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a b s t r a c t 

A new exact algorithm for bi-objective linear integer problems is presented, based on the classic ε- 

constraint method and algebraic test sets for single-objective linear integer problems. Our method pro- 

vides the complete Pareto frontier N of non-dominated points and, for this purpose, it considers exactly 

|N | single-objective problems by using reduction with test sets instead of solving with an optimizer. Al- 

though we use Gröbner bases for the computation of test sets, which may provoke a bottleneck in princi- 

ple, the computational results are shown to be promising, especially for unbounded knapsack problems,

for which any usual branch-and-cut strategy could be much more expensive. Nevertheless, this algorithm

can be considered as a potentially faster alternative to IP-based methods when test sets are available.
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. Introduction

In real-life problems, the pursued objectives are multiple and

ecision makers usually need complete knowledge of the best de-

isions to be made from those different points of view. The con-

ept of non-dominated solution or Pareto optimal gathers the solu-

ions that cannot be improved in any objective without degrading

t least one of the other objectives. 

Multi-objective Integer Programming (MOIP) is the branch that

eals with this kind of problems in the case of integer variables.

eneration methods compute the whole space of Pareto optimal

olutions. Among these type of methods, the weighted-sum method

ransforms a multi-objective problem into several single-objective

roblems that arise from the linear combination of the different

osts. If the Pareto set of points is convex this method provides

he whole set of non-dominated solutions, but only the supported

areto optimal points are obtained in the general case. On the

ther hand, the ε-constraint technique generates a grid in the ob-

ective space with ranges between the costs of ideal and nadir

oints and, for each point in the upper-bound set (cf. Ehrgott and

andibleux (2007) and Bringmann, Friedrich, Igel, and Voß (2013) ),
∗ Corresponding author.
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 single-objective IP is solved, thereby avoiding incremental move-

ents through the grid. 

In Laumanns, Thiele, and Zitzler (2006) , an adaptive variation

f the constraints that depends on the Pareto-optimal solutions

ound so far has been proposed. They use a lexicographic optimiza-

ion with respect to the costs in the constraints in order to avoid

eakly efficient Pareto optimal solutions. In their process slackness

f the constraints are forced. The time complexity of their algo-

ithm is O(|N | p−1 ) , where |N | is the number of Pareto-optimal

olutions and p the number of objectives. 

In Ehrgott and Ruzika (2008) , the main weaknesses of the ε-

onstraint technique are pointed out: the lack of easy-to-check

onditions for properly efficient solutions and the inflexibility of

he constraints. In order to address these weaknesses, slack and

urplus variables are added. 

In Mavrotas (2009) , the so-called augmented ε-constraint

ethod is presented. By using the previous idea of slack variables,

n effective implementation of the ε-constraint technique is given.

n seeking non-dominated solutions, the algorithm changes the

ost function, by rewarding whenever the slack variables are posi-

ive. This method is improved in Mavrotas and Florios (2013) , and

 variation is proposed in Zhang and Reimann (2014) . 

In Kirlik and Sayın (2014) a new method is described, which is

lso based on the ε-constraint technique, with an innovative way

f partitioning the search space in terms of rectangles. This tech-

ique presents a two-stage formulation for each problem in con-

rast to the lexicographic option. 
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Other alternative approaches have been proposed, such as the

triangle-splitting method in Boland, Charkhgard, and Savelsbergh

(2014) for the more general case of mixed linear integer program-

ming, and methods based in advanced branch-and-bound analysis

(cf. Ralphs, Saltzman, & Wiecek (2006) ). 

Two additional algebraic approaches to MOIP have been pre-

sented. In Blanco and Puerto (2009) the construction of the so-

called partial Gröbner bases (that turns out to be similar to Graver

bases in many cases) is proposed. In Blanco and Puerto (2011) the

multiobjective problem is reduced to finding solutions of a system

of polynomial equations induced by optimality conditions: the nec-

essary Karush-Kuhn-Tucker, the Fritz-John and the multiobjective

Fritz-John nondominance conditions. This second approach gener-

alises ( Bertsimas, Perakis, & Tayur, 20 0 0 ), in which single objective

optimisation problems are treated applying Gröbner bases for solv-

ing systems of polynomial equations. 

We present a new exact algebraic method to solve bi-objective

linear integer problems. Our first contribution is theoretical: we

provide a new way of understanding the classical ε-constraint

technique under a new perspective. Our approach uses the so-

called test sets associated with single-objective integer program-

ming problems, and takes advantage of their special characteris-

tics. A test set is a set of directions that guides the movement from

any feasible point until the optimum of a linear integer program-

ming problem is reached. Once a test set for a linear integer prob-

lem is obtained, it can be solved by reducing any feasible point

with the elements of the test set instead of passing it to an opti-

mizer. The reduction is the simple iterative process, in which any

element of the test set that produces a feasible point can be used

repeatedly. Test sets can be computed in several ways. It is proved

in Thomas (1995) that Gröbner bases provide the minimal test set

for a fixed total ordering that is compatible with the linear cost

function of the program considered. Test sets do not depend on

the right-hand side (RHS) of the constraints. Interested readers can

consult references ( Sturmfels, 1996 ) and ( Bertsimas & Weismantel,

2005 ) for further details on this topic. Although the computation

of Gröbner bases is a hard task in general, since it is highly sensi-

tive to the number of variables (the degree of the polynomials in

the bases in the worst complexity case is O(kd 2 n ) for ideals gen-

erated by k polynomials in n variables of degree at most d , see

Mayr and Meyer (1982) , in our experiments the algorithm is fairly

competitive in the unbounded knapsack problem. Its performance

in the 0–1 knapsack problem remains unexceptional because each

0–1 variable adds one equation and one variable in this context.

Gröbner bases can sometimes be obtained theoretically, thereby

avoiding the potential disadvantages of the bare computation. This

is the case of the family presented in Laumanns et al. (2006) . In

Appendix A , we provide the technical details of how to obtain the

closed formula of the Gröbner bases that are required for this fam-

ily to be treated with our method for any number of variables. 

The method introduced in this paper, in addition to its theoret-

ical contribution, provide some potential advantages to apply the

ε-constraint framework. To begin with, our method detects accu-

rately the efficient solutions. Redundant cases are circumvented:

test sets point out exactly which values of the slack variable (of the

added constraint due to the first cost) will produce new efficient

solutions. Secondly, to solve the IPs we do not pass the problem

to a solver, but use a process called reduction to obtain the opti-

mal solutions and it may be considered therefore as an alternative

to IP-based methods. Thirdly, our method uses only one test set to

solve all the single-objective problems, because the same test set

is valid to solve a given problem in spite of the RHS of its equa-

tions. Finally, we avoid weakly efficient solutions. We show how

test sets, computed with Gröbner bases with respect to a suitable

total ordering, solve in one step each problem into a ε-constraint

framework, obtaining directly efficient solutions. In contrast, the
lgorithm of Laumanns et al. (2006) depends on the number of

roblems to be solved by the optimizer in order to manage a lexi-

ographic setting. 

The remainder of the document is structured as follows. In

ection 2 we introduce the problem and the tools we are going

o use. In Section 3 we present the theorems in which our algo-

ithm is based. In Section 4 we treat in detail a worked example

o help the understanding of our method. In Section 5 we present

ome computational experiments to test the performance of our

lgorithm. In Section 6 we show the conclusions and, finally, in

he Appendix we show an example of how the Gröbner basis of

 given problem can be sometimes obtained theoretically, avoiding

ts potentially expensive calculation with a computer. 

. Preliminaries

Our interest lies in solving the bi-objective linear integer opti-

ization problem in its standard form, that is, 

in c 1 ( x ) , c 2 (x ) 
s . t . A x = b , x ∈ Z 

n 
≥0

(1)

or A ∈ Z 

m ×n , rank (A ) = m, b ∈ Z 

m and c 1 , c 2 linear functions with

nteger coefficients. Since in general there is no feasible point that

inimises both cost functions, we are concerned about the effi-

ient points : those feasible points x � such that there is no feasible

 

′ with c k ( x 
′ ) ≤ c k ( x 

� ) with at least one strict inequality for k = 1 , 2 .

f x � is an efficient point, ( c 1 ( x 
� ), c 2 ( x 

� )) is a non-dominated (or

areto) point in the objective space. If we replace the condition

 k ( x 
′ ) ≤ c k ( x 

� ) with c k ( x 
′ ) < c k ( x 

� ), then we obtain weakly efficient

or weak Pareto) points. We will denote X as the set of efficient

oints and N as the set of non-dominated points, the Pareto fron-

ier . 

