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Abstract. Consider a couple of Banach function spaces X and Y over
the same measure space and the space XY of multiplication operators
from X into Y . In this paper we develop the setting for characterizing
certain summability properties satisfied by the elements of XY . At this
end, using the “generalized Köthe duality” for Banach function spaces,
we introduce a new class of norms for spaces consisting of infinite sums
of products of the type xy with x ∈ X and y ∈ Y .
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1. Introduction

Let (Ω, Σ, µ) be a fixed σ-finite measure space and consider a couple of Ba-
nach function spaces X and Y related to µ. In this paper we introduce a
technique based on topological products of Banach function spaces for ana-
lyzing the summability properties of the multiplication operators from X into
Y . For the definition of such topologies we use the so called generalized dual-
ity for Banach function spaces, which was originally studied by Maligranda
and Persson in [9]. The Y -dual space of X, denoted by XY , is the space of
measurable functions g defining a multiplication operator (also denoted by g)
from X into Y , that is, 〈g, x〉 = gx ∈ Y for all x ∈ X. This notion includes
the classical Köthe dual (or associate) space X ′ = XL1

.

The first author thanks the support by UPV (PAID-06-08 Ref. 3093), MEC (TSGD-08
and D.G.I. #MTM2006-13000-C03-01) (Spain) and FEDER. The second author thanks
the support by UPV (PAID-06-08 Ref. 3093), MEC (D.G.I. #MTM2006-11690-C02-01)
(Spain) and FEDER.



Given 1 ≤ p < ∞ and Z another Banach function space related to µ,
our goal is to characterize when a multiplication operator g ∈ XY is what
we call (p, Z)-summing, that is, when there exists K > 0 such that for every
x1, ..., xn ∈ X,( n∑

i=1

‖gxi‖p
Y

)1/p

≤ K sup
f∈BXZ

( n∑
i=1

‖fxi‖p
Z

)1/p

. (1.1)

An operator satisfying this kind of inequality is interesting as it transforms
sequences which are summable in a certain weak sense into strongly summable
sequences.

Some relevant well known geometric and topological properties involv-
ing vector norm inequalities for operators can be written as particular ex-
amples of this general class of inequalities when Z is chosen adequately. For
instance, in the case when X is order continuous, the positive p-summing
multiplication operators coincide with the (p, L1)-summing ones, or in the
case when X is order semi-continuous and p-convex with constant 1, the p-
concave multiplication operators coincide with the (p, Lp)-summing ones (see
Section 4).

Inspired in part by the representation theory of operator ideals as dual
spaces of topological tensor products (see for instance [5]), we show that
the subspace of XY of all (p, Z)-summing multiplication operators can be
described as the Köthe dual of a product space with a particular normed
topology given by a certain dp,Z-norm. Actually, there is an abuse of the
notation as the “dp,Z-product space” of X and Y consists of infinite sums
of products of the type xy with x ∈ X and y ∈ Y . As a consequence of the
above description, some factorization theorems for multiplication operators
which play a central role in the theory of the Banach function spaces (Reisner
and Maurey-Rosenthal’s theorems) provide sufficient conditions for (p, Z)-
summability type properties to hold.

The paper is organized as follows. Section 2 contains the definitions
and some results concerning product spaces which will be necessary for our
work. In Section 3 we introduce the dp,Z-product spaces which will allow
us to characterize in Section 4 the (p, Z)-summing multiplication operators.
Moreover, in Section 4 we show conditions on X, Y and Z guaranteeing that
every multiplication operator from X into Y is (p, Z)-summing. Examples in
which these conditions hold are provided in Section 5 by using the already
quoted factorization theorems.

2. Preliminaries and first results

Let (Ω, Σ, µ) be a fixed σ-finite measure space and denote by L0 the space of
all (a.e. classes of) real measurable functions defined on Ω. A Banach function
space is a Banach space X ⊂ L0 with norm ‖ · ‖X , satisfying that if f ∈ L0,
g ∈ X and |f | ≤ |g| a.e. then f ∈ X and ‖f‖X ≤ ‖g‖X . Note that in this
case, X is a Banach lattice for the pointwise a.e. order. A Banach function



space is order continuous if every order bounded increasing sequence is norm
convergent. A Banach function space X has the Fatou property if for every
sequence (fn) ⊂ X such that 0 ≤ fn ↑ f a.e. and supn ‖fn‖X < ∞, it follows
that f ∈ X and ‖fn‖X ↑ ‖f‖X . A Banach function space X is order semi-
continuous if f, fn ∈ X with 0 ≤ fn ↑ f a.e. implies ‖fn‖X ↑ ‖f‖X . Of course,
if a Banach function space X is order continuous or has the Fatou property,
then X is order semi-continuous. For issues related to Banach function spaces,
see [12, Ch. 15] considering the function norm ρ defined as ρ(f) = ‖f‖X if
f ∈ X and ρ(f) = ∞ in other case.

Given two Banach function spaces X and Y , the Y -dual space of X is
defined by

XY = {h ∈ L0 : hf ∈ Y for all f ∈ X},
that is, the space of functions in L0 defining a continuous linear operator
from X into Y . The continuity follows from the fact that every positive
linear operator between Banach lattices is continuous, see [6, p. 2]. The space
XY is a Banach function space with norm

‖h‖XY = sup
f∈BX

‖hf‖Y , for h ∈ XY ,

if and only if X is saturated, that is, there is no A ∈ Σ with µ(A) > 0 such that
fχA = 0 a.e. for all f ∈ X, see [9, Proposition 2] and [2, p. 3]. The saturation
property is equivalent to the following one: for all A ∈ Σ with µ(A) > 0
there exists B ∈ Σ such that B ⊂ A, µ(B) > 0 and χB ∈ X. This is also
equivalent to X having a weak unit, i.e. a function g ∈ X such that g > 0 a.e.
As we have already noted, the classical Köthe dual space X ′ coincide with
XL1

, the L1-dual space of X. In this case, X ′ is saturated whenever X is
so. However, the generalized dual XY of X may be non saturated even if X
is saturated. For these and other comments about saturation involving the
spaces XY see [2].

Let us introduce now the product spaces which will be the basic setting
for defining the dp,Z-product spaces in Section 3.

