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Abstract. This work introduces a (qualitative) data-driven framework
to extract patterns of pedestrian behaviour and synthesize Agent-Based
Models. The idea consists in obtaining a rule-based model of pedestrian
behaviour by means of automated methods from data mining. In order to
extract qualitative rules from data, a mathematical theory called Formal
Concept Analysis (FCA) is used. FCA also provides tools for implica-
tional reasoning, which facilitates the design of qualitative simulations
from both, observations and other models of pedestrian mobility. The
robustness of the method on a general agent-based setting of movable
agents within a grid is shown.

Keywords: Agent-based modelling · Knowledge acquisition · Qualita-
tive spatial reasoning · Formal concept analysis

1 Introduction

Understanding the behaviour (movement) of pedestrians in various situations is 
an important task in order to design and improve public places such as waiting 
rooms in railway stations, streets, etc. [15]. The study of problems related to 
pedestrian flow has become an attractive field of study (see e.g. [16]), due to 
the fast development (in terms of size and population density) of big cities in 
recent years. In zones where pedestrian flow is dense, any small change in urban 
planning can have extreme consequences on pedestrian mobility. As it is stated 
in [9], one of the most important goals in studies on pedestrian mobility and 
behaviour is to evaluate the effect of new policies on pedestrian facilities before 
its implementation. A robust model able to simulate pedestrian behaviour is a 
good tool to prevent future difficulties.

According to [10], Cellular Automata (CA) and ordinary differential equation
(ODE) models present two major differences: movement in CA is restricted to a



grid and navigation is achieved by moving directly in the desired direction. Force-
based ODE models operate in a continuous space and navigation is computed
indirectly through the acceleration vector. A great number of existing models use
simulations methods inspired by physical notions applied to agents [17], while
others are based in Multi-agent simulations (even by exploiting complex systems
emergence phenomena), see e.g. [20].

A plethora of models and systems have been designed, focused on a num-
ber of features and considerations (cf. [21]). The qualitative nature of pedestri-
ans’ behaviour invites to combine agent based models with rational deliberative
empowerment. From the point of view of (symbolic) Artificial Intelligence, the
pedestrian, as an agent, selects the next action from its own knowledge. The idea
is that pedestrian behaviour has qualitative nature and is based on intuitive (geo-
metrical, social, goal-driven) attributes. Therefore it is interesting to explore how
the reasoning with this kind of features can provide knowledge bases for mod-
elling pedestrian behaviour in a deliberative manner. The proposed methodology
is based in both, Agent Based Modelling (ABM) and Formal Concept Analysis
(FCA).

In this work, pedestrian behaviour is considered individually by means of
discrete ABM, where pedestrian flow emerges from interactions between agents
and the urban environment. The modelling is carried out from the pedestrian
point of view in qualitative terms, allowing the use of reasoning and concept-
mining methods in order to analyse pedestrian flow dynamics.

1.1 Aim of the Paper

The aim of this paper is to show how to exploit knowledge extracted from
observations (of real or artificial systems) to study and explain -in a quali-
tative formalism- pedestrian behaviour. The result of this process is, itself, a
knowledge-based system that is also useful to simulate the source system. By
using this system as a deliberative module for agents, we have implemented a
general simulation framework for natural and artificial models of mobility.

This work is based on the intensive use of Formal Concept Analysis [12]
which provides mathematical tools for detecting qualitative concepts, useful in
the phenomenological reconstruction of CS [5] (in this case, related to pedestrian
mobility).

1.2 Structure of the Paper

The structure of the paper is as follows. The next section is devoted to recall
the basic pedestrian model based on cells. In Sect. 3 basic concepts on Formal
Concept Analysis are summarized, as well as the notion of attribute selection.
Section 4 presents FCA as a tool for agents’ knowledge modelling. The notion of
contextual selection (induced attribute selection and spatial-temporal features) is
described in Sect. 5. The FCA-based simulation model (and some considerations
on experimentation) is presented in Sect. 6. Section 7 shows the robustness of the
model. Finally, related and future work enumerated (Sects. 8 and 9).



