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ABSTRACT 
 
 

Makespan minimisation in permutation flow shop scheduling is an OR topic that has 

been intensively addressed in the last 40 years. Since the problem is known to be NP-

complete for more than two machines, most of the research effort has been devoted to 

the development of heuristic procedures in order to provide good approximate solutions 

to the problem. However, little attention has been devoted to establish a common 

framework for these heuristics so they can be effectively combined or extended. In this 

paper, we review and classify the main contributions regarding this topic and discuss 

future research issues. 
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1. Introduction 

 

During the last 40 years, the permutation flowshop sequencing problem with the 

objective of makespan minimisation has held the attraction of many researchers. This 

problem – characterised as Fm|prmu|Cmax in the notation of Graham (1979) – involves 

the determination of the order of processing of n jobs in m machines. A detailed 

discussion of the basic assumptions followed throughout the relevant literature can be 

found e.g. in Dudek and Teuton (1964). A number of exact approaches have been 

suggested for the problem (see e.g. Szwarc 1971, Lageweg et al. 1978, Potts 1980, or 

Carlier and Rebaï 1996), although since the problem is known to be NP-complete for 

three or more machines (Garey et al. 1976, and Rinnooy Kan 1976), most of the effort 

has been concentrated in proposing heuristic procedures that produce good (but not 

necessarily optimal) solutions in relatively short time intervals, such as those required to 

take the scheduling decisions. Currently, there are many heuristics available based in 

very different approaches to the problem. However, no framework to fit these heuristics 

has been developed, although several attempts to classify them have been done (see e.g. 

Gupta 1971a, Pinedo 1995, or Lourenço 1996).  

 

Hence, the aim of this paper is beyond introducing and explaining all current available 

heuristics for the makespan minimisation problem. Instead, we try to establish a general 

framework in which the existing heuristics can be fitted and – which, in our opinion, is 

more important – combined in order to obtain composite heuristics that lead to improve 

the quality of the obtained solutions. Besides, this framework may serve to indicate 

future points of research. 

 

The remainder of the paper is organised as follows: In the next section, we introduce the 

previous work related to the review, classification or categorisation of the existing 

heuristics, and introduce the main phases of the suggested framework. These phases are 

discussed in detail in sections 3, 4, and 5, respectively. Finally, in section 6 the findings 

in the previous sections are summarized and lines for future development of heuristics 

are drawn. 
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2. Previous work and proposed framework 

 

As mentioned in the previous section, the number of heuristics for the Fm|prmu|Cmax-

problem grew spectacularly since the early 60’s of the last century. This process 

speeded up by the confirmation that the problem under consideration was NP-complete, 

and the application of general-purpose local search procedures to its solution. Some 

reviews on the development of heuristics can be found in Gupta (1979), King and 

Spachis (1980), and Park et al. (1984). 

 

As the number of available heuristics for the Fm|prmu|Cmax-problem was increasing, it 

became clear that not all were of the same nature and hence present very different 

properties, such as the complexity order, computation time, or memory requirements. 

The above perception was even clearer when some general-purpose local search 

procedures (also known as meta-heuristics) were successfully applied to the 

Fm|prmu|Cmax-problem and the results compared to those offered by the ‘old’ heuristics. 

For instance, Widmer and Hertz (1989), or Moccellin (1995) present heuristics that 

require an initial solution (obtained in both cases by an analogy with the Travelling 

Saleman Problem) followed by a tabu search approach that, in principle, might employ 

as starting solution any other heuristic included in the comparison, such as the one by 

Nawaz et al. (1983). 

 

Following the sense that not all the available heuristics for the Fm|prmu|Cmax-problem 

were of the same nature, the term constructive heuristic was coined in many papers. 

However, besides being a rather coarse classification and hence of limited scope, the 

meaning of constructive remains somewhat confusing (and consequently so remain the 

heuristics covered under this definition). For instance, on one hand Pinedo (1995) 

defines constructive heuristics as opposed to composite heuristics, being the latter those 

heuristics resulting from the combination of simple (constructive) heuristics. On the 

other hand, Lourenço (1996) defines a constructive heuristic as “an algorithm that 

builds a sequence of jobs and once a decision is made, it is never changed”.  

 

Besides, there were earlier attempts to classify the existing heuristics for flowshop 

scheduling, such as Gupta (1971a). In this work, heuristics are classified into fixed 

functional heuristics, floating functional heuristics, and synthetic functional heuristics. 
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The first are heuristics that exploit the functional characteristics of a sorting problem. 

Basically, this consists in developing some index to sort the job, being the index based 

in the processing times of the problem instance. Gupta includes in that classification 

heuristics such as the ones by Palmer (1965), Campbell et al. (1970), and Gupta 

(1971b). Floating function heuristics generate a running function for a partial sequence. 

The author pointed as examples the MINIT and MINOT algorithms in Gupta (1968a, 

1972). Finally, a synthetic functional heuristic is, e.g., the MINMAX heuristic in Gupta 

(1972), based on scheduling jobs with minimum processing time first and those with 

maximum processing time last. 

 

In our opinion, all above classifications present some kind of problem. In Pinedo’s 

classification it would be difficult to classify some heuristics that might be regarded 

both as simple heuristics as well as a form of generalisation of a simpler heuristic. For 

instance, the CDS heuristic (Campbell et al. 1970) might be considered a generalised 

form of the machine aggregation heuristic (Röck and Schmidt 1983). According to 

Lourenço (1996), many heuristics of a very different nature, such as the Nawaz et al. 

(1983) heuristic and the Gupta (1971a) heuristics would be grouped into the term 

constructive heuristic, while in practice the latter might be considered a starting point of 

the former. With respect to Gupta’s classification, on one hand it does not cover early 

developments in heuristics such as the one by Page (1961), which is based on some 

form of local search. On the other hand, relatively new developments such as the meta-

heuristics do not fit into his classification for obvious reasons. Finally, other work, such 

as the one by Morton and Pentico (1993) simply distinguishes between heuristics and 

‘local search methods’ without linking them. 