Definition 2.1. The π–product space XπY is the space of functions z ∈ L0

such that |z| ≤ ∑
i≥1 |xiyi| a.e. for some sequences (xi) ⊂ X and (yi) ⊂ Y

satisfying
∑

i≥1 ‖xi‖X‖yi‖Y < ∞. For z ∈ XπY , consider

π(z) = inf
{∑

i≥1

‖xi‖X‖yi‖Y

}
,

where the infimum is taken over all sequences (xi) ⊂ X and (yi) ⊂ Y such
that |z| ≤ ∑

i≥1 |xiyi| a.e. and
∑

i≥1 ‖xi‖X‖yi‖Y < ∞.

The space XπY is clearly an ideal of L0 and π(v) ≤ π(z) whenever
|v| ≤ |z| a.e. It can be routinely checked that π is a seminorm. However,
there are cases in which π is not a norm.

Example. Let
(
[0, 1],B([0, 1]), m

)
be the fixed measure space, where B([0, 1])

is the σ–algebra of all Borel sets of [0, 1] and m is the Lebesgue measure on



[0, 1], and consider the product space L1πL2. For the intervals An
i = [ i−1

n , i
n ]

with i = 1, ..., n, we have that χ[0,1] ≤
∑n

i=1 χAn
i

and

π(χ[0,1]) ≤
n∑

i=1

‖χAn
i
‖L1‖χAn

i
‖L2 =

n∑
i=1

1
n

( 1
n

) 1
2

=
1√
n

.

Then, taking limit as n → ∞ we have that π(χ[0,1]) = 0, while χ[0,1] > 0. So,
π is not a norm.

Saturation conditions will be crucial for π to be a norm under which
XπY is a Banach function space. We write “X ↪→c Y ” (“X ↪→i Y ”) if X
is continuously contained in Y with ‖x‖Y ≤ c ‖x‖X ( ‖x‖Y = ‖x‖X) for all
x ∈ X. If X = Y with equal norms, we write X ≡ Y .

Proposition 2.2. The following conditions are equivalent:

(a) XπY is a saturated Banach function space.
(b) X, Y and XY ′

are saturated.

Moreover, if (a)-(b) holds, we have that

(i) XπY ↪→1 (XY ′
)′,

(ii) (XπY )′ ≡ XY ′ ≡ Y X′
.

Proof. (a) ⇒ (b) Let us see that X is saturated. If this is not the case, there
exists A ∈ Σ with µ(A) > 0 such that xχA = 0 a.e. for all x ∈ X. Since
XπY is saturated we can take B ∈ Σ such that B ⊂ A, µ(B) > 0 and χB ∈
XπY . Let (xi) ⊂ X and (yi) ⊂ Y be such that

∑
i≥1 ‖xi‖X‖yi‖Y < ∞ and

χB ≤ ∑
i≥1 |xiyi| a.e. Then, χB = χB · χA ≤ ∑

i≥1 |xiχAyi| = 0 a.e. and so
µ(B) = 0, which is a contradiction. Similarly, Y is saturated. Then, the spaces
Y ′ and XY ′

are Banach function spaces. Let us prove that XY ′ ≡ (XπY )′

and so we will have that XY ′
is saturated as (XπY )′ is so. Let h ∈ XY ′

.
Given z ∈ XπY and (xi) ⊂ X, (yi) ⊂ Y with

∑
i≥1 ‖xi‖X‖yi‖Y < ∞ such

that |z| ≤ ∑
i≥1 |xiyi| a.e., using the monotone convergence theorem, we have∫

|hz|dµ ≤
∑
i≥1

∫
|hxiyi|dµ ≤

∑
i≥1

‖hxi‖Y ′‖yi‖Y ≤ ‖h‖XY ′
∑
i≥1

‖xi‖X‖yi‖Y .

Then,
∫ |hz|dµ ≤ ‖h‖XY ′ · π(z). So, h ∈ (XπY )′ and ‖h‖(XπY )′ ≤ ‖h‖XY ′ .

Consider now h ∈ (XπY )′. For every x ∈ X and y ∈ Y , we have that
xy ∈ XπY and so hxy ∈ L1(µ). Then, hx ∈ Y ′ for every x ∈ X, that is,
h ∈ XY ′

. Moreover, since π(xy) ≤ ‖x‖X‖y‖Y for x ∈ X and y ∈ Y , it follows

‖h‖XY ′ = sup
x∈BX

sup
y∈BY

∫
|hxy|dµ ≤ sup

z∈BXπY

∫
|hz|dµ = ‖h‖(XπY )′ .

(b) ⇒ (a). Note that from the hypothesis (XY ′
)′ is a Banach function

space. Let us see that XπY ↪→1 (XY ′
)′. Given z ∈ XπY , (xi) ⊂ X, (yi) ⊂ Y



such that
∑

i≥1 ‖xi‖X‖yi‖Y < ∞ and |z| ≤ ∑
i≥1 |xiyi| a.e., for every h ∈

XY ′
,∫
|zh|dµ ≤

∑
i≥1

∫
|hxiyi|dµ ≤

∑
i≥1

‖hxi‖Y ′‖yi‖Y ≤ ‖h‖XY ′
∑
i≥1

‖xi‖X‖yi‖Y

and so
∫ |zh|dµ ≤ ‖h‖XY ′ · π(z). Then, z ∈ (XY ′

)′ and ‖z‖(XY ′ )′ ≤ π(z).
Hence, π(z) = 0 implies z = 0 a.e. That is, π is a norm on XπY .

Let (zn)n≥1 ⊂ XπY be such that zn ≥ 0 and
∑

n≥1 π(zn) < ∞. Let
us prove that

∑
n≥1 zn ∈ XπY (i.e. XπY has the Riesz-Fischer property)

and so XπY will be complete, see [12, Ch.15, §64, Theorem 2]. Given ε > 0
there exist (xn

j )j ⊂ X and (yn
j )j ⊂ Y such that zn ≤ ∑

j≥1 |xn
j yn

j | a.e. and∑
j≥1 ‖xn

j ‖X‖yn
j ‖Y ≤ π(zn)+ ε

2n . So,
∑

n≥1 zn ≤ ∑
n≥1

∑
j≥1 |xn

j yn
j | a.e. and∑

n≥1

∑
j≥1

‖xn
j ‖X‖yn

j ‖Y ≤
∑
n≥1

π(zn) + ε < ∞.