2 Basic Agent-Based Model for Pedestrians

The simulation environment consists of an orthogonal grid where agents can
make discrete movements. In each time step agents can move to any neighbouring
cell (Moore Neighbourhood), where the chosen movements depends on local
information that agents obtain from their neighbourhood and possibly additional
information on urban planning (see Fig. 3). The simulation environment consist
of the following elements:

• Free cells: Any of the cells to which agents can move. In the basic model
two agents cannot take the same cell up. Therefore, in the basic model, an
occupied cell will be considered as an obstacle.

• Obstacles: Cells representing buildings, street furniture and other elements
to which agents cannot move.

• Exits (destination): Cells representing possible pedestrians destination.
These can be buildings or streets that are out of the area under study. In
this work, these destinations are called exits as agents leave the simulation
area through these cells.

• Agent (pedestrian): they select the best action (movement) according to
their knowledge and the information they have about their neighbourhood. In
order to validate the general simulation framework, three basic agent behav-
iours will be considered:

– Best movement: Agent moves always to the adjacent cell closest to des-
tination (the best choice in the short term). This behaviour can lead to
blocked agents in certain scenarios.

– Best movement with uncertainty: Agent makes the best movement
with probability P or a random movement with probability 1 − P .

– Any good movement: Agent randomly moves to any of the adjacent cells
towards destination. That is to say, any cell reducing agent’s Manhattan
distance to destination.

It is important to note that, due to some elements’ spatial distribution within
the environment, it is possible that the best movement in the short term (locally)
results in a bad movement the long term. The basic model can be improved in
a number of ways: (1) Larger agents’ range of vision (larger neighbourhood).
(2) Agents have memory. They can keep information of a number of past move-
ments. (3) Agents have the ability to communicate with and/or follow other
agents. All these extensions can be added to the basic model by considering
attributes specifying agents’ new knowledge and abilities. However, the state
description of an agent would be more complex. Finally, it is worthy to mention
that the deduction algorithm is based on Horn-like propositional clauses.

3 Background: Formal Concept Analysis

In this section, we summarize the basic notions of FCA. For detailed infor-
mation, we refer to [12]. The input to FCA is an object-attribute data table



describing which objects have which attributes. Such table can be identified
with K = (G,M, I) where G is a finite non-empty set of objects, M is a finite
non-empty set of attributes, and I ⊆ G × M is an (object-attribute) relation.
The objects and attributes correspond to table rows and columns, respectively,
and (g,m) ∈ I indicates that object g has attribute m. In terms of FCA, K is
called a formal context. Figure 1 shows a formal context describing fish (objects)
living on different aquatic ecosystems (attributes).

Every data table (G,M, I) induces a pair of so-called concept-forming oper-
ators, defined for each A ⊆ G and B ⊆ M by

A′ = {a ∈ M | (o, a) ∈ I for all o ∈ X}

and

B′ = {o ∈ G | (o, a) ∈ I for all a ∈ Y }
A (formal) concept is a pair (X,Y ) such that X ′ = Y and Y ′ = X. The set

of concepts of a context given M can be endowed with the lattice structure by
means of the “subconcept” relationship [12]. For example, the concept lattice
from the formal context on fish of Fig. 1 (attributes are understood as “live in”)
is shown in Fig. 2. In this representation each node is a concept, and its intension

Fig. 1. Formal context on fish

Fig. 2. Concept lattice associated with the formal context of Fig. 1



(resp. extension) is formed by the set of attributes (resp. objects) included along
the path to the top (resp. bottom) concept. For example, the bottom concept

({eel}, {Coast, Sea,River})

is the concept euryhaline fish.

3.1 Implication Basis

Knowledge Bases in FCA are formed by implications between attributes. An
attribute implication (over a set M of attributes) is an expression L = A → B
where A,B ∈ 2M (2X stands for the power set of X). The set of implications
over a set M is denoted by Imp(M). It is denoted by att(L) = A∪B, and being
L a set of attributes, att(L) =

⋃
L∈L

att(L).

