
 1

A review and classification

of heuristics for permutation flow-
shop scheduling with makespan

objective

Jose M. Framinan1, Jatinder N. D. Gupta2 and Rainer Leisten3

Technical report OI/PPC-2001/02

Version 1.2 - 20/07/2002

A revised, enhanced version of this Report is to be published in the Journal of the

Operational Research Society

ABSTRACT

Makespan minimisation in permutation flow shop scheduling is an OR topic that has

been intensively addressed in the last 40 years. Since the problem is known to be NP-

complete for more than two machines, most of the research effort has been devoted to

the development of heuristic procedures in order to provide good approximate solutions

to the problem. However, little attention has been devoted to establish a common

framework for these heuristics so they can be effectively combined or extended. In this

paper, we review and classify the main contributions regarding this topic and discuss

future research issues.

1 Industrial Management, School of Engineering, University of Seville, Spain. Email: jose@esi.us.es

2 Department of Management, Ball State University, USA.

3 Production Management, Institute for Logistics and Information Management, Faculty of Business
Administration and Economics, University of Duisburg, Germany.

 2

1. Introduction

During the last 40 years, the permutation flowshop sequencing problem with the

objective of makespan minimisation has held the attraction of many researchers. This

problem – characterised as Fm|prmu|Cmax in the notation of Graham (1979) – involves

the determination of the order of processing of n jobs in m machines. A detailed

discussion of the basic assumptions followed throughout the relevant literature can be

found e.g. in Dudek and Teuton (1964). A number of exact approaches have been

suggested for the problem (see e.g. Szwarc 1971, Lageweg et al. 1978, Potts 1980, or

Carlier and Rebaï 1996), although since the problem is known to be NP-complete for

three or more machines (Garey et al. 1976, and Rinnooy Kan 1976), most of the effort

has been concentrated in proposing heuristic procedures that produce good (but not

necessarily optimal) solutions in relatively short time intervals, such as those required to

take the scheduling decisions. Currently, there are many heuristics available based in

very different approaches to the problem. However, no framework to fit these heuristics

has been developed, although several attempts to classify them have been done (see e.g.

Gupta 1971a, Pinedo 1995, or Lourenço 1996).

Hence, the aim of this paper is beyond introducing and explaining all current available

heuristics for the makespan minimisation problem. Instead, we try to establish a general

framework in which the existing heuristics can be fitted and – which, in our opinion, is

more important – combined in order to obtain composite heuristics that lead to improve

the quality of the obtained solutions. Besides, this framework may serve to indicate

future points of research.

The remainder of the paper is organised as follows: In the next section, we introduce the

previous work related to the review, classification or categorisation of the existing

heuristics, and introduce the main phases of the suggested framework. These phases are

discussed in detail in sections 3, 4, and 5, respectively. Finally, in section 6 the findings

in the previous sections are summarized and lines for future development of heuristics

are drawn.

 3

2. Previous work and proposed framework

As mentioned in the previous section, the number of heuristics for the Fm|prmu|Cmax-

problem grew spectacularly since the early 60’s of the last century. This process

speeded up by the confirmation that the problem under consideration was NP-complete,

and the application of general-purpose local search procedures to its solution. Some

reviews on the development of heuristics can be found in Gupta (1979), King and

Spachis (1980), and Park et al. (1984).

As the number of available heuristics for the Fm|prmu|Cmax-problem was increasing, it

became clear that not all were of the same nature and hence present very different

properties, such as the complexity order, computation time, or memory requirements.

The above perception was even clearer when some general-purpose local search

procedures (also known as meta-heuristics) were successfully applied to the

Fm|prmu|Cmax-problem and the results compared to those offered by the ‘old’ heuristics.

For instance, Widmer and Hertz (1989), or Moccellin (1995) present heuristics that

require an initial solution (obtained in both cases by an analogy with the Travelling

Saleman Problem) followed by a tabu search approach that, in principle, might employ

as starting solution any other heuristic included in the comparison, such as the one by

Nawaz et al. (1983).

Following the sense that not all the available heuristics for the Fm|prmu|Cmax-problem

were of the same nature, the term constructive heuristic was coined in many papers.

However, besides being a rather coarse classification and hence of limited scope, the

meaning of constructive remains somewhat confusing (and consequently so remain the

heuristics covered under this definition). For instance, on one hand Pinedo (1995)

defines constructive heuristics as opposed to composite heuristics, being the latter those

heuristics resulting from the combination of simple (constructive) heuristics. On the

other hand, Lourenço (1996) defines a constructive heuristic as “an algorithm that

builds a sequence of jobs and once a decision is made, it is never changed”.

Besides, there were earlier attempts to classify the existing heuristics for flowshop

scheduling, such as Gupta (1971a). In this work, heuristics are classified into fixed

functional heuristics, floating functional heuristics, and synthetic functional heuristics.

 4

The first are heuristics that exploit the functional characteristics of a sorting problem.

Basically, this consists in developing some index to sort the job, being the index based

in the processing times of the problem instance. Gupta includes in that classification

heuristics such as the ones by Palmer (1965), Campbell et al. (1970), and Gupta

(1971b). Floating function heuristics generate a running function for a partial sequence.

The author pointed as examples the MINIT and MINOT algorithms in Gupta (1968a,

1972). Finally, a synthetic functional heuristic is, e.g., the MINMAX heuristic in Gupta

(1972), based on scheduling jobs with minimum processing time first and those with

maximum processing time last.

In our opinion, all above classifications present some kind of problem. In Pinedo’s

classification it would be difficult to classify some heuristics that might be regarded

both as simple heuristics as well as a form of generalisation of a simpler heuristic. For

instance, the CDS heuristic (Campbell et al. 1970) might be considered a generalised

form of the machine aggregation heuristic (Röck and Schmidt 1983). According to

Lourenço (1996), many heuristics of a very different nature, such as the Nawaz et al.

(1983) heuristic and the Gupta (1971a) heuristics would be grouped into the term

constructive heuristic, while in practice the latter might be considered a starting point of

the former. With respect to Gupta’s classification, on one hand it does not cover early

developments in heuristics such as the one by Page (1961), which is based on some

form of local search. On the other hand, relatively new developments such as the meta-

heuristics do not fit into his classification for obvious reasons. Finally, other work, such

as the one by Morton and Pentico (1993) simply distinguishes between heuristics and

‘local search methods’ without linking them.

In this sequel, we try to develop a general framework to extend previous classifications

and fit all heuristics. The framework that we propose here will cover also some

heuristics originally developed for permutation flowshops with other objective functions

different from makespan (i.e. flowtime), but whose design allows the immediate

transfer to the makespan minimisation problem. The term ‘immediate transfer’ refers

here to the mere replacement of the original objective function by makespan.

Before we present the general framework, we would like to make a remark on some

heuristics we will not include in the framework. These are heuristics based in

 5

decomposition/composition principles. The basic idea of these heuristics is to split the

set of jobs to be scheduled into two or more separate groups (decomposition). Once the

scheduling problem has been solved within these groups – either optimally or by some

approximate procedure –, then these solutions are merged (composition) and the

composed solution is retained as solution of the original problem. Some research

dealing with these approaches can be found in Ashour (1967, 1970), and Gupta and

Maykut (1973a).