Note that z :=
∑

n≥1 zn < ∞ a.e., since taking h ∈ XY ′
such that h > 0 a.e.,

we have that ∫
|hz|dµ ≤ ‖h‖XY ′

∑
n≥1

∑
j≥1

‖xn
j ‖X‖yn

j ‖Y < ∞

which implies that |hz| < ∞ a.e. Then, z ∈ XπY and π(z) ≤ ∑
n≥1 π(zn).

Therefore, it follows that XπY is a Banach function space. Moreover,
given A ∈ Σ with µ(A) > 0, since X is saturated, there exists B ∈ Σ such
that B ⊂ A, µ(B) > 0 and χB ∈ X. Since Y is also saturated, there exists
C ∈ Σ such that C ⊂ B, µ(C) > 0 and χC ∈ Y . Then, χC = χB ·χC ∈ XπY
and so XπY is saturated.

Suppose (a)-(b) holds. Claim (i) has been proved in (b) ⇒ (a). The first
equivalence in (ii) has been obtained in (a) ⇒ (b). For the second equivalence,
just note that XπY ≡ Y πX. �

The proof of the completeness of XπY in the previous proposition can
also be obtained as a consequence of the fact that XπY is saturated. This
can be found in [8], where these notions are developed in the general frame
work of the function norms. The space defined in a similar way as XπY by
taking finite sums has been independently studied in [11] obtaining similar
results, although for the completeness the pointwise product BX · BY of the
unit balls of X and Y is required to be convex.

Remark 2.3. Suppose (a)-(b) in Proposition 2.2 holds. Then, if (xi) ⊂ X and
(yi) ⊂ Y with

∑
i≥1 ‖xi‖X‖yi‖Y < ∞, we have that

∑
i≥1 |xiyi| ∈ XπY . In-

deed, taking h ∈ XY ′
such that h > 0 a.e., it follows that

∫
h
∑

i≥1 |xiyi|dµ <

∞ and so
∑

i≥1 |xiyi| < ∞ a.e. As a consequence, every z ∈ XπY is actu-
ally an infinite sum of products of the type xy with x ∈ X and y ∈ Y .
Indeed, if (xi) ⊂ X and (yi) ⊂ Y with

∑
i≥1 ‖xi‖X‖yi‖Y < ∞ and |z| ≤∑

i≥1 |xiyi| a.e., taking v =
∑

i≥1 |xiyi| and x̃i = z
v χsupp (v)|xi| ∈ X (as



z
v χsupp (v) ∈ BL∞), we have that z =

∑
i≥1 x̃i|yi| a.e. This fact may fail if

XY ′
is not saturated. The series can be even divergent a.e. For instance, tak-

ing xn
i = χAn

i
∈ L1 and yn

i = 1
nχAn

i
∈ L2 for i = 1, ..., n in Example 2, we

have that∑
n≥1

n∑
i=1

‖xn
i ‖L1 · ‖yn

i ‖L2 =
∑
n≥1

n∑
i=1

1
n
· 1
n

( 1
n

) 1
2

=
∑
n≥1

1
n

3
2

< ∞,

while
∑

n≥1

∑n
i=1 |xn

i yn
i | =

∑
n≥1

1
n = ∞ a.e.

Example. Let us show some particular cases of π-product spaces.
(i) XπL∞ ≡ X even if X is not saturated. This is direct from the definition

of π-product space.
(ii) If X is saturated, from a classical Lozanovskii’s result ([7, Theorem 6])

it follows that XπX ′ ≡ L1.
(iii) Let 1 ≤ p < ∞. The p-power of a saturated Banach function space

X is the Banach function space given by Xp = {x ∈ L0 : |x|p ∈ X}
with norm ‖x‖Xp = ‖ |x|p ‖1/p

X for x ∈ Xp, see [9, Proposition 1]. If
1 ≤ r, q < ∞ satisfy 1/r = 1/p+1/q, from [9, Lemma 1], it follows that
XpπXq ≡ Xr. Moreover, if Y is another Banach function space and 0 <
θ < 1 we obtain the Calderón-Lozanovskii interpolation space XθY 1−θ

as the π-product space X1/θπY 1/(1−θ) (see [3] and [11, Section 2]).

We end this section with a result which will be useful along the paper.

Lemma 2.4. Assume that X, Y and Z are saturated Banach function spaces
such that XZ and ZY are saturated. Then, XZπZY is a saturated Banach
function space and satisfies

XZπZY ↪→1 XY .

Proof. Let us see that (XZ)(Z
Y )′ is saturated and so, by Proposition 2.2, we

will have that XZπZY is a saturated Banach function space. Take x ∈ X
such that x > 0 a.e. and y′ ∈ Y ′ such that y′ > 0 a.e. Then xy′ > 0 a.e. and
for every f ∈ XZ and g ∈ ZY , as ZY ↪→1 ZY ′′ ≡ (Y ′)Z′

(see for instance [2,
§2(3) and Lemma 3.1(a)] and Proposition 2.2(ii)), it follows∫

|xy′fg| dµ ≤ ‖xf‖Z‖y′g‖Z′ < ∞

and so xy′ ∈ (XZ)(Z
Y )′ .

Given z ∈ XZπZY , consider sequences (fi) ⊂ XZ and (gi) ⊂ ZY

satisfying that
∑

i≥1 ‖fi‖XZ‖gi‖ZY < ∞ and |z| ≤ ∑
i≥1 |figi| a.e. For every

x ∈ X, we have that |zx| ≤ ∑
i≥1 |figix| a.e. with∑

i≥1

‖figix‖Y ≤
∑
i≥1

‖fix‖Z‖gi‖ZY ≤ ‖x‖X

∑
i≥1

‖fi‖XZ‖gi‖ZY

and so zx ∈ Y with ‖zx‖Y ≤ ‖x‖X · π(z). Hence, z ∈ XY and satisfies
‖z‖XY ≤ π(z). �



Note that the hypothesis of Lemma 2.4 are satisfied for instance if X
is saturated and X ⊂ Z ⊂ Y since in this case L∞ is contained in both XZ

and ZY .