 

In this sequel, we try to develop a general framework to extend previous classifications 

and fit all heuristics. The framework that we propose here will cover also some 

heuristics originally developed for permutation flowshops with other objective functions 

different from makespan (i.e. flowtime), but whose design allows the immediate 

transfer to the makespan minimisation problem. The term ‘immediate transfer’ refers 

here to the mere replacement of the original objective function by makespan. 

 

Before we present the general framework, we would like to make a remark on some 

heuristics we will not include in the framework. These are heuristics based in 
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decomposition/composition principles. The basic idea of these heuristics is to split the 

set of jobs to be scheduled into two or more separate groups (decomposition). Once the 

scheduling problem has been solved within these groups – either optimally or by some 

approximate procedure –, then these solutions are merged (composition) and the 

composed solution is retained as solution of the original problem. Some research 

dealing with these approaches can be found in Ashour (1967, 1970), and Gupta and 

Maykut (1973a). 

 

The reason for not including these heuristics into the framework is because they do not 

address the scheduling problem ‘per se’, but rather are decomposition/composition 

approaches that rely on ‘true’ scheduling procedures – e.g. some sequencing heuristics – 

for solving the scheduling problem within each set of jobs. Nevertheless, in the final 

section of the paper, some research issues addressing these heuristics will be discussed. 

 

Besides, we will not include the approximate development in Averbakh and Berman 

(1999), consisting in accepting the best makespan between a randomly chosen sequence 

and its reverse sequence. Although its worst-case may not be very bad and the 

foundations of this procedure is statistically supported by the experiments by Azim et 

al. (1989) in the sense that they show to be likely that reversing a sequence with high 

makespan will produce a sequence with low makespan, we do not believe the Averbakh 

and Berman procedure to be competitive against the heuristics reviewed here. In 

contrast, the idea exploited by Azim et al. is interesting and could be further exploited 

by current heuristics employed for makespan minimisation. 

 

In the general framework that we propose here, the development of a heuristic may 

consist of three phases: 

 

- Phase I: Index development 

- Phase II: Solution construction 

- Phase III: Solution improvement 

 

A single heuristic may consist of one or more of these phases, that are, in general, 

independent one from each other. However, a heuristic consisting of more than one of 
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these phases must perform the phases according to the above order. The three phases are 

explained in detail in the following sections. 

 

3. Phase I: Index development 

 

In index development, jobs are arranged according to a certain property based on the 

data of the Fm|prmu|Cmax-problem instance, i.e. based on the processing times of each 

job on each machine. In general, this arrangement does not need to make any 

assumption on the ordering of the jobs in the sequence. The output of this phase is a 

ranking of the jobs that might be employed either as input for the next phase, or as a 

solution itself. 

 

To derive the index, one might use a problem analogy or not. ‘Problem analogy’ refers 

to employ the data of the Fm|prmu|Cmax-problem to construct and solve an instance of a 

different class of problems. Once the latter has been solved by some means, the 

obtained solution is converted into a ranking of the jobs for the original Fm|prmu|Cmax-

problem. Perhaps the most obvious example of problem analogy is the F2| |Cmax-

analogy, which is employed in heuristics such as the one by Campbell et al. (1970). In 

this heuristic, an F2| |Cmax-problem instance is constructed by machine aggregation from 

the data given by the original Fm|prmu|Cmax-problem instance to be solved. The so 

obtained F2| |Cmax-problem is then optimally solved in polynomial time employing 

Johnson’s rule, and its optimal solution is accepted as (heuristic) solution for the 

original Fm|prmu|Cmax-problem instance. 

 

If no analogy is used, the property has to be merely deducted from some form of 

relationship assumed involving the processing times of the jobs and their corresponding 

ranking within a schedule. Note that this absence of a problem analogy – that is, ranking 

jobs according to a given function – can be interpreted as well as a ‘sorting analogy’, 

term coined by Gupta (1971a).  

 

Historically, the first of heuristic approaches ranking the jobs according to their 

processing times is due to Palmer (1965). He specified a job priority function named 

‘slope index’. The form of the priority function was chosen to give priority to jobs 

progressing from short to long processing times. An improved slope index priority 
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function has been developed by Gupta (1971b) and Gupta (1976). A variation of this 

scheme has been produced by Bonney and Gundry (1976), which involves two slope 

indices for each job. 

 

Finally, Koulamas (1998) defines an index based on the conditions given by Burns and 

Rooker (1976) to make an F3| |Cmax-problem instance to be optimally solved by 

Johnson’s rule (Johnson 1954), that is, when there is coincidence among the optimal 

solutions for the three F2| |Cmax-subproblems given by the first and second machine, 

second and third machine, and first and third machine respectively. Koulamas’ heuristic 

also includes a second phase to allow non-permutation schedules. Therefore, as we are 

discussing here only Fm|prmu|Cmax-problems, we only refer to the first phase of his 

heuristic. Also, we want to note that Koulamas’ heuristic could be considered to employ 

a problem analogy with the F2| |Cmax-problem, since it uses some assumptions valid for 

F2| |Cmax. Hence, without loss of generality of the proposed framework, it could be 

included among these heuristics using the F2| |Cmax analogy. 

 

In case that some problem analogy is to be employed, the following two issues have to 

be considered: 

1) The simplicity of the problem analogy employed, i.e. whether there are 

polynomial methods available to optimally solve the problem analogy, or at least 

some efficient heuristics for the latter. 

2) The correspondence between solutions of the analogy and solutions of the 

Fm|prmu|Cmax-problem, i.e. whether it can be proved that good or optimal 

solutions to the problem analogy yield good (or optimal) solutions to the original 

problem.  