The reason for not including these heuristics into the framework is because they do not

address the scheduling problem ‘per se’, but rather are decomposition/composition

approaches that rely on ‘true’ scheduling procedures – e.g. some sequencing heuristics –

for solving the scheduling problem within each set of jobs. Nevertheless, in the final

section of the paper, some research issues addressing these heuristics will be discussed.

Besides, we will not include the approximate development in Averbakh and Berman

(1999), consisting in accepting the best makespan between a randomly chosen sequence

and its reverse sequence. Although its worst-case may not be very bad and the

foundations of this procedure is statistically supported by the experiments by Azim et

al. (1989) in the sense that they show to be likely that reversing a sequence with high

makespan will produce a sequence with low makespan, we do not believe the Averbakh

and Berman procedure to be competitive against the heuristics reviewed here. In

contrast, the idea exploited by Azim et al. is interesting and could be further exploited

by current heuristics employed for makespan minimisation.

In the general framework that we propose here, the development of a heuristic may

consist of three phases:

- Phase I: Index development

- Phase II: Solution construction

- Phase III: Solution improvement

A single heuristic may consist of one or more of these phases, that are, in general,

independent one from each other. However, a heuristic consisting of more than one of

 6

these phases must perform the phases according to the above order. The three phases are

explained in detail in the following sections.

3. Phase I: Index development

In index development, jobs are arranged according to a certain property based on the

data of the Fm|prmu|Cmax-problem instance, i.e. based on the processing times of each

job on each machine. In general, this arrangement does not need to make any

assumption on the ordering of the jobs in the sequence. The output of this phase is a

ranking of the jobs that might be employed either as input for the next phase, or as a

solution itself.

To derive the index, one might use a problem analogy or not. ‘Problem analogy’ refers

to employ the data of the Fm|prmu|Cmax-problem to construct and solve an instance of a

different class of problems. Once the latter has been solved by some means, the

obtained solution is converted into a ranking of the jobs for the original Fm|prmu|Cmax-

problem. Perhaps the most obvious example of problem analogy is the F2| |Cmax-

analogy, which is employed in heuristics such as the one by Campbell et al. (1970). In

this heuristic, an F2| |Cmax-problem instance is constructed by machine aggregation from

the data given by the original Fm|prmu|Cmax-problem instance to be solved. The so

obtained F2| |Cmax-problem is then optimally solved in polynomial time employing

Johnson’s rule, and its optimal solution is accepted as (heuristic) solution for the

original Fm|prmu|Cmax-problem instance.

If no analogy is used, the property has to be merely deducted from some form of

relationship assumed involving the processing times of the jobs and their corresponding

ranking within a schedule. Note that this absence of a problem analogy – that is, ranking

jobs according to a given function – can be interpreted as well as a ‘sorting analogy’,

term coined by Gupta (1971a).

Historically, the first of heuristic approaches ranking the jobs according to their

processing times is due to Palmer (1965). He specified a job priority function named

‘slope index’. The form of the priority function was chosen to give priority to jobs

progressing from short to long processing times. An improved slope index priority

 7

function has been developed by Gupta (1971b) and Gupta (1976). A variation of this

scheme has been produced by Bonney and Gundry (1976), which involves two slope

indices for each job.

Finally, Koulamas (1998) defines an index based on the conditions given by Burns and

Rooker (1976) to make an F3| |Cmax-problem instance to be optimally solved by

Johnson’s rule (Johnson 1954), that is, when there is coincidence among the optimal

solutions for the three F2| |Cmax-subproblems given by the first and second machine,

second and third machine, and first and third machine respectively. Koulamas’ heuristic

also includes a second phase to allow non-permutation schedules. Therefore, as we are

discussing here only Fm|prmu|Cmax-problems, we only refer to the first phase of his

heuristic. Also, we want to note that Koulamas’ heuristic could be considered to employ

a problem analogy with the F2| |Cmax-problem, since it uses some assumptions valid for

F2| |Cmax. Hence, without loss of generality of the proposed framework, it could be

included among these heuristics using the F2| |Cmax analogy.

In case that some problem analogy is to be employed, the following two issues have to

be considered:

1) The simplicity of the problem analogy employed, i.e. whether there are

polynomial methods available to optimally solve the problem analogy, or at least

some efficient heuristics for the latter.

2) The correspondence between solutions of the analogy and solutions of the

Fm|prmu|Cmax-problem, i.e. whether it can be proved that good or optimal

solutions to the problem analogy yield good (or optimal) solutions to the original

problem.

The first issue implicitly points to the complexity of the analogy problem. Although this

cannot be formally proved, it seems anti-intuitive to obtain heuristic solutions (based in

some form of analogy) whose average behaviour outperform these heuristics designed

for the original problem when the complexity of the employed problem analogy is equal

or higher than the one of the original problem. With respect to the second question, the

proof of the correspondence could be established in a formal way or through statistical

evidence. Obviously, the former is preferred if possible, since this would provide

 8

validity for any single problem instance, which cannot be guaranteed by statistical

evidence.

Three problem analogies have been used so far for deriving an ordering of the jobs.

These are the F2| |Cmax-analogy, the Travelling Salesman Problem (TSP) analogy, and

the vector summation problem analogy. These are discussed in detail in the following

sections.

3.1. F2| |Cmax-analogy

As mentioned before, the clearest and most widely used type of analogy is the analogy

with a F2| |Cmax-problem instance via machine aggregation. Machine aggregation refers

to a simplification of the original problem with respect to machines. As a result, the

original problem instance is converted into a new problem – named aggregated problem

instance in the remainder – with a number of (fictitious) machines – named m’ in the

sequel – lower than in the original one. More specifically, an n job, m machine-problem

instance is transformed into an n job, m’ machine-problem instance, being m’ < m.

With respect to the two above issues regarding analogy mentioned in the previous

section (simplicity and correspondence), the first is achieved by setting m’ to 2, since

F2| |Cmax is optimally solvable in polynomial time, according to Johnson’s rule (Johnson

1954). Therefore, although m’ may hold – in theory – any value m’ < m, m’ is set to 2 in

all existing heuristics using the machine aggregation procedure. On the other hand,

machine aggregation involving m’ > 2 implies solving a problem whose complexity is

identical to the original one. Therefore, it seems to be unlikely to develop efficient

machine aggregation heuristics with m’ > 2 (see above comments on the complexity of

the analogy), unless specific heuristic approaches are developed for some Fm´| |Cmax

being 2 < m’ < m, or there exist heuristics performing extraordinarily better for a certain

m’ < m. Finally, note that for m’ < 2, i.e. m’ = 1, any schedule is optimal, and hence it

does not seem to be possible to convert the solution of the corresponding aggregated

problem into a meaningful solution of the original problem.