It is said that A → B is valid in a set T ⊆ M of attributes (or T is a
model of the implication, also it is called T respects the implication), written
T |= A → B, if the following condition is satisfied: If A ⊆ T then B ⊆ T .
K |= A → B if {g}′ |= A → B for any g ∈ G. In this case it is said that
implication A → B is valid in the context K.

By simplicity we suppose throughout the paper that implications A → B
satisfy A∩B = ∅. � = ∅ → ∅ denotes an implication that is always true. In fact,
if L |= � then L only contains implications like A → ∅.

Definition 3.1: Let K = (G,M, I) be a formal context, L ⊆ Imp(M) and L be
an implication.

(1) L follows from L (or L is consequence of L, denoted by L |= L) if each
subset of M modelling L also models L.

(2) L is complete for K if the following condition is satisfied for every implica-
tion L:

If K |= L then L |= L

(3) L is non-redundant if for each L ∈ L, L \ {L} 	|= L.
(4) L is a (implication) basis for K if L is complete for K and non-redundant.

Given L ∈ Imp(M), the set of models of L is denoted by Mod(L) (resp.
Mod(L) for a set of implications). Therefore L is consequence of a set of
formulas L if and only if Mod(L) ⊆ Mod(L). Given L′ other implication set, it
is denoted by L′ � L when L |= L′, and L′ � L if L |= L′ but L′ 	|= L. It is said
that L and L′ are equivalent, L′ ≡ L, if L |= L′ and L′ |= L.

A particular basis is the Duquenne-Guigues or so called Stem Basis (SB)
[14]. In order to work with formal contexts, stem basis and association rules,
the Conexp1 software has been selected. In forecasting and other data analysis
tasks within Complex System dynamics, given in [2], the reasoning is performed
by means of a production system that works with sets of implications. The
entailment relationship based on this method is denoted by �p. Formally:
1 http://sourceforge.net/projects/conexp/.

http://sourceforge.net/projects/conexp/


Definition 3.2: Let L = {Ai → Ci, i ∈ I} ⊆ Imp(M) and H ⊆ M . The
implicational closure of H with respect to L, L[H], is the smaller set B ⊆ M
such that:

• H ⊆ B
• If there exists i ∈ I such that Ai ⊆ B, then Ci ⊆ B

The relation �p is the inference relationship induced by the closure above defined:
given A ⊆ M ,

L ∪ H �p A
def.⇐⇒ A ⊆ L[H]

The computing of �p-closure is carried out, given L y H, by computing the sets:

• L0 = H
• Lk+1 = Lk ∪ {a ∈ A : ∃i ≤ n such that Ai ⊆ Lk and a ∈ Ci}
Then L[H] =

⋃ Li = {a ∈ M : S ∪ H �p a}.
The soundness and completeness with respect to the entailment is based on

the following result (see [1] for details):

Theorem 3.3: Let S be a basis for K = (G,M, I) and {a1, . . . , an} ∪ Y ⊆ M .
The following statements are equivalent:

(1) S ∪ {a1, . . . an} �p Y .
(2) S |= {a1, . . . an} → Y
(3) K |= {a1, . . . an} → Y .

3.2 Armstrong Rules

The so-called Armstrong rules which were introduced in the design of relational
databases to determine functional dependencies [7], facilitates implicational rea-
soning. These rules are:

R1 :
X → X

, R2 :
X → Y

X ∪ Z → Y
,R3 :

X → Y, Y ∪ Z → W

X ∪ Z → W

A set of implications is closed (contains all its consequences) if and only if
the set is closed by Armstrong rules [7]. As a consequence of the former, if �A

denotes the proof notion associated to Armstrong rules, implicational bases are
�A-complete, that is to say:

Theorem 3.4: Let L be an implicational basis for K, and L an implication. Then
K |= L if and only if L �A L



3.3 Association Rules and Luxenburger Basis

The development of logical reasoning methods for association rules is a relatively
recent promising line of research [8]. In FCA, association rules are also impli-
cations between sets of attributes. Confidence and support are defined as usual
in data mining. The analogous to Stem Basis for association rules is the Lux-
enburger basis [19]. The reasoning system for SB can be adapted for reasoning
with Luxenburger basis [1]. The section is devoted to introduce such bases.

