the scaled Reynolds 
number Re,*/A. The stability line and the location of the first 
period doubling bifurcation is shown in Figures 14(a)- 
14(d) for four representative values of Rez/A. Note that as 
the Reynolds number increases, particle suspension may oc- 
cur at larger values of both the Stokes and the Grashof pa- 
rameters, and the parametric region of chaos widens. 

A spectral analysis of the particle acceleration equation 
( 10) reveals that a particle of a given diameter will respond 
with the same frequency spectra to a time periodic input with 
a period equal to, or larger than, its relaxation time. In the 
present case of particles settling under gravity in the Stuart 
layer, the gravitational parameter (B) is forcing the attrac- 
tive limit cycles toward lower average horizontal velocity 
corresponding to larger input periods. On the other hand, 
when the particle remains suspended, its settling velocity 
must be of the order of the average vertical velocity that the 
particle experiences from the flow as it moves along the limit 
cycle. Since increasing the Grashof number (B) resultsin an 
increase in the settling velocity, the particle will follow lower 
and lower limit cycles until one of the following scenarios 
occurs. 

(a) For small values of A (A < 1 ), the period of the 
lower possible orbit is larger than the particle response time, 
and an increment in the Grashof parameter (B) causes the 
global settling of all the particles. In Figs. 14(a)-14(d), this 
case corresponds to the transition that results by increasing 
the parameter B for fixed values of A. To illustrate this, in 
Fig. 15 (a) the lower possible stable orbit for a Stokes num- 
ber ,4 = 0.56 and Re,*/A = 17.9 is shown. This case corre- 
sponds to a Grashof number B = 0.0224. Increasing B be- 
yond this value results in sedimentation for all possible 
initial conditions of the particle as all the particles escape the 
attractor through the saddle point region. 

(b) The period of the lower possible orbit is smaller than 
the particle response time (large A) and, in this case, the 
single period limit cycle bifurcates to a two period cycle hav- 
ing a longer period and a larger average vertical flow veloc- 
ity. In this case, depending on the value of A, we found that 
increasing the Grashof number B leads to a transition PO 
settling either (i) from a multiple period orbit, (ii) from a 
quasiperiodic orbit, or (iii) from a chaotic trajectory. In the 
last case, by increasing B the period doubling lead to a bifur- 
cation cascade by which the particle reaches quasiperiodic 
and chaotic orbits with a well-defined structure in the R 4 
phase space. In Figs. 15 (b) and 15(c) we show the lower 
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FIG. 16. Three-dimensional view of the 
Poincare surface of section of the chaotic 
orbit in Fig. 5(c), and its projections on 
hy), Lw,,), and (Y,u,) planes. The 
Poincart surface of sections is computed 
by recording the position and the horizon- 
tal velocity of the particle each time that 
its vertical velocity u,, 7 0. Observe the 
well-defined fractal geometry of the sec- 
tion. 
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stable, two period limit cycle for the case of a moderate 
Stokes number, and the lower chaotic cycle corresponding 
to a larger Stokes number, respectively. In both cases in- 
creasing B was found to lead to a transition to sedimentation. 
in Fig. 16, the structure of the PoincarC surface of sections 
formed by recording the particle coordinate each time that 
its vertical velocity becomes zero, is given. The flow condi- 
tions corresponding to this figure are the same tis in Fig. 
15 (c) . In this three-dimensional plot we show the well-de- 
fined fractal topology of the PoincarC surface of sections of 
our dynamical system in the chaotic regime. 

In order to obtain information about the global, long 
term dynamics of particles in periodic flows, the study of the 
basin of attraction is another important issue. Given the 
probability distribution function of particles in the phase 
spaceflx,y,&J ;d, ) for t = 0, the relative amount of parti- 
cles that remain suspended in the shear layer is given by the 
integral of this function over the volume of the domain of 
attraction in the phase space 

m 
a= 

I u 
f( x,y,i,f;d, ) dx dy di dj 

> 
d( d, ) , (18) 

0 P’&,) 

which can be approximated by 

a$ 
s 

f(x,y,k,s+:;d,,)dx dy dk dj. (19) 
i- 1 V,(dPi) 

This integration can be accomplished through the discreti- 
zation of the continuum range of the particles’ diameters d, 
in families {d,,,)j= 1 ,.,_, N, by computing for each family the 
geometry of the basin of attraction V, ( dpi ) . A new, numeri- 
cal, powerful tool is available for achieving the solution of 
this, otherwise intractable, global problem in R 4 and is 
called the cell mapping method.26 The application of this 
method to our problem is currently in progress, and will be 
presented elsewhere. However, for a fixed pair of values (up, 
u,, ) at t = 0, the corresponding section of the domain of at- 
traction in the physical space {x,y) can be obtained by using 
a simple recording of,the long term position of particles ini- 
tially located in a grid. The sections of the basins of attrac- 
tion for the orbits corresponding to Figs. 15 (a), 15 (b), and 
15 (c), computed for initial velocities of the particles equal to 
those ofthe flow, are represented in Figs. 17(a), 17(b), and 
17 (c), respectively. As the particles are chaotically suspend- 
ed, it was found that the basin of attraction becomes a fractal 
object as its boundaries acquire more complicated shapes 
[Fig. 17 (b) 1. It is interesting to point out that our findings 
are similar to the results of Gwinn and Westervel?’ ob- 
tained for a forced pendulum. At the onset of chaos,27 they 
found that the basin of attraction loses its identity, which 
also occurs in our case, as shown in Fig. 17 (c) . 

IV. CONCLUSIONS 

We have presented an analysis of a four-dimensional 
dynamical system to investigate the gravitational settling of 
small heavy particles in a two-dimensional periodic flow giv- 
en by the Stuart solution of the inviscid Euler equations. 

For each scaled Reynolds number based on the velocity 
of the free stream (Re,*), we obtained the Stokes (A) and 
Grashof (B) parameter range for which the long term parti- 
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cle motion resulted in either a sedimentation or in a suspen- 
sion. In the range where suspension occured, we found that 
the particles were attracted by periodic, quasiperiodic, or 
chaotic orbits. For the case of periodic orbits, the particles 
were shown to accumulate along a unique, periodic path as 
all trajectories asymptotically converge into a single one:For 
the case of chaotic orbits, it was found that the particle accu- 
mulation paths spread out over a well-defiped layer of a giv- 
en height located above the centers of the Stuart vortices 
leading to a stage of long term fluidization. This fluidization 
of the particles resulted from the combined effect of the con- 
vection by the mean flow, ejection from the center of the 
vortices, and gravitational settling. Furthermore, this mech- 
anism was shown to differ significantly from the one pre- 
viously found- by Stommel,’ Maxey,” McLaughlin,’ and 
others. In this new suspension regime, the particles, instead 
of remaining in closed trajectories, were now attracted by 
either periodic or chaotic orbits, always remaining above the 
center of the Stuart vortices. 
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