With respect to correspondence between solutions, to the best of our knowledge, no

formal proof of this correspondence has been developed so far. In fact, providing a

 9

formal correspondence between the solutions of both problems seems to be difficult,

since the solution of the analogy is given (Johnson’s rule) by the processing times of the

(fictitious) machines, which in turn depend on the processing times of the jobs in the

machines of the original problem. Therefore, since the processing times are involved,

the correspondence seem to be instance-dependent, and hence ‘good’ approaches for the

aggregation can be distinguished from ‘bad’ approaches only on a statistical basis, i.e.

the percentage of problem instances where a certain approach to assign processing times

produces aggregate instances whose optimal solution represents a ‘good’ solution for

the original problem instance. The main approaches to assign the processing times to

two machines are due to Campbell et al. (1970), Dannenbring (1977), Röck and

Schmidt (1983), Selim and Al-Turki (1987), and Lai (1996). These approaches are

summarised in Table 1.

Reference pi1’ pi2’

Campbell et al. (1970) ∑
=

k

j 1

 pij (k = 1,…,m − 1) ∑
+−=

m

kmj 1

 pij (k = 1,…,m − 1)

Dannenbring (1977) ∑
=

+−
m

j
jm

1

)1(pij ∑
=

m

j
j

1

 pij

Lai (1996)
 

∑
=

2

1

m

j
 pij

 
∑

+−=

m

mmj 12

 pij

Röck and Schmidt (1983)
 

∑
=

2

1

m

j
 pij

 
∑

+=

m

mj 12

 pij

Selim and Al-Turki (1987) ∑
=

m

j 1

 λj pij ∑
=

m

j 1

 µj pij

Table 1. Machine aggregations suggested by the heuristics using F2| |Cmax-analogy

Perhaps the most complex approach among the ones shown in table 1 is the one

employed by Selim and Al-Turki (1987), which tries to optimise the values of λj and µj

(j = 1,…., m) that minimises the makespan of the original problem. This approach is

reported to obtain very good results for small problems, although its computational

requirements seems not to make it effective for larger number of problems.

 10

It has to be noted that all approaches listed in table 1 optimally solve the F2| |Cmax-

problem (by Johnson’s rule) and then use that solution as a solution of the

Fm|prmu|Cmax-problem, with the exception of the heuristic of Lai (1996), which simply

classifies a job i into one of two groups U := {i : pi1’ ≤ pi2’ }, or V := {i : pi1’ > pi2’ } in

the manner of Johnson’s rule. However, the jobs in each of the groups are not sorted but

sequenced arbitrarily, and merged with the only condition that the jobs in U must

precede the jobs in V. This procedure allows the heuristic to be very fast while

presenting a worst-case analysis not very different from those of the other machine

aggregation procedures. However, no computational experiments have been carried out

to test the performance of this heuristic.

 11

3.2. TSP analogy

The analogy of the Fm|prmu|Cmax-problem with the TSP was first pointed out by Gupta

(1968b) and has been studied by Stinson and Smith (1982), Widmer and Hertz (1989),

and Moccellin (1995). In these three papers, a distance-matrix defining a TSP-instance

of n cities is set up given by the processing times of the machines (in the case of the

Stinson and Smith-paper, up to six different ways to build the distance matrix are

presented). Then, the TSP instance is solved, and the solution retained as solution of the

original Fm|prmu|Cmax-problem. The ways employed in the above papers to construct

the distance matrix are summarised in table 2.

Reference Distance matrix (1 ≤ u, v ≤ n)

Gupta (1968b)
Cuv = (CTm(u,v) – ∑

=

m

j 1

puj) where CT0(u,v) = 0, and

CTj(u,v) = max { CT j – 1(u,v) ; ∑
=

j

k 1

pvk }

Stinson and Smith (1982)

Cuv = ∑
=

m

j 2

|puj – pv,j–1|

Cuv = ∑

=

m

j 2

{puj – pv,j–1}2

Cuv = ∑

=

m

j 2

|min{puj – pv,j – 1 + min{(pu,j–1 – pv,j – 2);0};0}|

Cuv = ∑

=

m

j 2

|puj – pv,j – 1 + min{(pu,j–1 – pv,j – 2);0}|

Cuv = ∑

=

m

j 2

{ puj – pv,j – 1 + min{(pu,j–1 – pv,j – 2);0}}2

Cuv = ∑

=

m

j 2

max{(puj – pv,j – 1);0} + 2 | min{(pu,j – pvj – 1);0}|

Widmer and Hertz (1989)

Cuv = pu1 + ∑
=

−
m

j
km

2

)(|puj – pv,j–1 | + pvm

Moccellin (1995) Cuv = UBX(m)uv where UBX(1)uv = 0, and

UBX(k+1)uv = max { 0; UBX(k)uv + (pvk – pu,k+1)}

Table 2. Distance-matrices constructed by the heuristics using TSP analogy

 12

Since the TSP is known to be NP-hard, there is no method available guaranteeing an

optimal solution within the decision interval. To obtain good approximate solutions,

Stinson and Smith suggest a constructive polynomial heuristic developed by Stinson

(1977), while Widmer and Hertz, and Moccellin use the Farthest Insertion Travelling

Salesman Procedure (FITSP) to obtain the solution to the TSP problem. Furthermore,

both Widmer and Hertz as well as Moccellin, improve this solution by a tabu search

procedure (which will be discussed in phase III).

3.3. Vector summation analogy

The vector summation analogy was presented by Sevast’janov (1995) from a theoretical

point of view, and several versions of it were implemented by Lourenço (1996). With

respect to the two issues discussed above when employing a problem analogy

(simplicity and correspondence), the analogy employed can be solved using a

polynomial-time algorithm based on linear programming (Lawler et al. 1993).

Regarding correspondence issues, the experimental results carried out by Lourenço

conclude that there is not necessarily a correspondence between good solutions with

respect to the maximum norm of the partial sums, and good solutions of the

Fm|prmu|Cmax-problem.

4. Phase II: Solution construction

In this phase, a solution is constructed in a recursive manner trying one or more

unscheduled jobs to be inserted in one or more positions of a partial schedule until the

schedule is completed. Hence, this phase consists of n loops that divide the set of jobs

into two subsets: the already scheduled jobs in subset S and the non-scheduled in R.

Note that in the kth loop Sk defines a partial schedule of k jobs. In a loop, one job from

the non-scheduled set is removed from the non-scheduled and placed into the scheduled

jobs set.

In this phase there are two issues at any loop k:

1. Job selection, i.e. which job j ∈ Rk is to be inserted into Sk.

 13

2. Job insertion, i.e. where to insert the chosen job into the partial schedule Sk.

These two issues are discussed in detail in the following sections.

4.1. Job selection

Job selection must be decided according to one of the following approaches:

- According to any index obtained by the application of phase I (as done e.g. by

the heuristic by Nawaz et al. 1983), or

- Several jobs in Rk might be tried. In this case, the selection about the job to be

finally inserted is done according to a certain schedule measure, i.e. to minimise

some property of the resulting partial schedule (e.g. in the heuristic by Sarin and

Lefoka 1993, several jobs are tried, and the schedule property to be minimised is

the idle time on the last machine).