 

The first issue implicitly points to the complexity of the analogy problem. Although this 

cannot be formally proved, it seems anti-intuitive to obtain heuristic solutions (based in 

some form of analogy) whose average behaviour outperform these heuristics designed 

for the original problem when the complexity of the employed problem analogy is equal 

or higher than the one of the original problem. With respect to the second question, the 

proof of the correspondence could be established in a formal way or through statistical 

evidence. Obviously, the former is preferred if possible, since this would provide 
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validity for any single problem instance, which cannot be guaranteed by statistical 

evidence.  

 

Three problem analogies have been used so far for deriving an ordering of the jobs. 

These are the F2| |Cmax-analogy, the Travelling Salesman Problem (TSP) analogy, and 

the vector summation problem analogy. These are discussed in detail in the following 

sections. 

 

3.1. F2| |Cmax-analogy 

 

As mentioned before, the clearest and most widely used type of analogy is the analogy 

with a F2| |Cmax-problem instance via machine aggregation. Machine aggregation refers 

to a simplification of the original problem with respect to machines. As a result, the 

original problem instance is converted into a new problem – named aggregated problem 

instance in the remainder – with a number of (fictitious) machines – named m’ in the 

sequel – lower than in the original one. More specifically, an n job, m machine-problem 

instance is transformed into an n job, m’ machine-problem instance, being m’ < m.  

 

With respect to the two above issues regarding analogy mentioned in the previous 

section (simplicity and correspondence), the first is achieved by setting m’ to 2, since 

F2| |Cmax is optimally solvable in polynomial time, according to Johnson’s rule (Johnson 

1954). Therefore, although m’ may hold – in theory – any value m’ < m, m’ is set to 2 in 

all existing heuristics using the machine aggregation procedure. On the other hand, 

machine aggregation involving m’ > 2 implies solving a problem whose complexity is 

identical to the original one. Therefore, it seems to be unlikely to develop efficient 

machine aggregation heuristics with m’ > 2 (see above comments on the complexity of 

the analogy), unless specific heuristic approaches are developed for some Fm´| |Cmax 

being 2 < m’ < m, or there exist heuristics performing extraordinarily better for a certain 

m’ < m. Finally, note that for m’ < 2, i.e. m’ = 1, any schedule is optimal, and hence it 

does not seem to be possible to convert the solution of the corresponding aggregated 

problem into a meaningful solution of the original problem. 

 

With respect to correspondence between solutions, to the best of our knowledge, no 

formal proof of this correspondence has been developed so far. In fact, providing a 
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formal correspondence between the solutions of both problems seems to be difficult, 

since the solution of the analogy is given (Johnson’s rule) by the processing times of the 

(fictitious) machines, which in turn depend on the processing times of the jobs in the 

machines of the original problem. Therefore, since the processing times are involved, 

the correspondence seem to be instance-dependent, and hence ‘good’ approaches for the 

aggregation can be distinguished from ‘bad’ approaches only on a statistical basis, i.e. 

the percentage of problem instances where a certain approach to assign processing times 

produces aggregate instances whose optimal solution represents a ‘good’ solution for 

the original problem instance. The main approaches to assign the processing times to 

two machines are due to Campbell et al. (1970), Dannenbring (1977), Röck and 

Schmidt (1983), Selim and Al-Turki (1987), and Lai (1996). These approaches are 

summarised in Table 1. 

 
Reference  pi1’ pi2’ 

 
    

Campbell et al. (1970)  ∑
=

k

j 1

 pij      ( k = 1,…,m − 1) ∑
+−=

m

kmj 1

 pij      ( k = 1,…,m − 1) 

Dannenbring (1977)  ∑
=

+−
m

j
jm

1

)1(  pij ∑
=

m

j
j

1

 pij 

Lai (1996)  
 

∑
=

2

1

m

j
 pij 

 
∑

+−=

m

mmj 12

 pij 

    

Röck and Schmidt (1983)  
 

∑
=

2

1

m

j
 pij 

 
∑

+=

m

mj 12

 pij 

Selim and Al-Turki (1987)  ∑
=

m

j 1

 λj pij ∑
=

m

j 1

 µj pij 

    
    
Table 1.  Machine aggregations suggested by the heuristics using F2| |Cmax-analogy 

 
 

Perhaps the most complex approach among the ones shown in table 1 is the one 

employed by Selim and Al-Turki (1987), which tries to optimise the values of λj and µj 

(j = 1,…., m) that minimises the makespan of the original problem. This approach is 

reported to obtain very good results for small problems, although its computational 

requirements seems not to make it effective for larger number of problems. 
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It has to be noted that all approaches listed in table 1 optimally solve the F2| |Cmax-

problem (by Johnson’s rule) and then use that solution as a solution of the 

Fm|prmu|Cmax-problem, with the exception of the heuristic of Lai (1996), which simply 

classifies a job i into one of two groups U := {i : pi1’ ≤ pi2’ }, or V := {i : pi1’ > pi2’ } in 

the manner of Johnson’s rule. However, the jobs in each of the groups are not sorted but 

sequenced arbitrarily, and merged with the only condition that the jobs in U must 

precede the jobs in V. This procedure allows the heuristic to be very fast while 

presenting a worst-case analysis not very different from those of the other machine 

aggregation procedures. However, no computational experiments have been carried out 

to test the performance of this heuristic. 
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3.2. TSP analogy 

 

The analogy of the Fm|prmu|Cmax-problem with the TSP was first pointed out by Gupta 

(1968b) and has been studied by Stinson and Smith (1982), Widmer and Hertz (1989), 

and Moccellin (1995). In these three papers, a distance-matrix defining a TSP-instance 

of n cities is set up given by the processing times of the machines (in the case of the 

Stinson and Smith-paper, up to six different ways to build the distance matrix are 

presented). Then, the TSP instance is solved, and the solution retained as solution of the 

original Fm|prmu|Cmax-problem. The ways employed in the above papers to construct 

the distance matrix are summarised in table 2. 