We will assume that the feasible region for problem (1) is finite,

nd therefore the Pareto frontier N is also finite. In this work, we

how how to obtain a set X 

� ⊂ X that is a minimal complete set of

fficient points (that is, if x a , x b ∈ X 

� then ( c 1 ( x 
a ), c 2 ( x 

a )) � = ( c 1 ( x 
b ),

 2 ( x 
b )) and |X 

� | = |N | , as in Ehrgott (2005) ).

The ε-constraint technique, a common method to address prob-

em (1) , solves many problems of the form 

in c k (x ) 
s . t . A x = b 

c j (x ) ≤ ε j , j = 1 , 2 ( j � = k ) 
x ∈ Z 

n 
≥0

(2)

or fixed k = 1 , 2 and suitable values of ε j in order to find efficient

oints. More precisely, the efficiency of a point x � is related to the

act that x � is an optimal solution of problems of type (2) for k =
 , 2 , as the following theorem of Ehrgott (2005) states for the bi-

bjective linear case: 

heorem 2.1. A feasible solution x � of a linear MOIP is efficient if and

nly if there exists (ε2 , ε1 ) ∈ R 

2 such that x � is an optimal solution

f the corresponding problems (2) for k = 1 , 2 . 

Consequently, we have a family of IPs for which the RHS varies

or different ε j . This fact provides us the opportunity to consider

n algebraic tool to deal with integer problems (IPs): the test sets .

iven an IP in standard form (no inequalities) 

in c(x ) 
s . t . A x = b 

x ∈ Z 

n 
≥0

(3)

or A ∈ Z 

m ×n , rank (A ) = m, b ∈ Z 

m and assuming c as a linear

unction with coefficients in Z 

n , we have the following result (cf.

chrijver (1986) ): 

heorem 2.2. Given problem (3) there exists a set T ⊂ { t ∈ Z 

n : A t =
 } valid for any RHS, with the following properties: 
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1. For any feasible solution x of (3) that is not optimal, there exists

t ∈ T such that x − t is feasible and c(x − t ) < c(x ) .

2. Given the optimal solution x � of (3) , x − t is not feasible for any

t ∈ T .

Any set satisfying these conditions is called a test set for (3) . The

xistence of test sets for an IP implies a straightforward algorithm

o find its optimum: we start from a feasible point and subtract

we will say reduce too, because of the correspondence between

oints and monomials, and between test sets and Gröbner bases )

lements of the test set on the condition that feasible points are

btained. 

Several alternatives are available for the computation of test

ets. It is proved in Thomas (1995) that Gröbner bases, computed

ith respect to a fixed total ordering ≺c compatible with the lin-

ar cost function of the considered program, provide a (minimal)

est set for (3) . Therefore this test set is valid for any RHS of the

onstraints. 

In general, the computation of Gröbner bases requires a total

rdering (cf. Cox, Little, and O’Shea (2005) or Sturmfels (1996) ).

o solve a linear program, the total ordering ≺c must be compat-

ble with the cost function c : the selected total ordering needs to

ompare points using the cost c in the first place and then break

ies with another total ordering. This second total ordering can be

nother cost function or a lexicographic ordering < lex for which

 < lex b when the first non-zero entry of b − a is positive. These

est sets produce optimal solutions of a given IP that are unique :

hey have the smallest value of c and they are the best solutions

ith respect to ≺c . 

By means of using test sets, only one test set needs to be com-

uted for all the problems that have to be solved with the ε-

onstraint method and only one reduction has to be made for

ach problem. Furthermore, we will see that by using a test set

pproach, the solution of redundant problems is avoided (that is,

roblems that produce efficient points already obtained) and only

fficient solutions are obtained, instead of weakly efficient points

hat would have to be filtered in a second phase. 

. Main results

In order to treat the problem (1) with the ε-constraint method,

e address problems of the form 

in c 2 (x ) 
s . t . A x = b 

c 1 (x ) ≤ ε1 , x ∈ Z 

n 
≥0 ,

(4) 

r in standard form, 

in c 2 (x ) 
s . t . A x = b 

c 1 (x ) + s = ε1 , x ∈ Z 

n 
≥0 ,

(5) 

hich will be denoted P 2 ( ε1 ) (similarly, if the cost function is

 1 and the constraint is related to c 2 , then it is denoted P 1 ( ε2 )).

 problem P 2 ( ε1 ) can have several optimal solutions. Our pur-

ose consists of obtaining among them a minimal complete set

f efficient points as described in Ehrgott (2005) , as outlined in

ection 2 . 

otation 1. We denote as T 21 ⊂ Z 

n +1 the test sets associated with

he family of problems P 2 ( ε1 ) for any RHS, with the properties

ointed out in Theorem (2.2) . The elements of the test set include

ne additional variable since a slack variable has been added to

he problem to put it in standard form. Test sets will be assumed

o be computed using Gröbner bases with respect to a total order-

ng < c 2 ,c 1 , ≺. This total ordering < c 2 ,c 1 , ≺ first compares two points

sing c 2 , breaks ties with c 1 and with a total ordering ≺ if the

oints have the same costs c and c . For example for n = 3 , and
1 2 
 1 and c 2 with coefficients (1,1,1) and (−1 , 1 , −1) , the points (1,2,0)

nd (0,2,1) have the same costs. If we choose the ordering ≺= < lex 

o break the ties, we obtain (0 , 2 , 1) < c 2 ,c 1 ,< lex 
(1 , 2 , 0) . 

We use test sets T 12 by simply changing the roles of c 1 and

 2 . Solving P 2 (ε) T 21 
involves solving P 2 ( ε) by specifically using T 21 ,

hat is, the unique best solution of the problem P 2 ( ε) with respect

o a total ordering of type < c 2 ,c 1 , ≺ is obtained. The selection of this

articular ordering is of major interest for Theorem 3.1 . This se-

ection of the ordering provides a direct computation of the effi-

ient points, in a single step: no second phase is needed in order

o eliminate weakly efficient points. 

The following result provides a characterization of the efficient

oints in this context. 

heorem 3.1. ( x � , 0) is the optimal solution of the problem

 2 (c 1 (x ∗)) T 21 
if and only if x � is an efficient solution of the bi-

bjective problem (1) and, among the efficient solutions with costs

 c 1 ( x 
� ), c 2 ( x 

� )), it is the smallest with respect to the ordering < c 2 ,c 1 , ≺.

roof. Let ( x � , 0) be the optimal solution of P 2 (c 1 (x � )) T 21 
. In par-

icular ( x � , 0) is a feasible solution of P 2 ( c 1 ( x 
� )). To show that x � is

n efficient solution of the bi-objective problem using Theorem 2.1 ,

t suffices to prove that ( x � , 0) is an optimal solution of the prob-

em P 1 ( c 2 ( x 
� )), that is: 

in c 1 (x ) 
s . t . A x = b 

c 2 (x ) + s = c 2 (x 

� ) , x ∈ Z 

n 
≥0

(6) 

We have that ( x � , 0) is feasible for (6) . Proving by contradic-

ion, let us assume that ( x � , 0) is not an optimal solution of this

roblem. Let ( x ′ , s ) with s ≥ 0 be an optimal solution of (6) , hence

 1 ( x 
′ ) < c 1 ( x 

� ) and c 2 (x ′ ) + s = c 2 (x � ) , that is, c 2 ( x 
′ ) ≤ c 2 ( x 

� ). Thus,

e have found that ( x ′ , s ′ ) for s ′ = c 1 (x � ) − c 1 (x ′ ) is feasible for

 2 ( c 1 ( x 
� )) with (x ′ , s ′ ) < c 2 ,c 1 , ≺ (x � , 0) , which contradicts the fact of

 x � , 0) being the optimal solution of P 2 (c 1 (x � )) T 21 
. Therefore, ( x � , 0)

s an optimal solution of (6) and, since the efficient solutions with

he same costs as x � are feasible for P 2 ( c 1 ( x 
� )), we deduce that

 x � , 0) is the best of these solutions with respect to < c 2 ,c 1 , ≺. 