The property of the partial schedule employed for the job selection set might be the

objective function of the problem itself (makespan), as done e.g. in Aggarwal and

Stafford (1980), or Woo and Yim (1998), or some other measure related to the objective

function. Among the latter, some expressions involving machine idle time have been

chosen in several heuristics. The rationale for using this measure is clear, since the

makespan can be de-composed into the time to process all jobs on all machines plus the

idle time of each machine for each job. Taking into account that the first term of the

expression is a constant, it is clear that minimising some form of idle time may lead to

schedules with low makespan.

p11 p21

p12 p22

p13 p23

m1

m2

m3

 Between-jobs delay Front delay

Back delay

 14

Figure 1. Different measures related to idle-time.

To clarify the different expressions involving idle-time, we depict figure 1. Here, we

represent different measures connected to the idle-time. We use the terminology of King

and Spachis (1980), since they treated intensively the different ways to measure it.

As can be seen from figure 1, King and Spachis (1980) distinguish three types of delays

causing machine idle-time. The total idle-time (as employed e.g. by Gupta 1972, and

McCormick et al. 1989) is the sum of front delay, between-jobs delay, and back delay.

Sarin and Lefoka (1982) employ the idle-time on the last machine, that is: the front and

between-jobs delays corresponding to machine m3 in figure 1. There are alternative

definitions of idle-time, such as the one in Sridhar and Rajendran (1996), including

front and between-jobs delays, but excluding back delays. However, these are not

employed in the reviewed heuristics.

Finally, in case that more than one job is tried, it is possible that ties occur, so some tie-

breaking rule has to be devised. This aspect has not been explicitly covered by most of

the heuristics. To our knowledge, only Gupta’s MINOT and MINIT heuristics (1972)

present some method for breaking ties other than random.

4.2. Job insertion

With respect to job insertion, a job j can be inserted into a fixed position in the partial

schedule Sk (e.g. Sarin and Lefoka insert the chosen job at the end of Sk), or several

positions can be tried (e.g. Aggarwal and Stafford define a set of positions where the

new job can be inserted, Rajendran 1993 limits the possible positions from  2
k to (k +

1), while Nawaz et al. 1983, and Woo and Yim 1998 try to insert the job into all

possible positions). King and Spachis (1980) distinguish between ‘single chain’ and

‘multiple chain’ schedules, depending on whether one or several positions are tried,

respectively.

Again, when several positions are tried, the selection of the position should be done to

minimise some property of the resulting partial schedule. Obviously, when several jobs

 15

from Rk have to be inserted in several positions of the partial schedule Sk, both schedule

measures must be the same or at least consistent to one another (e.g. Aggarwal and

Stafford, or Woo and Yim use partial makespan minimisation for both job selection and

job insertion). Also obviously, to assure a good performance of this phase, both partial

schedule measures must coincide – or at least be consistent – with the objective function

(makespan minimisation).

Similar to the case of job selection, there must be some rule for breaking ties when

multiple positions are tried. Again, this aspect is ignored by most of the existing

heuristics (see e.g. Nawaz et al. 1983, Rajendran 1993, or, Woo and Yim 1998).

It has to be noted that the job selection and job insertion decisions (if to be taken) are

taken using partial (local) information and therefore only myopic improvements might

be obtained. Hence, it cannot be guaranteed that the resulting schedule provides a lower

makespan than the initial schedule developed in phase I or than a random schedule. This

is true even in the extreme case that all jobs in Rk are tried for selection, all positions in

Sk are tried, and the measure for both job selection and job insertion is (partial)

makespan minimisation.

Table 3 summarises the choices regarding job selection and job insertion done in the

literature.

Reference Job selection (loop k) Job insertion (loop k)

Aggarwal and

Stafford (1980)

subset in Rk obtained from phase I

(makespan)

subset in Sk

(makespan)

Gupta – MINIT

(1972)

1 job obtained from phase I for k = 1

all jobs in Rk for 1 < k ≤ (n – 2)

(idle time)

all jobs in Rk for (n – 2) < k ≤ n

(makespan)

at position (k+1)

Table 3. Heuristics using phase II. When some options are tried both in job selection and in job

insertion, the selection criterion is given in parentheses.

* indicates that the original heuristic was conceived to minimise an objective function different from

makespan, although it can be directly applied to makespan by replacing the original objective function

by makespan.

 16

Reference Job selection (loop k) Job insertion (loop k)

Gupta – MICOT

(1972)

1 job obtained from phase I for k = 1

all jobs in Rk for 1 < k ≤ (n – 2)

(completion time)

all jobs in Rk for (n – 2) < k ≤ n

(makespan)

at position (k+1)

Gupta –

MINIMAX

(1972)

all jobs in Rk

(if k odd,
mj

ki R
min

≤≤
∈

1

{pij} , else
mj

ki R
max

≤≤
∈

1

{pij})
if k odd at position (k+1), else

at position 0

Gupta and

Maykut (1973b)

1 job obtained from phase I for k = 1

all jobs in Rk for 1 < k ≤ (n – 2)

(idle time in last machine)

at position (k+1)

Gupta (1979)
all jobs in Rk

 (lower bound of total makespan)
at position (k+1)

King and Spachis

(1980)

all jobs in Rk

(LFD – front delay)

(LBD – back delay)

(LBJD – between-jobs delay)

(LWBJD – weighted between-jobs delay)

(MLSS – savings of between-jobs delay)

at position (k+1)

McCormick et al.

(1989)

1 job obtained from phase I for k = 1

all jobs in Rk for 1 < k ≤ n

(idle time)

at position (k+1)

Nawaz et al. 1983 1 job obtained from phase I
all (k+1) possible positions are tried

(makespan)

Rajendran*

(1993)
 1 job obtained from phase I

positions  k /2 to (k+1) are tried

(makespan)

Sarin and Lefoka

(1993)

all jobs in Rk

(idle time in last machine)
at position (k+1)

Woo and Yim*

(1998)

all jobs in Rk

(makespan)

all (k+1) possible positions are tried

(makespan)

Table 3 (continued). Heuristics using phase II. When some options are tried both in job selection and in

job insertion, the selection criterion is given in parentheses.

* indicates that the original heuristic was conceived to minimise an objective function different from

makespan, although it can be directly applied to makespan by replacing the original objective function

by makespan.

 17

5. Phase III: Solution improvement

In this phase, an existing solution is improved by means of some procedure. The two

main characteristics of this phase are:

- An initial solution (input solution) is required.

- The solution output of the phase is always equal or better than the input

solution.

Starting from an input solution, the procedure seeks to change the job sequence to

improve the solution. This can be done on an individual basis – e.g. two jobs are

exchanged as done in Dannenbring (1977) – or on a group basis – e.g. a set of adjacent

jobs is exchanged as done in Page (1961). In the second case, some procedure has to be

developed in order to group (and perhaps regroup) the set of jobs.

