
Metamorphic Relation Patterns for
Query-Based Systems

Sergio Segura, Amador Durán, Javier Troya, and Antonio Ruiz-Cortés
Department of Computer Languages and Systems

Universidad de Sevilla
Spain

Abstract—Searching and displaying data based on user queries
is a key feature of most software applications such as in-
formation systems, web portals, web APIs, and data analytic
platforms. The large volume of data managed by these types of
systems, henceforth called query-based systems (QBS), makes
them extremely hard to test due to the difficulty to assess
whether the output of a query is correct, the so-called oracle
problem. Metamorphic testing has proved to be a very effective
approach to alleviate the oracle problem in QBS, enabling the
detection of bugs in data repositories, large e-commerce sites,
and some of the most used software applications worldwide such
as Google Search and YouTube. We have observed, however,
that the metamorphic relations used to test different types of
QBS are very similar, regardless of their domain, since all
of them exploit standard query features such as filtering and
ordering. Inspired by this finding, in this paper we present a
catalogue of metamorphic relation patterns to assist testers in
the identification and inference of metamorphic relations in QBS.
For the definition of the patterns we resorted to the root of most
query languages: relational algebra. We show how the proposed
patterns help in the identification of metamorphic relations in
the e-commerce platform PrestaShop, the email service Gmail,
and the mobile application of video streaming HBO.

Index Terms—Metamorphic testing, metamorphic relation,
metamorphic relation pattern, query-based system.

I. INTRODUCTION

Most software applications support searching and dis-
playing data based on user queries. A query specifies user
preferences—the data to be retrieved and how to display
it—declaratively using visual forms or textual languages,
which typically support standard operations such as filtering,
ordering or pagination. In what follows, we refer to soft-
ware systems supporting user queries as query-based systems
(QBS). Typical examples of QBS are information systems
like OpenBravo (supporting queries like “retrieve invoices
issued before 2019”), e-commerce sites like Amazon (e.g.,
“search for cameras under $100”), software project platforms
like GitHub (e.g., “get Node.js projects with less than 10
committers”), video streaming apps like HBO (e.g., “order
series by popularity”), email clients like Gmail (e.g., “display
messages including the word SEWORLD in the subject”), or
even video games like World of Warcraft (e.g., “get progres-
sion data for character Thrall in Blackrock realm”). Testing
QBS is extremely challenging as they suffer from the oracle
problem: it is very difficult, often infeasible, to assess whether
the output of a query is correct, either because the expected

output is unknown or because it is hard to compare it to the
observed output [1], [2].

Metamorphic testing [3]–[6] has been successfully applied
to alleviate the oracle problem in different types of QBS
including search engines such as Google and Bing [7]–[9],
RESTful APIs such as Spotify and YouTube [10], e-commerce
sites such as Amazon and Walmart [11], and data repositories
like the NASA’s Data Access Toolkit [12]. Metamorphic
relations in QBS specify the relation between the inputs and
outputs of multiple queries. For example, suppose a search
for videos in YouTube using the keyword “ICSE” that returns
1245 results. Checking whether this output is correct would be
hard and time-consuming, even having access to the internal
systems of YouTube. Suppose that a new search is performed
with the same keyword restricting the search to videos in
high definition (HD), returning 710 results. As expected, the
number of HD videos of ICSE is lower than the total number
of videos of ICSE. Otherwise, the comparison of both queries
would have revealed a failure. This is an example of a simple
metamorphic relation: the number of videos returned in a
search for the keyword K (source test case) should be equal
or higher than the number of videos returned in a search for
K using the HD filter (follow-up test case).

It is worth observing that most QBS support standard
operations such as filtering, ordering and pagination, which
makes them exhibit the same types of metamorphic relations.
For example, the idea behind the previous metamorphic rela-
tion could be potentially applicable to any system supporting
queries with filters, regardless of how these are specified.
In Amazon, for instance, we could run a search query for
“watches” (source test case) and then repeat the search using a
maximum price filter of $100 (follow-up test case). In the Net-
flix mobile app, we could search for “films” (source test case)
and then repeat the search setting the genre filter to “comedy”
(follow-up test case). In IEEE Xplore, we could search for
papers related to “metamorphic”(source test case) and then
restrict the search adding a new keyword as “metamorphic
AND testing” (follow-up test case). In all cases, the number
of results of the first search should be equal or higher than
the number of results of the second search (filtered). These
relations reflect a pattern applicable to most QBS: the number
of results of a query (source test case) should be equal or
higher than the number of results of the same query when
adding one or more filters (follow-up test case). Inspired by

this finding, the concept of metamorphic relation “patterns”
has been proposed as abstract relations from which multiple
concrete metamorphic relations can be instantiated [10], [11],
[13]. Zhou et al. [11] defines a metamorphic relation pattern
(MRP) as an abstraction that characterizes a set of (possibly
infinitely many) metamorphic relations. The previous pattern,
for instance, is an example of MRP from which we could in-
stantiate numerous metamorphic relations in multiple systems
under test by using different types of queries, different filters,
and even different number of follow-up test cases.