Reciprocally, let x � be the efficient solution of (1) with costs

 c 1 ( x 
� ), c 2 ( x 

� )), and the smallest one with respect to < c 2 ,c 1 , ≺. From

heorem 2.1 , we know that x � is feasible for P 2 ( c 1 ( x 
� )). If there

ere several efficient solutions with the same costs, then we

ould choose x � to be the optimum with respect to < c 2 ,c 1 , ≺, that

s, the solution of P 2 (c 1 (x � )) T 21 
. �

Theorem 3.1 specifically provides a way to obtain the first point

f our set of representatives of the non-dominated set of points of

roblem (1) : that with minimum c 1 . 

orollary 3.1.1. ( Ehrgott, 2005 , Lemma 5.2.) If x � 1 is the optimal so-

ution of 

in { c 1 (x ) : A x = b , x ∈ Z 

n 
≥0} 

ith respect to the ordering < c 1 ,c 2 , ≺, then x � 
1 

is an efficient solution

f (1) with minimum c 1 . 

Given the set of efficient solutions X , let us denote X 

� ⊂ X 

s the minimal complete set of efficient points whose elements

ave the property of being the smallest solutions with respect to

 c 2 ,c 1 , ≺ from among the points that have the same costs, that is 

 

� = { x 

� ∈ X | (x 

� , 0) is a solution of

P 2 (z 1 ) T 21 
for certain (z 1 , z 2 ) ∈ N } (7) 

e order X 

� = { x � 
1 
, . . . , x � |N | } in a strictly increasing way with re-

pect to c 1 (and hence in a strictly decreasing way in c 2 ) where x � 
1

s the result of Corollary 3.1.1 . It is clear that each (x � 
i 
, 0) is the so-

ution of P 2 (c 1 (x � 
i
)) T 21 

for i = 1 , . . . , |N | from Theorem 3.1 . We now
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see how to proceed to obtain the elements of X 

� while avoiding

calculations that would lead to efficient solutions previously com-

puted. To this end, we denote for each x ∈ Z 

n 
≥0 

the set 

G x = { (t , s ) ∈ T 21 : t ≤ x } .
It should be borne in mind that if ( x , 0) is the optimal solution of

P 2 (ε) T 21 
for certain ε with x ∈ Z 

n 
≥0 

and G x � = ∅ , then for every ( t ,

s ) ∈ G x we have s > 0, otherwise ( x , 0) would be reducible. 

Proposition 3.1. For any x � 
i 
, i = 1 , . . . , |N | − 1 we have that: 

1) Let s i be the smallest s > 0 such that (t , s ) ∈ G x � 
i
. For any s ′ ,

0 < s ′ < s i , the solution of P 2 (c 1 (x � 
i 
) + s ′ ) T 21 

is (x � 
i 
, s ′ ) and for that

reason P 2 (c 1 (x � 
i 
) + s ′ ) T 21 

does not provide a new efficient solution.

2) For s i , which is the smallest s > 0 such that (t , s ) ∈ G x � 
i 
, the solu-

tion of P 2 (c 1 (x� 
i
) + s i ) T 21 

is (x � 
i +1 

, 0) .

3) G x �|N | = ∅ . 

Proof. 

1) To begin with, we have G x � 
i

� = ∅ . We have that x � 
i 
, is not the op-

timal solution of P 2 (c 1 (x � 
i +1 

)) T 21 
, but is feasible. There must be

a value s > 0 such that (x � 
i 
, s ) is reducible to obtain better val-

ues of c 2 by subtracting elements of T 21 . If s i > 0 is the smallest

of such possible s > 0 and 0 < s ′ < s , then the point (x � 
i 
, s ′ ) is fea-

sible for P 2 (c 1 (x � 
i 
) + s ′ ) T 21 

. If it is not the optimal solution, then

there exists (t , s ) ∈ T 21 such that t ≤ x � 
i 

and s ≤ s ′ < s i , but this

inequality contradicts the fact that s i is the smallest one with

this property. 

2) Let us first see whether the solution of P 2 (c 1 (x � 
i 
) + s i ) T 21 

is of

the form ( x ′ , 0). The point (x � 
i 
, s i ) is feasible for P 2 (c 1 (x � 

i 
) +

s i ) T 21 
but it is not the optimal solution, because there ex-

ists an element ( t , s i ) in the test set such that ( t , s i ) ≤ ( x � , s i )

(componentwise), hence (x � 
i 
− t , 0) is feasible for P 2 (c 1 (x � 

i 
) +

s i ) T 21 
with (x � 

i 
− t , 0) < c 2 ,c 1 , ≺ (x � 

i 
, s i ) and consequently c 2 (x � 

i 
−

t ) ≤ c 2 (x � 
i 
) . As c 1 (x � 

i 
− t ) = c 1 (x � 

i 
) + s i and s i > 0 then c 1 (x � 

i 
) <

c 1 (x � 
i 
− t ) . Thus, by the definition of the ordering < c 2 ,c 1 , ≺ we

conclude that c 2 (x � 
i 
− t ) < c 2 (x � 

i 
) . Now let us suppose that the

solution of P 2 (c 1 (x � 
i 
) + s i ) T 21 

is the point ( x ′ , s ′ ). Let us show

that s ′ = 0 . If s ′ > 0 then c 1 (x ′ ) + s ′ = c 1 (x � 
i 
) + s i = c 1 (x � 

i 
− t )

and c 2 (x ′ ) ≤ c 2 (x � 
i 
− t ) < c 2 (x � 

i 
) . For the comparison of s ′ > 0

and s i > 0 there are two options. If 0 < s ′ < s i using part 1)

above, therefore the solution of P 2 (c 1 (x � 
i 
) + s i − s ′ ) T 21 

is (x � 
i 
, s i −

s ′ ) . As ( x ′ , 0) is feasible, it holds that (x � 
i 
, s i − s ′ ) < c 2 ,c 1 , ≺ (x ′ , 0) ,

then c 2 (x � 
i 
) ≤ c 2 (x ′ ) , but this is a contradiction. If 0 < s i < s ′

then (x ′ , s ′ − s i ) is feasible for P 2 (c 1 (x � 
i 
)) T 21 

because c 1 (x ′ ) +
s ′ − s i = c 1 (x � 

i
) . However, as (x � 

i 
, 0) is the solution of this prob-

lem, we deduce that (x � 
i 
, 0) < c 2 ,c 1 , ≺ (x ′ , s ′ − s i ) , hence c 2 (x � 

i 
) ≤

c 2 (x ′ ) , which is also a contradiction. Consequently, we have

obtained that s i = s ′ = 0 and the solution P 2 (c 1 (x � 
i 
) + s i ) T 21 

is

a point of the form ( x ′ , 0). Nevertheless, x ′ = x � 
i +1 

must hold

because ( x ′ , 0) is the optimal solution of P 2 (c 1 (x ′ ) T 21 
) and is

therefore an element of X 

� , precisely the solution with the next

value of c 2 . 

3) When we obtain the efficient solution x � |N | (that with the great-

est c 1 among the non-dominated points), it must be G x � |N | = ∅
because otherwise from part 2) we would produce a new effi-

cient point with a greater c 1 than x � |N | .

�

The following theorem specifies the values of the s i of the above

proposition. 

Theorem 3.2. Let X 

� = { x � 
1 
, . . . , x � |N | } be defined as in (7) with

c 1 (x � 
i 
) < c 1 (x � 

i +1 
) for every i = 1 , . . . , |N | − 1 , and T 21 be the test set

associated with the family P 2 ( ε) with respect to the ordering < c 2 ,c 1 , ≺.