Usually, improvement approaches are classified into descending local searches and

metaheuristics (Nowicki and Smutnicki 1996, Stützle 1998). Heuristics using

descending local search are those by Page (1961), the final phase of the heuristic RAES

by Dannenbring (1977), the final phase of the heuristic by Aggarwal and Stafford

(1980), and the heuristic by Ho and Chang (1991). In addition, the five heuristics

proposed by King and Spachis (1980) and discussed in the previous section include a

final improvement phase by exchanging the last two jobs inserted in the search of

makespan improvements.

With respect to metaheuristics, several researchers have addressed their application to

the problem under consideration. Table 4 summarises the contributions classified

according to the type of metaheuristic employed.

In addition to the classification between metaheuristics and descending local search, we

would like to distinguish between general-neighbourhood and specific-neighbourhood

approaches. General-neighbourhood approaches are the approaches whose

neighbourhood may be suitable for any combinatorial problem, while specific-

neighbourhood approaches are those where the definition of neighbourhood (including

the allowed or preferred moves) incorporate some characteristics specific of the

Fm|prmu|Cmax-problem.

 18

Technique Reference

Simulated Annealing Osman and Potts (1989)

Ogbu and Smith (1990, 1991)

Zegordi et al. (1995).

Tabu Search Widmer and Hertz (1989)

Taillard (1990)

Moccellin (1995)

Nowicki and Smutnicki (1996)

Genetic Algorithms Reeves (1993, 1995)

Chen et al. (1995)

Ant Colony Optimisation Stützle (1998)

Path algorithms Werner (1993)

Table 4. Application of meta-heuristics to the Fm|prmu|Cmax-problem

Taking a metaheuristic like simulated annealing (SA) as example, a general-

neighbourhood approach is the one of SA done by Osman and Potts (1989), where the

neighbourhood is defined through pairwise interchange between jobs (given a solution,

2
)1(−nn neighbours can be explored). This neighbourhood is common to other

combinatorial problems, such as the TSP, or the Quadratic Assignment Problem, among

others. In contrast, a specific-neighbourhood approach of SA is the implementation by

Zegordi et al. (1995), where the pairwise interchange is controlled by the value of an

index named MDJ (Move Desirability of Jobs) that controls the subset of neighbours

(within all possible
2

)1(−nn neighbours) to be explored. The MDJ index is constructed

in each iteration of the simulated annealing procedure and it is a measure of the

(possible) improvement in makespan by exchanging the position of the jobs in the

current solution. Hence, although based on a standard definition of neighbourhood, this

approach is problem-specific for the Fm|prmu|Cmax-problem.

 19

Using a general-neighbourhood cannot be regarded as a simpler approach to the

problem in contrast to the more elaborated specific-neighbourhood approaches. First of

all, it is known that the efficient implementation of a metaheuristic involves choosing

and tuning several of its parameters, and that this process largely influences the

heuristic’s performance. From that point of view, the choice of a general/specific

neighbourhood is only one of the multiple choices to be done, although we stress it here

since it allows us to classify existing approaches to the problem. Second, the motivation

of the approximate approaches is to obtain good solutions, and hence parameter design

is justified itself by the results achieved by the heuristic, no matter how general or

specific these are.

 Descending local search Metaheuristic

General

neighbourhood

Aggarwal and Stafford (1975)

King and Spachis (1980)

Dannenbring – RAES (1977)

Page (1961)

 Chen et al. (1995)

Moccellin (1995)

Ogbu and Smith (1990, 1991)

Osman and Potts (1989)

Reeves (1993, 1995)

Taillard (1990)

Stützle (1998)

Widmer and Hertz (1989)

Specific

neighborhood

Ho and Chang (1991)

 Nowicki and Smutnicki (1996)

Werner (1993)

Zegordi et al. (1995)

Table 5. Heuristics using phase III

 20

6. Conclusions. Future development of heuristics

In the previous sections, we have presented a framework to review and classify existing

heuristics for makespan minimisation on permutation flowshops. This review may serve

to obtain a comprehensive view of past developments and henceforth, to identify new

directions for future research, either based on the development of new heuristics or in

the extension/combination of current ones. These are summarised in table 6.

Reference

 Phase I
Index

development

 Phase II
Solution

construction

 Phase III
Solution

improvement

Aggarwal and Stafford (1975) x x (MS, MI) x (DS, GN)

Bonney and Grundy (1976) x

Campbell et al. (1970) x (F2| |Cmax)

Chen et al. (1995) x (MH[GA], GN)

Dannenbring (1977) – RA x (F2| |Cmax)

Dannebring (1977) – RAES x (F2| |Cmax) x (DS, GN)

Gupta (1968b) x (TSP)

Gupta (1971b) x

Gupta – MICOT, MINIT (1972) x x (MS, SI)

Gupta – MINIMAX (1972) x (MS, SI)

Gupta and Maykut (1973b) x x (MS, SI)

Gupta (1976) x

Gupta (1979) x x (MS, SI)

Ho and Chang (1991) x (DS, SN)

King and Spachis (1980) x (MS, SI) x (DS, GN)

Koulamas – phase I (1998) x

Table 6. Summary of existing heuristics

SI/MI: Single job insertion/Multiple job insertion
SS/MS: Single job selection/Multiple job selection
DS/MH[x]: Descending search/Metaheuristic. The term within square brackets may hold the following
values: SA: Simulated Annealing /TS: Tabu Search/GA: Genetic Algorithm/ACO: Ant Colony
Optimisation/PA: Path Algorithms
GN/SN: General neighbourhood/Specific neighbourhood

 21

Reference

 Phase I
Index

development

 Phase II
Solution

construction

 Phase III
Solution

improvement

Lai (1996) x (F2| |Cmax)

McCormick et al. (1989) x x (MS, SI)

Mocellin (1995) x (TSP) x (MH[TS], GN)

Nawaz et al. (1983) x x (SS, MI)

Nowicki and Smutnicki (1996) x (MH[TS], SN)

Ogbu and Smith (1990, 1991) x (MH[SA], GN)

Osman and Potts (1989) x (MH[SA], GN)

Page (1961) x (DS, GN)

Palmer (1965)/Hundal and Rajgopal (1988) x

Rajendran (1993) x x (SS, MI)

Reeves (1993, 1995) x (MH[GA], GN)

Röck and Schmidt (1983) x (F2| |Cmax)

Sarin and Lefoka (1993) x (MS, SI)

Selim and Al-Turki (1987) x (F2| |Cmax)

Sevas’janov (1995) x (vector summation)

Stinson and Smith (1982) x (TSP)

Stütlze (1998) x (MH[ACO], GN)

Taillard (1990) x (MH[TS], GN)

Werner (1993) x (MH[PA], SN)

Widmer and Hertz (1989) x (TSP) x (MH[TS], GN)

Woo and Yim (1998) x (MS/MI)

Zegordi et al. (1995) x (MH[SA], SN)