A set Y is closed if Y ′′ = Y , and given Y1, Y2 closed, it is denoted Y1 ≺ Y2

when there is not Y closed such that Y1 ⊂ Y ⊂ Y2.
In FCA, association rules are also implications between attributes. Confi-

dence and support are defined as usual in data mining:

Definition 3.5: Let be K = (G,M, I) a formal context and Y, Y1, Y2 ⊂ M .

• The support of an attribute set Y ⊆ M is

supp(Y ) =
|Y ′|
|G|

• The support of an implication L = Y1 → Y2 is

supp(L) =
|(Y1 ∪ Y2)′|

|G|
(Which can also be interpreted as an estimate of the probability P (Y2|Y1),
that is to say, the probability for an object to satisfy every attribute of Y2

under the condition that it also satisfies every attribute of Y1)

• The confidence of L is conf(L) =
supp(Y1 ∪ Y2)

supp(Y1)

Definition 3.6: Given γ and δ, the Luxemburger basis of a context K with con-
fidence γ and support δ, is

L(K, γ, δ) := {L : Y1 → Y2 | Y1, Y2 closed, Y1 ≺ Y2,
conf(L) ≥ γ, sup(L) ≥ δ}

In order to simplify the notation, let us suppose that SB (a subset of impli-
cations having confidence equal to one, they are always true within the context)
is contained in that basis. Implications of Luxenburger basis work as associa-
tion rules from classic data mining setting. For the example from Fig. 1, two
Luxenburger bases are depicted in Fig. 1.

3.4 Simulation Process by Means of Attribute Selection

The overall simulation process includes four steps (see Fig. 4 right): First step,
data collection. Second step, the observer selects attributes he/she finds relevant
to explain agent behaviour. In the third step, attribute values are computed for
each agent (possibly by selecting thresholds for continuous values). A formal
context is built with these observations and attributes. Lastly, the predicted
action of the agent is obtained by reasoning with the basis extracted from the
context.



Table 1. Two Luxemburger bases for example from Fig. 1

L(K, 0.5, 2/5) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

L(K, 0.8, 1) =

⎧⎨
⎩

Implication Confidence Support
Sea → Coast 1 1
{ } → Coast 4/5 1
Coast → Sea 3/4 4/5
River → Coast 2/3 1/3
{ } → River 3/5 3/5
River, Coast → Sea 1/2 2/5

4 Representing Agent’s Knowledge by Means of FCA

Figure 3 shows the information each agent has about its environment. In the basic
model the agent only receives information about its distance to destination and
the neighbouring obstacles. This information is the potential of each cell with
respect to each agent target (destination).

As it is shown in Fig. 3, the potential assesses the goodness of each possible
movement of the agent, with respect to cells’ distance to destination. In this
regard, potential can be positive (the cell is closer to destination), negative (the
cell is farther) or neutral. If any of the cells is an obstacle, it will not be considered
in agent’s decision.

In order to validate the proposal, experiments using two of the basic
Agent-Based Models for pedestrians (Best movement and Any good movement)
have been carried out. Due to space limitations it has not been possible to

Fig. 3. Agent’s (visible) neighbourhood (top, left), potentials of agent neighbouring
cells



Fig. 4. FCA-based modelling of pedestrians behaviour

consider more elaborate models on this article. Likewise, two different attribute
sets, based on cells’ potentials, will be used as agents’ (local) knowledge
representation2:

4.1 Detailed Potentials (8 Attributes)

This attribute set considers how good or bad the potential of each neighbour-
ing cell is. Despite the potential being an abstract concept, in this case, it is
based only on agents’ distance to destination. Therefore it is possible to quan-
tify potentials in terms of cell’s Manhattan distance to destination.

For instance, movement top-left for the agent of Fig. 3 have a potential of
(+2), since this movement would decrease in 2 cells the agent’s Manhattan dis-
tance to destination. Similarly, movement bottom right has a potential of (−2)
(distance increases 2 cells). Finally, neutral movements are those not increasing
nor decreasing the distance. Table 2 summarizes this attribute set.