We have that for every i = 1 , . . . , |N | − 1 there exists an element
(t i , s i ) ∈ T 21 such that t i ≤ x � 
i

(componentwise) and s i = c 1 (x � 
i +1 

) −
 1 (x � 

i 
) . 

roof. Given x � r ∈ X 

� , from Theorem 3.1 (x � 
i 
, 0) is the optimal solu-

ion of P 2 (c 1 (x � 
i 
)) T 21 

, and hence it is not reducible, that is, there is

o (t , s ) ∈ T 21 with s ≥ 0 such that t ≤ x � 
i 
. In the same way, (x � 

i +1 
, 0)

s the solution of P 2 (c 1 (x � 
i +1 

)) T 21 
, and (x � 

i 
, s i ) is feasible for this

roblem with s i = c 1 (x � 
i +1 

) − c 1 (x � 
i 
) . Since (x � 

i 
, s i ) is not the opti-

um for P 2 (c 1 (x � 
i +1 

)) T 21 
, there must exist an element ( t ′ , s ′ ) in the

est set whereby (t ′ , s ′ ) ≤ (x � 
i 
, s i ) . Then s ′ > 0 must hold, otherwise

 t ′ , s ′ ) would reduce (x � 
i 
, 0) which is irreducible. 

Let us show that s i = s ′ . In order to carry out a proof by

ontradiction, let us suppose that s i � = s ′ . Since (t ′ , s ′ ) ≤ (x � 
i 
, s i ) ,

hen 0 < s ′ < s i . If we consider the problem P 2 (c 1 (x � 
i 
) + s ′ ) T 21 

, then

(x � 
i 
, s ′ ) is feasible for this problem but not the solution because it

s reducible by means of ( t ′ , s ′ ). Consequently, the point (x � 
i 
− t ′ , 0)

s feasible for P 2 (c 1 (x � 
i 
) + s ′ ) T 21 

with (x � 
i 
− t i , 0) < c 2 ,c 1 , ≺ (x � 

i 
, s ′ ) ,

hich implies that c 2 (x i − t ′ ) ≤ c 2 (x � 
i 
) . Moreover, we can affirm

hat c 1 (x i ) < c 1 (x � 
i 
− t ′ ) < c 1 (x � 

i +1 
) due to c 1 (x � 

i 
− t ′ ) = c 1 ( x 

� 
i ) + s ′

ith s ′ > 0, and assuming that s ′ < s i . This last inequality and the

efinition of X 

� lead us to confirm that there is no point in

he Pareto frontier whose value of c 1 is equal to that of x � 
i 
− t ′ .

ccordingly, x � 
i 
− t ′ is dominated by an efficient solution x � 

k
of

 

� with k ≤ i , since c 1 (x � 
i 
) < c 1 (x � 

i 
− t ′ ) . Hence, c 1 (x � 

k 
) < c 1 (x � 

i 
− t ′ )

nd c 2 (x � 
k 
) ≤ c 2 (x � 

i 
− t ′ ), and therefore c2 (x � 

i 
− t ′ ) = c 2 (x � 

i 
) . Since

(x � 
i 
− t ′ , 0) < c 2 ,c 1 , ≺ (x i , s 

′ ) , we conclude that c 1 (x � 
i 
− t i ) ≤ c 1 (x � 

i 
) ,

hich leads us to a contradiction. Therefore s i = s ′ . �

emark 1. In general, the point of the form (x � 
i 
, s i ) − (t , s i ) of the

ast theorem is not the next efficient point: this point must be re-

uced by the test set. Consider the problem 

ax x 1 , x 2 
 . t . 3 x 1 + 2 x 2 ≤ 21 

x 1 , x 2 ∈ Z ≥0 , 

(8)

r in standard form 

in c 1 = −x 1 , c 2 = −x 2 
s . t . 3 x 1 + 2 x 2 + x 3 = 21 

x 1 , x 2 , x 3 ∈ Z ≥0 . 

(9)

he optimal solution with respect to < c 1 ,c 2 , ≺ of 

in −x 1 
s . t . 3 x 1 + 2 x 2 + x 3 = 21 

x 1 , x 2 , x 3 ∈ Z ≥0 

(10)

s x � 
1 

= (7 , 0 , 0) . We subsequently have to manage problems (al-

eady in standard form) of type 

in −x 2 
s . t . 3 x 1 + 2 x 2 + x 3 = 21 

−x 1 + s = ε1 

x 1 , x 2 , x 3 , s ∈ Z ≥0 . 

(11)

he test set T 21 for this problem (computed using ( 4ti2 team,

015 )) with respect to < c 2 ,c 1 ,< lex 
is 

 (0 , −1 , 2 , 0) , (1 , −1 , −1 , 1) } .
e start from (x � 

1 
, 0) = (7 , 0 , 0 , 0) , for which the corresponding

 1 (postulated in Proposition 3.1 ) is s 1 = 1 . To solve P 2 (7) T 21 
we

tart from (7,0,0,1) and only the vector (1 , −1 , −1 , 1) has to be

ubtracted to obtain (x � 
2 
, 0) = (6 , 1 , 1 , 0) , which is irreducible, and

hus x � 
2 

is a new efficient solution. From this non-dominated

oint we obtain s 2 = 1 and we need to solve P 2 (6) T 21 
by reducing

6,1,1,1), in this case 

(6 , 1 , 1 , 1) − (1 , −1 , −1 , 1) = (5 , 2 , 2 , 0) 

he point (5,2,2,0) is a weakly efficient solution for this problem

ith costs (−5 , −2) . This is not the smallest efficient solution with



−15−14 −12 −8 0 c1

c2

Fig. 1. Algorithm 1 on BBV for n = 4 provides the values ε = −15 , −14 , −12 , −8 , 0 

for which P 2 ( ε) provides the complete Pareto frontier, and avoids unnecessary

values.
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Algorithm 1 Algorithm to obtain the exact Pareto frontier of a Bi- 

objective Linear Integer Problem. 

1: INPUT : cost vector c = (c 1 , c 2 ) , constraint matrix A and vector 

b of the problem (1). 

2: Compute the test set T 12 associated with the family P 1 (ε) with 

respect to the ordering < c 1 ,c 2 , ≺. 

3: Reduce a feasible point of A x = b with respect to T 12 to solve 

min { c 1 (x ) : A x = b , x ∈ Z 

n 
≥0 

} . Denote x � 1 as the optimal solution 

and c 1 (x � 
1 
) = c ∗

1 
4: X 

� := { x � 
1 
} . 

5: ε := c ∗
1 
. 

6: Compute T 21 the test set associated with the family P 2 (ε) with 

respect to an ordering < c 2 ,c 1 , ≺
7: G x � 

1 
:= { (t , s ) ∈ T 21 such that t ≤ x � 

1 
} . 

8: i := 1 

9: While G x � 
i

� = ∅ Do : 

10: s i := the smallest s > 0 such that (t , s ) ∈ G x � 
i 
. 

11: ε := ε + s i .

12: Reduce initial feasible point (x � 
i 
, s i ) with T 21 to solve P 2 (ε) . 

Denote (x � 
i +1 

, 0) as the solution. 

13: Compute G x � 
i +1 

. 

14: X 

� := X 

� ∪ { x � 
i +1 

} . 
15: i := i + 1 

16: End While 

17: Output : X 

� such that c(X 

� ) = N as in (7). 
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espect to < c 2 ,c 1 ,< lex 
. To obtain this representative element another

eduction must be performed to obtain an efficient solution: 

(5 , 2 , 2 , 0) − (0 , −1 , 2 , 0) = (5 , 3 , 0 , 0) = (x 

� 
3 , 0) .

In order to complete this section the algorithm to solve problem

1) is presented. It is based on the classical ε-constraint method

ith the additional tool of algebraic test sets. Our algorithm com-

utes a minimal set of efficient solutions and, for this purpose, it

olves exactly one single-objective IP for each representative ele-

ent, not by passing the IP to a solver (such as CPLEX), but by

educing with test sets. The correctness of the algorithm is proved

n Corollary 3.1.1 and Proposition 3.1 . 

. A working example

In Laumanns et al. (2006) , the problem BBV ( Bi-objective Binary

alue ) is presented. It is a bi-objective generalisation of the Binary

alue problem proposed for the complexity analysis of evolution-

ry algorithms. It exemplifies a bi-objective problem depending on

 variables, with a Pareto set of size n + 1 , but with an exponen-

ial number of problems to be solved if the ε-constraint technique

s used. 