3. The dp,Z-product spaces

Throughout this section, X, Y and Z will be saturated Banach function
spaces such that XZ and ZY ′

are saturated. Then, by Lemma 2.4, we can
consider the saturated Banach function space XZπZY ′

which is contained in
XY ′

. In particular, XY ′
is saturated and so, by Proposition 2.2, we also can

consider the saturated Banach function space XπY .
Let 1 ≤ p ≤ ∞. For any Banach space E and (ei) ⊂ E, we will denote

‖(ei)‖E,p =
(∑

i≥1

‖ei‖p
E

)1/p

if p < ∞ and for the case p = ∞,

‖(ei)‖E,∞ = sup
i≥1

‖ei‖E .

Definition 3.1. The dp,Z-product space Xdp,ZY is the space of functions h ∈
L0 such that |h| ≤ ∑

i≥1 |xiyi| a.e. for some (xi) ⊂ X and (yi) ⊂ Y satisfying

‖(yi)‖Y,p′ · sup
f∈BXZ

‖(fxi)‖Z,p < ∞, (3.1)

where 1 ≤ p′ ≤ ∞ is such that 1/p + 1/p′ = 1. For h ∈ Xdp,ZY , we denote

dp,Z(h) = inf
{
‖(yi)‖Y,p′ · sup

f∈BXZ

‖(fxi)‖Z,p

}
,

where the infimum is taken over all (xi) ⊂ X, (yi) ⊂ Y satisfying (3.1) such
that |h| ≤ ∑

i≥1 |xiyi| a.e.

Proposition 3.2. The space Xdp,ZY is a Banach function space with norm
dp,Z . Moreover,

Xdp,ZY ↪→1 (XZπZY ′
)′.

Proof. Let h ∈ Xdp,ZY and take (xi) ⊂ X, (yi) ⊂ Y satisfying (3.1) such
that |h| ≤ ∑

i≥1 |xiyi| a.e. Consider a function ξ ∈ XZπZY ′
and (fj) ⊂ XZ ,

(gj) ⊂ ZY ′ ≡ Y Z′
with |ξ| ≤ ∑

j≥1 |fjgj | a.e. and
∑

j≥1 ‖fj‖XZ‖gj‖Y Z′ < ∞.



Then∫
|hξ| dµ ≤

∑
j≥1

∑
i≥1

∫
|xiyifjgj | dµ ≤

∑
j≥1

∑
i≥1

‖xifj‖Z‖yigj‖Z′

≤
∑
j≥1

‖gj‖Y Z′
∑
i≥1

‖xifj‖Z‖yi‖Y

≤
∑
j≥1

‖gj‖Y Z′‖(fjxi)i‖Z,p‖(yi)‖Y,p′

≤
(∑

j≥1

‖fj‖XZ‖gj‖Y Z′
)
·
(
‖(yi)‖Y,p′ · sup

f∈BXZ

‖(fxi)‖Z,p

)
.

So, h ∈ (XZπZY ′
)′ and ‖h‖(XZπZY ′ )′ ≤ dp,Z(h). In particular, dp,Z(h) = 0

implies h = 0 a.e.
Note that if h ∈ Xdp,ZY and (xi) ⊂ X, (yi) ⊂ Y are such that |h| ≤∑

i≥1 |xiyi| a.e. and satisfy 0 < ‖(yi)‖Y,p′ · supf∈BXZ
‖(fxi)‖Z,p < ∞, then

there exists (x̃i) ⊂ X and (ỹi) ⊂ Y such that |h| ≤ ∑
i≥1 |x̃iỹi| a.e.,

‖(ỹi)‖Y,p′ =
(
‖(yi)‖Y,p′ · sup

f∈BXZ

‖(fxi)‖Z,p

)1/p′

,

and

sup
f∈BXZ

‖(fx̃i)‖Z,p =
(
‖(yi)‖Y,p′ · sup

f∈BXZ

‖(fxi)‖Z,p

)1/p

.

Indeed, the vectors

x̃i = ‖(yi)‖1/p
Y,p′ ·

(
sup

f∈BXZ

‖(fxi)‖Z,p

)−1/p′
· xi,

ỹi = ‖(yi)‖−1/p
Y,p′ · ( sup

f∈BXZ

‖(fxi)‖Z,p)
)1/p′

· yi

work.
Let (hn) ∈ Xdp,ZY such that

∑
n≥1 dp,Z(hn) < ∞. Let us prove that

h =
∑

n≥1 hn ∈ Xdp,ZY with dp,Z(h) ≤ ∑
n≥1 dp,Z(hn) and so we will

have that dp,Z satisfies the triangular inequality and Xdp,ZY has the Riesz-
Fischer property. Given ε > 0, we can take (xn

i )i ⊂ X, (yn
i )i ⊂ Y satisfying

that hn ≤ ∑
i≥1 |xn

i yn
i | a.e. and

‖(yn
i )i‖Y,p′ · sup

f∈BXZ

‖(fxn
i )i‖Z,p ≤ dp,Z(hn) +

ε

2n
.

Note that h ∈ L0, since taking ξ ∈ XZπZY ′
such that ξ > 0 a.e. and (fj)j ∈

XZ , (gj)j ∈ ZY ′ ≡ Y Z′
with

∑
j≥1 ‖fj‖XZ‖gj‖Y Z′ < ∞ and ξ ≤ ∑

j≥1 |fjgj |



a.e., denoting h̃ =
∑

n≥1 |hn| we have that∫
h̃ ξ dµ ≤

∑
j≥1

∑
n≥1

∑
i≥1

∫
|xn

i yn
i fjgj | dµ ≤

∑
j≥1

∑
n≥1

∑
i≥1

‖xn
i fj‖Z‖yn

i gj‖Z′

≤
∑
j≥1

‖gj‖Y Z′
∑
n≥1

∑
i≥1

‖xn
i fj‖Z‖yn

i ‖Y

≤
∑
j≥1

‖gj‖Y Z′
∑
n≥1

( ‖(yn
i )i‖Y,p′ · ‖(fjx

n
i )i‖Z,p

)