The nine attributes Will-Move-To-XX(Target) contains information on
agent’s next movement. These will be the target attributes during the reasoning
process in prediction experiments, in which a model is built from past informa-
tion on agents’ behaviour.

2 For simplicity, standard qualitative attributes have been selected to show the
method. The attribute selection can be expanded by adding any (computable)
attribute the observer finds important for pedestrian mobility in its workspace.



Table 2. Detailed potentials attribute set

16 attributes for positive
potentials:

8 attributes for cells with
potential (+2)

{TL-Potential-POS-2, ...,
BR-Potential-POS-2}

8 attributes for potential
(+1)

{TL-Potential-POS-1, ...,
BR-Potential-POS-1}

8 attributes for cells with
neutral potentials

{TL-Potential-0, ...,
BR-Potential-0}

16 attributes for negative
potentials:

8 attributes for cells with
potential (−2)

{TL-Potential-NEG-2, ...,
BR-Potential-NEG-2}

8 attributes for potential
(+1)

{TL-Potential-NEG-1, ...,
BR-Potential-NEG-1}

8 attributes for obstacles {TL-Obstacle, ..., BR-Obstacle}
One attribute for agent in
exit cell

Is-On-Exit

9 attributes for agent’s next
movement

8 attributes for each possible
movement

{Will-Move-To-TL(Target), ...,
Will-Move-To-BL(Target)}

Agent will not move Wont-Move(Target)

4.2 Simplified Potentials (42 Attributes)

This attribute set provides information only on whether potentials are positive,
negative or neutral (see Table 3) without quantifying how positive or negative
they are. The rest of attributes are the same in both attribute sets.

In both attribute sets, each (neighbouring) cell is identified by its relative
position with respect to the agent (that is to say, {TL, TC, TR, CL, CR, BL,
BC, BR}). For instance TL refers to top-left cell, CR refers to centre-right cell
and BC refers to bottom-centre cell.

Table 3. Simplified potentials attribute set

8 attributes for positive potentials {TL-Potential-0, ..., BR-Potential-0}
8 attributes for cells with neutral
potentials

{TL-Potential-POS, ..., BR-Potential-POS}

8 attributes for negative
potentials

{TL-Potential-NEG, ..., BR-Potential-NEG}

8 attributes for obstacles {TL-Obstacle, ..., BR-Obstacle}



5 Contextual Selection for Pedestrians

The reasoning system presented in [3] allows using FCA-based tools to carry out
pedestrian behaviour simulations on both, artificial and real environments. It is
possible to extract a knowledge base, to be used by the reasoning system, from
a contextual selection (formal context). A contextual selection K = (G,M, I)
for the study of pedestrian mobility dynamics consist of pedestrian movements
(objects O) and properties (attributes A) describing both, pedestrians’ current
state (and its neighbourhood) in a certain time step and its next movement.

The contextual selection contains information items (based on its context,
that is, time, space and other properties) similar to the ones under study. There-
fore, reasoning with this selection will provide more reliable entailments. For
instance, let Z be a pedestrian whose current position is known. A contextual
selection to predict the next movement of Z would be defined by:

• Spatial dimension: Depending on the nature of the scenario under study, it
is possible to consider the whole pedestrian set or a pedestrian subset contain-
ing only those pedestrians closer to Z (for big or heterogeneous scenarios),
for instance, those pedestrians located in the same street as Z.

• Temporal dimension: A contextual selection for pedestrian dynamics usu-
ally contains information of agents’ movements for more than one past time
step. In order to estimate the next movement of a pedestrian Z in a time
step T the contextual selection for Z in T will consist of other pedestrian
movements in a recent time period of length W . In this way, the time window
considered for the contextual selection would be [T − W,T ).

• Attribute selection: Since different attribute sets can be used, the attribute
set most suitable to be used as knowledge representation for Z and its environ-
ment, would be selected for each setting. In this specific case (the pedestrian
basic model), one of the two proposed attribute sets can be selected. In more
complex scenarios the attribute set can include other attributes specific for
the environment where Z is located (spatial, temporal or from other nature).