The use of patterns has two main benefits. First, they can be
extremely helpful for identifying metamorphic relations [10],
[11], [13]. This is because patterns guide testers on the search
for metamorphic relations with a certain structure, making the
identification of the relations significantly easier than when
starting from scratch. Second, the identification of patterns
is a key point to enable the automated inference of likely
metamorphic relations that conform to those patterns [14].
For example, papers on the automated inference of likely
metamorphic relations in numerical and machine learning
programs (e.g., [15], [16]) typically search for instances of the
“metamorphic properties” (similar to the concept of pattern)
defined by Murphy et al. back in 2008 [17]. For example,
the permutative property specifies that the order of the inputs
should not affect the output (c.f. Section II-A).

In this paper, we present a catalogue of seven MRPs to
assist testers in the identification and inference of metamorphic
relations in QBS. The proposed patterns are based on previ-
ous work of the authors and also on common metamorphic
relations found in related papers on metamorphic testing of
QBS. For the definition of the patterns, we use relational
algebra [18], typically used to define the semantics of query
languages like SQL. To illustrate the feasibility of the ap-
proach, we show how the proposed patterns help in the
identification of metamorphic relations in three real QBS with
millions of users: the e-commerce platform PrestaShop [19],
the web email service Gmail [20], and the video streaming
app of HBO [21].

The reminder of the paper is structured as follows. Section
II introduces MRPs and relational algebra. The catalogue of
patterns is presented in Section III. Section IV describes some
of the metamorphic relations that can be derived from the
patterns in three different types of QBS. Finally, we summarize
our conclusions and potential future work in Section V.

II. BACKGROUND

A. Metamorphic relation patterns

In previous work the authors introduced the term “metamor-
phic relation output pattern” (MROP) as an abstract relation
among the source and follow-up outputs from which multiple
concrete metamorphic relation can be derived [10]. This work
opened a new MT research direction on “metamorphic relation
patterns”, in a broad sense, as foreseen by Segura in his
keynote as the Third International Workshop on Metamor-
phic Testing (ICSE MET’18) [13]. Zhou et al. [10] further
investigated the notion of “patterns” and formally presented

the general concept of “metamorphic relation pattern (MRP)”
as an abstraction that characterizes a set of (possibly infinitely
many) metamorphic relations. MRPs ease the systematic iden-
tification of metamorphic relations and can serve as a starting
point for the automated inference of metamorphic relations
that conform to the patterns. Although the concept of patterns
has been recently introduced, the intuitive idea behind patterns
had been explored earlier. Zhou et al. [7] used the term general
metamorphic relations, analogous to the concept of MRP, in
their paper on testing search engines back in 2007. Short after
that, Murphy et al. [17] introduced the concept of metamorphic
property, also aligned to the concept of pattern, as a general
form of metamorphic relation that “provide a foundation for
determining the relationships and transformations that can be
used for conducting metamorphic testing” in machine learning
applications. More specifically, they identified six properties
(patterns) called additive, multiplicative, permutative, invert-
ive, inclusive, and exclusive. As an example, the additive
property specifies that modifying the input data by addition
should not affect the output. These properties are possibly
the most successful examples of patterns so far having been
used by different research groups for the identification and
inference of metamorphic relations in several machine learning
and numerical programs, e.g., [15], [16], [22]–[24]. Troya et
al. [14] identified a set of domain-independent trace patterns to
automatically infer likely metamorphic relations in the context
of model transformations.

An MRP can also be specified as an incomplete metamor-
phic relation where only the relation among the inputs or
the outputs is specified. This has motivated the introduction
of two subclasses of patterns: metamorphic relation input
pattern (MRIP) [11] and metamorphic relation output pattern
(MROP) [10]. An MRIP is defined as an abstraction that
characterizes the relations among the source and follow-up
inputs of a set of metamorphic relations [11]. Conversely, an
MROP describes an abstract relation among the source and
follow-up outputs, but not the relation among the inputs.