Table 6 (continued). Summary of existing heuristics

SI/MI: Single job insertion/Multiple job insertion
SS/MS: Single job selection/Multiple job selection
DS/MH[x]: Descending search/Metaheuristic. The term within square brackets may hold the following
values: SA: Simulated Annealing /TS: Tabu Search/GA: Genetic Algorithm/ACO: Ant Colony
Optimisation/PA: Path Algorithms
GN/SN: General neighbourhood/Specific neighbourhood

 22

Nevertheless, the above classification itself provide little specific information to the

schedulers on using any heuristic or combination of heuristics to solve a particular

problem. To do so, an extensive comparison of the performance of existing heuristics is

still needed, since most of the comparisons among heuristics presented in the literature

only partially cover the current heuristics. Besides, the lack of an extensive comparison

does not allow exploiting the possibilities for efficiently combining the best heuristics

on each phase. These aspects are discussed in detail in the next subsections:

6.1. Comparison of existing heuristics

A critical issue on heuristic development is the trade-off between the quality of the

solution obtained by the heuristic, and the computation time required to obtain such a

solution. However, in most of the practical environments, such a trade-off cannot be

seen as a weighted function, but rather as a goal programming problem. Most of the

time, the decision maker wishes to obtain the highest quality of the solution (the lowest

makespan) subject to a time constraint – given by the decision interval. Since this

decision interval might vary from seconds to hours, it is likely that there does not exist a

universal ‘recipe’ covering all situations.

A second issue is the term ‘quality of the solution’ itself. First, we have to accept that

this term can only be used within a statistical context. Therefore, it has to be taken into

account Taillard’s (1990) study on the distribution of the makespan values in the space

of solutions. This study should be extended to cover a higher number of jobs, and to

study the relationship of the distribution of the solutions for a given number of jobs, and

the number of machines.

For the above reasons, every time a new heuristic was suggested in the literature, it was

compared with the best available heuristics. Besides, some papers (e.g. Smith and

Stafford 1980, Turner and Booth 1987, or Taillard 1990) are solely devoted to compare

and rank the existing heuristics. However, in our opinion, both the latter studies as well

as former papers introducing (and comparing) new heuristic present some of these

problems:

 23

1) Lack of comprehensiveness. Not all heuristics are covered and the rank or

relative performance of some heuristics remains unknown. For instance, when

Aggarwal and Stafford (1975) presented their new heuristic – namely AS –, their

results in the experimental comparisons against existing heuristics lead to the

conclusion that the AS heuristic outperforms CDS heuristic (Campbell et al.

1970) in terms of the quality of the solution. Nevertheless, after the NEH

heuristic was introduced (Nawaz et al. 1983), the existing comparative studies

claim NEH to be the best current heuristic in terms of the quality of the solution

since it outperforms CDS (see e.g. Nawaz et al. 1983, Turner and Booth 1987, or

Taillard 1990). However, in all previously mentioned studies, no indication is

given on the relative performance NEH vs. AS in both terms of quality of the

solution and computational requirements. Besides, other studies indicate that

NEH is outperformed by other heuristics when n is very large (Sarin and Lefoka

1993), or smaller than 20 jobs (Selim and Al-Turki 1987). Therefore, a most

comprehensive comparison is required that covers all heuristics, or at least the

most competitive ones.

2) Little robustness of conclusions. In most of the comparisons, the claiming of the

superior performance of certain heuristics is based on the superior quality of the

average makespan obtained over a set of problem instances. However, almost no

indication on the confidence levels of the results is provided, and hence the

significance of the differences between the average results could not be

significant when requiring a high confidence level. Besides, only one paper

(Smith and Stafford 1980) addresses the comparison issue from a hypothesis

acceptance/rejection viewpoint. The lack of such analysis might seriously

compromise the robustness of the conclusions.

3) Weak/partial experimental design. The basic parameters for the experimental

design are the range of jobs and machines to be covered, and the way to generate

the processing times. With respect to the latter issue, most of the studies use a

uniform random distribution with high dispersion ([1,99] or [1,100]) to generate

the processing times. This is known to produce more difficult problem instances

(Campbell et al. 1970, Dannenbring 1977). In absence of a formal worst case

analysis, this might serve as some ‘statistical worst case analysis’ (particularly

when the average percentage deviation with respect to the optimum is provided)

since it is believed to represent the most difficult instances for the heuristics.

 24

However, this distribution of the processing times is unlike to occur in practice

(Amar and Gupta 1986). On one hand, the Erlang-distribution is claimed in

several studies to best map the processing times (see e.g. Conway et al. (1967),

King and Spachis 1980, or Park et al. 1984). On the other hand, it is considered

to be more realistic to employ a trend of the processing times of a job between

machines, and a correlation between the processing times of a job, in the sense

that, for a job, the processing times in the machines are consistently relatively

large or relatively small (Rinnooy Kan 1976, Lageweg et al. 1978). Therefore,

testbeds developed taking into account the above issues are expected to provide

the performance of the different heuristics when applied to real-life problem

instances, performance that could have been underestimated when applied to

instances with random distribution of the processing times. Hence, testbeds such

as the suggested by Taillard’s (Taillard 1993) are not useful for this purpose,

despite its acceptance as a benchmark in some studies (e.g. Taillard 1990, or

Reeves 1995). First, the processing times of this test-bed are randomly

generated, and secondly, the number of instances so generated is too small to

make tight estimations on the confidence levels of the results. Other option

would be to built a large test-bed of real-life instances, such as these described in

Bestwick and Hastings (1976), or Lahiri et al. (1993).

6.2. New heuristic development/improvement of existing heuristics

With respect to future enhancements of the heuristics within the three phases presented

in this paper, the phase of index development heuristics without using any kind of

analogy (or alternatively, using a sorting analogy) seems not to have advanced too much

recently. However, the first phase is required for both solution construction and

improvement, and hence, in our opinion, its importance should not be underestimated.

An important question to be investigated is the influence of the choices done in this

phase on the subsequent phases.

When employing some form of analogy, the field remains open for new analogies or the

improvement of the existing ones. Referring to the last issue, it is clear that new

developments on optimal or heuristic procedures for the problems taken as analogy may

influence the performance of this type of heuristics. However, whenever the question of

 25

correspondence of the solutions between both problems cannot be answered in a formal

way, there would be no guarantee of the performance of these heuristics for particular

cases. Hence, we believe that correspondence between solutions of the employed

analogy has to be better understood as a necessary step for improving the results of the

heuristics based on analogies. It should be also mentioned that, with respect to the

statistical correspondence, no work has been carried out in this field with the exception

of the experiments by Lourenço (1996).

Regarding phase II heuristics, it has already been mentioned that with respect to job

selection and job insertion, ties are not adequately handled in most of the heuristics.

However, these ties are likely to occur, particularly when there is a multiple job

insertion, since the insertion position of a non-critical job into the partial sequence

might have no influence in the value of the partial property in which the selection is

based. However, once this job has been inserted in one position or another, it certainly

determines future values of the partial property for the subsequent non-scheduled jobs.

Therefore, we believe that this issue has to be treated more intensively than in the past.