The pseudo-Boolean function BBV is defined as 

BV (x 1 , . . . , x n ) = 

( 

n ∑ 

j=1

2 

n − j x j ,

n ∑ 

j=1

2 

j−1 (1 − x j )

)

Although the complexity of computing Gröbner basis is expo-

ential in the number of variables, in this case we can give a

losed formula for both test sets needed in our Algorithm 1 . The

roofs of these results are technical and completely described in

ppendix A . 

Our algorithm is illustrated by obtaining the Pareto frontier for

he BBV family of problems for the case n = 4 , which, in its stan-

ard form is 

in −8 x 1 − 4 x 2 − 2 x 3 − x 4 , x 1 + 2 x 2 + 4 x 3 + 8 x 4 
s . t . x j + r j = 1 ( j = 1 , . . . , 4) 

(12) 

The feasible points are written with the x j variables in the

rst places, and the slack variables r j in the last ones. The test
et of the problem with respect to the ordering < c 1 ,c 2 ,< lex 
where

 1 = (−8 , −4 , −2 , −1 , 0 , 0 , 0 , 0) and c 2 = (1 , 2 , 4 , 8 , 0 , 0 , 0 , 0) is 

 12 = { (−1 , 0 , 0 , 0 , 1 , 0 , 0 , 0) , (0 , −1 , 0 , 0 , 0 , 1 , 0 , 0) ,

(0 , 0 , −1 , 0 , 0 , 0 , 1 , 0) , (0 , 0 , 0 , −1 , 0 , 0 , 0 , 1) }
y starting from the feasible point (0,0,0,0,1,1,1,1) and reduc-

ng (subtracting) with the test set,the first efficient point x � 
1

=
(1 , 1 , 1 , 1 , 0 , 0 , 0 , 0) with costs (−15 , 15) is obtained. 

Now we consider the family of problems of the ε-constraint

ethod with the new slack variable s in the last place: 

in x 1 + 2 x 2 + 4 x 3 + 8 x 4 

 . t . x j + r j = 1 ( j = 1 , . . . , 4) 

−8 x 1 − 4 x 2 − 2 x 3 − x 4 + s = ε

(13) 

The test set associated with the family (13) with respect to

 c 2 ,c 1 ,< lex 
, that is, that which solves P 2 (ε) T 21 

is 

 21 = { (−1 , 0 , 0 , 1 , 1 , 0 , 0 , −1 , −7) , (−1 , 0 , 1 , 0 , 1 , 0 , −1 , 0 , −6) ,

(−1 , 1 , 0 , 0 , 1 , −1 , 0 , 0 , −4) , (0 , −1 , 0 , 1 , 0 , 1 , 0 , −1 , −3) , 

(0 , −1 , 1 , 0 , 0 , 1 , −1 , 0 , −2) , (0 , 0 , −1 , 1 , 0 , 0 , 1 , −1 , −1) , 

(0 , 0 , 0 , 1 , 0 , 0 , 0 , −1 , 1 ) , (0 , 0 , 1 , 0 , 0 , 0 , −1 , 0 , 2 ) , 

(0 , 1 , 0 , 0 , 0 , −1 , 0 , 0 , 4 ) , (1 , 0 , 0 , 0 , −1 , 0 , 0 , 0 , 8 ) } ,
here the boldface components indicate positive values for s . We

ave to start with ε = c 1 (x � 
1 
) = c � 

1 
= −15 , and our starting point is

ow (x � 
1 
, 0) = (1 , 1 , 1 , 1 , 0 , 0 , 0 , 0 , 0) . It can be observed that 

 x � 
1 

= { (0 , 0 , 0 , 1 , 0 , 0 , 0 , −1 , 1 ) , (0 , 0 , 1 , 0 , 0 , 0 , −1 , 0 , 2 ) , 
(0 , 1 , 0 , 0 , 0 , −1 , 0 , 0 , 4 ) , (1 , 0 , 0 , 0 , −1 , 0 , 0 , 0 , 8 ) }

nd then s 1 is the smallest s > 0 such that (t , s ) ∈ G x 1 , that is, the

lement of the test set with the smallest s that reduces ( x 1 , s ).

n this case, this is (0 , 0 , 0 , 1 , 0 , 0 , 0 , −1 , 1 ) , and hence s 1 = 1 and

= −15 + 1 = −14 . We then solve P 2 (−14) T 21 
reducing (1, 1, 1, 1, 0,

, 0, 0, 1) with T 21 , and (x � 2 , 0) = (1 , 1 , 1 , 0 , 0 , 0 , 0 , 1 , 0) is obtained.

n this case, 

 x � 
2 

= { (0 , 0 , 1 , 0 , 0 , 0 , −1 , 0 , 2 ) , (0 , 1 , 0 , 0 , 0 , −1 , 0 , 0 , 4 ) , 
(1 , 0 , 0 , 0 , −1 , 0 , 0 , 0 , 8 ) }



Table 1

Bi-objective unbounded knapsack problem for n = 50 . 

Type |T 21 | |N | Algorithm AUGMECON2 (s)

4ti2 (s) t r (s)

A average 104.03 140.43 0.0551 0.2684 10.9847

max. 124 841 0.0608 1.4627 57.93

B average 103.2 8.43 0.0551 0.0415 0.6773

max. 137 185 0.0602 0.4513 16.3

C average 107 326.53 0.0552 0.611 27.2177

max. 149 1753 0.0573 3.2606 146.29

D average 7280.63 1076.4 7.8185 134.4293 287.6793

max. 12375 1896 17.0606 379.918 2132.22
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and for that reason the vector (0 , 0 , 1 , 0 , 0 , 0 , −1 , 0 , 2 ) indicates

that s 2 = 2 and ε = −14 + 2 = −12 . The subsequent problem to

solve in order to find the next efficient point is P 2 (−12) T 21 
start-

ing from (1,1,1,0,0,0,0,1,2). 

In this way, we follow the algorithm to find the successive effi-

cient solutions 

x 

� 
3 = (1 , 1 , 0 , 0 , 0 , 0 , 1 , 1) ,

x 

� 
4 = (1 , 0 , 0 , 0 , 0 , 1 , 1 , 1)

and x 

� 
5 = (0 , 0 , 0 , 0 , 1 , 1 , 1 , 1) .

In the case of the last point, it is detected that point (0, 0, 0, 0, 1, 1,

1, 1, s ) is irreducible for any s , and hence G x � 
5 

is empty and we have

completed the calculation. The set of efficient points is (projected

only on the initial variables of problem (12) ): 

X 

� = { (1 , 1 , 1 , 1 , 0 , 0 , 0 , 0) , (1 , 1 , 1 , 0 , 0 , 0 , 0 , 1 , 0) , 

(1 , 1 , 0 , 0 , 0 , 0 , 1 , 1 , 0) , (1 , 0 , 0 , 0 , 0 , 1 , 1 , 1 , 0) , 

(0 , 0 , 0 , 0 , 1 , 1 , 1 , 1 , 0) }
Their respective costs produce the Pareto frontier 

N = { (−15 , 15) , (−14 , 7) , (−12 , 3) , (−8 , 1) , (0 , 0) } .
5. Computational experiments

We compare the performance of our algorithm with the highly

cited algorithm AUGMECON2 presented in Mavrotas and Florios

(2013) which is based on the ε-constraint method. 

Our Algorithm 1 has been implemented in C++ and calls 4ti2

(see 4ti2 team (2015) ) to compute the test sets. Our experiments

have been conducted in a 3.7 GHz Quad-Core Intel Xeon with 12

GB RAM under OSX version 10.9.5. The algorithm AUGMECON2,

written in GAMS, has been executed in GAMS 28.4 and calls CPLEX

12.7 to solve the single-objective problems, except for the exam-

ples of Table 6 . For these bigger examples we have runned AUG-

MECON2 using CPLEX in neos-server.org , (see Czyzyk et al. ,

Dolan (2001) , Gropp and Moré (1997) ). 