 
Reference   Distance matrix ( 1 ≤ u, v ≤ n ) 

   

Gupta (1968b)  
Cuv = ( CTm(u,v) –   ∑

=

m

j 1

puj )  where CT0(u,v)  = 0, and  

CTj(u,v)  = max { CT j –  1(u,v) ; ∑
=

j

k 1

pvk } 

Stinson and Smith (1982) 
 

Cuv =  ∑
=

m

j 2

|puj – pv,j–1|    

  
Cuv =  ∑

=

m

j 2

{puj – pv,j–1}2   

  
Cuv =  ∑

=

m

j 2

|min{puj – pv,j – 1 + min{(pu,j–1 – pv,j – 2);0};0}|    

  
Cuv =  ∑

=

m

j 2

|puj – pv,j – 1 + min{(pu,j–1 – pv,j – 2);0}|    

  
Cuv =  ∑

=

m

j 2

{  puj – pv,j – 1 + min{(pu,j–1 – pv,j – 2);0}}2   

  
Cuv =  ∑

=

m

j 2

max{(puj – pv,j – 1);0} + 2 | min{(pu,j – pvj – 1);0}|   

Widmer and Hertz (1989) 
 

Cuv = pu1 + ∑
=

−
m

j
km

2

)( |puj – pv,j–1 | + pvm 

Moccellin (1995)  Cuv = UBX(m)uv       where UBX(1)uv = 0, and  

UBX(k+1)uv = max { 0; UBX(k)uv + (pvk – pu,k+1)} 

   

Table 2.  Distance-matrices constructed by the heuristics using TSP analogy 
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Since the TSP is known to be NP-hard, there is no method available guaranteeing an 

optimal solution within the decision interval. To obtain good approximate solutions, 

Stinson and Smith suggest a constructive polynomial heuristic developed by Stinson 

(1977), while Widmer and Hertz, and Moccellin use the Farthest Insertion Travelling 

Salesman Procedure (FITSP) to obtain the solution to the TSP problem. Furthermore, 

both Widmer and Hertz as well as Moccellin, improve this solution by a tabu search 

procedure (which will be discussed in phase III). 

 

3.3. Vector summation analogy 

 

The vector summation analogy was presented by Sevast’janov (1995) from a theoretical 

point of view, and several versions of it were implemented by Lourenço (1996). With 

respect to the two issues discussed above when employing a problem analogy 

(simplicity and correspondence), the analogy employed can be solved using a 

polynomial-time algorithm based on linear programming (Lawler et al. 1993). 

Regarding correspondence issues, the experimental results carried out by Lourenço 

conclude that there is not necessarily a correspondence between good solutions with 

respect to the maximum norm of the partial sums, and good solutions of the 

Fm|prmu|Cmax-problem. 

 

 

4. Phase II: Solution construction 

 

In this phase, a solution is constructed in a recursive manner trying one or more 

unscheduled jobs to be inserted in one or more positions of a partial schedule until the 

schedule is completed. Hence, this phase consists of n loops that divide the set of jobs 

into two subsets: the already scheduled jobs in subset S and the non-scheduled in R. 

Note that in the kth loop Sk defines a partial schedule of k jobs. In a loop, one job from 

the non-scheduled set is removed from the non-scheduled and placed into the scheduled 

jobs set. 

 

In this phase there are two issues at any loop k: 

1. Job selection, i.e. which job j ∈  Rk is to be inserted into Sk. 
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2. Job insertion, i.e. where to insert the chosen job into the partial schedule Sk. 

 

These two issues are discussed in detail in the following sections. 

 

4.1. Job selection 

 

Job selection must be decided according to one of the following approaches: 

 

- According to any index obtained by the application of phase I (as done e.g. by 

the heuristic by Nawaz et al. 1983), or 

- Several jobs in Rk might be tried. In this case, the selection about the job to be 

finally inserted is done according to a certain schedule measure, i.e. to minimise 

some property of the resulting partial schedule (e.g. in the heuristic by Sarin and 

Lefoka 1993, several jobs are tried, and the schedule property to be minimised is 

the idle time on the last machine).  

 

The property of the partial schedule employed for the job selection set might be the 

objective function of the problem itself (makespan), as done e.g. in Aggarwal and 

Stafford (1980), or Woo and Yim (1998), or some other measure related to the objective 

function. Among the latter, some expressions involving machine idle time have been 

chosen in several heuristics. The rationale for using this measure is clear, since the 

makespan can be de-composed into the time to process all jobs on all machines plus the 

idle time of each machine for each job. Taking into account that the first term of the 

expression is a constant, it is clear that minimising some form of idle time may lead to 

schedules with low makespan. 

 

 

p11 p21

p12 p22

p13 p23

m1

m2

m3
 

 

 

 Between-jobs delay Front delay 

Back delay 
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Figure 1. Different measures related to idle-time. 

 

To clarify the different expressions involving idle-time, we depict figure 1. Here, we 

represent different measures connected to the idle-time. We use the terminology of King 

and Spachis (1980), since they treated intensively the different ways to measure it. 

 

As can be seen from figure 1, King and Spachis (1980) distinguish three types of delays 

causing machine idle-time. The total idle-time (as employed e.g. by Gupta 1972, and 

McCormick et al. 1989) is the sum of front delay, between-jobs delay, and back delay. 

Sarin and Lefoka (1982) employ the idle-time on the last machine, that is: the front and 

between-jobs delays corresponding to machine m3 in figure 1. There are alternative 

definitions of idle-time, such as the one in Sridhar and Rajendran (1996), including 

front and between-jobs delays, but excluding back delays. However, these are not 

employed in the reviewed heuristics. 

 

Finally, in case that more than one job is tried, it is possible that ties occur, so some tie-

breaking rule has to be devised. This aspect has not been explicitly covered by most of 

the heuristics. To our knowledge, only Gupta’s MINOT and MINIT heuristics (1972) 

present some method for breaking ties other than random. 