6 FCA-based Simulation of Pedestrian Flow

When working with a specific bounded scenario, it is not necessary to compute
a new contextual selection for every pedestrian since all pedestrians located
in the same area share facets of their environments (context). Therefore the
same contextual selection (and its associated knowledge base) can be used for
pedestrians located in the same area in a given time step. The process for sim-
ulating/predicting the next movement, in a certain time step M , of a group of
pedestrians for which past movements’, until a certain time step N , are known
(where N < M), is as follows:

(1) A formal context (the contextual selection) is built containing information on
the W most recent time steps (movements) with respect to the target. This
formal context will contain, for each time step wi and for each pedestrian, an



object describing pedestrian’s neighbourhood at time step wi and its next
movement at time step (wi+1).

(2) From this formal context, the knowledge base is extracted. According to the
nature of the experiment, Stem basis or Luxenburger basis can be used.

(3) Finally, in order to predict pedestrian’s next movement, a reasoning process
is carried out. Initial facts for this process consist in an attribute set describ-
ing pedestrian neighbourhood at time step M . A next movement estimate
at time step M + 1 can be extracted from the reasoning process entailment.

6.1 Analysing Simulation Results

In order to experiment with the methodology above described, a simulation
platform has been developed. This platform consists of two modules, the first
one comes with a NetLogo-based simulation viewer (see Fig. 5) and is used for
preliminary tests. The second one focuses on computing massive simulations and
is used for complete experiments.

Although many experiments have been carried out, due to the lack of space,
only few of them (see Fig. 6) are mentioned in this work. The setting for these
experiments consists in a squared grid with 625 cells (25 per side) populated

Fig. 5. NetLogo-based simulation viewer for preliminary tests



Fig. 6. Experimental results with different temporal windows

by 200 agents. In order to show the importance of the amount of information
considered (see Sect. 7), results of experiments for different window sizes W are
provided (see Fig. 6, where W = 1 (top) and W = 4 (bottom)). Results of four
different simulations are shown in each plot, one for each of the two possible
knowledge representations (detailed or simplified) and one for each of the two
possible pedestrian models (best movement or any good movement).

In each experiment a knowledge base is built from the observable informa-
tion collected within the time interval [T − W,T ), and used (after selecting the
implications with confidence greater than a certain threshold Cth) to predict
agents’ next movement (in time step T + 1). Results show the mean number of
properly predicted movements. Each experiment is repeated for different values
of the confidence threshold (Cth ∈ [0, 1]) and N = 100 times for each value, in
order to obtain a reliable estimate. Figure 7 shows the basis L(K, 0.92, 0.26) for
the formal context generated by a temporal window of size 5.

After the experiments, we can conclude that there is not a substantial differ-
ence between the two knowledge representations used. It is worthy to note that
a small uncertainty in agents’ behaviour (any good movement) leads to a great



Fig. 7. The basis L(K, 0.92, 0.26) for an experiment with temporal window [1, 5]. The
format for an implication Y1 → Y2 is < |Y ′

1 | >→< |(Y1 ∪ Y2)
′| >. The context has

40,000 observations

increase in the error. The reason is that a step-by-step performance evaluation
is too strict for non-deterministic behaviours.

7 On the Robustness of the Model

In order to state a result on the soundness of the model, it is necessary (in this
case) to have a prefixed agency model. The classic model to specify (determin-
istic, reactive) agents includes (see [13]):

〈S, T,Act, P,Do, acc〉

where Perceive is the function that determines the agent situation

Perceive : S → T

where S is the set of states, T is a partition of S (the situations, due to perception
features of the agent), acc selects the action to be executed in a certain state

acc : T �→ Act

and Do determines the effect of an action on a state (reaching other state)

Do : Act × S → S

The execution of the agent from an initial state σ(0) is the sequence {σ(t)}t∈N

where
σ(t + 1) = Do(acc(Perceive(σ(t))), σ(t))



Given an attribute selection A, it is said that A is descriptive for the agent
specification if each state of t ∈ T can be interpreted as a set of attributes tA of
A, and for each α ∈ Act an attribute αA ∈ A.