The most promising results for our algorithm are obtained in

the multi-objective unbounded knapsack problem . As mentioned in

Rong and Figueira (2013) , this case is interesting since it is more

difficult than the binary case, a priori. The problem for two objec-

tives has the form 

max 

n ∑ 

j=1

c k j x j k = 1 , 2 

s . t . 

n ∑ 

j=1

a j x j ≤ b, x j ∈ Z ≥0 (14)

where b is the limit of weight for the knapsack and there are n

available objects, each with weight a j ( j = 1 , . . . , n ) and costs c kj ,

one for each objective k = 1 , 2 . We assume that c kj , a j and b are

positive integers. 
We have managed instances of four types of problems, as con-

idered in Bazgan, Hugot, and Vanderpooten (2009) , which have

een randomly generated with different options for the correlation

etween weights and costs: type A stands for random instances;

 for positively correlated objective functions (unconflicting in-

tances); C for negatively correlated objective functions (conflicting

nstances); and D for negatively correlated objective functions and

orrelated weight (conflicting instances with correlated weight). In

ll the examples, we have chosen b = � 1 2

∑ n 
j=1 a j 
 .

In all the following tables, after running 30 instances, we re-

ort: 

1. The size of the Pareto frontier (|N | ) .
2. The size of the second test set required for the problem (|T 21 | ) .
3. The CPU used by Algorithm 1 to obtain N is separated into the

time taken by 4ti2 to generate the test sets ( 4ti2 ) and the re-

maining CPU time ( t r ).

4. The CPU time used by AUGMECON2.

Several remarks should be made:

• In Table 1 the first comparison between our method and AUG-

MECON2 is presented for the bi-objective unbounded knap-

sack problem. The behaviour of AUGMECON2 is excellent in

regards to the ratio number of single-objective problems / |N | ,
which is very close to 1, therefore the use of algorithms as

the ones presented in Zhang and Reimann (2014) or Kirlik

and Sayın (2014) would not likely produce substantial improve-

ments. Tables 1–5 show that reducing with test sets is defi-

nitely faster (between 30 and 50 times, except in case D) than

solving single-objective problems with CPLEX with a assort-

ment of branch and cut strategies, as long as the size of the

test set is reasonable.
• In Table 1 , we observe that the running time for Algorithm 1 is

related to the size of N and the size of the test sets of the prob-

lem. As soon as the size of the test sets becomes huge, as it

is the case of problems of type D with correlation, our method

performs comparatively poorly. To reduce an element or to gen-

erate the sets G x , valid elements in the test set must be sought;

this task obviously takes a greater effort in large test sets. At

the same time, test sets of large size can be related to much

more likely augmentations of values of ε for consideration, and

hence the bigger the size of the test set, the longer the time to

generate the set of efficient solutions.
• In Rong and Figueira (2014) , the bi-objective unbounded knap-

sack problem is specifically treated with a dynamic program-

ming approach that improves on previous work by the same

authors (see Rong & Figueira (2013) ). This approach achieves

much better results than ours when n does not exceed 50, but

when the size increases they recognize that their dynamic pro-

gramming approach cannot handle the problems.

In Table 2 we show the results of computing instances of the

most difficult type D, for n up to 100. Our CPU times are quite



Table 2

Bi-objective unbounded knapsack problem of type D for n = 60 , . . . , 100 . 

n |T 21 | |N | Algorithm AUGMECON2 (s)

4ti2 (s) t r (s)

50 average 7902.5 996.8 11.58 168.22 273.76

max. 22976 2350 63.5 875.19 1576.78

60 average 8606.5 1427.4 14.48 245.6 269.39

max. 21254 2498 62.34 921.38 619.38

70 average 10393.9 1636.8 22.18 438.54 254.02

max. 22118 3280 81.03 1607.03 493.17

80 average 11944.8 1854.4 32.69 591.9 743.02

max. 24130 3176 118.6 2033.61 2585.25

90 average 12517.5 2405.5 33.54 811.3 1518.42

max. 14731 3237 53.54 1223.69 3748.86

100 average 21934.7 4228.2 11.227 2591.42 2846.89

max. 29909 5244 266.08 4052.31 8724.22

Table 3

Bi-objective 0–1 Knapsack Problem (type A).

n |T 21 | |N | Algorithm AUGMECON2 (s)

4ti2 (s) t r (s)

10 average 167.95 3.8 0.0823 0.0104 0.374

max 271 10 0.1034 0.0261 0.9

15 average 1032.85 6.85 0.3535 0.0852 0.6705

max 1681 12 1.6397 0.1543 1.16

20 average 3621.35 11.25 21.9757 0.5657 1.0755

max 9664 17 399.541 1.8894 1.57

25 average 10556 15.95 12.639 2.4401 1.5355

max 26987 27 66.7733 9.0831 2.5

30 average 27381.5 19.5 98.1166 7.9825 1.8635

max 62379 35 390.58 20.7485 3.34

Table 4

Bi-objective unbounded knapsack problem for m = 2 . 

n , m |T 21 | |N | Algorithm AUGMECON2 (s)

4ti2 (s) t r (s)

n = 20 , m = 2 average 196.37 18.53 0.05 0.09 1.38

max. 1093 102 0.12 1.19 7.39

n = 25 , m = 2 average 446.17 31.97 0.11 0.31 2.49

max. 3401 129 1.05 5.06 11.54

n = 30 , m = 2 average 416.23 35.63 0.08 0.28 2.63

max. 79 206 0.05 0.21 13.86

max. 2647 92 0.45 3.06 7.45

n = 35 , m = 2 average 441.10 45.81 0.08 0.48 3.39

max. 1349 244 0.17 4.91 18.79

max. 1467 66 0.23 1.44 5.15

n = 40 , m = 2 average 527 65.97 0.11 0.72 4.81

max. 523 208 0.09 1.66 14.90

max. 2622 93 0.56 3.80 7.97

 

 

 

 

 

 

 

 

 

 

 

similar to those of AUGMECON2, in spite of the big sizes of

some test sets that slows down our approach. 
• If we consider the binary knapsack problem (see Table 3 ), that

most widely treated in the literature, our method presents a

clear disadvantage. The reason is that we have to add as many

constraints of type x i + t i = 1 for each x i ∈ {0, 1} and the com-

putation of the Gröbner bases that are behind our method is

very sensitive to the number of restrictions and variables (cf.

De Loera, Hemmecke, & Köppe (2013) ). The running times are

better with the use of the so-called truncated Gröbner bases

(see Thomas & Weismantel (1997) ), and it remains a work in

progress to improve our running times with our method in the

binary case.
• We have also studied the multi-knapsack problem. This is a gen-

eralisation of the classic problem in which several knapsacks

are considered. It has the form
max 

n ∑ 

j=1

c jk x j k = 1 , 2 

s . t . 

n ∑ 

j=1

a l j x j ≤ b l l = 1 , . . . , m ; x j ∈ Z ≥0 (15) 

In Tables 4 and 5 , the results for 2 and 3 knapsacks are shown.

test sets of these problems enlarge as the number of constraints

(knapsacks) increases. Table 5 highlights how Algorithm 1 be-

comes worse than AUGMECON2 in certain cases. We have pro-

vided details of maximum values for the number of elements

in the test set, number of non-dominated points, and running

times. These maxima do not always match. We have used bold

typeface to mark which of the parameters reach their maxi-

mum value. 



Table 5

Bi-objective unbounded knapsack problem for m = 3 . 

n , m |T 21 | |N | Algorithm AUGMECON2 (s)

4ti2 (s) t r (s)

n = 20 , m = 3 average 3137.43 21.20 0.79 0.98 1.64

max. 8872 51 3.51 4.9 4.18

max. 10177 23 4.51 2.50 1.71

n = 25 , m = 3 average 3349.33 25.47 1.41 1.29 1.88

max. 2166 131 0.33 3.36 9.60

max. 15594 34 12.52 6.53 2.58

max. 14081 42 11.33 7.09 3.09

n = 30 , m = 3 average 4468.70 32.60 2.11 2.38 2.52

max. 5796 91 1.94 6.65 7.34

max. 17257 5 17.73 1.95 0.44

max. 12392 88 9.21 13.75 7.13

n = 35 , m = 3 average 4674.2 38.35 2.62 4.32 3.01

max. 11347 125 7.88 21.60 9.36

max. 14378 55 15.02 12.32 5.00

Table 6

Larger examples of the multi-objective Unbounded Knapsack Problem (type A).

n |N | Algorithm AUGMECON2 (s)

4ti2 (s) t r (s) grid ≈ |N | grid ≈ range c 2 

100 average 836.6 0.09 5.2 203.05 7940.2

max 5745 0.10 36.77 1801.95 16215.9

200 average 5091.9 0.31 182.39 508.3 17144.6

max 49358 0.68 2867.73 5783.4 ‡

300 average 11110.23 0.86 715.04 3510.1 ‡

max 111172 2.41 9198.85 12809.2 † ‡

400 average 21736.47 1.60 3073.73 6422.6 † ‡

max 97552 5.70 20760.1 16440.8 † ‡

500 average 21245.97 4.78 3093.53 3145.9 † ‡

max 122182 13.96 14066.6 † ‡
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• In Table 6 , we present information on the limits of our method,

while considering problems of 10 0 , 20 0 , . . . , 50 0 variables as

benchmarks for future studies. Indeed, examples of up to 10 0 0

variables have been made but, with the data considered, the

majority produced a Pareto frontier of one single element.