 

4.2. Job insertion 

 

With respect to job insertion, a job j can be inserted into a fixed position in the partial 

schedule Sk (e.g. Sarin and Lefoka insert the chosen job at the end of Sk), or several 

positions can be tried (e.g. Aggarwal and Stafford define a set of positions where the 

new job can be inserted, Rajendran 1993 limits the possible positions from  2
k  to (k + 

1), while Nawaz et al. 1983, and Woo and Yim 1998 try to insert the job into all 

possible positions). King and Spachis (1980) distinguish between ‘single chain’ and 

‘multiple chain’ schedules, depending on whether one or several positions are tried, 

respectively. 

 

Again, when several positions are tried, the selection of the position should be done to 

minimise some property of the resulting partial schedule. Obviously, when several jobs 



 15

from Rk have to be inserted in several positions of the partial schedule Sk, both schedule 

measures must be the same or at least consistent to one another (e.g. Aggarwal and 

Stafford, or Woo and Yim use partial makespan minimisation for both job selection and 

job insertion). Also obviously, to assure a good performance of this phase, both partial 

schedule measures must coincide – or at least be consistent – with the objective function 

(makespan minimisation). 

 

Similar to the case of job selection, there must be some rule for breaking ties when 

multiple positions are tried. Again, this aspect is ignored by most of the existing 

heuristics (see e.g. Nawaz et al. 1983, Rajendran 1993, or, Woo and Yim 1998). 

 

It has to be noted that the job selection and job insertion decisions (if to be taken) are 

taken using partial (local) information and therefore only myopic improvements might 

be obtained. Hence, it cannot be guaranteed that the resulting schedule provides a lower 

makespan than the initial schedule developed in phase I or than a random schedule. This 

is true even in the extreme case that all jobs in Rk are tried for selection, all positions in 

Sk are tried, and the measure for both job selection and job insertion is (partial) 

makespan minimisation. 

 

Table 3 summarises the choices regarding job selection and job insertion done in the 

literature. 

 
Reference  Job selection (loop k) Job insertion (loop k) 

    

Aggarwal and 

Stafford (1980) 
 

subset in Rk obtained from phase I 

(makespan) 

subset in Sk 

(makespan) 

Gupta – MINIT 

(1972) 
 

1 job obtained from phase I for k = 1  

all jobs in Rk for 1 < k ≤ (n – 2) 

(idle time) 

all jobs in Rk for (n – 2) < k ≤ n 

(makespan)  

at position (k+1) 

Table 3. Heuristics using phase II. When some options are tried both in job selection and in job 

insertion, the selection criterion is given in parentheses. 

* indicates that the original heuristic was conceived to minimise an objective function different from 

makespan, although it can be directly applied to makespan by replacing the original objective function 

by makespan. 
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Reference  Job selection (loop k) Job insertion (loop k) 

Gupta – MICOT 

(1972) 
 

1 job obtained from phase I for k = 1  

all jobs in Rk for 1 < k ≤ (n – 2) 

(completion time) 

all jobs in Rk for (n – 2) < k ≤ n 

(makespan) 

at position (k+1) 

Gupta – 

MINIMAX 

(1972) 

 

all jobs in Rk  

(   if k odd, 
mj

ki R
min

≤≤
∈

1

{pij} , else 
mj

ki R
max

≤≤
∈

1

{pij}   ) 
if k odd at position (k+1), else 

at position 0 

Gupta and 

Maykut (1973b) 
 

1 job obtained from phase I for k = 1  

all jobs in Rk for 1 < k ≤ (n – 2) 

(idle time  in last machine) 

at position (k+1) 

Gupta  (1979)  
all jobs in Rk  

 ( lower bound of total makespan  ) 
at position (k+1) 

King and Spachis 

(1980) 
 

all jobs in Rk  

(LFD – front delay) 

(LBD – back delay) 

(LBJD – between-jobs delay) 

(LWBJD – weighted between-jobs delay) 

(MLSS – savings of between-jobs delay) 

at position (k+1) 

McCormick et al. 

(1989) 
 

1 job obtained from phase I for k = 1  

all jobs in Rk for 1 < k ≤ n 

(idle time) 

at position (k+1) 

Nawaz et al. 1983  1 job obtained from phase I 
all (k+1) possible positions are tried 

(makespan) 

Rajendran* 

(1993) 
 1 job obtained from phase I 

positions  k /2  to (k+1) are tried 

(makespan) 

Sarin and Lefoka 

(1993) 
 

all jobs in Rk 

(idle time in last machine) 
at position (k+1) 

Woo and Yim* 

(1998) 
 

all jobs in Rk 

(makespan) 

all (k+1) possible positions are tried 

(makespan) 

Table 3 (continued). Heuristics using phase II. When some options are tried both in job selection and in 

job insertion, the selection criterion is given in parentheses. 

* indicates that the original heuristic was conceived to minimise an objective function different from 

makespan, although it can be directly applied to makespan by replacing the original objective function 

by makespan. 
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5. Phase III: Solution improvement 

 

In this phase, an existing solution is improved by means of some procedure. The two 

main characteristics of this phase are: 

- An initial solution (input solution) is required. 

- The solution output of the phase is always equal or better than the input 

solution. 

 

Starting from an input solution, the procedure seeks to change the job sequence to 

improve the solution. This can be done on an individual basis – e.g. two jobs are 

exchanged as done in Dannenbring (1977) – or on a group basis – e.g. a set of adjacent 

jobs is exchanged as done in Page (1961). In the second case, some procedure has to be 

developed in order to group (and perhaps regroup) the set of jobs. 