In a previous paper, we proposed six MROPs for the
identification of metamorphic relations in RESTful web ser-
vices [10]: equivalence, equality, subset, disjoint, complete
and difference. The disjoint pattern, for example, represents
those metamorphic relations where the intersection among the
source and follow-up outputs should be empty, although it does
not specify how the source test case should be transformed
into a follow-up test case such that the output relation holds.
The patterns presented in this paper are highly inspired on
the MROPs presented in our previous work, based on the
observation that they could be applicable to most QBS, and
not just web services. However, in this paper we go a step
further by specifying complete patterns—MRPs rather than
MROPs—where both the input and the output relations are
specified.

In a recent paper, Zhou et al. [11] proposed a symmetry
MRP and a change direction MRIP, based on the observation
that most systems can be observed from different viewpoints
from which the system appear the same. For example, an AI-

enabled object recognition system should recognize the same
objects in a video, regardless of whether it is played forwards
or backwards.

B. Relational algebra

Relational algebra is a theoretical query language proposed
by the creator of the relational model E. F. Codd [25]. Apart
from set–like operators like Cartesian product (×), union
(∪), difference (−) or intersection (∩), relational algebra also
includes projection (Π), selection (σ), division (÷) and join
(./) operators [18]. Some extensions to relational algebra have
been proposed, including the τ operator, that sorts a relation
on the values of a list of attributes generating a sequence [18].

In a nutshell, the relational algebra operators that are mainly
used in the rest of the paper are listed below, assuming that a
relation R exists and can be queried, e.g., products in Amazon.
Notice that, instead of the usual subscript notation, we use
parameters within parenthesis for the sake of readability.

σ(R, c) It returns the relation formed by all the tuples
in R for which condition c holds. Notice that
c is a well-formed formula, i.e., a simple
condition or a compound condition using the
∧,∨ and ¬ logical connectors.

τ (R, 〈 ai 〉) It returns a sequence of all the tuples in R
ordered by the value of the attributes in the
sequence 〈 ai 〉i=1..n, i.e., first using the values
of a1, then those of a2, etc. All attributes in
〈 ai 〉 must be present in the tuples in R. If the
sequence of attributes is empty, i.e. τ (R, 〈 〉),
the tuples are sorted using default ordering,
which depends on the QBS being queried.

In the rest of the paper, we use the standard Z formal
specification language [26], [27] for formalising concepts in
the metamorphic relation patterns when needed, applying the
previously mentioned relational algebra operators.

III. METAMORPHIC RELATION PATTERNS

In this section, we present a catalogue of seven MRPs for
QBS. These patterns are an abstraction of common (general)
metamorphic relations found in related papers on metamorphic
testing of QBS [7]–[10], [12]. These patterns are also highly
inspired by the MROPs presented by the authors in the context
of web APIs [10], based on the observation that they are also
applicable to other types of QBS. However, in this paper we
refine those patterns by considering not only the output relation
among source and follow-up test cases, but also the relation
among the inputs, i.e., we present MRPs rather than MROPs.
This makes it easier to instantiate each pattern, although it
also reduces their scope. For a more general view of the
proposed patterns, we refer to the MROPs presented in our
previous work [10]. Notice that we do not intend this to be a
complete list of MRPs. In fact, it would be straightforward to
identify new patterns as variations of the ones presented here

or, for example, exploiting equivalences in relational algebra.
In what follows, we briefly present each MRP including an
example, references to related work, and its formalization
using relational algebra.

A. Input equivalence

This pattern represents those relations where the source and
the follow-up test cases are equivalent and therefore their
outputs should contain the same items in the same order,
i.e., they should be equal. There exist two typical situations
where this pattern can be instantiated. The first one appears
when input parameters accept equivalent values expressed in
different formats, e.g., 1MB ≡ 1024KB. The second situation
appears in most queries and it is related to default values: it
should not matter whether or not default values of the query
parameters are specified. For example, a search in YouTube
specifying no order should produce exactly the same result as
indicating the default ordering criterion, which is based on the
relevance to the search query. A key advantage of the relations
instantiated from this pattern is that the outputs of source and
follow-up test cases are easy to be compared since they are
expected to be equal, e.g., using a diff tool. Lindvall et al. [12]
used a rich set of these types of metamorphic relations to
reveal failures in the NASA DAT, a large database of telemetry
data. This pattern is a particular case of the equality MROP
defined by the authors in [10].

Formally, let q1 = τ (σ(R, c1), 〈 o1 〉) and q2 =
τ (σ(R, c2), 〈 o2 〉) be two queries defined on the same
relation R. This MRP states that the outputs of q1 and q2
should be the same when conditions c1 and c2 and sequences
of ordering criteria o1 and o2 are equivalent, i.e.,

(c1 ≡ c2 ∧ o1 ≡ o2) ⇔
(τ (σ(R, c1), 〈 o1 〉) = τ (σ(R, c2), 〈 o2 〉))

B. Shuffling

This pattern represents those metamorphic relations where
the source and follow–up outputs should contain the same
items regardless of the ordering criteria specified as input. For
example, a search for “hotels in London” in Booking.com [28]
should return the same results regardless of the ordering
criteria specified (price, review score, starts, etc.). This pattern
is a particular case of the equivalence MROP presented by the
authors in the context of web APIs [10], and of the change
direction MRIP recently proposed by Zhou et al. [11].