Let SK
n be a subset of implications with positive support, that can be

obtained from the Stem basis of a context MK
n containing every observa-

tion of the history of the system from the initial state till the σ(n) in IK =
[−K,K] × [−K,K] ⊂ Z

2 with a descriptive attribute set A.
A distribution is a map

Δ : Z2 → { agent, obstacle, free, exit}
Lastly, let us denote by s ∈Δ X, where s ∈ T and X ⊂ Z

2, the fact that
there exists a cell c in X such that if an agent is located in c ∈ Z

2 with the
distribution Δ(X), then the agent perceives s. A distribution Δ is T -complete if

{s : s ∈Δ Δ(Z2)} = T

A preliminary result on the robustness of the model could be stated in a
particular case as follows: If the context is large enough and the distribution
of obstacles is not biased (relative to environments based on the Moore Neigh-
bourhood. For example, a uniform distribution), then the knowledge base (SK

n )
considers every possible situation and provides an action that agrees with the
behaviour selected by Acc.

Theorem 7.1: Let Δ be a distribution and A be a finite descriptive attribute set
for T (being T finite). It can be supposed that:
• Δ is T -complete
• Agents share the specification 〈S, T,Act, P,Do, acc〉
Then there exists K > 0 such that for all n ∈ N

acc(Perceive(σ(n)))A ∈ SK
n [Perceive(σ(n))A]

Proof: On the one hand, since A is descriptive, it holds that Perceive(σ(n))
characterizes the state σ(n) for any n. On the other hand, since Δ is T -complete,
s ∈Δ (IK0) for some K0 large enough. Then the object corresponding to the
transition from K0 to K0 + 1 respects the implication

σ((n))A → σ(n + 1))A

Since any transition between states s �→ s′ only depends on sA, this implication
is respected by the former objects. Therefore, it is true within the context, so
by completeness of Stem Basis

SK
n |= σ(n))A → σ(n + 1))A

for K = K0 + 1, and

acc(Perceive(σ(n)))A ∈ σ(n + 1)A

Therefore the implication basis is sound to simulate agents’ behaviour by
means of a deliberative process. The result shown above does not give any esti-
mation of K (actually K = K(Δ, acc)). Likewise, it would be interesting to state
a similar result for non-deterministic agents and Luxenburger basis.



8 Related Work

Recently, the interest on automated synthesis of agent behaviour from raw obser-
vational data (e.g. [20]) has increased greatly. Behaviour mining can produce
sound simulations in this field. Thus there exists a number of ongoing works on
which our proposal could be applied. This would provide alternatives (qualita-
tive) to models of different nature.

In [15] authors present a modified floor field cellular automata model to
simulate pedestrian evacuation. The world is discretized in cells, and geometrical
inertia and social-force [17] features are considered to model agents. Both types
of attributes can be modelled by means of FCA (the third one by means of
thresholds), and the model may be simulated using the agency model proposed
in this paper (this is a future aim).

In [10] two models of pedestrian mobility were presented, one is CA-based
but with continuous treatment of space, and the other is based on ODEs using
navigation on geodesics as in CA models. Authors show how these models are
similar, and suggest that their idea can be a bridge between the two classes of
models. As they assert, the gap between discrete and continuous models can be
closed only if new formulations are designed in order to state the correctness
(equivalence) among models. Soundness of our model devised here is a first step
to state the utility of our proposal in presenting CA (qualitative) simulations as
an interpretation in the discrete field of continuous models. Our approach allows
to preserve in time mental models (namely Luxenburger basis) among cells, that
is to say, knowledge bases are not location-dependent.

In [9] a model, which does not need origin–destination trip matrices (that
is to say, prefixed exit cells), is presented. The scenario description and global
simulation parameters in a particular case (International Fairs) is developed and
used for simulation. The graph-based modelling provides a macroscopic simu-
lation that could be an excellent starting point to design Agent-Based Models
representing individual behaviour.