≤
(∑

j≥1

‖gj‖Y Z′ ‖fj‖XZ

)
·
(∑

n≥1

( ‖(yn
i )i‖Y,p′ · sup

f∈BXZ

‖(fxn
i )i‖Z,p

))

≤
(∑

j≥1

‖gj‖Y Z′ ‖fj‖XZ

)
·
(
ε +

∑
n≥1

dp,Z(hn)
)

< ∞

and so h̃ < ∞ a.e. We can assume that ‖(yn
i )i‖Y,p′ ·supf∈BXZ

‖(fxn
i )i‖Z,p > 0

as in other case dp,Z(hn) = 0 and so hn = 0 a.e. Consider (x̃n
i )i and (ỹn

i )i as
above. Then, |h| ≤ ∑

n≥1

∑
i≥1 |x̃n

i ỹn
i | a.e. and it can be checked that

‖(ỹn
i )n,i‖Y,p′ · sup

f∈BXZ

‖(fx̃n
i )n,i‖Z,p ≤

∑
n≥1

( ‖(yn
i )i‖Y,p′ · sup

f∈BXZ

‖(fxn
i )i‖Z,p

)
.

Thus, h ∈ Xdp,ZY and dp,Z(h) ≤ ∑
n≥1 dp,Z(hn).

The remaining conditions for Xdp,ZY to be a Banach function space
are clear and we have already shown in the beginning of the proof that
Xdp,ZY ↪→1 (XZπZY ′

)′. �

The norm π of XπY can be described as follows. For every z ∈ XπY ,

π(z) = inf
{
‖(xi)‖X,p · ‖(yi)‖Y,p′

}
(3.2)

where the infimum is taken over all sequences (xi) ⊂ X and (yi) ⊂ Y such
that |z| ≤ ∑

i≥1 |xiyi| a.e. and ‖(xi)‖X,p · ‖(yi)‖Y,p′ < ∞. The proof of this
fact is a routine computation after noting that if (xi) ⊂ X and (yi) ⊂ Y are
such that |z| ≤ ∑

i≥1 |xiyi| a.e., then for x̃i = (‖xi‖X‖yi‖Y )1/p xi

‖xi‖X
∈ X

and ỹi = (‖xi‖X‖yi‖Y )1/p′ yi

‖yi‖Y
∈ Y we have that x̃iỹi = xiyi and ‖(x̃i)‖X,p ·

‖(ỹi)‖Y,p′ =
∑

i≥1 ‖xi‖X‖yi‖Y . Since XX ≡ L∞ (see [9, Theorem 1]) and

sup
f∈BL∞

‖(fxi)‖X,p = ‖(xi)‖X,p,

from (3.2), it follows that XπY ≡ Xdp,XY . Hence, the π-product spaces are
particular cases of the dp,Z-product spaces.

Proposition 3.3. The space Xdp,ZY is saturated and satisfies

XπY ↪→1 Xdp,ZY.



Proof. Let h ∈ XπY . By (3.2) there exist (xi) ⊂ X, (yi) ⊂ Y such that
|h| ≤ ∑

i≥1 |xiyi| a.e. and ‖(xi)‖X,p · ‖(yi)‖Y,p′ < ∞. Since

sup
f∈BXZ

‖(fxi)‖Z,p ≤ ‖(xi)‖X,p,

we have that h ∈ Xdp,zY and dp,Z(h) ≤ π(z). Then, XπY ↪→1 Xdp,ZY and
in particular, Xdp,ZY is saturated. �

4. (p,Z)-summing multiplication operators

Let us recall the definition given in (1.1). Given X, Y , Z saturated Banach
function spaces, a multiplication operator g : X → Y is (p, Z)-summing if
there exists a constant K > 0 such that for every x1, ..., xn ∈ X,

( n∑
i=1

‖gxi‖p
Y

)1/p

≤ K sup
f∈BXZ

( n∑
i=1

‖fxi‖p
Z

)1/p

if 1 ≤ p < ∞ and sup
i=1,...,n

‖gxi‖Y ≤ K sup
f∈BXZ

(
sup

i=1,...,n
‖fxi‖Z

)
if p = ∞.

Some relevant classes of multiplication operators between Banach func-
tion spaces can be obtained as particular (p, Z)-summing operators. Let us
show some examples.

(I) p-concave multiplication operators. Let 1 ≤ p < ∞. Recall that a linear
operator T : E → F , from a Banach lattice E into a Banach space F , is
p-concave if there exists C > 0 such that for every x1, ..., xn ∈ E,

( n∑
i=1

‖T (xi)‖p
F

)1/p

≤ C
∥∥∥( n∑

i=1

|xi|p
)1/p∥∥∥

E
.

Every (p, Lp)-summing multiplication operator g : X → Y is p-concave.
Indeed, noting that X ↪→1 XLpLp

(see for instance [2, §2(3)]), we have
that there exists K > 0 such that for every x1, ..., xn ∈ X,

( n∑
i=1

‖gxi‖p
Y

)1/p

≤ K sup
f∈B

XLp

( n∑
i=1

‖fxi‖p
Lp

)1/p

= K sup
f∈B

XLp

∥∥∥ f
( n∑

i=1

|xi|p
)1/p ∥∥∥

Lp

= K
∥∥∥( n∑

i=1

|xi|p
)1/p∥∥∥

XLpLp

≤ K
∥∥∥( n∑

i=1

|xi|p
)1/p∥∥∥

X
. (4.1)



Recall that a Banach lattice E is p-convex with constant K if for all
x1, ..., xn ∈ E,∥∥∥( n∑

i=1

|xi|p
)1/p∥∥∥

E
≤ K

( n∑
i=1

‖xi‖p
E

)1/p

.

If the contrary inequality holds, then E is called p-concave. In the case
when X is p-convex with constant 1 and order semi-continuous, the in-
equality (4.1) is an equality (see [2, Proposition 5.3(ii)]) and so the class
of the p-concave multiplication operators from X into Y coincides with
the class of the (p, Lp)-summing ones.