 

Usually, improvement approaches are classified into descending local searches and 

metaheuristics (Nowicki and Smutnicki 1996, Stützle 1998). Heuristics using 

descending local search are those by Page (1961), the final phase of the heuristic RAES 

by Dannenbring (1977), the final phase of the heuristic by Aggarwal and Stafford 

(1980), and the heuristic by Ho and Chang (1991). In addition, the five heuristics 

proposed by King and Spachis (1980) and discussed in the previous section include a 

final improvement phase by exchanging the last two jobs inserted in the search of 

makespan improvements. 

 

With respect to metaheuristics, several researchers have addressed their application to 

the problem under consideration. Table 4 summarises the contributions classified 

according to the type of metaheuristic employed. 

 

In addition to the classification between metaheuristics and descending local search, we 

would like to distinguish between general-neighbourhood and specific-neighbourhood 

approaches. General-neighbourhood approaches are the approaches whose 

neighbourhood may be suitable for any combinatorial problem, while specific-

neighbourhood approaches are those where the definition of neighbourhood (including 

the allowed or preferred moves) incorporate some characteristics specific of the 

Fm|prmu|Cmax-problem. 
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Technique  Reference 

Simulated Annealing  Osman and Potts (1989) 

Ogbu and Smith (1990, 1991) 

Zegordi et al. (1995). 

   

Tabu Search  Widmer and Hertz (1989) 

Taillard (1990) 

Moccellin (1995) 

Nowicki and Smutnicki (1996) 

   

Genetic Algorithms  Reeves (1993, 1995) 

Chen et al. (1995) 

   

Ant Colony Optimisation  Stützle (1998) 

   

Path algorithms  Werner (1993) 

 

Table 4.  Application of meta-heuristics to the Fm|prmu|Cmax-problem 

 

Taking a metaheuristic like simulated annealing (SA) as example, a general-

neighbourhood approach is the one of SA done by Osman and Potts (1989), where the 

neighbourhood is defined through pairwise interchange between jobs (given a solution, 

2
)1( −nn  neighbours can be explored). This neighbourhood is common to other 

combinatorial problems, such as the TSP, or the Quadratic Assignment Problem, among 

others. In contrast, a specific-neighbourhood approach of SA is the implementation by 

Zegordi et al. (1995), where the pairwise interchange is controlled by the value of an 

index named MDJ (Move Desirability of Jobs) that controls the subset of neighbours 

(within all possible 
2

)1( −nn  neighbours) to be explored. The MDJ index is constructed 

in each iteration of the simulated annealing procedure and it is a measure of the 

(possible) improvement in makespan by exchanging the position of the jobs in the 

current solution. Hence, although based on a standard definition of neighbourhood, this 

approach is problem-specific for the Fm|prmu|Cmax-problem. 
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Using a general-neighbourhood cannot be regarded as a simpler approach to the 

problem in contrast to the more elaborated specific-neighbourhood approaches. First of 

all, it is known that the efficient implementation of a metaheuristic involves choosing 

and tuning several of its parameters, and that this process largely influences the 

heuristic’s performance. From that point of view, the choice of a general/specific 

neighbourhood is only one of the multiple choices to be done, although we stress it here 

since it allows us to classify existing approaches to the problem. Second, the motivation 

of the approximate approaches is to obtain good solutions, and hence parameter design 

is justified itself by the results achieved by the heuristic, no matter how general or 

specific these are. 

 
     

  Descending local search   Metaheuristic 

     

General 

neighbourhood 

 

Aggarwal and Stafford (1975) 

King and Spachis (1980) 

Dannenbring – RAES (1977) 

Page (1961) 

 

 Chen et al. (1995) 

Moccellin (1995) 

Ogbu and Smith (1990, 1991) 

Osman and Potts (1989) 

Reeves (1993, 1995) 

Taillard (1990) 

Stützle (1998) 

Widmer and Hertz (1989) 

     

     

Specific 

neighborhood 

 

Ho and Chang (1991) 

 Nowicki and Smutnicki (1996) 

Werner (1993) 

Zegordi et al. (1995) 

     

 

Table 5.  Heuristics using phase III 
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6. Conclusions. Future development of heuristics 

 

In the previous sections, we have presented a framework to review and classify existing 

heuristics for makespan minimisation on permutation flowshops. This review may serve 

to obtain a comprehensive view of past developments and henceforth, to identify new 

directions for future research, either based on the development of new heuristics or in 

the extension/combination of current ones. These are summarised in table 6. 

 

Reference 

 Phase I 
Index 

development 

 Phase II 
Solution 

construction 

 Phase III 
Solution 

improvement 
       

Aggarwal and Stafford (1975)  x  x (MS, MI)  x (DS, GN) 

Bonney and Grundy (1976)  x     

Campbell et al. (1970)  x (F2| |Cmax)     

Chen et al. (1995)      x (MH[GA], GN) 

Dannenbring (1977) – RA  x (F2| |Cmax)     

Dannebring (1977) – RAES  x (F2| |Cmax)    x (DS, GN) 

Gupta (1968b)  x (TSP)     

Gupta (1971b)  x     

Gupta – MICOT, MINIT (1972)  x  x (MS, SI)   

Gupta – MINIMAX (1972)    x (MS, SI)   

Gupta and Maykut (1973b)  x  x (MS, SI)   

Gupta (1976)  x     

Gupta (1979)  x  x (MS, SI)   

Ho and Chang  (1991)      x (DS, SN) 

King and Spachis (1980)    x (MS, SI)  x (DS, GN) 

Koulamas – phase I (1998)  x     

 
Table 6. Summary of existing heuristics 
 
SI/MI: Single job insertion/Multiple job insertion 
SS/MS: Single job selection/Multiple job selection 
DS/MH[x]: Descending search/Metaheuristic. The term within square brackets may hold the following 
values: SA: Simulated Annealing /TS: Tabu Search/GA: Genetic Algorithm/ACO: Ant Colony 
Optimisation/PA: Path Algorithms 
GN/SN: General neighbourhood/Specific neighbourhood 
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Reference 