9 Conclusions and Future Work

The work presented is based on a general hybrid approach to phenomenological
reconstruction of Complex Systems (CS), using FCA as main tool for concep-
tual data mining (see [2]). In [3], the idea was applied to a classic CA (Conway’s
game of Life). The approach presented here specifies and implements a general
method for movable agents. The key advantage of this methodology is that the
observer can select (computable, qualitative) attributes in order to understand
(and model) pedestrian behaviour. The selection can comprise any feature on
both pedestrians and streets. From this selection, our method provides a quali-
tative model. Therefore our approach uses two well know Artificial Intelligence
tools: concept mining and agent-based simulation. In this way the model pro-
vides a solution for simulations based on agents’ behaviour by using qualitative
agent reasoning. It is a realistic model which produces sound results in other
cases of Complex Systems [3,6,11].



The model is easily extensible; it can be improved in any moment by adding a
number of new features (as for example, digital information received or generated
by pedestrians, digital footprints, real time decisions on traffic and flows, etc.).

With respect to the attribute sets, the one with detailed potentials performs
better on deterministic scenarios. However, in real world scenarios it is expected
to deal with uncertainty. In experiments with non-deterministic scenarios, the
attribute set with simplified potentials showed to be more robust.

Likewise, the Luxenburger basis showed to perform better than the Stem
basis in non-deterministic scenarios, as rules confidence deals with uncertainty,
capturing predominant behaviours from pedestrian dynamics. However, for a
detailed analysis of pedestrian flow, in order to detect and study anomalies in
the scenario, it seems to be more interesting the use of the Stem basis. Finally,
it is possible to consider fuzzy attributes instead of qualitative ones in order to
obtain a more precise and flexible knowledge base.

Since our model works with knowledge-based agents, it could be extended,
by joining knowledge from distinct agents, in order to work in the problem of
collaborative localization [18]. Stem (and Luxenburger) basis of different agents
can be re-interpreted in order to fuse their knowledge base by conciliation (as
in [6]) or by considering a common (global) Knowledge [4]. In general terms, the
integration of different knowledge elements within FCA can pose some issues on
the extensibility and scalability of the model, which could be solved by means of
discretization methods, multi-valuation and scales from FCA [12]. Likewise, it is
feasible to consider other neighbourhoods following a similar modelling strategy.
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matique et Sciences Humaines 29, 35–55 (1991)

[20] Parsons, B., Vidal, J.M., Huynh, N., Snyder, R.: Automatic generation of agent
behavior models from raw observational data. In: Grimaldo, F., Norling, E. (eds.)
MABS 2014. LNCS (LNAI), vol. 9002, pp. 121–132. Springer, Cham (2015). doi:10.
1007/978-3-319-14627-0 9

[21] Vizzari, G., Bandini, S.: Studying pedestrian and crowd dynamics through inte-
grated analysis and synthesis. IEEE Intell. Syst. 28(5), 56–60 (2013)

http://dx.doi.org/10.1007/978-3-319-29504-6_39
http://dx.doi.org/10.1007/978-3-319-14627-0_9
http://dx.doi.org/10.1007/978-3-319-14627-0_9

	Synthetizing Qualitative (Logical) Patterns for Pedestrian Simulation from Data
	1 Introduction
	1.1 Aim of the Paper
	1.2 Structure of the Paper

	2 Basic Agent-Based Model for Pedestrians
	3 Background: Formal Concept Analysis
	3.1 Implication Basis
	3.2 Armstrong Rules
	3.3 Association Rules and Luxenburger Basis
	3.4 Simulation Process by Means of Attribute Selection

	4 Representing Agent's Knowledge by Means of FCA
	4.1 Detailed Potentials (8 Attributes)
	4.2 Simplified Potentials (42 Attributes)

	5 Contextual Selection for Pedestrians
	6 FCA-based Simulation of Pedestrian Flow
	6.1 Analysing Simulation Results

	7 On the Robustness of the Model
	8 Related Work
	9 Conclusions and Future Work
	References