(II) Positive p-summing multiplication operators. Let 1 ≤ p < ∞. An opera-
tor T : E → F , with E a Banach lattice and F a Banach space, is positive
p-summing if there exists K > 0 such that for every x1, ..., xn ∈ E,( n∑

i=1

‖T (|xi|)‖p
)1/p

≤ K sup
x∗∈BE∗

( n∑
i=1

|〈x∗, |xi|〉|p
)1/p

,

where E∗ is the topological dual of E, see [1]. Every (p, L1)-summing
multiplication operator g : X → Y is positive p-summing. Indeed, noting
that each f ∈ X ′ can be identified with an element of the dual space X∗

via 〈f, x〉 =
∫

fx dµ for all x ∈ X with ‖f‖X′ = ‖f‖X∗ , we have that
there exists K > 0 such that for every x1, ..., xn ∈ X,( n∑

i=1

‖ g|xi| ‖p
Y

)1/p

=
( n∑

i=1

‖gxi‖p
Y

)1/p

≤ K sup
f∈B

XL1

( n∑
i=1

‖fxi‖p
L1

)1/p

= K sup
f∈BX′

( n∑
i=1

〈|f |, |xi|〉 p
)1/p

≤ K sup
x∗∈BX∗

( n∑
i=1

|〈x∗, |xi|〉|p
)1/p

. (4.2)

In the case when X is order continuous, the Köthe dual X ′ can be iden-
tified with the whole space X∗ (see for instance [6, p. 29]) and then the
inequality (4.2) is just an equality, so the class of the positive p-summing
multiplication operators from X into Y coincides with the class of the
(p, L1)-summing ones. The analogous result holds for p = ∞.

From now and on X, Y and Z will be saturated Banach function spaces
such that XZ and ZY are saturated. In this case, by Lemma 2.4, we have
that XZπZY is a saturated Banach function space. Moreover, since ZY ′′

is
also saturated (as it contains ZY ), we can consider the space Xdp,ZY ′. Let
us show now our main result which gives a characterization of the space of
all (p, Z)-summing multiplication operators from X into Y , whenever Y is
order semi-continuous. Note that, adopting the notation given in Section 3,



a function g ∈ XY is (p, Z)-summing if there exists a constant K > 0 such
that for every x1, ..., xn ∈ X,

‖(gxi)‖Y,p ≤ K sup
f∈BXZ

‖(fxi)‖Z,p.

In this case, the inequality also holds for infinite sequences.

Theorem 4.1. Assume that Y is order semi-continuous and let g : X → Y
be a multiplication operator. Then, g is (p, Z)-summing if and only if g ∈(
Xdp,ZY ′)′.

Proof. Suppose that g is (p, Z)-summing. Given h ∈ Xdp,ZY ′ and (xi) ⊂ X,
(y′

i) ⊂ Y ′ satisfying (3.1) for Y ′ instead of Y and such that |h| ≤ ∑
i≥1 |xiy

′
i|

a.e., we have that

∫
|gh| dµ ≤

∑
i≥1

∫
|gxiy

′
i| dµ

≤
∑
i≥1

‖gxi‖Y ‖y′
i‖Y ′

≤ ‖(gxi)‖Y,p · ‖(y′
i)‖Y ′,p′

≤ K ‖(y′
i)‖Y ′,p′ · sup

f∈BXZ

‖(fxi)‖Z,p < ∞

and so g ∈ (Xdp,ZY ′)′.
Let us prove the converse. Suppose that g ∈ (Xdp,ZY ′)′ and let

x1, ..., xn ∈ X. Suppose first that 1 ≤ p < ∞. Given ε > 0, since ‖y‖Y =
‖y‖Y ′′ for all y ∈ Y as Y is order semi-continuous (see for instance [2,
p. 4,5]), there exists y′

i ∈ BY ′ such that ‖gxi‖Y ≤ εc +
∫ |gxiy

′
i| dµ, where

c =
(∑n

i=1 ‖gxi‖p
Y

)1/p′
/
(∑n

i=1 ‖gxi‖p−1
Y

)
. Then, denoting ỹ′

i = ‖gxi‖p−1
Y y′

i,
we have that

n∑
i=1

‖gxi‖p
Y =

n∑
i=1

‖gxi‖p−1
Y ‖gxi‖Y

≤
n∑

i=1

‖gxi‖p−1
Y

(
εc +

∫
|gxiy

′
i| dµ

)

= ε
( n∑

i=1

‖gxi‖p
Y

)1/p′

+
∫

|g|
n∑

i=1

|xiỹ
′
i| dµ

≤ ε
( n∑

i=1

‖gxi‖p
Y

)1/p′

+ ‖g‖(Xdp,ZY ′)′ dp,Z

( n∑
i=1

|xiỹ
′
i|
)
.



Noting that

dp,Z

( n∑
i=1

|xiỹ
′
i|
)
≤

( n∑
i=1

‖ỹ′
i‖p′

Y ′

)1/p′

· sup
f∈BXZ

( n∑
i=1

‖fxi‖p
Z

)1/p

≤
( n∑

i=1

‖gxi‖(p−1)p′

Y

)1/p′

· sup
f∈BXZ

( n∑
i=1

‖fxi‖p
Z

)1/p

,

we obtain
n∑

i=1

‖gxi‖p
Y ≤

( n∑
i=1

‖gxi‖p
Y

)1/p′

·
(

ε + ‖g‖(Xdp,ZY ′)′ sup
f∈BXZ

( n∑
i=1

‖fxi‖p
Z

)1/p
)

and so ( n∑
i=1

‖gxi‖p
Y

)1/p

≤ ε + ‖g‖(Xdp,ZY ′)′ sup
f∈BXZ

( n∑
i=1

‖fxi‖p
Z

)1/p

.

Since ε is arbitrary, g is (p, Z)-summing. For the case p = ∞, given ε > 0,
there exists y′

i ∈ BY ′ such that ‖gxi‖Y ≤ ε +
∫ |gxiy

′
i| dµ, and then

sup
i=1,...,n

‖gxi‖Y ≤ ε + sup
i=1,...,n

∫
|gxiy

′
i| dµ

≤ ε + ‖g‖(Xd∞,ZY ′)′ sup
i=1,...n

d∞,Z(xiy
′
i)

≤ ε + ‖g‖(Xd∞,ZY ′)′ sup
i=1,...n

(
‖y′

i‖Y · sup
f∈BXZ

‖fxi‖Z

)

≤ ε + ‖g‖(Xd∞,ZY ′)′ sup
f∈BXZ

(
sup

i=1,...n
‖fxi‖Z

)
,

so g is (∞, Z)-summing. �

Note that under conditions of Theorem 4.1, from the proof it follows
that ‖g‖(Xdp,ZY ′)′ is the smallest constant K satisfying the inequality of the
definition of (p, Z)-summing.