With respect to phase III heuristics, the stress has been done in the method to generate

new solutions, adding to local search new and useful features such as memory, or ability

to escape from local optima. It is foreseeable that as long as new general metaheuristics

are proposed, these will be applied to the problem under consideration. However, when

using general neighbourhood approaches, the question of which one is the most suitable

has not been sufficiently addressed. Therefore, it could be useful to establish – at least

from a statistical point of view – which neighbourhood structures are more efficient,

both to incorporate them into a metaheuristic approach or simply to use them within a

local descending search to guarantee the local optimality of the employed heuristic.

6.3. Extension/combination of existing heuristics

At the sight of Table 6, it seems clear that the field for the development of more

efficient approaches for the Fm|prmu|Cmax problem based on the extension or

combination of existing heuristics remains open. Precisely the suggested classification –

summarised in Table 6 – helps to locate single heuristics within a wider framework and

hence facilitates the identification of these heuristics whose combination can improve

 26

their individual results. Nevertheless, it has to be stressed again the need of a

comprehensive comparison of existing heuristics to render the framework really useful

to the scheduler. Until this comparison is done, little hope on the systematic

development of the combination of heuristics can be deposited.

Within the extension/combination of existing heuristics we can include the

decomposition/composition approaches discussed in section 2. One of the motivations

of these approaches – explored in the beginning of 1970 and later abandoned – was the

computing power available at that time, which made difficult even obtaining heuristic

solutions for larger problems: “...larger machine scheduling problems can be partitioned

into a number of smaller problems. Therefore, less computational effort is required”

(Ashour 1970). This obstacle has been removed nowadays. It might be argued that the

sub-problems containing a small number of jobs may nowadays be optimally solved –

i.e. by some branch and bound procedure –, making the approach more appealing.

However, it should be kept in mind that solving the sub-problems is just a part of the

whole procedure, and that even in the case that sub-problems are optimally solved,

obtaining an optimal solution for the original problem additionally requires an optimal

decomposition (with respect to the number of sets and the jobs belonging to each set) as

well as optimal composition (i.e. merging the solutions of the sub-problems). Therefore,

since both last problems are rather complex and interdependent, it is difficult to think

about forms of this approach being competitive with more straightforward procedures.

Nevertheless, additional research in this area will be interesting under the light of real-

time scheduling or rescheduling.

Finally, we would like to stress the fact that, although exact approaches for the

permutation flowshop problem such as branch and bound techniques have been

developed separately from the research on heuristics, the former are employed in

practice as heuristic approaches since their allowed computation time is limited to the

decision interval. In contrast, current branch and bound approaches are not designed to

provide good solutions when stopped before finishing the exploration, and hence the

efficient combination/integration of exact approaches and heuristics may appear as a

promising field of research.

 27

7. References

Aggarwal, S.C., and Stafford, E., 1975, A heuristic algorithm for the flowshop problem with a common

sequence on all machines, Decision Science, 6, 237-251.

Amar, A.D., and Gupta, J.N.D., 1986, Simulated versus real life data in testing the efficiency of

scheduling algorithms, IIE Transactions, 18, 16-25.

Ashour, S., 1967, A decomposition approach for the machine scheduling problem, International Journal

of Production Research, 6, 109-122.

Ashour, 1970, A modified decomposition algorithm for scheduling problems, International Journal of

Production Research, 8, 281-284.

Averbakh, I., and Berman, O., 1999, A simple heuristic for m-machine flow-shop and its applications in

routing-scheduling problems, Operations Research, 47, pp. 165-170.

Azim, M.A., Moras, R.G., and Smith, M.L., 1989, Antithetic sequences in flow shop scheduling,

Computers and Industrial Engineering, 17, pp. 353-358.

Bestwick, P., and Hastings, N., 1976, A new bound for machine scheduling, Operations Research

Quarterly, 27, 479-487.

Bonney, M.C., and Gundry, S. W., 1976, Solutions to the constrained flowshop sequencing problem.

Operational Research Quarterly, 27, 869.

Burns, F., and Rooker, J., 1976, Johnson’s three machine flow-shop conjecture, Operations Research, 24,

578-580.

Campbell, H. G., Dudek, R. A. and Smith, M. L., 1970, A heuristic algorithm for the n-job, m-machine

sequencing problem. Management Science, 16, B630-B637.

Carlier, J., and Rebaï, I., 1996, Two branch and bound algorithms for the permutation flowshop problem,

European Journal of Operational Research, 90, 238-251.

Chen, C.L., Vempati, V.S., and Aljaber, N., 1995, An application of genetic algorithms for flow shop

problems, European Journal of Operational Research, 80, 389-396.

Conway, R.W., Maxwell, W.L., and Miller, L.W., 1967, Theory of scheduling, Addison-Wesley,

Reading, MA, USA.

Dannenbring, D. G., 1977, An evaluation of flow-shop sequence heuristics. Management Science, 23,

1174-1182.

 28

Dudek, R.A., and Teuton, O.F., 1964, Development of m stage decision rule for scheduling n jobs

through m machines, Operations Research, 12, 471-497.

Garey, M.R., Johnson, D.S., and Sethi, R., 1976, The complexity of flowshop and jobshop scheduling,

Mathematics of Operations Research, 1, 117-129.

Graham, R. L, Lawler, E. L., Lenstra, J. K., and Rinnooy Kan, A. H. G., 1979, Optimisation and

approximation in deterministic sequencing and scheduling: a survey, Annals of Discrete

Mathematics, 5, 287-326.

Gupta, J.N.D., 1968a, Heuristic rules for n × m flowshop scheduling problem, Opsearch (India), 5, 165-

170.

Gupta, J.N.D., 1968b, Travelling salesman problem – a survey of theoretical developments and

applications, Opsearch (India), 5, 181-192.

Gupta, J.N.D., 1971a, Flowshop scheduling via sorting analogy, UARI Research Report No. 109,

University of Alabama.

Gupta, J.N.D., 1971b, A functional heuristic for the flow-shop scheduling problem, Operational Research

Quarterly, 22, 39-47.

Gupta, J.N.D., 1972, Heuristic algorithms for multistage flowshop scheduling problem, AIIE

Transactions, 4, 11-18.

Gupta, J.N.D., 1979, A review of flowshop scheduling research, in Disaggregation Problems in

Manufacturing and Service Operations, Martin Nijhoff Publishers, 363-388.

Gupta, J.N.D., and Maykut, 1973a, Flow-shop scheduling by heuristic decomposition, International

Journal of Production Research, 11, 105-111.

 Gupta, J.N.D., and Maykut, 1973b, Heuristic algorithms for scheduling n jobs in a flowshop, Journal of

the Operational Research Society of Japan, 16, 131-150.

Gupta, J.N.D., 1976, A heuristic algorithm for the flowshop scheduling problem, R.A.I.R.O. Recherche

Operationnelle, 10, 63-73.

Gupta, J.N.D., 1979, An improved lexicographic search algorithm for the flowshop scheduling problem,

Computers and Operations Research, 6, 117-120.