Formally, let q = σ(R, c) be a query such that its result
contains several attributes { ai }i=1..n that can be used as
ordering criteria with the τ operator defined in Section II-B.
This MRP states that the result of the query q ordered by a
given attribute ai should contain the same elements than the
same query ordered by any other different attribute aj, i.e.,

∀ i, j : 1 . . n | i 6= j •
items τ (q, 〈 ai 〉) = items τ (q, 〈 aj 〉)

where items is a function that returns the bag of elements of a
sequence (see [26, p. 127]), i.e., the unordered elements in the

query. Notice that this pattern can be generalized to consider
any pair of sequences of the ordering attributes in { ai }i=1..n

C. Conjunctive conditions

This pattern groups those relations where the query is
iteratively refined adding new conjunctive conditions such
that the results of each test case should be included in the
results of the previous ones. This pattern is very common in
query operations where most of the parameters are filters. For
example, suppose we perform a search for YouTube videos of
“pets”. Next, we search for videos of “pets” in three dimension
(3D), and finally we search for videos of “pets” in 3D uploaded
after 2018. Intuitively, the results of the third search (videos
of pets in 3D published after 2018) should be a subset of the
result set of the second search (videos of “pets” in 3D), and
in turn these should be a subset of the results of the original
search (videos of “pets”). This pattern, and slight variations
of it, were extensively used by Zhou et al. in their papers on
testing search engines [7], [8], and also by Segura et al. in
their paper on testing RESTful web APIs [10] (where it was
generalized as the subset MROP).

Formally, let c be a complex condition formed by the
conjunction of simpler conditions, i.e., c =

∧
i=1..n ci. This

MRP states that the result of a query when one condition
is added conjunctively to its selection condition should be
a subset of the result of the query before adding the new
condition, i.e.,

∀ i = 2 . . n • σ(R,
∧

k=1..i

ck) ⊆ σ(R,
∧

k=1..i−1

ck)

D. Disjunctive conditions

This pattern is similar to the previous one, but the query is
expanded with input disjunctive conditions such that the results
of each test case should be a subset of the following ones. For
example, let us suppose a search in IEEE Xplore for papers
including the word “metamorphic” in their title. Next, we
expand the search to papers including either “metamorphic”
OR “testing”. Naturally, the papers returned in the former
search should be a subset of those found in the second search.
This pattern has been previously exploited in the context of
search engines [7], [8].

Formally, let c be a complex condition formed by the
disjunction of simpler conditions, i.e., c =

∨
i=1..n ci. This

MRP states that the result of a query when one condition is
added disjunctively to its selection condition should contain
the result of the query before adding the new condition, i.e.,

∀ i = 2 . . n • σ(R,
∨

k=1..i−1

ck) ⊆ σ(R,
∨

k=1..i

ck)

E. Disjoint partitions

This pattern represents those relations where the outputs
of the follow–up test cases should be pairwise disjoint (i.e.,
they should have no items in common) because the underlying
relation can be partitioned according to the values of at least
one input attribute. For instance, suppose a search in a PayPal

user’s account [29] for refunds with status COMPLETED.
Next, let us suppose a new search is performed in the same
account for refunds with status CANCELLED. The results set
of both searches should have no items in common. This pattern
is a particular case of the disjoint MROP presented by the
authors in the context of web APIs [10].

Formally, let q = σ(R, c) be a query such that its result
contains at least one attribute ap whose domain is a discrete
set of values, e.g., {v1, v2, . . . vn}. This MRP states that the
result of two queries where a conjunctive condition of the
form ap = vi appears, should be disjoint if the values with
which ap is compared are different, i.e.,

∀ i, j : 1 . . n | i 6= j •
σ(R, c ∧ ap =vi) ∩ σ(R, c ∧ ap =vj) = ∅

F. Complete partitions

This pattern is related to the previous one, and it represents
those relations where the union of the follow–up outputs
should contain the same items as the source output because
the underlying relation can be partitioned according to the
values of at least one input attribute. For instance, YouTube
videos are classified according to its duration in short (less
than 4 minutes), medium (between 4 and 20 minutes) and
long videos (longer than 20 minutes). Consider a source test
case consisting in a search for YouTube videos with the
keyword “testing”. Suppose that three follow–up test cases
are constructed by searching for the same keyword restricting
the search to short, medium, and long videos, respectively.
Intuitively, the union of the follow–up test outputs (short,
medium, and long videos) should contain the same videos as
the source test output, where no duration filter was specified.
This pattern is a particular case of the complete MROP
presented by the authors in [10].