By Proposition 3.2 and Proposition 3.3,

XπY ′ ↪→1 Xdp,ZY ′ ↪→1

(
XZπZY ′′)′

.

Then,
(
XZπZY ′′)′′

↪→1

(
Xdp,ZY ′)′ ↪→1

(
XπY ′)′ (see for instance [2,

Lemma 3.1(b)]) and since XZπZY ↪→1 XZπZY ′′
↪→1

(
XZπZY ′′)′′ and

(XπY ′)′ ≡ XY ′′
(see Proposition 2.2(ii)), we have that

XZπZY ↪→1

(
Xdp,ZY ′)′ ↪→1 XY ′′

. (4.3)

On the other hand, from Lemma 2.4, it follows that

XZπZY ↪→1 XY ↪→1 XY ′′
. (4.4)

Rewriting Theorem 4.1, whenever Y is order semi-continuous, we get{
g ∈ XY : g is (p, Z)-summing

}
= XY ∩ (

Xdp,ZY ′)′.



In the case when Y has the Fatou property (i.e. Y ≡ Y ′′), from (4.3), it follows
that the space of (p, Z)-summing multiplication operators from X into Y is
just

(
Xdp,ZY ′)′, in particular, it has the Fatou property as it coincides with

the Köthe dual of a Banach function space.
From (4.3), (4.4) and Theorem 4.1, we obtain that under the assumption

of order semi-continuity for Y , if g ∈ XZπZY then g is a (p, Z)-summing
multiplication operator from X into Y . A direct computation proves that
this holds also without any assumption on Y . In particular, if a multiplication
operator g : X → Y factorizes through Z via two multiplication operators (i.e.
g = fh for some f ∈ XZ and h ∈ ZY ), then g is (p, Z)-summing. Let us show
a useful consequence of (4.3), (4.4) and Theorem 4.1.

Corollary 4.2. Let Y a Banach function space with the Fatou property and
suppose that XZπZY = XY . Then{

g ∈ XY : g is (p, Z)-summing
}

= (Xdp,ZY ′)′ = XY .

The Fatou property for Y is necessary in the result above. An easy
counterexample can be given if it is not satisfied. Take X = 	∞, Y = c0

and Z = 	∞. Then XY = c0 and XZπZY = 	∞πc0 = c0 = XY . However,
	1 = 	∞π	1 = 	∞dp,�∞	1 (see the comments before Proposition 3.3), and
then (Xdp,ZY ′)′ = (	∞dp,�∞	1)′ = 	∞.

Corollary 4.2 provides conditions guaranteeing that the space consisting
of all (p, Z)-summing multiplication operators from X into Y coincides with
the whole space XY . This is not a general fact, as the following example
shows.

Example. Consider 1 < p < q < r < ∞ and the spaces X = 	p, Y = 	q and
Z = 	r. Note that, since XZ ≡ XY ≡ 	∞ and ZY ≡ 	s for 1/s = 1/q−1/r (see
[9, Theorem 2 and Proposition 3]), in this case XZπZY ≡ 	∞π	s ≡ 	s � XY .
The space of (t, 	r)-summing multiplication operators from 	p into 	q is just
the space of sequences g ∈ 	∞ satisfying

‖(gxi)‖�q,t ≤ K sup
f∈B�∞

‖(fxi)‖�r,t = K ‖(xi)‖�r,t

for some constant K > 0 and for every x1, ..., xn ∈ 	p. Clearly, there exist
elements of 	∞ which do not satisfy the above inequality (e.g. g = (1, 1, 1, ...)).
Note that, since XZπZY ≡ 	s, every g ∈ 	s is (t, 	r)-summing for all
1 ≤ t ≤ ∞.

Other conditions different from those in Corollary 4.2 under which every
multiplication operators from X into Y is (p, Z)-summing are presented in
the following result.

Proposition 4.3. Assume Y is p-concave, Z is p-convex and X ↪→i XZZ .
Then, every g ∈ XY is (p, Z)-summing.



Proof. Let g ∈ XY . Given x1, ..., xn ∈ X, we have that( n∑
i=1

‖gxi‖p
Y

)1/p

≤ K1

∥∥∥( n∑
i=1

|gxi|p
)1/p∥∥∥

Y

≤ K1 ‖g‖XY

∥∥∥( n∑
i=1

|xi|p
)1/p∥∥∥

X

= K1 ‖g‖XY sup
f∈BXZ

∥∥∥( n∑
i=1

|fxi|p
)1/p∥∥∥

Z

≤ K1 K2 ‖g‖XY sup
f∈BXZ

( n∑
i=1

‖fxi‖p
Z

)1/p

,

where K1 is the p-concavity constant of Y , K2 is the p-convexity constant of
Z and for the equality we have used that ‖x‖X = ‖x‖XZZ for all x ∈ X. �

Actually in Proposition 4.3 X and XZ being saturated are enough in-
stead of the saturation conditions required before Theorem 4.1. Conditions
under which X ↪→i XZZ are studied in [2]. Finally, note that every multipli-
cation operator from X into Y is (p, X)-summing and (p, Y )-summing.

5. Applications

Let us finish the paper by applying several important factorization theo-
rems for multiplication operators to the results obtained for the dp,Z-product
spaces. Summability properties of these operators are obtained in a straight-
forward way from Corollary 4.2.