 Phase I 
Index 

development 

 Phase II 
Solution 

construction 

 Phase III 
Solution 

improvement 
       

Lai (1996)  x (F2| |Cmax)     

McCormick et al. (1989)  x  x (MS, SI)   

Mocellin (1995)  x (TSP)    x (MH[TS], GN) 

Nawaz et al. (1983)  x  x (SS, MI)   

Nowicki and Smutnicki (1996)      x (MH[TS], SN) 

Ogbu and Smith (1990, 1991)      x (MH[SA], GN) 

Osman and Potts (1989)      x (MH[SA], GN) 

Page (1961)      x (DS, GN) 

Palmer (1965)/Hundal and Rajgopal (1988)  x     

Rajendran (1993)  x  x (SS, MI)   

Reeves (1993, 1995)      x (MH[GA], GN) 

Röck and Schmidt (1983)  x (F2| |Cmax)     

Sarin and Lefoka (1993)    x (MS, SI)   

Selim and Al-Turki (1987)  x (F2| |Cmax)     

Sevas’janov (1995)  x (vector summation)     

Stinson and Smith (1982)  x (TSP)     

Stütlze (1998)      x (MH[ACO], GN) 

Taillard (1990)      x (MH[TS], GN) 

Werner (1993)      x (MH[PA], SN) 

Widmer and Hertz (1989)  x (TSP)    x (MH[TS], GN) 

Woo and Yim (1998)    x (MS/MI)   

Zegordi et al. (1995)      x (MH[SA], SN) 

 
Table 6 (continued).  Summary of existing heuristics 
 
SI/MI: Single job insertion/Multiple job insertion 
SS/MS: Single job selection/Multiple job selection 
DS/MH[x]: Descending search/Metaheuristic. The term within square brackets may hold the following 
values: SA: Simulated Annealing /TS: Tabu Search/GA: Genetic Algorithm/ACO: Ant Colony 
Optimisation/PA: Path Algorithms 
GN/SN: General neighbourhood/Specific neighbourhood 
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Nevertheless, the above classification itself provide little specific information to the 

schedulers on using any heuristic or combination of heuristics to solve a particular 

problem. To do so, an extensive comparison of the performance of existing heuristics is 

still needed, since most of the comparisons among heuristics presented in the literature 

only partially cover the current heuristics. Besides, the lack of an extensive comparison 

does not allow exploiting the possibilities for efficiently combining the best heuristics 

on each phase. These aspects are discussed in detail in the next subsections: 

 

6.1. Comparison of existing heuristics 

 

A critical issue on heuristic development is the trade-off between the quality of the 

solution obtained by the heuristic, and the computation time required to obtain such a 

solution. However, in most of the practical environments, such a trade-off cannot be 

seen as a weighted function, but rather as a goal programming problem. Most of the 

time, the decision maker wishes to obtain the highest quality of the solution (the lowest 

makespan) subject to a time constraint – given by the decision interval. Since this 

decision interval might vary from seconds to hours, it is likely that there does not exist a 

universal ‘recipe’ covering all situations.  

 

A second issue is the term ‘quality of the solution’ itself. First, we have to accept that 

this term can only be used within a statistical context. Therefore, it has to be taken into 

account Taillard’s (1990) study on the distribution of the makespan values in the space 

of solutions. This study should be extended to cover a higher number of jobs, and to 

study the relationship of the distribution of the solutions for a given number of jobs, and 

the number of machines. 

 

For the above reasons, every time a new heuristic was suggested in the literature, it was 

compared with the best available heuristics. Besides, some papers (e.g. Smith and 

Stafford 1980, Turner and Booth 1987, or Taillard 1990) are solely devoted to compare 

and rank the existing heuristics. However, in our opinion, both the latter studies as well 

as former papers introducing (and comparing) new heuristic present some of these 

problems: 
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1) Lack of comprehensiveness. Not all heuristics are covered and the rank or 

relative performance of some heuristics remains unknown. For instance, when 

Aggarwal and Stafford (1975) presented their new heuristic – namely AS –, their 

results in the experimental comparisons against existing heuristics lead to the 

conclusion that the AS heuristic outperforms CDS heuristic (Campbell et al. 

1970) in terms of the quality of the solution. Nevertheless, after the NEH 

heuristic was introduced (Nawaz et al. 1983), the existing comparative studies 

claim NEH to be the best current heuristic in terms of the quality of the solution 

since it outperforms CDS (see e.g. Nawaz et al. 1983, Turner and Booth 1987, or 

Taillard 1990). However, in all previously mentioned studies, no indication is 

given on the relative performance NEH vs. AS in both terms of quality of the 

solution and computational requirements. Besides, other studies indicate that 

NEH is outperformed by other heuristics when n is very large (Sarin and Lefoka 

1993), or smaller than 20 jobs (Selim and Al-Turki 1987). Therefore, a most 

comprehensive comparison is required that covers all heuristics, or at least the 

most competitive ones. 

2) Little robustness of conclusions. In most of the comparisons, the claiming of the 

superior performance of certain heuristics is based on the superior quality of the 

average makespan obtained over a set of problem instances. However, almost no 

indication on the confidence levels of the results is provided, and hence the 

significance of the differences between the average results could not be 

significant when requiring a high confidence level. Besides, only one paper 

(Smith and Stafford 1980) addresses the comparison issue from a hypothesis 

acceptance/rejection viewpoint. The lack of such analysis might seriously 

compromise the robustness of the conclusions. 