Formally, let q = σ(R, c) be a query such that its result
contains at least one attribute ap whose domain is a discrete set
of values, e.g., {v1, v2, . . . vn}. This MRP states that the union
of the results of the n queries formed by adding a conjunctive
condition of the form ap = vi to the condition in q for each
possible value of ap, should be equal to the result of q, i.e.,

σ(R, c) =
⋃

i=1..n

σ(R, c ∧ ap =vi)

G. Partition difference

This pattern is derived from the two previous ones and
represents those relations where the outputs of the follow–
up test cases are pairwise disjoint and their union contains the
same items as the source output because the queried relation
can be partitioned according to the values of at least one input
attribute. For instance, in the previous example the difference
between all YouTube videos of “testing” and long videos
about the topic should be equal to the union of medium and
short videos. To the best of our knowledge, these types of
metamorphic relations have not been exploited in the context
of queries so far.

Figure 1. Order view in PrestaShop’s back-office

Formally, let q = σ(R, c) be a query such that its result
contains at least one attribute ap whose domain is a discrete
set of values, e.g., {v1, v2, . . . vn}. This MRP states that the
difference between q and the union of the results of the k
queries formed by adding a conjunctive condition of the form
ap = vi to the condition in q for k different possible values of
ap, should be equal to the result of the union of the results of
the n− k queries formed by adding a conjunctive condition of
the form ap = vj to the condition in q for the n− k different
possible values of ap, i.e.,

∀ k : 1 . . (n− 1) •

σ(R, c)−
⋃

i=1..k

σ(R, c ∧ ap =vi) =

⋃
j=k+1..n

σ(R, c ∧ ap =vj)

IV. IDENTIFICATION OF METAMORPHIC RELATIONS

In this section, we show how the proposed MRPs can
help in the identification of metamorphic relations in different
types of QBS. To foster diversity, we excluded web search
engines and web APIs since those types of QBS have been
studied in detail in related papers [7]–[10]. In particular, we
identified metamorphic relations in the e-commerce platform
PrestaShop [19], the web email client Gmail [20] and the
mobile application of video streaming HBO [21]. For each
program, we next show some of the metamorphic relations
identified indicating the MRP that they instantiate. We may
remark that we do not intend to collect a complete list of
metamorphic relations, but just a sample of the potentially
huge number of relations that could be derived from the
patterns on each program. We may also remark that the goal
of this paper is not to study the fault detection capability of
the identified metamorphic relations, but to study the validity
and generalizability of the proposed MRPs. Notice that for
each metamorphic relation identified, many metamorphic tests
could be implemented by using specific test inputs and test
fixtures, e.g., populating each QBS with different datasets.

Regarding the description of the relations, when not expli-
citly mentioned, the first query is the source test case and the
subsequent queries are the follow-up test cases.

A. PrestaShop

PrestaShop [19] is an open source e-commerce platform
written in PHP for the development of online shopping
systems. It offers over 3,500 modules and visual templates
powering more than 270,000 online stores worldwide. A
PrestaShop store provides a public interface, where customers
browse the site and place orders (front-office), and a private
interface where administrators can manage the store (back-
office). Figure 1 shows a screenshot of the orders view in the
back-office of the online demo of PrestaShop v1.7.41. A visual
form is provided to browse and query orders by identifier,
country, customer’s name, amount, type of payment, status,
and date. Next, we show some of the metamorphic relations
that can be derived from the proposed patterns.

• MR1 (Input equivalence). List the orders using default
values. Then, get a new list ordered by ID, default
ordering criterion. Both queries should return exactly the
same result set.

• MR2 (Shuffling). List the orders ordered by Date. Then,
get a new list ordered by Total amount. Both queries
should return the same orders, regardless of their order-
ing.

• MR3 (Conjunctive conditions). List the orders placed
after a date. Then, repeat the query adding a new filter to
list orders paid by Bank wire only. The result set of
the second query (follow-up test case) should be a subset
of the result set of the first query (source test case), where
no payment filter was applied.

• MR4 (Disjoint partitions). List the orders with status
Delivered. Then, repeat the query three more times
changing the status filter to Cancelled, Refunded,
and Payment error, respectively. The result sets of
the four queries should have no orders in common.