5.1. Reisner’s theorem

Let Z be a Banach function space satisfying that L∞
F ⊂ Z ⊂ L1

loc, where L∞
F

denotes the space of functions in L∞ with support having finite measure and
L1

loc denotes the space of locally integrable functions. Given 1 ≤ p < q ≤ ∞,
consider r defined by 1/r = 1/p−1/q. If Z is p-convex with constant K1 and
q-concave with constant K2, then for every ε > 0 and g ∈ (Lq)Lp ≡ Lr (see [9,
Proposition 3]), the multiplication operator g : Lq → Lp has a factorization as

Lq
g � Lp

f

�����
Z

�����

h

(i.e. g = fh) where f ∈ (Lq)Z and h ∈ ZLp

are such that

‖f‖(Lq)Z · ‖h‖ZLp ≤ (1 + ε)K1K2‖g‖(Lq)Lp

(see [10, Theorem 1]) and so g ∈ (Lq)ZπZLp

with π(g) ≤ K1K2‖g‖(Lq)Lp .
Hence, (Lq)Lp

↪→K1K2 (Lq)ZπZLp

. Note that ZLp

and (Lq)Z are saturated,
see the comments in [2] after Proposition 5.3 and Theorem 5.4. Then, by



Lemma 2.4, we have (Lq)ZπZLp

↪→1 (Lq)Lp

. Hence, (Lq)ZπZLp

= (Lq)Lp

(with equal norms if K1K2 ≤ 1). Therefore, from Corollary 4.2, we obtain
the following result.

Proposition 5.1. Let 1 ≤ p < q ≤ ∞ and r such that 1/r = 1/p− 1/q. If Z is
a p-convex and q-concave Banach function space such that L∞

F ⊂ Z ⊂ L1
loc,

then the space of (s, Z)-summing multiplication operators from Lq into Lp

(for any 1 ≤ s ≤ ∞) coincides with the whole space Lr, which also coincides
with (Lqds,ZLp′

)′.

Note that under conditions of Proposition 5.1, the norm π of (Lq)Y πY Lp

is equivalent to π̃, defined on g ∈ (Lq)Y πY Lp

as

π̃(g) = inf
{
‖f‖(Lq)Y ‖h‖Y Lp : g = fh with f ∈ (Lq)Y and h ∈ Y Lp

}
. (5.1)

The norms π and π̃ coincide whenever K1K2 ≤ 1.

5.2. Maurey-Rosenthal’s theorem

Let 1 ≤ p < ∞. Recall that a linear operator T : E → F , from a Banach
space E into a Banach lattice F , is p-convex if there exists C > 0 such that
for every x1, ..., xn ∈ E,∥∥∥( n∑

i=1

|T (xi)|p
)1/p∥∥∥

F
≤ C

( n∑
i=1

‖xi‖p
E

)1/p

.

Consider a saturated Banach function space Y being order semi-continuous
and p-concave with constant K1. If T : E → Y is p-convex with constant K2,
then there exists a function 0 ≤ h ∈ (Lp)Y and an operator R : E → Lp such
that T factorizes as

E
T � Y

R

�����
Lp

�����

h

and ‖h‖(Lp)Y ‖R‖E→Lp ≤ K1K2 (see [4, Corollary 2]). If a saturated Banach
function space X is p-convex with constant K, it is direct to check that every
multiplication operator g : X → Y is p-convex with constant K‖g‖XY . Then,
there exists 0 ≤ h ∈ (Lp)Y and an operator R : X → Lp such that gx = hR(x)
for all x ∈ X and ‖h‖(Lp)Y ‖R‖X→Lp ≤ K1K‖g‖XY . Taking f := g

hχ[h>0],
we have that f ∈ XLp

(as |fx| ≤ |R(x)| for all x ∈ X) and g = fh (as
gx = hR(x) with 0 < x ∈ X implies g(ω) = 0 whenever h(ω) = 0). Then,
g ∈ XLp

π(Lp)Y with π(g) ≤ K1K‖g‖XY . Hence, XY ↪→K1K XLp

π(Lp)Y .
Suppose that (Lp)Y is saturated. For instance, this is the case when L∞

F ⊂
Y ⊂ L1

loc, as Y is p-concave. Since XLp

is saturated (as X is p-convex),
by Lemma 2.4 we have that XLp

π(Lp)Y ↪→1 XY . So, XLp

π(Lp)Y = XY

(with equal norms if K1K ≤ 1). Therefore, from Corollary 4.2, we obtain the
following result.



Proposition 5.2. Let 1 ≤ p < ∞. Given two saturated Banach function spaces
X and Y such that X is p-convex and Y is p-concave, has the Fatou prop-
erty and satisfies that (Lp)Y is saturated, then the space of (s, Lp)-summing
multiplication operators from X into Y (for any 1 ≤ s ≤ ∞) coincides with
the whole space XY , which also coincides with (Xds,LpY ′)′.

Note that under conditions of Proposition 5.2, the norm π of XLp

π(Lp)Y

is equivalent to π̃ defined on XLp

π(Lp)Y in a similar way as (5.1). If K1K ≤ 1,
the norms π and π̃ coincide.
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spaces, Indag. Math. 19 (2008), 359–378.

[3] A. P. Calderón, Intermediate spaces and interpolation, the complex method,
Studia Math. 24 (1964), 113–190.

[4] A. Defant, Variants of the Maurey-Rosenthal Theorem for quasi-Köthe function
spaces, Positivity 5 (2001), 153–175.

[5] A. Defant and K. Floret, Tensor norms and operator ideals, North Holland
Math. Studies, Amsterdam, 1993.

[6] J. Lindenstrauss and L. Tzafriri, Classical Banach Spaces II, Springer-Verlag,
Berlin, 1979.

[7] G. Ya. Lozanovskii, On some Banach lattices, Siberian Math. J. 10 (1969),
419–430.

[8] W. A. J. Luxemburg and A. C. Zaanen, Notes on Banach function spaces, Note
III, Nederl. Akad. Wet., Proc., Ser. A 66 (1963), 239-250.

[9] L. Maligranda and L. E. Persson, Generalized duality of some Banach function
spaces, Indag. Math. 51 (1989), 323–338.

[10] S. Reisner, A factorization theorem in Banach lattices and its application to
Lorentz spaces, Annales de l´institut Fourier 31 (1981), 239–255.

[11] A. R. Schep, Products and factors of Banach function spaces, preprint.

[12] A. C. Zaanen, Integration, 2nd rev. ed. North Holland, Amsterdam; Inter-
science, New York, 1967.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /SyntheticBoldness 1.00
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /Description <<
    /DEU <>
    /ENU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [5952.756 8418.897]
>> setpagedevice