Ho, J. C. and Chang, Y. L., 1991, A new heuristic for the n-job, m-machine flow-shop problem.

European Journal of Operational Research, 52, 194-202.

Hundal, T.S. and Rajgopal, J., 1988, An extension of Palmer heuristic for the flow shop scheduling

problem. International Journal of Production Research, 26, 1119-1124.

 29

Johnson, S.M., 1954, Optimal two- and three-stage production schedule with setup times included, Naval

Research Logistics Quarterly, 1, 61-68.

King, J.R., and Spachis, A.S., 1980, Heuristics for flow-shop scheduling, International Journal of

Production Research, 18, 345-357.

Koulamas, C., 1998, A new constructive heuristic for the flowshop scheduling problem, European

Journal of Operational Research, 105, 66-71.

Lageweg, B.J., Lenstra, J.K., and Rinnooy Kan, A.H.G., 1978, A general bounding scheme for the

permutation flowshop problem, Operations Research, 26, 53-67.

Lahiri, S., Rajendran, C., and Narendran, T.T., 1993, Evaluation of heuristics for scheduling in a

flowshop: a case study, Production Planning and Control, 4, 153-158.

Lai, T., 1996, A note on heuristics of flow-shop scheduling, Operations Research, 44, 648-652.

Lawler, E.L., Lenstra, J.K., Rinnooy Kan, A.H.G., and Shmoys, D.B., 1993, Sequencing and scheduling:

algorithms and complexity, in Logistics of Production and Inventory, North-Holland,

Amsterdam.

Lourenço, H.R., 1996, Sevast’yanov’s algorithm for the flow-shop scheduling problem, European

Journal of Operational Research, 91, 176-189.

McCormick, S. T., Pinedo, M. L., Shenker, S., and Wolf, B., 1989, Sequencing in an assembly line with

blocking to minimize cycle time. Operations Research, 37, 925-936.

Moccellin, J.V., 1995, A new heuristic method for the permutation flow-shop scheduling problem,

Journal of the Operational Research Society, 46, 883-886

Morton, T.E., and Pentico, D.W., 1993, Heuristic Scheduling Systems, Wiley Interscience.

Nawaz, M., Enscore, E. E., and Ham, I., 1983, A heuristic algorithm for the m-machine, n-job flow-shop

sequencing problem. OMEGA, 11, 91-95.

Nowicki, E., and Smutnicki, C., 1996, A fast tabu search algorithm for the permutation flow-shop

problem, European Journal of Operational Research, 91, 160-175.

Ogbu, F.A., y Smith, D.K., 1990, The application of the simulated annealing algorithm to the solution of

the n/m/Cmax flowshop problem, Computers Operations Research, 17, 243-253

Ogbu, F.A., y Smith, D.K., 1991, Simulated annealing algorithm for the permutation flowshop problem,

OMEGA, 19, 64-67

 30

Osman, I.H. and Potts, C.N., 1989, Simulated Annealing for Permutation Flow-shop Scheduling,

OMEGA, 17, 551-557

Page, E.S., 1961, An approach to the scheduling of jobs on machines, Journal of The Royal Statistical

Society, 323-484.

Palmer, D. S., 1965, Sequencing jobs through a multistage process in the minimum total time: a quick

method of obtaining a near-optimum, Operational Research Quarterly, 16, 101-107.

Park, Y.B., Pegden, C.D., and Enscore, E.E., 1984, A survey and evaluation of static flowshop scheduling

heuristics, International Journal of Production Research, 22, 127-141.

Pinedo, M., 1995, Scheduling: theory, algorithms and systems (Englewood Cliffs, NJ; Prentice Hall).

Potts, C.N., 1980, An adaptive branching rule for the permutation flowshop problem, European Journal

of Operational Research, 5, 19-25.

Rajendran, C., 1993, Heuristic algorithm for scheduling in a flowshop to minimise total flowtime.

International Journal of Production Economics, 29, 65-73.

Reeves, C. R., 1993, Improving the efficiency of tabu search for machine sequencing problems, Journal

of the Operational Research Society, 44, 375-382.

Reeves, C. R., 1995, A genetic algorithm for flowshop sequencing, Computers and Operations Research,

22, 5-13.

Rinnooy Kan, A.H.G., 1976, Machine scheduling problems, Martinus Nijhoff, La Haya.

Röck, H., and Schmidt, G., 1983, Machine aggregation heuristics in shop-scheduling, Methods of

Operations Research, 45, 303-314.

Sarin, S., and Lefoka, M., 1993, Scheduling heuristic for the n-job m-machine flow shop, OMEGA, 21,

229-234.

Selim, S.Z., and Al-Turki, U.M., 1987, A new heuristic algorithm for the flowshop problem, in Modern

Production Management Systems, 91-96, A. Kusiak (Editor), Elsevier Science.

Sevast’janov, S., 1995, Vector summation in Banach space and polynomial algorithms for flow shops and

open shops, Mathematics of Operations Research, 20, 90-103.

Smith A.W., and Stafford, E.F., 1980, A comparison of multiple criteria solutions of large-scale flow-

shop scheduling problems, AIDS 1980 Proceedings, Las Vegas, Nevada, Vol. 2, pp. 35-37.

 31

Sridhar, J. and Rajendran, C., 1996, Scheduling in flowshop an cellular manufacturing systems with

multiple objectives – a genetic algorithmic approach, Production Planning & Control, 7, 374-

382.

Stinson, J.P., 1977, A heuristic algorithm for obtaining an initial solution for the travelling salesman

problem, Working paper 77-12, School of Management, Syracuse University, Syracuse, New

York.

Stinson, J.P., and Smith, W., 1982, A heuristic programming procedure for sequencing the static

flowshop, International Journal of Production Research, 20, 753-764.

Stützle, T., 1998, An ant approach for the flow shop problem, EUFIT’98, Aachen, Germany, 1560-1564.

Szwarc, W., 1971, Elimination methods in the m × n sequencing problem, Naval Research Logistics

Quarterly, 18, 295-305.

Taillard, E., 1990, Some efficient heuristic methods for the flow-shop sequencing problem, European

Journal of Operational Research, 47:65-74

Taillard, E., 1993, Benchmark for basic scheduling problems, European Journal of Operational

Research, 64:278-285.

Turner, S. and Booth, D., 1987, Comparison of heuristics for flowshop sequencing, OMEGA, 15, 75-85.

Werner, F., 1993, On the heuristic solution of the permutation flow shop problem by path algorithms,

Computers and Operations Research, 20, 707-722.

Widmer, M. and Hertz, A., 1991, A new heuristic method for the flow-shop sequencing problem.

European Journal of Operational Research, 41, 186-193

Woo, D.S. and Yim, H.S., 1998, A heuristic algorithm for mean flowtime objective in flowshop

scheduling. Computers and Operations Research, 25, 175-182.

Zegordi, S.H., Itoh, K., and Enkawa, T., 1995, Minimizing makespan for flow-shop scheduling by

combining simulated annealing with sequencing knowledge, European Journal of Operational

Research, 85, 515-531