We have obtained remarkable results for these bigger examples

in the comparison between our algoritm and AUGMECON2. Ac-

tually, we have runned two versions of AUGMECON2:
• The first version, with a number of grid points around |N | .

This change in the algorithm produces experimentally much

more faster running times and produces the exact set of

non-dominated points for smaller examples (up to 200 vari-

ables, no more than 10,0 0 0 points in N ). Unfortunately, in

many examples for 30 0, 40 0 or 50 0 variables the set of

non-dominated points obtained is not complete (or even

contains some weak Pareto points). The worst cases pro-

duce only about half of the points of the Pareto frontier.

These cases correspond to the running times with † as a su-

perindex.
• The second version, the original algorithm as its is presented

in Mavrotas and Florios (2013) . The number of grid points is

calculated as the range (difference between max and min)

of the second objective function from the payoff table. As

soon as we try big examples of 200 variables the examples

do not finish in less than 8 hours that is the limit of time

that Neos-server assigns to the submitted jobs. These cases

are marked with a ‡ in the table.

6. Conclusions

We have introduced a new exact algorithm to obtain the set of

non-dominated points of a bi-objective linear integer problem. It

is based on the classic ε-constraint method but with an algebraic
ngredient: the family of single-objective problems is considered

sing test sets. These test sets are computed via Gröbner bases

ith respect to an order, which, properly chosen, guides us in the

rocess of obtaining only efficient solutions. The use of this test

et approach has the following advantages compared to the classic

-constraint method: 1) no unnecessary IPs are considered to

btain efficient solutions; 2) IPs are solved through the reduction

f the points with only one test set for every problem, not calling

solvers such as CPLEX; and 3) the reductions produce directly

fficient solutions: no extra phase is required to discard weakly

fficient solutions.

The computational experiments are promising, especially in the

ase of the unbounded knapsack problems which could be hard

o treat with the techniques of the binary case. Our tables show

hat, in this family of unbounded knapsack problems, our algo-

ithm performs better than such a sound and widely used algo-

ithm as AUGMECON2, particularly, in examples with hundreds of

ariables. The performance is not that competitive in cases as the

–1 knapsack and multiknapsack problems. It is apparent that the

ize of the test set is the main disadvantage to treat these cases

ith our approach. 

It is a work in progress the generalisation of our test-set ap-

roach to multi-objective optimization for any number of objec-

ives, in order to obtain the advantages of the bi-objective case as

ell. 

ppendix A. On the calculation a priori of the test set for the 

amily BBV 

Although the computation of test sets via Gröbner bases can

e potentially very expensive (or even impossible), the possibility

f finding a closed formula for the test set a priori for a specific

roblem can be considered. It is in the case of the family of ex-
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mples BBV that we have treated in this paper. We present in this

ppendix the results that are required to obtain such a formula for

his particular family. 

Recall that the BBV problem has the form 

min c 1 = 

n ∑ 

j=1

−2 

n − j x j , c 2 =
n ∑ 

j=1

−2 

j−1 (1 − x j )

 . t . x j ∈ { 0 , 1 } (A.1) 

We denote r j the slack variables for the constraints x j ≤ 1 in its

tandard form. Thus the constraint matrix of the problem is 

( I n I n ) 

The following result characterizes the test set associated with

he first step of the algorithm, that is, with the problem 

min c 1 = 

n ∑ 

j=1

−2 

n − j x j

 . t . x j ∈ { 0 , 1 } (A.2) 

ith respect to < c 1 ,c 2 , ≺ for ≺= < lex . 

roposition A.1. Given the problem 

min 

n ∑ 

j=1

−2 

n − j x j

 . t . x j + r j = 1 , (A.3) 

he associated test set with respect to the ordering < c 1 ,c 2 , ≺, induced

y the costs 

 1 = (−2 

n −1 , −2 

n −2 , . . . , −1 , 0 , . . . , 0) ,

 2 = (1 , 2 , 2 

2 , . . . , 2 

n −1 , 0 , . . . , 0)

nd a lexicographic ordering to break ties is 

 12 = 

n ⋃ 

j=1

{ r j − x j }

ith j = 1 , . . . , n 

roof. First we check that the elements of T 12 , belong to the ker-

el of A = (I n I n ) and that x j < c 1 ,c 2 , ≺ r j . To prove that T 12 is a test

et associated with the reduced Gröbner of the toric ideal of ma-

rix A , is enough to prove that given z = z + − z − ∈ Z 

2 n such that

 ∈ Ker ( A ) where z + stands for the leading term, that is, z − < c 1 ,c 2 , ≺
 

+ , there exists an element in the test set r j − x j such that t j ≤ z +

cf. Natraj, Tayur, and Thomas (1995) for example). 

For a vector u ∈ Z 

2 n let us denote its first n components by

 x j for 1 ≤ j ≤ n and its last n components by u r j for 1 ≤ j ≤ n . If

 ∈ Ker ( A ) then u x i = −u r j .

Let z = z + − z − be an element in Ker ( A ). If its last n components

f z are equal to 0, that, z r j = 0 for every 1 ≤ j ≤ n , then z ∈ Ker ( A x )

here A x = (I n 0) , hence z = 0 . 

So, let us suppose that some of the last n components of z are

ositive. Let p be the first index such that z r p > 0 . Then z + r p > 0 and

 p ≤ z + . 
Let us now suppose that all the last n components that are not

ull of z are less than or equal to zero and let p be the first index

uch that z r p < 0 . Then z + has its last n components equal to 0,

hat is, z + r j
= 0 for every 1 ≤ j ≤ n and z − has its first n components

qual to 0, that is to say, z −x j = 0 for every 1 ≤ j ≤ n . Thus c 1 (z + ) < 0

nd c 1 (z −) = 0 but this leads us to a contradiction because z + is

he leading term. �

The next proposition provides the second test set for the family

f problems BBV: 
roposition A.2. Let us consider 

min 

n ∑ 

j=1

−2 

j−1 (1 − x j )

 . t . x j + r j = 1 

n ∑ 

j=1

−2 

n − j x j + s = ε (A.4) 

 test set with respect to the ordering < c 2 ,c 1 , ≺ induced by the costs 

 2 = (1 , 2 , 2 

2 , . . . , 2 

n −1 , 0 , . . . , 0) ,

 1 = (−2 

n −1 , −2 

n −2 , . . . , −1 , 0 , . . . , 0)

nd a lexicographic ordering to break ties (where r j are the slack vari-

bles for the n first constraints and s is the slack variable for the last

onstraint) is: 

 21 = 

n ⋃ 

j=1

{ x j r l − x l r j s 
2 n −l −2 n − j 

, x j s 
2 n − j − r j }

ith 1 ≤ j , l ≤ n and l < j , 

roof. It is clear that every element of T 21 (leaders are underlined)

elongs to the kernel of the matrix of constraints: 

 = 

(
I n I n 0 

c 1 0 1 

)
Given a vector u ∈ Z 

2 n +1 we denote its first n components as

 x j with 1 ≤ j ≤ n , the next n components as u r j with 1 ≤ j ≤ n , and

he last component as u s . If u ∈ Ker ( A ) then u x j = −u r j and u s =
 

n −1 u x 1 + 2 n −2 u x 2 + · · · + u x n .