1http://demo.prestashop.com/en/?view=back

Figure 2. Gmail web client

• MR5 (Complete partitions). List all the orders delivered to
a given country (source test case). Next, repeat the query
restricting the search to orders placed by an existing cli-
ent, i.e., filter New client = No (follow-up test case
1). Then, repeat the query searching for orders placed
by a new client, i.e., New client = Yes (follow-up
test case 2). The result set of the source test case should
include exactly the same orders as the union of the results
returned in the follow-up test cases 1 (existing client) and
2 (new client).

• MR6 (Partition difference). List all the orders. Next,
repeat the query two times restricting the search to orders
placed by an existing client (follow-up test case 1) and
orders placed by a new client (follow-up test case 2),
respectively. The difference between the result set of the
source test case (all orders) and the result set of the
follow-up test case 1 (orders placed by an existing client)
should include exactly the same orders as the results
returned in the follow-up test cases 2 (orders placed by
a new client).

These metamorphic relations, and similar ones, could
be easily identified in other e-commerce platforms (e.g.,
Magento [30]) and enterprise resource planning applications
(e.g., OpenBravo [31]), where similar forms are used to
query common domain objects such as customers, addresses,
payments, invoices or refunds.

B. Gmail

Gmail [20] is a free web email service developed by Google
with more than one billion active users worldwide. E-mails are
classified using labels. By default, messages are classified us-

ing the labels Inbox, Starred, Snoozed, Important, Chats, Sent,
Drafts, All mail, Spam, and Bin. In turn, the received messages
(inbox) can be optionally arranged in five different tabs:
Primary, Social, Promotions, Updates, and Forums. Gmail
also supports e-mail search and a simple message classification
system based on the use of custom labels and filters. Figure 2
shows the web user interface of Gmail showing the search
form on top of the messages with the tag SEWORLD. We next
show some of the metamorphic relations that can be easily
identified as instances of the proposed MRPs.

• MR1 (Input equivalence). Search for messages in the in-
box greater than certain memory size in megabytes (e.g.,
greater than 1MB). Then, repeat the search express-
ing the memory amount in kilobytes (e.g., greater
than 1024KB). Both queries should return exactly the
same result set.

• MR2 (Shuffling). Get all the messages in the inbox using
the Default inbox type. Then, list all messages chan-
ging the inbox type to Important first, Unread
first, and Starred first, respectively. The four
queries should return the same messages, regardless of
how they are arranged.

• MR3 (Conjunctive conditions). Get all the messages in
the inbox. Then, perform a search for those messages that
Has attachment. The messages found in the second
query should be a subset of the result set of the first query,
where no attachment filter was specified.

• MR4 (Disjunctive conditions). Get all the messages
in the inbox from an email address a1 (e.g.,
from:jane@company.com). Then, perform a search
for those messages from a1 or a2, being a2 a different

Figure 3. Some screenshots of the HBO mobile app (Spanish content)

email address (e.g., from:jane@company.com OR
from:peter@company.org). The messages found in
the first query should be a subset of the messages returned
in the second query, where the search was broadened with
a disjunctive condition.

• MR5 (Disjoint partitions). List the messages greater
than x MB. Next, search for those messages with less
than x MB. The result sets of both queries should have
no messages in common.

• MR6 (Complete partitions). Search all the messages in-
cluding a certain keyword. Next, repeat the search seven
times restricting the search to Inbox, Starred, Sent
Mail, Drafts, Chats, Spam, and Bin. The result set
of the first search (source test case) should include exactly
the same messages as the union of the results returned in
the subsequent searches (follow-up test cases).

• MR7 (Partition difference). Get all the messages in
the inbox. Next, run five different queries to get all
the messages in the inbox tabs Primary, Social,
Promotions, Updates, and Forums. The difference
between all the messages returned in the first query and
those classified as social, promotions, updates and forums
should be the messages included in the primary tab.

C. Home Box Office

Home Box Office (HBO) [21] is a popular premium
cable and satellite television network, also operating as a
subscription-based video streaming service, with more than
130 million subscribers worldwide. The platform content
can be displayed in different devices including smart TVs,
smartphones, tablets, and video game consoles. Figure 3 shows
some screenshots of the HBO mobile app. As illustrated, it
has a minimalistic design, with just a few input options for

browsing the catalogue. The application mostly relies on a
recommendation system for showing users new content based
on their previous behaviour. Interestingly, it is also possible to
identify metamorphic relations based on the proposed patterns
in this type of application. These are some examples:

• MR1 (Shuffling). Get content in the user watchlist ordered
alphabetically (A-Z). Next, get the content in the user
watchlist ordered by Release date. Finally, get the
content ordered by the date in which it was added to the
watchlist (Recently added). The three queries should
return the same content, regardless of their ordering.