3) Weak/partial experimental design. The basic parameters for the experimental 

design are the range of jobs and machines to be covered, and the way to generate 

the processing times. With respect to the latter issue, most of the studies use a 

uniform random distribution with high dispersion ([1,99] or [1,100]) to generate 

the processing times. This is known to produce more difficult problem instances 

(Campbell et al. 1970, Dannenbring 1977). In absence of a formal worst case 

analysis, this might serve as some ‘statistical worst case analysis’ (particularly 

when the average percentage deviation with respect to the optimum is provided) 

since it is believed to represent the most difficult instances for the heuristics. 
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However, this distribution of the processing times is unlike to occur in practice 

(Amar and Gupta 1986). On one hand, the Erlang-distribution is claimed in 

several studies to best map the processing times (see e.g. Conway et al. (1967), 

King and Spachis 1980, or Park et al. 1984). On the other hand, it is considered 

to be more realistic to employ a trend of the processing times of a job between 

machines, and a correlation between the processing times of a job, in the sense 

that, for a job, the processing times in the machines are consistently relatively 

large or relatively small (Rinnooy Kan 1976, Lageweg et al. 1978). Therefore, 

testbeds developed taking into account the above issues are expected to provide 

the performance of the different heuristics when applied to real-life problem 

instances, performance that could have been underestimated when applied to 

instances with random distribution of the processing times. Hence, testbeds such 

as the suggested by Taillard’s (Taillard 1993) are not useful for this purpose, 

despite its acceptance as a benchmark in some studies (e.g. Taillard 1990, or 

Reeves 1995). First, the processing times of this test-bed are randomly 

generated, and secondly, the number of instances so generated is too small to 

make tight estimations on the confidence levels of the results. Other option 

would be to built a large test-bed of real-life instances, such as these described in 

Bestwick and Hastings (1976), or Lahiri et al. (1993). 

 

6.2. New heuristic development/improvement of existing heuristics 

 

With respect to future enhancements of the heuristics within the three phases presented 

in this paper, the phase of index development heuristics without using any kind of 

analogy (or alternatively, using a sorting analogy) seems not to have advanced too much 

recently. However, the first phase is required for both solution construction and 

improvement, and hence, in our opinion, its importance should not be underestimated. 

An important question to be investigated is the influence of the choices done in this 

phase on the subsequent phases. 

 

When employing some form of analogy, the field remains open for new analogies or the 

improvement of the existing ones. Referring to the last issue, it is clear that new 

developments on optimal or heuristic procedures for the problems taken as analogy may 

influence the performance of this type of heuristics. However, whenever the question of 
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correspondence of the solutions between both problems cannot be answered in a formal 

way, there would be no guarantee of the performance of these heuristics for particular 

cases. Hence, we believe that correspondence between solutions of the employed 

analogy has to be better understood as a necessary step for improving the results of the 

heuristics based on analogies. It should be also mentioned that, with respect to the 

statistical correspondence, no work has been carried out in this field with the exception 

of the experiments by Lourenço (1996). 

 

Regarding phase II heuristics, it has already been mentioned that with respect to job 

selection and job insertion, ties are not adequately handled in most of the heuristics. 

However, these ties are likely to occur, particularly when there is a multiple job 

insertion, since the insertion position of a non-critical job into the partial sequence 

might have no influence in the value of the partial property in which the selection is 

based. However, once this job has been inserted in one position or another, it certainly 

determines future values of the partial property for the subsequent non-scheduled jobs. 

Therefore, we believe that this issue has to be treated more intensively than in the past.  

 

With respect to phase III heuristics, the stress has been done in the method to generate 

new solutions, adding to local search new and useful features such as memory, or ability 

to escape from local optima. It is foreseeable that as long as new general metaheuristics 

are proposed, these will be applied to the problem under consideration. However, when 

using general neighbourhood approaches, the question of which one is the most suitable 

has not been sufficiently addressed. Therefore, it could be useful to establish – at least 

from a statistical point of view – which neighbourhood structures are more efficient, 

both to incorporate them into a metaheuristic approach or simply to use them within a 

local descending search to guarantee the local optimality of the employed heuristic. 

 

6.3. Extension/combination of existing heuristics 

 

At the sight of Table 6, it seems clear that the field for the development of more 

efficient approaches for the Fm|prmu|Cmax problem based on the extension or 

combination of existing heuristics remains open. Precisely the suggested classification – 

summarised in Table 6 – helps to locate single heuristics within a wider framework and 

hence facilitates the identification of these heuristics whose combination can improve 
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their individual results. Nevertheless, it has to be stressed again the need of a 

comprehensive comparison of existing heuristics to render the framework really useful 

to the scheduler. Until this comparison is done, little hope on the systematic 

development of the combination of heuristics can be deposited. 

 

Within the extension/combination of existing heuristics we can include the 

decomposition/composition approaches discussed in section 2. One of the motivations 

of these approaches – explored in the beginning of 1970 and later abandoned – was the 

computing power available at that time, which made difficult even obtaining heuristic 

solutions for larger problems: “...larger machine scheduling problems can be partitioned 

into a number of smaller problems. Therefore, less computational effort is required” 

(Ashour 1970). This obstacle has been removed nowadays. It might be argued that the 

sub-problems containing a small number of jobs may nowadays be optimally solved – 

i.e. by some branch and bound procedure –, making the approach more appealing. 

However, it should be kept in mind that solving the sub-problems is just a part of the 

whole procedure, and that even in the case that sub-problems are optimally solved, 

obtaining an optimal solution for the original problem additionally requires an optimal 

decomposition (with respect to the number of sets and the jobs belonging to each set) as 

well as optimal composition (i.e. merging the solutions of the sub-problems). Therefore, 

since both last problems are rather complex and interdependent, it is difficult to think 

about forms of this approach being competitive with more straightforward procedures. 

Nevertheless, additional research in this area will be interesting under the light of real-

time scheduling or rescheduling. 

 

Finally, we would like to stress the fact that, although exact approaches for the 

permutation flowshop problem such as branch and bound techniques have been 

developed separately from the research on heuristics, the former are employed in 

practice as heuristic approaches since their allowed computation time is limited to the 

decision interval. In contrast, current branch and bound approaches are not designed to 

provide good solutions when stopped before finishing the exploration, and hence the 

efficient combination/integration of exact approaches and heuristics may appear as a 

promising field of research. 
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