Let z = z + − z − be an element of Z 

2 n +1 such that z ∈ Ker ( A ) and

 

+ is the leading term with respect to �c 2 ,c 1 , that is, z − < c 2 ,c 1 , ≺ z + .
e will show that it is reducible by an element of T 21 , that is to

ay, that the leader term of such an element is less or equal to z + .
If z + x j

= 0 , for every 1 ≤ j ≤ n , that is, the vector z + has its first

 components equal to 0, then c 2 (z + ) = 0 but as we have that

 2 (z + ) ≥ c 2 (z −) , we obtain z −x j = 0 for every 1 ≤ j ≤ n . Thus z x j = 0

nd, as z x j = −z r j and z s is a linear combination of the z x j , we

onclude that z = 0 . 

If any of the first n components z + is positive, let j ′ be the

rst index such that z + x 
j ′ > 0 , so z −r 

j ′ = z + x 
j ′ > 0 , given that z = z + −

 

− ∈ Ker(A ) and z + , z − have disjoint support, it holds that z + x 
j ′ =

 

−
r 

j ′ and −2 n −1 z +x 1 − 2 n −2 z +x 2 − · · · − z +x n + z s = −2 n −1 z −x 1 − 2 n −2 z −x 2 −
· · − z −x n . As the last equality must hold, we have two possibilities:

here exist another index l such that z −x l > 0 or z s > 0.

1. Let us suppose that there exist another index l such that z −x l >
0 . If l < j′, then z + r l

= z −x l > 0 and accordingly x j ′ r l ≤ z + , so it is

divided by an element of the Gröbner basis.

If j ′ < l , let us note the components l 1 , . . . , l p in the vari-

ables x , in z − and let us remark that j < l k for every

1 ≤ k ≤ p , because if there exists z + x 
j ′ > 0 such that l < j′ then

as z + r l 
> 0 , we would have x j ′ r l ≤ z + . In this way, let j 1 , . . . , j r

be such that z + x j n 
> 0 and l 1 , . . . , l p such that z −x l k 

> 0 with

j 1 < j 2 < ��� < j r < l 1 < l 2 < ��� < l p . As z = z + − z − ∈ Ker(A ) , the

last row of A indicates that it has to be 

− 2 

n −i 1 z + x j 1 
− 2 

n −i 2 z + x j 2 
− · · · − 2 

n − j r z + x j r 
+ 2 

n −l 1 z −x l 1 
+ 2 

n −l 2 z −x l 2 
+ · · · + 2 

n −l p z −x l p + z s = 0

with z s = 2 n − j 1 z + x j 
+ · · · + 2 n − j r z + x j r

− 2 n −l 1 z −x l − · · · − 2 n −l p z −x l p .
1 1
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If we prove that z s ≥ 2 n −i 1 we will have x j c 
2 n − j 1 ≤ z + , but this

is equivalent to prove that 

2 

l p − j 1 z + x j 1 
+ · · · + 2 

l p − j r z + x j r 
− 2 

l p −l 1 z −x l 1 
− · · · − z −x l p ≥ 2 

l p − j 1 (A.5)

As c 2 (z + ) ≥ c 2 (z −) we have that 

2 

j 1 −1 z + x j 1 
+ 2 

j 2 −1 z +x j 2 + · · · + 2 

j r −1 z +x j r 

≥ 2 

l 1 −1 z −x l 1 
+ 2 

l 2 −1 z −x l 2 
+ · · · + 2 

l p −1 z −x l p 

which implies 

max { z + x j 1 
, . . . , z + x j r

} ≥
p ∑ 

k =1

z −x j k 

To do a proof by contradiction, let us suppose that max { z x j 1 ,

. . . , z x j r 
} < 

∑ p 

k =1 
z x l k 

:

2 

j 1 −1 z + x j 1 
+ 2 

j 2 −1 z +x j 2 + · · · + 2 

j r −1 z +x j r 

≤ (2 

j 1 −1 + . . . + 2 

j r −1 ) max { z x j 1 , . . . , z x j r }

< (2 

j 1 −1 + . . . + 2 

j r −1 ) 

p ∑ 

k =1

z −x l k 
= 

r ∑ 

k =1

(2 

j k −1 ) z −x l 1 
+ . . . +

r ∑ 

k =1

( 2 

j k −1 ) z −x l p 

< 2 

l 1 −1 z −x l 1 
+ . . . + 2 

l p −1 z −x l p .

Using that 
∑ t 

k =1 2 
k < 2 t+1 leads us to a contradiction. Let us

note z + x j s
= max { z + x j 1 

, . . . , z + x j r
} and assume that s � = 1. So 

2 

l p − j 1 z + x j 1 
+ · · · + 2 

l p − j r z + x j r 
− 2 

l p −l 1 z −x l 1 
− · · · − z −x l p 

≥ 2 

l p −l 1 z + x j 1 
+ · · · + 2 

l p − j s

p ∑ 

k =1

z −x l k 

+ . . . + 2 

l p − j r z + x j r 
− 2 

l p −l 1 z −x l 1 
− · · · − z −x l p 

= 2 

l p − j 1 z + x j 1 
+ · · · + (2 

l p − j s − 2 

l p −l 1 ) z −x l 1 
+ . . . + (2 

l p − j s − 1) z −x l p ︸ ︷︷ ︸
≥0

≥ 2 

l p − j 1 

which finishes the proof of Eq. A.5 in this case. 

If r = 1 as c 2 (z + ) ≥ c 2 (z −) we have that 

2 

j 1 −1 z + x j 1 
≥ 2 

l 1 −1 z −x l 1 
+ 2 

l 2 −1 z −x l 2 
+ · · · + 2 

l p −1 z −x l p 

that is 

z + 
j 1

≥ 2 

l 1 − j 1 z −x l 1 
+ 2 

l 2 − j 1 z −x l 2 
+ · · · + 2 

l p − j 1 z −x l p 
So 

2 

l p − j 1 z + x j 1 
− 2 

l p −l 1 z −x l 1 
− · · · − z −x l p 

≥ 2 

l p − j 1 (2 

l 1 − j 1 z −x l 1 
+ 2 

l 2 − j 1 z −x l 2 
+ · · · + 2 

l p − j 1 z −x l p )

− 2 

l p −l 1 z −x l 1 
− · · · − z −x l p 

= (2 

l p + l 1 −2 j 1 − 2 

l p − j 1 ) z −x l 1 
+ (2 

l p + l 2 −2 j 1 − 2 

l p −l 2 ) z −x l 2 
+ . . . + (2 

2(l p − j 1 ) − 1) z −x l p 
≥ (2 

2(l p − j 1 ) − 1) z −x l p ≥ 2 

2(l p − j 1 ) − 1 ≥ 2 

l p − j 1 

If r > 1 and x j 1 = max { z + x j 1 
, . . . , z + x j r

} : 
2 

l p − j 1 z + x j 1 
+ · · · + 2 

l p − j r z + x j r 
− 2 

l p −l 1 z −x l 1 
− · · · − z −x l p 

≥ 2 

l p − j 1 

p ∑ 

k =1

z −x l k 
+ 2 

l p − j 2 z +x j 2 + . . . + 2 

l p − j r z +x j r 

− 2 

l p −l 1 z −x l 1 
− · · · − z −x l p 

= (2 

l p − j 1 − 2 

l p −l 1 ) z −x l 1 
+ . . . + (2 

l p − j 1 − 1) z −x l p 

+ 2 

l p − j 2 z +x j 2 + . . . + 2 

l p − j r z +x j r ︸ ︷︷ ︸
> 0

≥ 2 

l p − j 1 

2. Finally, let us consider the case where it does not exist

another index j ′′ such that z −x 
j ′′ > 0 . As j′ is the first in-

dex such that z + x 
j ′ > 0 , then j ′ = j 1 < j 2 < · · · < j r such that

z + x j k 
> 0 with 1 ≤ k ≤ r , due to the last row of matrix A

we have z s = 2 n − j 1 z + x j 1
+ · · · + 2 n − j r z + x j r

≥ 2 n − j ′ z + x 
j ′ , and conse-

quently x j ′ c 2 
n − j′ ≤ z + . �
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