• MR2 (Conjunctive conditions). Get all the content in the
user watchlist. Then, get the content enabling the filter
hide kids content. The result set of the second query
(follow-up test case) should be a subset of the result set
of the first query (source test case), where no filter was
applied.

• MR3 (Disjoint partitions). List the episodes of season 1
of a TV series. Next, list the episodes of seasons 2, 3, ...,
n in subsequent queries. The result sets of all the queries
should have no episodes in common.

• MR4 (Complete partitions). List all movies (source test
case). Then, perform different queries to get the movies of
each available genre, including Action, Sci-fi and
fantasy, Comedy, Drama, Thriller, Family,
Horror, Romance, Awarded, Documentary and
Specials (follow-up test cases). Intuitively, the union
of the movies found in the follow-up test cases (removing
possible duplicates) should be the same as those returned
in the source test case.

These and many other metamorphic relations, instances
of the proposed MRPs, could be easily identified in related
video and music streaming platforms such as Amazon Prime

Video [32], Netflix [33] and Spotify [34].

V. CONCLUSIONS AND FUTURE WORK

In this paper, we presented a catalogue of MRPs to assist
on the identification of metamorphic relations in QBS. For a
better understanding, patterns were formalized using relational
algebra, a well-known formal approach for describing the
semantics of query languages. To show the generalizability of
the proposed patterns, we list some of the many metamorphic
relations that can be derived from them in three different
domains: an e-commerce platform, a web email service, and
a video streaming app. The experience in this and previous
papers reveals that patterns are extremely helpful to assist in
the identification of metamorphic relations, guiding the testers
in the search for relations with a certain shape. We trust that
this paper serves as a helpful reference for the application
of metamorphic testing in other QBS. Also, we hope that this
paper encourages other researchers and practitioners to further
investigate and exploit the benefits of using patterns in the
context of metamorphic testing.

Future work may include the identification of new patterns
as well as their use to test specific QBS. More importantly,
we foresee a fruitful research line in exploiting the proposed
patterns to automatically infer likely metamorphic relations in
QBS using techniques like machine learning.

ACKNOWLEDGMENT

This work has been partially supported by the European
Commission (FEDER) and Spanish Government under CICYT
project BELI (TIN2015-70560-R). We thank Zhi Quan Zhou
for his discussions and comments on this paper.

REFERENCES

[1] E. J. Weyuker, “On testing non-testable programs,” The Computer
Journal, vol. 25, no. 4, pp. 465–470, 1982.

[2] E. T. Barr, M. Harman, P. McMinn, M. Shahbaz, and S. Yoo, “The
oracle problem in software testing: A survey,” Software Engineering,
IEEE Transactions on, vol. 41, no. 5, pp. 507–525, May 2015.

[3] T. Y. Chen, S. C. Cheung, and S. M. Yiu, “Metamorphic testing: A
new approach for generating next test cases,” Technical Report HKUST-
CS98-01, Department of Computer Science, The Hong Kong University
of Science and Technology, Tech. Rep., 1998.

[4] S. Segura, G. Fraser, A. Sanchez, and A. Ruiz-Cortés, “A survey
on metamorphic testing,” IEEE Transactions on Software Engineering,
vol. 42, no. 9, pp. 805–824, Sept 2016.

[5] S. Segura, D. Towey, Z. Q. Zhou, and T. Y. Chen, “Metamorphic testing:
Testing the untestable,” IEEE Software, 2018. [Online]. Available:
https://doi.org/10.1109/MS.2018.2875968

[6] T. Y. Chen, F.-C. Kuo, H. Liu, P.-L. Poon, D. Towey, T. H. Tse, and Z. Q.
Zhou, “Metamorphic testing: A review of challenges and opportunities,”
ACM Computing Surveys, vol. 51, no. 1, pp. 4:1–4:27, Jan. 2018.

[7] Z. Q. Zhou, T. H. Tse, F.-C. Kuo, and T. Y. Chen, “Automated functional
testing of web search engines in the absence of an oracle,” Department
of Computer Science, The University of Hong Kong, Tech. Rep. TR-
2007-06, 2007.

[8] Z. Q. Zhou, S. Zhang, M. Hagenbuchner, T. H. Tse, F.-C. Kuo, and T. Y.
Chen, “Automated functional testing of online search services,” Software
Testing, Verification and Reliability, vol. 22, no. 4, pp. 221–243, Jun.
2012. [Online]. Available: http://dx.doi.org/10.1002/stvr.437

[9] Z. Q. Zhou, S. Xiang, and T. Y. Chen, “Metamorphic testing for software
quality assessment: A study of search engines,” IEEE Transactions on
Software Engineering, vol. 42, no. 3, pp. 264–284, March 2016.

[10] S. Segura, J. Parejo, J. Troya, and A. Ruiz-Cortés, “Metamorphic testing
of RESTful Web APIs,” IEEE Transactions on Software Engineering,
vol. 44, no. 11, pp. 1083–1099, Nov 2018.

[11] Z. Q. Zhou, L. Sun, T. Y. Chen, and D. Towey, “Metamorphic
relations for enhancing system understanding and use,” IEEE
Transactions on Software Engineering, 2018. [Online]. Available:
https://doi.org/10.1109/TSE.2018.2876433

[12] M. Lindvall, D. Ganesan, R. Ardal, and R. Wiegand, “Metamorphic
model-based testing applied on nasa dat – an experience report,” in
Software Engineering (ICSE), 2015 IEEE/ACM 37th IEEE International
Conference on, vol. 2, May 2015, pp. 129–138.

[13] S. Segura, “Metamorphic testing: Challenges ahead (keynote speech),” in
Proceedings of the 3rd International Workshop on Metamorphic Testing
(ICSE MET’18). New York, NY, USA: ACM, 2018, slides available at
http://personal.us.es/sergiosegura/files/presentations/segura18-MET.pdf.

[14] J. Troya, S. Segura, and A. Ruiz-Cortés, “Automated inference of likely
metamorphic relations for model transformations,” Journal of Systems
and Software, vol. 136, pp. 188 – 208, 2018.

[15] U. Kanewala and J. M. Bieman, “Using machine learning techniques
to detect metamorphic relations for programs without test oracles,” in
IEEE 24th International Symposium on Software Reliability Engineering
(ISSRE), 2013, Nov 2013, pp. 1–10.

[16] U. Kanewala, J. M. Bieman, and A. Ben-Hur, “Predicting metamorphic
relations for testing scientific software: a machine learning approach
using graph kernels,” Software Testing, Verification and Reliability,
2015. [Online]. Available: http://dx.doi.org/10.1002/stvr.1594

[17] C. Murphy, G. Kaiser, and L. Hu, “Properties of machine learning
applications for use in metamorphic testing,” Department of Computer
Science, Columbia University, New York NY, Tech. Rep., 2008.

[18] H. Garcı́a-Molina, J. D. Ullman, and J. Widom, Database Systems: The
Complete Book, 2nd ed. Pearson, 2009.

[19] “PrestaShop,” accessed January 2019. [Online]. Available: https:
//www.prestashop.com/

[20] “Gmail,” accessed January 2019. [Online]. Available: https://mail.
google.com/mail

[21] “Home Box Office (HBO),” accessed January 2019. [Online]. Available:
https://www.hbo.com/

[22] J. Ding, T. Wu, J. Q. Lu, and X. Hu, “Self-checked metamorphic
testing of an image processing program,” in 2010 Fourth International
Conference on Secure Software Integration and Reliability Improvement
(SSIRI), June 2010, pp. 190–197.

[23] F. Su, J. Bell, C. Murphy, and G. Kaiser, “Dynamic inference of likely
metamorphic properties to support differential testing,” in Proceedings
of the 10th International Workshop on Automation of Software Test, ser.
AST ’15. Piscataway, NJ, USA: IEEE Press, 2015, pp. 55–59.

[24] S. Nakajima and H. N. Bui, “Dataset coverage for testing machine learn-
ing computer programs,” in 2016 23rd Asia-Pacific Software Engineering
Conference (APSEC), Dec 2016, pp. 297–304.

[25] E. F. Codd, “A relational model of data for large shared data banks,”
Commun. ACM, vol. 13, no. 6, pp. 377–387, 1970.

[26] J. M. Spivey, The Z Notation: A Reference Manual, 2nd ed. Prentice–
Hall, 1992.

[27] ISO/IEC, “Information technology — Z formal specification notation
— Syntax, type system and semantics,” International Standard ISO/IEC
13568:2002, 2002.

[28] “Booking.com,” accessed January 2019. [Online]. Available: https:
//www.booking.com

[29] “Paypal,” accessed January 2019. [Online]. Available: https://www.
paypal.com

[30] “Magento,” accessed January 2019. [Online]. Available: https://magento.
com/

[31] “Openbravo,” accessed January 2019. [Online]. Available: http:
//www.openbravo.com/

[32] “Amazon Prime Video,” accessed January 2019. [Online]. Available:
https://www.primevideo.com

[33] “Netflix,” accessed January 2019. [Online]. Available: https://www.
netflix.com

[34] “Spotify,” accessed January 2019. [Online]. Available: https://www.
spotify.com

View publication statsView publication stats

https://www.researchgate.net/publication/334203890

